
On (1w Sequential Nature of Unification

Cynthia l)wi,rt1 Paris C. Kaneflakis2 John C. Mitchell3
MIT Brown Unit MiT

Nocmbcr 1923

Absiract

The problem of unir,cation of terms is log-space complete for P. In deriving this lower bound no
use is made of the potentially concise representation of terms by directed acyclic graphs. In
addition, the problem remains complete even if infinite substitutions are allowed. A consequence of
this result is that parallelism cannot significantly improve on the best sequential solutions for
unification. The “dual problem of computing the congruence closure of an equivalence relation is
also log-space complete for P. However, we show that for the problem of term matching, an
important subcase of unification, there is a good paralici algorithm using O(log2 n) time and
processors on a PRAM. For the 0(1082 n) parallel time upper bound we assume that the terms are
represented by directed acyclic graphs; if the longer string representation is used we obtain an
O(log n) parallel Lime bound.

1. Introduction

Unification is an important step in resolution theorem proving (R] with applications to a variety
of symbolic computation problems. In panicular, unification is used in PkOLOO interpreters jCM],
type inference algorithms IMI. and term rewriting systems 10KM]. Many symbol manipulation
problems are inherently difficult and thus do not have efficient solutions. Theorem pmvers and
PROLOG interpreters do not always give us the answers we want fast enough. One way to combat
the difficulty of these problems is by coordinating many processors to solve a single problem
instance by working on several subproblems in parallel. Although there are a number of ways to
introduce parallelism into interpreters [Si and theorem provers, unification is a prune target since it
is the most commonly repeated operation in these tasks. However, our analysis suggests that parallel
unification algorithms will not perform significantly faster than the best sequential algorithms known

(e.g., 9’W runs in linear time). We show that, unless PCNC. an unlIkely twist of complexity theory
[C). no parallel algorithm for urdficaiion will run in time bounded by a polynomial in the logarithm
of the input size, and using a number of processors bounded by a polynomial in the size of the
input We use the PRAM of [FWJ as our model of parallel computation, although we could, just as
well, have used any other “reasonable parallel modcl UT

1Sbpponed by a Banliell Fellowship. 2Supported paniy by NSF gmnt MCS-S210830 and pariJy by ONR-DARPA gnnt

N14-S3KO146. 3Supponed by an IBM Fellowship.

2

Informally, two symbolic terms s and t are tinifithle if there is some way of substituting

additional terms fbr variables in s and t so that both become the same term. All occurences of a
variable x in both s and t must be replaced by the same term. For example, the terms f{x. x) and
f(g(y), g(g(z))) may be unified by substituting g(z) for y and g(g(z)) for x. A unification problem like
“unify f(t1, t2) and f(tj; t4)” may be decomposed into two subproblems “unify t and L3” and

“unify t2 and t4’. However, these two problems cannot be solved entirely separately in parallel. If
some variable x occurs in both t1 and t4. for example, then the solutions to the subproblems must
be coordinated so that both substitute the same term for x.

There are several variations of the unification problem. For exaniple, a type inference algorithm

may construct labeled graphs which represent terms that must be unified. An acceptable result of
unification, in this case, may be a labeled graph with a cycle. Labeled graphs with cycles represent

types defined by recursion [MPSJ, or, if interpreted as terms, represent ‘infinite terms”. Thus one

natural, unrestricted version of unification is to allow “infinite tcnns” to be substituted for variables.

Using the “infinite term” fgf...)), we can unify x and f{x), something we could not do otherwise.
Unrestricted unification also appears in many PROLOG interpreters; those omitting the occur test

1CM]. Another variation on unification is the special case in which the labeled graphs are from a
class of tree-like directed acyclic graphs (which we call simple dags). The complexity of unification
on simple dags is precisely the complexity of unification on symbolic (string) representations of
terms, as opposed to the complexity as a function of the size of more concise graph representations.
For this case it was known that unification, without ‘infinite terms”, is co-NLOGSPACE-hard [IS].
This did not exclude the possibility of parallel algorithms, moreover no lower bound was known for
unrestricted unification.

We show that all of the above variants of unification are log-space complete for P [C. 01, 021,
and hence unlikely to have nice parallel solutions. The nondeterministic Jog-space test for
ununifiability in [LSJ, which could have led to a O(log2 n) parallel time solution, is sufficient, but
unfortunately not necessary (see Figure 3b for a counterexample to this test). In addition, we show
that the related problem of congruence closure IDS1] is complete for P.

One important special case of unification can be solved quickly in parallel. This problem called
term matching, arises in term rewriting. A term s matches a term t if t is a substitution instance of s.
The rewrite rule I-n may be used to rewrite a term t whenever I matches t [0KM]. We show that
matching can be accomplished in log2-time on a PRAM, using a polynomial number of processors.
Our algorithm combines parallel transitive closure of a directed acyclic graph, with parallel
computation of connected components of an undirected graph [1-ICS, Ch]. Also, matching is in

NLOGSPACE. and for simple dags it is in DLOGSPACR

Following the definitions presented in Section 2, we will discuss labeled graph unification in
Section 3 unification for simple dags and congruence closure in Section 4, and term matching in
Section 5.

