
Knowledge and Common Knowledge in a
Byzantine Environment I: Crash failures

(Extended Abstract)

Cynthia Dwork
IBM Almaden Research Center,

San Jose, CA 95193

Yoram Moses
MIT Laboratory for Computer Science,

Cambridge, MA 02139

ABSTRACT

By analyzing the states of knowledge that the processors attain in an unreliable system
of asimple type, we capture some of the basic underlying structure of such systems. The
analysis provides us with a better understanding of existing protocols for problems such as
Byzantine agreement, generalizes them considerably, and facilitates the design of improved
protocols for many related problems.

149

150 SESSION 4

1. I n t r o d u c t i o n

The problem of designing effective protocols for distributed systems whose components
are unreliable is both important and difficult. In general, a protocol for a distributed system
in which all components are liable to fail cannot unconditionally guarantee to achieve non.
trivial goals. In particular, if all processors in the system fail at aaa early stage of an
execution of the protocol, then fairly little will be achieved regardless of what actions the
protocol intended for the processors to perform. However, such universal failures are not
very common in practice, and we are often faced with the problem of seeking protocols
that will flmction correctly so long as the number, type, and pattern of failures during the
execution of the protocol are reasonably limited. A requirement that is often made of such
protocols is t-resiliency - - that they be guaranteed to achieve a particular goal so long as
no more than t processors fail.

A good example of a desirable goal for a protocol in an unreliable system is called
Simultaneous Byzantine Agreement (SBA), a variant of the Byzantine agreement problem
introduced in [PSL]:

Given are n processors, at most t of which might be faulty. Each processor Pi has
an initial value zi E {0, 1}. Required is a protocol with the following properties:

1. Every non-faulty processor pi irreversibly "decides" on a value Yi E {0~ 1}.

2. The non-faulty processors all decide on the same value.

3. The non-faulty processors all decide simultaneously, i.e., in the same round
of computation.

4. If all initial bits xi are identical, then all non-faulty processors decide xi.

A related problem, in which condition 4 is modified to require that the non-faulty
processors decide xi only in case all processors start with xi and no failures occur, is called
Weak Simultaneous Byzantine Agreement (WSBA). Throughout the paper we will use t to

denote an upper bound on the number of faulty processors. We call a distributed system
whose processors are unreliable a Byzantine environment.

The Byzantine agreement problem embodies some of the fundamental issues involved
in the design of effective protocols for unreliable systems, and has been studied extensively
in the literature (see [F] for a survey). Interestingly, although many researchers have
obtained a good intuition for the Byzantine agreement problem, many aspects of this
problem still seem to be mysterious in many ways, and the general rules underlying some
of the phenomena related to it are still unclear.

A number of recent papers have looked at the role of knowledge in distributed com-
puting (cf. [CM], [HM], [PR]). They suggest that knowledge is an important conceptual
abstraction in distributed systems, and that the design and analysis of distributed proto-
cols may benefit from explicitly reasoning about the states of knowledge that the system
goes through during an execution of the protocol. In [ttM], special attention is given to
states of knowledge of groups of processors, with the states of common knowledge and
implicit knowledge singled out as states of knowledge that are of particular interest. As we
will see, in order to be able to reach SBA on a decision value v, the non-faulty processors

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 151

must attain common knowledge that conditions that allow deciding v hold. In fact, the
problem of attaining common knowledge of a given fact in a Byzantine environment turns
out to be a direct generalization of the SBA problem.

We wish to investigate the states of knowledge that can be attained by the group
of non-faulty processors in a Byzantine environment. In particular, we are interested in
determining what facts become common knowledge at the various stages of the execution
of a particular protocol. In this paper we restrict our attention to systems in which
communication is synchronous and reliable, and the only type of processor faults possible
are crash failures: a faulty processor might crash at some point, after which it sends no
messages at all. Despite the fact that crash failures are relatively benign, and dealing with
arbitrary possibly malicious failures is often more complicated, work on the Byzantine
agreement problem has shown that many of the difficulties of working in a Byzantine
environment are already exhibited in this model. By analyzing the states of knowledge
that processors can attain as a function of the pattern of messages in a given protocol, we
can characterize the types of coordinated simultaneous actions that can be performed at
various points in the execution of the protocol. The results of this analysis directly apply
to the design of protocols for SBA, WSBA, and other problems.

The main contribution of this paper is to illustrate how a knowledge-based analysis of
protocols in a Byzantine environment can provide insight into the fundamental properties
of such systems. This insight can be used to help us design improved t-resilient protocols
for Byzantine agreement and related problems. We perform a careful analysis of the upper
and lower bound proofs on the number of rounds necessary to reach common knowledge
of facts in a Byzantine system. Our lower bound proofs generalize and simplify the proof
of the t + 1 round worst-case lower bound for SBA (cf. [DLM], [DS], [CD], [FL], In], [LF]),
and characterize for the first time exactly which patterns of failures require the protocol
to run for t + 1 rounds. We similarly characterize the failure patterns that allow attaining
SBA in/k rounds of communication, for all k < t + 1, and construct a simple protocol for
SBA that always halts at the earliest possible round, given the pattern in which processors
fail during a given run of the protocol. In many cases, this turns out to be much earlier
than in any protocol previously known.

The analysis also provides some insight into how assumptions about the reliability of
the system affect the states of knowledge attainable in the system. We briefly consider
some other reliability assumptions and apply our analysis to them.

Section 2 contains the basic definitions and some of the fimdamental properties of our
model of a distributed system and of knowledge in a distributed system. Section 3 inves-
tigates the states of knowledge attainable in a particular fairly general protocol. Section 4
contains an analysis of the lower bounds corresponding to the analysis of Section 3, sim-
plifying and generalizing the well-known t + 1 round worst-case lower bound for reaching
SBA. Section 5 discusses some applications of our analysis to problems related to SBA,
and Section 6 includes some concluding remarks.

152 SESSION 4

2. De f in i t i ons a n d p r e l l m l n a r y r e su l t s

In this section we present a number of basic definitions that will be used in the rest
of the paper, and discuss some of their implications~ Our treatment will generally follow
along the lines of [HM], simplified and modified for our purposes.

We consider a synchronous distributed system consisting of a finite collection of n > 2
processors (automata) {p, ,p~, . . . ,pn} , each pair of which are connected by a two-way
communication link. The processors share a discrete global clock that starts out at time 0
and advances by increments of one. Communication in the system proceeds in a sequence
of rounds, with round k taking place between time k - 1 and time k. In each round,
every processor first sends the messages it needs to send to other processors, and then it
receives the messages that were sent to it by other processors in the same round. The
identity of the sender and destination of each message, as well as the round in which it
is sent, are assumed to be part of the message. At any given time, a processor's message
history consists of the set of messages it has sent and received. Every processor p starts
out with some initial state a. A processor's view at any given time consists of its initial
state, message history, and the time on the global clock. We think of the processors as
following a protocol, which specifies exactly what messages each processor is required to
send (and what other actions the processor should take) at each round, as a deterministic
function of the processor's view. However, a processor might be faulty, in which case it
might commit a stopping failure at an arbitrary round k > 0. If a processor commits a
stopping failure at round k (or simply fails at round k), then it obeys its protocol in all
rounds preceding round k, it does not send any messages in the rounds following k, and in
round k it sends an arbitrary (not necessarily strict) subset of the messages it is required
by its protocol to send. (Since a failed processor sends no further messages, we need not
make any assumptions regarding what messages it receives in its failing round and in later
rounds.) For technical reasons, we assume that once a processor fails, its view becomes a
distinguished failed view. The set A of active processors at time k consists of all of the
processors that did not fail in the first k rounds.

A run p of such a system is a complete history of its behavior, from time 0 until
the end of time. This includes each processor's initial state, message history, and, if the
processor fails, the round in which it fails. An execution is a pair (p, k), where p is a run
and k is a natural number. We will use (p, k) to refer to the state of p alter its first k
rounds. Two executions (p, k) and (p', k) will be considered equal if all processors start in
the same initial states and display the same behavior in the first k rounds of p and p~. The
list of the processors' initial states is called the system's initial configuration. We denote
processor p's view at (p, k) by v(p, p, k). Furthermore, we will sometimes parameterize the
set A of active processors by the particular execution, denoted A(p, k).