3

2. Ih{tnilions

2.1 terms and flags

1st I be an infinite set of variables x,yx,xj.... and 1’ an infinite set of function sj’n,bols
f.g.h.11.... We assume that I and F arc disjoint. [&h function symbol f has a fixed arii} a

nonnegative integer (fl. A ftrncLion symbol gEF with a(g)=O is called a ci,,sla,it. The set T of

terms is defined inductively by:

a variable xE V or constant gEF is a term, and

if fEF and t t1(fl arc terms, then ftt1 taco) is a term.

Terms may be represented using directed acyclic graphs with labeled nodes and, possibly.

multiple labelled arcs. A lain/ct directed graph is a finite directed graph 0. such that:

(1) every node v of 0 has a unique label, denoted labcl(v). with label(v)E [‘U F,

(2) for each xE V. there is at most one node v with label(v)=x, and it has outdegree 0,

(3) if a node v has label fEF. with arity a(fl0, then it has outdegree aW. and

the aits leaving it are labeled 1,2 a(U.

If there is an at labeled i from node u to node v, then we say that v is the i-th son of u.

A labeled dag C is a labeled directed acyclic graph. The leaves of C are the nodes of outdegree 0;

note that a node v is a leaf iff label(v) is either a variable or a constant, the height of a node v of a

dag 0 is the length of the longest path from v to a leaf. A root of a dag is a node of indegree 0.

If 0 is a labeled dag, we can associate a term 4 with any node v of 0. We say that

represents t,. The term 4 is defined by induction on the height of v:

if v is a leaf, then c=label(v),

if v has sans vl,...,vk, and label(v)=f, then

The definition of labeled dags above ensures that 4 is always a well-formed term. If 0 is a

labeled directed graph, then we can associate an infinite term with each node v of 0 by a similar

definition. Since we only consider finite graphs, all ternis represented by nodes of a labeled graph G

are finite itT G is acyclic. If 0 is a labeled dag with only one root r, then we say that 0 represents

the term t1.

The representation of tenns by labeled dags is illustrated in Figure 1. The terms g(x) and x arc

represented by the two nodes of the labeled dag in Figure la. Both roots in Figures lb. ic represent

ftf{x, x), ftx, x)). The terms h(x, x, y, z) and h(g(y), g(g(z)). g(g(g1)), g(g2)) are represented by the

roots of Figure Id. In Figure 1, we assume that a(O=2, a(h)4, a(g)=l, and a(g1)a(g2)0.

Although each node of a labeled dag determines a single term, the converse is not true. A term

can be represented by several different dags. In particular, if t is a term with several occurrences

of a subterm t1, then we may use a separate subdag for each occurrence of t1 in t, or use one

subdag for all occurrences; cf. Figures lb and ic. Since a repeated subterm need be represented

4

01115 011CC. it is pos’ibCc U’ 1CI1kSCfl(sonic crv long teiti ith iIi(iCI> small liheled dag,.

ei mple. the dig in I igti re Ic wi LII fl N dcs rcpfese ‘its a teni I ‘ci LII ()(2hh) yn I huh. We dci Ic a

class of labeled dags which are no more concise that terms.

A simple dog is a labeled da 0 such that the only nodes of 0 with indegree greater than I are

leaves. Ibtis eery node of a simple dag that is not a leaf or a root must have indegree 1. Given a

tern-i t (in the form of a string of s>nibols). we can construct a siniple dag representing L in lincar

time. using only logarithmic space. Similarly, given a simple dag 0 with a single root, we can write

out LIfr term represented by G in linear time and logai-ithniic space. Moreover, the size of a simple

dag, measured in number of nodes and arcs, is within a consturn multiplicative factor of the length

of (lie term it represenb.

2.2 Unification mid 1cm, Matching

Unification and wnn maiching are both problems that are solved by computing substitutions. A

substigutiot, a isa mapping from variables to terms such that a(x)=x 1kw all but finitely many xEV

The action of a substitution on a term t, written a(t), is the resu]L of replacing each variable x in

by a(x). Thus a(f(ti...,tk))= ftu(t1) a(tk)). In particular, any substitution a maps every ftnction
symbol to itself. We use = to denote syntactic equality of strings.

Two terms s and t are un(/iab!e if (here exists a substitution e such that a(s)=a(t), A term
matches term t if there exists a substitution a with a(s)=t.

In some instances we may wish to allow substitutions to map variables to infinite terms. If we
allow these more general substitutions, then we have the u,,rcstricted unification and unrestricted
matching problems. Unrestricted unification differs from unification (e.g., in Figure Ta x and g(x)
are ununiltable but unrestricted unifiable with a(x)=g(gj) an infinite term). Unrestricted
matching and matching are the same; note that we only consider substitutions that involve infinite
terms, not unification of infinite terms $ and t.