Following IHM], we identify a distributed system with the set S of the possible runs
of a particular fixed protocol P = (P (1) , . . . , P(n)), where P(i) is the part of the protocol
followed by processor pi. This set essentially encodes all of the relevant information about
the execution of the protocol in the system. In analyzing the properties of t-resilient
protocols, the system we are interested in is the set of all possible runs of the protocol in
which the system starts in one of a set of possible initial configurations, and no more than

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 153

t processors fail. Such a set will be called a t-uniform system for P. A given protocol is a
t-resilient protocol for SBA if all runs of the t-uniform system in which the set of possible
initial configurations is {0, 1} n satisfy the requirements of SBA.

We assume the existence of an underlying logical language for representing ground
facts about the system. By ground we mean facts about the state of the system that do
not explicitly mention processors' knowledge. Formally, a ground fact to will be identified
with a set of executions r(to) C S × N, where N is the set of naturM numbers. Given a run
p E S of the system and a time k, we will say that ~o holds at (p, k), denoted (S, p, k) ~ Io,
iff (p, k) C r(to). We will define various ground facts as we go along. The set of executions
corresponding to these facts will be clear from the context.

Giveh a system S, we now fornlally define what facts a processor is said to "know" at
any given point (p, k) for p E S. (Our definition will correspond to [HM]'s "total view" in-
terpretation of knowledge). We say that a processor Pi knows a fact ¢ in S at (p, k), denoted
(S,p,k) ~ Ki¢, if for all executions (p', k) e S × {k} satisfying v(pi,p,k) = v(p,,p*,k) it is
the case that (S, p*, k) ~ ¢. Roughly speaking, p, knows ¢ ff ¢ is guaranteed to hold, given
pi's view of the run. Notice that this definition guarantees that the "knowledge axiom"
Kito D ~ is validt (see [HM], [HM2] for other properties of K, under this definition).

Having defined knowledge for individual processors, we now extend this definition to
states of group knowledge. Given a group G C {p~,... ,p,~}, we first define G's view at
(p,k), denoted v(G,p,k):

= {(v, , (v , v, : y e a } .

Thus, roughly speaking, G's view is simply the joint view of its members. Extending our
definition for individuals' knowledge, we say that the group G has implicit knowledge of to
at (p,k), denoted (S,p,k) ~ Ia~, ff for all runs p~ E S satisfying v(G,p,k) = v(G,p',k)
it is the case that (S, p', k) ~ ~. Intuitively, G has implicit knowledge of p ff the joint
view of G's members guarantees that to holds. Notice that if processor p knows to and
processor q knows ~o D ¢, then together they have implicit knowledge of ¢, even if neither
of them knows ¢ individually. We refer the reader to [HM] and [HM2] for a discussion and
a formal treatment of Ia. In this paper we are mainly interested in states of knowledge of
the group A of active processors. The set of active processors is said to implicitly know to,
denoted IAto, exactly if Iato holds for the set G.= A. Stated more formally,

(S,p,k) ~ I~o iff (S,p,k) ~ Iap for G = A(p,k).

Although IA~ is defined in terms of Ia~, it is not the case that Ia and IQ have the same
properties. The reason for this is that whereas G is a fixed set, membership in A may vary
over time and differs from one run to another. Thus, for example, it is often the case that
for G : A(p,k) we have (S,p,k) ~ Ia(A = G), because there is some run p' e S such that
v(G,p,k) = v(G,p',k) and where G is a strict subset of A(p',k). Consequently, whereas
the formula -Iato D It-Iota is valid, the corresponding formula ~Iato D IA-Iato is not

I A formula is said to be valid if it is true of all executions in all systems.

154 SESSION 4

valid! (Notice, however, that lx(G C A) holds whenever G C A.) 2 Since the form of
implicit knowledge that concerns us most is Ix, we wilt call it simply implicit knowledge,
and denote it by I.

We now show that, roughly speaking, in t-uniform systems once a fact about the past
is not implicitly known it is lost forever; it will not become implicit knowledge at a later
time. We say that a fact ¢ is about the first k rounda if for all runs p E S it is the case
that (S,p,k) ~ ¢ iff (S,p,~) ~ ¢ for all t _> k. In particuh~r, facts about the first 0 rounds
are facts about the initial configuration. We now have:

T h e o r e m 1: Let S be a t-uniform system, let ¢ be a fact about the first k rounds, and
let ~e > k. If (S,p,k) ~ I¢ then (S,p,t) ~ I¢.