If a(s)=’a(t), then a is called a unifier for s and 1 A subsUwtion a is more general than a
substitution T if there exisis a substitudon p with T=p°a. In [Ri it is shown that whenever terms
and t are unifiable, there is a unifier a for s and t. which is more general than any other unifier.
This is called the most genera! un,j2er (mgu) for s and t. The mgu is unique up to renaming of
variaNes. For ezample. consider the terms s=f(x, y) and t=ftg(y). g(z)) represented in Figure if.
These terms are unifiable, with mgu a(x)=g(g(z)), a(y)g(z). and a(z)=z; then
U(s) = or(t) = l(g(g(z)), g(z)).

Two terms sand tare unifiable if a certain kind of relation, can be constructed on the nodes of
a labeled dag representing s and t If u and v are two nodes of a labeled dag and if u1 is the i-th
sc of u and the i-th son of v, for some i, then are corresponding Sons of u,v.
A relation R on the nodes of a labeled dag is a correspondence relation if. for all u,vu,v1:

uRv —. uRv1 whenever u1,v are corresponding sans of u.v.

5

A correspondence rclat on that is also in eq u i valence rela ton will be called a c—c (‘ldtUJfl.

A rela Lion R is iwnwgcmvus if hi he I(ti) and Iahel() arc not di Ilërc it syin mis lienever u R v.

An equivalence relation R ott nodes of a Libeled directed graph 0 is acj’dic if the Requivalcnce
classes are parually ordercd by tIle arcs of C. In IPWJ. acyclic. homogeneous c-c relations arc caflcd
valid equivalence relations. These relations characterize unifiability.

ProPositiofi I: IPWJ Let u and v be nodes in a labeled dag 0. [hen and 4. are unrestricted

unifiable itT there is a homogeneous c-c relation R, with uRv. Similarly, ½ and 4 are unifiable 1ff

there is an acyclic, homogeneous c-c relation R. with uRv. C

If R is an acyclic. homogeneous c-c relation on a labeled dag 0. then the reduced graph formed
by treating each equivalence class as a single node is again a labeled dag. If uand v are the only

two roots of 0, and uRv, then this rcduced graph with a single root represents a term s that a
substitution instance of both and c. If R is the niini,n& c-e relation with uRv. then

where a is the mgu of c.1 and c [PW]. We can extract a from R by uking 0(x) to
be the term in the reduced graph that is represented by the node formed from the equivalence class
of x. We can therefore consider the reduced labeled dag as a reasonable representation of a unifier
for two terms. This representation of a unifier has the virtue of being compact; it is clear that the
reduced graph is no larger than the original dag. However, if we were to write, out each uniflcr
explicitly, we might end up writing out terms that were much longer than the terms represented by
the input dag. An example in LPWJ shows that the length of the substitution may be an exponential

function of the length of the input terms.

As in [PW], we will represent equivalence relations on the nodes of labeled dags by adding

undirected edges to the labeled dag data-structure.

Matching may be viewed as a special case of unification. Let be a substitution such that for
each distinct variable x, in the terms we are examining, u(x) is c, a distinct constant symbol not

appearing in these terms. It is easy to see that a term s matches a term t 1ff s and a(t) are

unifiable. Another, degenerate case of unification is to determine whether two terms are syntactically

identical. Of course, this is a trivial operation on strings, but it is not quite so trivial an operation

when terms are represented by labeled dags. Clearly, s and t are syntactically equal 1ff e(s) and

ajE) arc unifiable.

In summary, using the labeled dag data structure, we have the following problems:

tiN IFY(0,u,v)

Input: A labeled dag 0 with distinguished nodes u and v.

Output Are td and 4 unifiable?

If yes, then produce a labeled dag representing the mgu.

6

MAI’Cll(G,u,v): ibis is UNIFY(G,u,v) with uit) instead of 4.

EQUAL4G.uvfl: This is UNIFY(G.u.v) with a(Q. a(c) instead of t. s

Of course, there is also unrestricted unifleation UNlfl’(G,u,v). We have a special case of
each of the above problems when (3 is a simple dag,

2.3 Parallelism, NC and P

For sequential computation we use the standard definitions for Lime, space, space-bounded
reductions and complexity classes such as P. DLOGSPACE, NLOGSPACE, T(n)-DSPACE, on a
Random Access Machine (RAM) [C]. We denote log-space reducibility by Slog As usual, P is the
class of languages recognizable in decenninistic polynomial time. The problems UNIFY, MATCH
and EQUAL all belong to P fPW, MM). Some may be solved in logOWn space, while others, those
log-space complete for P. most probably cannot

For parallel computation we use the Parallel RAM (PRAM) of [FW] as our mode!, with parallel
time and number of processors as the critical resources. We make use of the paral!e/ computation
thesis; relating parallel time and sequential spxe. and its proof for PRAM’S [FWJ:

Uka logk(n).parallel time-PRAM = Uko logk(n)DSPACE.

We take NC to be the class of problems solvable on a PRAM using logOWn parallel time, and
processors. We try Lu determine whether a problem in P is ‘parailelizable’ (i.e., in NC) or

“most probably not parallelizable” (i.e., log-space complete for P); [C, 3] review related results.

One problem that is log-space complete for P is the circuit value problem for monotone circuits.
A ni on ore circuitfi is a sequence (Po’•fln’ where each fl is either an input, an and-gate AND(J.k),
or an or-gate OR(j,k); where for indices j,k we have DJ>k. and the 0,1 values of the inputs are given
explicitly. In addition, monote circuits are assumed w have the following properties:

(1) if is an input then the index i appears at most once infl, (fan-out <1 for inputs),

(2) if ft1 is a gate, then the index i appears at most twice in ft. (ran-out 2 for gates),

(3) ft, is an or-gate with one output

The monotone circuit value problem 1s

MCV={fiI ft is a monotone ciwuit with the output value of fl 0}.

From ,i, G2J we have:

Proposition 2: MCV is log-spacc complete for P.

7

3, ‘[hr (onipleiI. of I !niIiraIion

[he geiicnl uni licatLoil prohiem. encountered in tlieorc,n pan log ind elscw Tierc. is o md a

siiHuILinCiuS unifier for a set of terms. I Iowc’er. the general case is log’space and linear time

reducible to the special cds4 of unifying a single pair of tenus (l’WI. On a PRAM this reduction can

be pcrThrmed in Oflog n) paralici time and w Ui 0(n) przeor: it alfects none of our results.

We first desc be a in’ he unification ilgori thin based on the criterion of Proposition I. and on

the fact that the mgu is the minimal c-c rehition IPW[The input to the algorithm is a labeled dag

G with two distinguished nodes u and v. We wish to solc tJNIFY(G.uvL A rclation ® is

constructed and mainwined as undirected edgc in G. [he relation ® is by its rcprescntation

symmetric and reflexive. In order to make ® a c-c relation, both correspondence” and

eguivalence must be satislied, Setting sons equivalent, when their fathers. equivalcnL is known

as propagation. For ® to be an equivalence relation we must also enforce iraiisiiivii Having

created the minimal c-e relation ® for which u®v. we then test for homogeneity. In the

affirmative case a new labeled graph G’ can be constructed by coalescing classes of nodes in 0.

Now we know that the input is at least unrestricted unifiable. If C is acyclic it is unifiable.

proc naive-unh&atIon(G,u,v)

set u®v

thile (® is not a c-e re]ation) do

propagation: while (u®v have corresponding sons u,v1 not related by ®) do set u1®v od
transiuvity: .hile (u®v and v®w, but u.w are not related by ®) do set u®w od

ad;
if ® not homogeneous then print UNUNIFIABLE

else {coalesce equivalence classes to produce labeled graph C}
if 0 has a cycle
then print UNUNIFIABLE BUT UNRESTRICTED UNIFIABLE

else print UNIFIABLE

fi

proc {0 represents mgu}

In this algorithm all individual steps can be performed on a PRAM using logOWn thnc and
O(l) processors. The difficulty arises in the outer loop, the body of which is executed if ® IS

either not a correspondence, or not an equivalence relation, i.e., if either condition inside an inner

loop is satisfied. The problem is that on an input of size ii the body of the main loop might be

executed INn) times. This behavior is illustrated th Figure 2. The example can casily be generalized

to force the l(n) alternation between propagation and transitivity for any n.

S

Ilicorcin I; UNIFY(G.u.v) mid 1INlFY(Gu.) arc Iog-sp;.cc complete for P.

Proof: We show how to log-space reduce MCV to uniliaihility (br membership see I’Wfl. More

specifically, if a is a monotone circuit lao.ai -a11, we constaict G(a), u(a), and v(a) such that

OEMCV ill UNIFY(G(a).u(aLv(a))=UNIFIABLF.

Ilils reduciion directly applies 10 Li NI FY and is easfly seen in use only log space.

The monotone circuit a can be refresented as a diagram with wires. ANI) and OR gates of

fan-in 2 and fan-out at most 2. a special OR output gate with one output wire, and with each input

wire leading to one gate and having a 0 or a 1 value (see Figure 3a for an example). The input wire

values combine to produce values for all other wires and the output wire in particular. The circuit

has no feedback. i.e.. if the wires are viewed as arcs and the inpuls and gates as nodes we get a dag

without multiple arcs.

(I) Introduce two nodes u(a), v(a) in G(a).

(2) If a is an AND gate include from Figure 4a in G(a). If is an OR gate include

Gor from Figure 4b in G(a). These dags have two pairs of input nodes and one pair of output

nodes each. i.e., {1N11, IN2), {1N31, 1N41}, and {0UT11, OUT2}. Corresponding suns are

illustrated by the labels a, b on the arcs.

(3) If a1 is an input include in G(a) a pair of nodes {OUTi. 0UT21}. If the value of the input

is 1 then make 01.11’ii OUT21 corresponding Sons of u(a), v(a). If the value of the input is 0 then

make OUT1.OUT21 sons of u(a) and let v(a) have two sons that correspond to them and are two

new leaves in 0(a).

(4) If gate a is connected to a, 0k (i.e., in the wire diagram) then identify nodes

lNj=OUTi. IN2j=OUT2jIN3i=OUT1k.IN4i=OUT2k.When these subdags are concatenated

nodes have outdegrce 2, and the labels on the arcs can be made 1 and 2. so that the equalities of

labels a, b in Figures 4a, 41, is preserved.

(5) In the dag constucted in steps 1-4 above assign labels to the nodes as follows:

label(u) = label(v)=h,

label(node of outdegree 1)=g,

labcl(node of outdcgrce 2) = F,

label(OUT1)=g1 g2=labe1(OUT2),

label(leaf other than OUT1n. O2n)th5Ct variable.

We can easily see now that every wire w in the wire diagram can be associated to a pair of

nodes OU’1’w, OUTw. We require u(a)®v(a). For such a minimal c-c relation ®, we claim that

the value of wire w in a is liii’ OUTw® W\’ This certainly holds for the inputs, because of
the way we built corresponding sons of u and v. Also, it is trivial to check that Gand and G0
simulate the behavior of AND and OR gates. Therefore the value of a is 1 if OUT1n®OUT2n.
The graph (]a i constructed in such a way that the only place homogeneity could be violated by
® is if 0UT1®OUT211.As a result if a=I, the terms represented by u(a) and v(a) arc not
unrcstñcted unifiable, and if a = 0 they are unifiable (the acyclicity condition is also true). D

9

4. Simple flags and (ongruenre Closure

In this Section we w II make our wer b lu ntis nidependent of the poteii I ialy cone so dag
rcprescntauon of terms, by extending thorn to simple dags. We will also incstigatc the elated
problem of computing the congruence closure of an equivalence relation.

iheorem 2: UNIPY(G,u,v) and uNli:yco,u,v, are log-space complete for P. even when 0 is
a simple dag.

Proof: Given monotone circuit a we construct a simple dag G(a) with two roots u(a), and (a)

so that, if a=O then the terms tu(a). tv(a) are unifiable else they are not unrestricted unifiable.

This suffices for the completeness of both UNIFY and UNIFY°0. Note that the proof of
Theorem no longer applies, because the 0ur dags used in that reduction could introduce nodes
with indegree 2, i.e.. their output nodes, which were not leaves.

As in the proof of Theorem 1, we encode the input of a using a pair of nodes for each circuit
input The input-suhgraph of the graph of Theorem I is actually a simple dag, so we use the same
construction. However, we cannot attach “gates” directly to the input-subgraph since this will

produce a dag which is not sithple. Instead, each gate will be constructed separately using a pair of
subgraphs. Any c-e relation () with u(a)®v(a) will relate the two parts of each gate. In addition,

the input nodes of one gate will be “connected’ to input-subgraph nodes or output nodes of other
gates using a separate ‘patch board’ subgraph. Recall that the gates of a are numbered so that if an
output of gate a1 goes to an input of gate

,

then Rj.

For each gate of a, we use four input nodes and four output nodes. For gate a1. let us denote
these nodes by INj,.... iN41 and OUTi OUT. As in the proof of Theorem 1. the nodes of
0(a) work in pairs. Inputs IN11 and IN21 represent the first input to ai and IN3 and IN41 the
second. Similarly, nodes OUT11 and OUT represent the first output of and OUTj and OUT41

the second. We also use nodes u1, v which are the i-th sons of mots u(a) and v(a), respectively,
and four or seven internal nodes which may remain anonymous.

If a1 is an OR-gate, then we construct a simple dag GATE1 as in Figure Sa, with u, v1

corresponding song of u(a). v(a). If ® is a c-e relation with u(a)®v(a). it is easy to see that

and if either 1N11®1N21 or IN31®1N41.It will be clear from the

construction of G(a) that if® is minimal, then these are the only cases in which the output nodes

will be related by ®. If a is an AND-gate. exactly similar reasoning applies for the simple dag of

Figure Sb, which simulates the logic of AND.

The remaining task is to “connect” the gates so that if, for example, the first output of a goes

to the second input of aj. then IN3j®IN4j whenever OW’1®OlSf21.We use an example

connectiol! between a and to illustrate the construction of a “patch board” simple dag PATCH,

which contains two new nodes U2, VP and IN and OUT nodes from the input-subgraph and gate

subgraphs of 0(a). Let u2, Vp be corresponding sons of u(a), v(a), different from the tons used in

the gate and input subgraphs. Now make IN3j and OUT11 corresponding sans of u and also

I0

Tuake IN43 nd orIj ct)IrtspOidii sons o Lip and (SC I:igLirtN Sc md 3d). \\hen u(a)®qc).

two input nodes of UAlI ill be merged if the right Iwo OLIIUL node,, of GAlE are.

As in the proor ol iheorcin 1. we label the outputs of the final gdIc with diffcrenL Constant

symbols. All other nodes have labels that depend on thcir arity. Se that nodes wILJ1 outdegrce 2. say.

have the same label. It is easy tu verily by induction that in the minimal c-c relation € with

u(a)®v(a), we hac OW1®OUI21,and OUl,®OU[4iff the output of the last gaLe a11 is I.

ibis completes the proof of Theorem 2.0

Congruence closure is a practical problem that is in many ways a dual to unification. In

unification, the equivalence classes of m and n are merged whenever there exis? some equivalent

and s such that rn and n are corresponding sons of r and s. In congruence closure, the equivalence

classes of r and s are merged whenever, for all pairs of corresponding Sons m. n, we have that m

is equivalent to n. Wc consider a pure form of congruence closure in which the node labels are

ignored. however, the arcs must still be labeled so that we can see which Sons correspond. Efficient

algorithms for congruence closure are contained in [DSTI.

An equivalence relation © on the nodes of a labeled graph is a congruence relation when:

if u,v have same outdegree and for each pair of corresponding Sons we have u1©v, then u©v.

Given any equivalence relation It there is a unique minima) congruence relation that contains R,

called the congruence closure of R. An equivalence relation R can be represented using undirected

edges in a labeled dag. We can now pose the following language recognition problem:

CONG = {<0.uv.R>I nodes u and v of labeled dag G are related by the congruence closure of R}.

By using a construction that resembles that of Theorem 1 TMturned upside-down” and that

exhibits an andlor duality between unification and congruence closure we can show that

Thcorem 3: The language CONG is complete for P.

Proof: Again we reduce MCV to CONG. The wires of the circuit diagram correspond to pairs

of nodes, such that the two nodes are related in © (the congruence closure) if the value on the

wire is 1. Given a monotone circuit a we construct a dag 0(a), an equivalence relation R(a) on its

nodes, and two tools of the dag u(a). v(a). We wish to test the two roots for cquivaience in ©, the

congruence closure of R(a).

l’he construction is bottom-up, so that each circtit input corresponds to a pair of leaves and

cacti OR and AND gate to a subgrapb with two pairs of input and two pairs of output nodes eh;

the last OR-subgraph has only one pair of output nodes u(a). Wa). The Inputs and outputs are

connected in a pattern simUar to that of the proof of Theorem 1. The input leaves are represented

in Figure 6a, note that for inputs that are 1 the two leaves are in the same equivalence class of

R(a). The Oft-subgraph is in Figure 6b, and two pairs of internal nodes form equivalence classes of

R(a). The AND-subgraph is in Figure 6c. It is simple to verify that the gate subgraphs simulate the

gate logic and chat u(a)©v(a) ill the output of the circuit a is 1. 0

II

5. A Parallel Algoritluti for lrrni Mttclung

Unification is a practical seq nen I ial algorith in for match i 11$ Si 11cc [‘Di icatlon can he done in

linear time. I-I owever. tin i fication is not a good xml el app mach to na ich ing. We show how

MAl C1T(Gu.v) can he computed in Iog2n parallel time using polynoinially many processors. In

addition, we prove that MATCH(O,u,v) is in co-Ni .OGSI’ACE. TI 0 is a simple dag then

MAl Cll(G,uv) is actually in T)LOGSPACE.

When we wish to determine whether s matches t. ‘cc will assume wing. that no variables

appear in t. In Section 6 we further clarify the relationship between matching and unification. Since

MA1CH(G,uv) is the same as IJNTFY(G,u.v) when no variables appear in 4.. we know that £11

matches ‘if there is a homogeneous c-c relation — on 0 with u—v. A refinemeni of ihis

characterization of cerni matching suggests an efficient parallel algorithm.

lemma 1: Let C be a labeled dug with nodes u and v, and let the subgraph of G induced by

the descendants of v have no nodes labeled with variables. let R be the minimal correspondence

relation on G with uRv. S be the minimal cqLmivalcnce relation contminn ft. and T be the minimal

correspondence relation containing S. Then matches i 1ff T is homogeneous.

Proof: If matches 4 then since and 4 are unifiable, the minimal c-e relation — with u—v

is homogeneous. Since — must contain T, it follows that T is homogeneous.

For the converse, suppose that T is homogeneous. We will define a substiluLion a such that

a(t) = t. Let be the subgraphs of descendants of u.v respectively. We first show thaL for

every node x in Cu there is a node y in (3, such that iRy. If, on the contrary, there is some x in

C0 without xRy for any y in then let w be the last node in some path from ii to x with wRz

for some z in O. Since w has a son, label(w) is a k-a function symbol for some k)O. By similar

reasoning. label(z) is a zero-ary function symbol. But then labcl(w)label(z) and hence T is not

homogeneous. It follows from this contradiction that every S-equivalence class contains at least one

node from G,.

For each S-equivalence class E, pick some node e from G. if w is another G node in F, then
since T is homogeneous and no variables appear in G. we can argue that

=
t (here we have

the problem EQUAL). We now define the wbstitution a. For any variable x in t, let E be the S
equivalence class of the node labeled x and define 0(x) = te It is easy to check by induction on

the height of a node w in that if wRy, then o(ç) = l. Thus a(L) = c and matches t.D

Given any relation, we can find the minimal correspondence relation R containing it, in log2n

parallel time and n0(1 processors on a PRAM, using a transitive closure algorithm [Chi. If 0 is a

labeled dag with n nodes, we define an n2 by n2 boolean correspondena matrix C0. We associate

each (unordered) pair of nodes of C with a row and a column of and define the entries of C0:

Crj({u, v}. {x. y}) = 1 UT x and y are u and v or corresponding sons of u and v.

Lanma2LaGbeilabeleddagwithciodesuandv,andkcRbethemiacorrespondence

relation s.t. uRv. then xRy 1ff the ({u. v}, {x. y}) entry of C0s transitive closure equals 1. C

12

Now given relation K, we can md the minimal cqui’tlence reljton S uonLMflhTlg R using u
con nec ted corn potien Is ulgori th II. It is well - L mw n that coil’ cued colnponenls Cal be Coin p LI Led in

log2n parallel time and processors on a PRAM ICI-ISI.

Since amputing correspondence relations twice. connecied components once and testing rot
homogeneity are sufficient to decide matching, we h;ive thin MAlCH(O.u,v) can be computed in
log2n parallel Lime and processors on a PRAM (or equivalently MAltil € NC).

In fact, we can show somewhat Lighter complexity upper bounds, since I)IOGSPACF C
NIOGSPACF ç NC:

Theorem 4: 11w Set of <Gus) such that MATCH(G,u,v) = false is in NLOGSPACE.

Furthcnnorc, if C is a simple dag. then this recognition problem is in I)LOGSPACE.

Proof: Iet C be a dag with MAItII(G.u.v)=j7ilsc. let R.S.T be relations on the nodes ol G
as in the statement of l..enima 1. By Iemma I. there must be nodes x and y of G such chat xiy.
but labcl(x) and label(y) are two different function symbols. We show that there is a log-space
bounded nondctemiinistic luring machine M1 capable of guessing all pairs (x.y) such that xTy,
and checking whether x and y have the same labels. Thus recognizitg the <G,u.vYs, such that
MATCH(G,u,v) = true is a problem in co-NLOGSPACE (also a subset of the class NC).

To begin with, let MR be a nondcterminisdc machine that starts with the pair (u,v) on its
worlctape. A move of MR consiss of replacing a pair (x,y) with a pair (x,y1) of corresponding sons
of x and y. Clearly MR is capable of guessing (x,y) ifY xRy.

We now define a nondeterministic machine Ms using MR. The machine M5 begins by running

MR some nondetenniuistic number of steps to guess a pair (x,y). Subsequently. Ms repeats the
following 3 steps nondetenninistically:

() If one pair (x,y) or two pairs fry) (w,z) are on the worktapc, then it may replace (x,y) by (y,x).
(2) If (x,y). (y,z) are on the worktape, then it may replace both by the single pair (x,z).
(3) If the single pair (x,y) is on the worktape, then it may run MR some number of steps to guess
(w,z) and end up with both pairs (wi), (x,y) on the worktape.

With these primitive steps Ms may guess fry) 1ff xSy.

Finally, we build MT from Ms. This machine behaves just like MR but instead of starting with
(nv). starts with any pair (x,y) that Ms is capable of guessing. This concludes the proof of the first
part of the theorem, which in a way describes the PRAM algorithm sketched above, but from the
point of view of nondeterininistic log-space.

If 0 is a simple dag. then MR can easily be made a deterministic depth-first enumerator of
pairs (x,y). This machine MDR always maintains the pair immedialely preceeding the current one,
so that it can backtrack from leaf nodes. Backtracking from internal nodes is staigiuforward since
each has indegree 1.

Using a log-space preprocessor we can treat the subgraph rooted at v as a tree. Recall that this
graph has no variables, so that all we need to do is duplicate leaves labeled wih constants. By doing

13

this we limit the number of times step (2) of Ms must be repeated to only two ‘Ibus we can
construct a deterministic machine MI)5 IhUL enumerates all (x.y) such UaL xSy. Finally, we build a
deterministic MI>1’ from MDR and MD5 as before. 0

A corollary of Theorem 4 is that for simple dugs deciding whether MA’I’CH(O.u.v)=rnse is also
in DLOGSPACE, since DLOGSPACF is closed under complement. From the analysis in IFWI it
also follows that this problem can be solved in O(log n) parallel time on a PRAM.

6. Conclasions and Open Problcnis

We have demonstrated that several versions of unification are complete for P. This suggests, by

way of the parallel computation thesis, that unification is inherently sequential. It is unlikely that

significant improvements in the speed of theorem provers, interpreters for logic programs, and the

like will be brought about by the development of parallel unification algorithms. However, for the

special case of term matching, the prospects are much brighter. Term matching can be accomplished

in log n or log2n parallel time, depending on whether the input is in the form of a simple dag.

We might also point out that unification of terms s and t is complete for P even ifs and t do

not contain any variables in common (this is different from t having no variables). Also, if s and

are unifiable this does not imply that s matches t or that t matches s. However, ifs matches t then

and t are unrestricted unifiable. If s matches t and t matches s they are unifiable.

IntuEtively, congruence closure appears to be a “dual” of unification. It, too, is complete for P.

As a consequence, various congruence closure problems, such as the decision problem for the first-

order quantifier-free theory of equality [DST] are not conducive to extremely st parallel solutions.

There are remarkable similarities between the sequential algorithms for unification and testing

equivalence of deterministic finite automata. However, the inequivaknce of deterministic finite

automate can be detected nondeterministically using only logarithmic space. A machine can see that

two automata A1 and A2 are equivalent by guessing an input string, character by character and

simulating the actions of both machines as it goes. If one ends up in an accept state while the other

rejects, then the two are clearly different, If A1 and A2 differ, then some sequence of characters

must surely uncover this. Thus unification is subtiy, but fundamentally different from this “almost

identical’ problem.

Some interesting open problems remain unresolved, namely; (1) lower bounds for the

complexity of MATCH and EQUAL or can our upper bounds be improved, (2) the number of

processors used in the transitive closure of a correspondence matrix is unrealistically large, and it

would be of some practical significance to decrease it to even n3, and finally (3) what is the

complexity of commulative matching, i.e., if function symbols stand for commutative operations,

14

References

C] Cook. S.A.. “An Overview of Computational Complexity”. CACM 26(6). 1983, pp 400-409.

[Cb] Chandra. AK.. ‘Maximal Parallelisni in Matrix Multiplication”, IBM report. RC 6193. 1976.

LCM] Clocksin, W.F.. Mellish, C.S., “Programming in Prolog”, Springer-Verlag, 1981.

fl)Sl] Downey. P.J. Sethi. RJ Taijan, RE., “Variations on the Common Subexpression Problem”,

JACM 27(4). 1980, pp 758-771.

[FWJ Fortune, S., Wyllie, 1.. “Parallelism in Random Access Machines”, Proc 10th ACM STOC,

pp 114-118.

101] Goldschlager. L.M., “The Monotone and Planar Circuit Value Problems are Log Space

Complete for P’. SIGACT News 9(2), 1977, pp 2529.

[02] Goldschlager, L.M.. Shaw, R.A., Staples, J., “The Maximum Flow Problem is Log Space

Complete for P”. TCS 21. 1982. pp 105-111.

10KM] Guttag, J.V., Kapur, D., Musser, DR., “On Proving Uniform Termination and Resthcted

Termination of Rewriting Systems”, Siam .1 Computing 120), 1983. pp 189-214.

[HCS) Hirschberg, D.S., Chandra, AK., Sarwate, DV., “Computing Connected Components on

Parallel computers”, CACM 22(8), 1979, pp 461-464.

[J] Johnson, D.S.. ‘The NP-Completeness Column: An Ongoing Guide”, I of Algorithms 4, 1983,

pp 189-203.

[LSJ Lewis, H.R_ Statman, R., “Unifiability is Complete for co-NLOOSPACE”, IPL 15(5), 1982.

pp 220-222.

[Mj Milner, R., “A Theory of Type Polymorphism in Programming”, JCSS 17, 1978, pp 348-375.

1MM) Martelli, A, Montanan, U., “An Efficient Unification Algorithm”, ACM Trans on

Programming Languages and Systems; 4(2), 1982.

[MPS] MacQueen, D., Plotkin, 0., Sethi, R., “An Ideal Model for Recursive Polymorphic Types”,

hoc. 1984 ACM rON. to appear.

{PW] Paterson, MS., Wegman, M.N., “Linear Unification”, JCSS 16, 1978, pp 158167.

FR] Robinson, l.A., “A Machine Oriented Logic Based on the Resolution Principle”, JACM 12(1),

1965, pp 2341.

IS) Shapiro, E.Y., TMA Subset of Concurrent Prolog aiid its Interpreter”, ICOT report TR-003, Tokyo,
JAPAN, 1983.

is

L K2
(a) 1Q2

(b) (c)

h h

1
2

I 234

0 0
‘C

a
3 I 1

40 9
y

1 1

2

(d)

I

x Y
(e)

Ct)

Figure L labeled dags

1.6

1. A®B
2. C®D, C®E, H®F, LOG (propagation)
3. DOE (transitivity)
4. H®I (propagation)
5. FOl (transitivity)
6. L®J (propagation)
7. 100 (transitivity)
8. MOK (propagation)

9. ununifiable because M and K have distinct labels g1 and g2.

Figure 2: IlListrating naive-unification

x — — — — — — — —

Gi

—I—

r

label(u) = labei(v) = h, label(w)=g1g2=label(z)
label(node of outdegree fl=g
label(node of outdegree 2)=f
Iabei(leaf other than w, z) = distinct variable

(b)

(a)

LI V

w

Figure 3

it

I N71

a

00

I N4

b

OUT2

(a)Gd

IN41

a

(b) 0or

Figure 4: Theorem I subgraphs

Iii

vi

(c) example use of PATCH (ci) putting everything together

I

INQi IN4 IN3. IN41

(a) OR subgraph

(b) AND subgraph

Ii

a

V

S. •

IN31
I• •

OUT2. IN41

eq.

Figure 5: Theorem 2 subgraphs

20

.
0

.

F

(a) inputs

(b) OR subgraph

(c) AND subgraph

-4
I

Figure 6: Theorem 3 subgraphs
(R is denoted by)

I N4.

IN2 IN3. IN4.