Proof : Let ~e > k, and let p and ¢ be such that ¢ is about the first k rounds and
(S,p,k) ~ 1¢. Let G = A(p,k). It follows that thcre exists a run / ~ S such that
v(G,p,k) = v(G,/ ,k), and (S,p',k) ~ ¢. Let p" be a run with the following properties:
(i) (p", k) = (/ , k); (ii) All processors in A(p',k)-G fail in round k + 1 of p" before sending
any messages; and (iii) From round k + 1 on all processors in G behave in p" exactly as
they do in p. Notice that p" E S since all of the processors follow the same protocol in p"
and in p, and no more processors fail in p" than do in p. By construction of p" we have
that A(p", i) = A(p, £) and that the active processors have identical views in (p",~e) and
in (p,£). It follows that (S,p",£) ~ I¢ iff (S,p,e) ~ I¢. Since ¢ is a fact about the first
k rounds and (p",k) = (p',k), we have that (S,p",e) ~= ¢ because (S,p',k) ~ ¢. Thus, in
particular, (S,p",i) ~- I ¢ and it follows that (S,p,t) ~ 1¢ and we are done.

Fagin and Vardi perform an interesting analysis of implicit knowledge in reliable sys-
tems (cf. [FV]). Among other things, they prove that the set of facts that are implicit
knowledge about the initial configuration does not change with time. I.e., in reliable sys-
tems the implication in the statement of the Theorem 1 becomes an equivalence. However,
in t-uniform Byzantine systems it is clearly the case that implicit knowledge can be "lost".
For example, ff processor Pi may start in initial states a and a ' , and in a particular run
of the system Pi starts in state a and fails in the first round before sending any messages,
then whereas I("pi started in state a") holds at time 0, it does not hold at any later time.

We now introduce the two other states of group knowledge that axe central to our
analysis. Given a group of processors G, E~p (read "everyone in G knows ~p') and Calo
("~ is common knowledge in G") are defined as follows (cf. [HM]):

pied

E~+19 = Ea(E~), rn_> 1, and

= A ^ ^ . . . ^ ^

2 Whereas In satisfies the axioms of the logical system Sh, it is easy to show that Ia satisfies
the axioms of $4 (cf. [HM2]).

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 155

The states EA and Ca, in which we will be most interested, are defined in the same way
as E~: and Ca. Because membership in A is not explicitly given, it is sometimes useful to
think of EA p in the following equivalent form:

E a r = A (P i E A D KIP),
l < i < n

It is interesting to note that in contrast to the case of implicit knowledge, the basic prop-
erties of EA and Ca are the same as those of Ea and Ca, stated in [HM]. In particular, Ca
satisfies the axioms of $5 (cf. [HM2]). Thus, in particular, CA satisfies the "consequence
closure" axiom:

CONSEQUENCE CLOSURE: (Cap A ~a(~ D ¢)) D Ca¢.

A fact that is crucial in our proofs is that Ca satisfies the "induction" axiom:

INDUCTION AXIOM: CA(P D Eap) D (~o D Cap).

In the remainder of this paper, we will use I, E, and C as shorthand for I~, E~, and CA.

Two executions (p,k) and (pt, k) are said to be directly Mmilar, denoted (p,k) ~ (p~,k),
if for some processor p active in p at time k it is the case that v(p, p, k) = v(p, p', k). Thus,
two executions are directly similar if some active processor cannot distinguish between
them. As an immediate consequence of our the definitions, we have:

(S,p,k) ~ Ep iff (S,p',k) ~ p for all p' E S such that (p,k) .~, (p',k)

Notice that the .~ relation is reflexive and symmetric, but not transitive. We say that
(p,k) and (p',k) are ~imear, denoted (p,k) ~ (p',k), if for ~ome finite m there are runs

Pl, P2,..., Pm E S such that

The similarity relation ~ is simply the transitive closure of the ,~ relation, and thus is an

equivalence relation.

We can now show:

T h e o r e m 2:
a) (S,p,k) ~ Up iff (S,p~,k) ~ p for all p~ ~ S such that (p,k) ~ (p~,k).
b) If (S,p,k) ~ ~ for all pE S, then (S,p,k) ~ Cp for all p ~ S.

Proof : (a) follows by a straightforward induction on m showing that (S,p,k) ~ Emp
iff (S,p~,k) ~ p for all p~ such that there exist p~,...,p,n-~ with (p,k) = (p~,k) = ...
(pm-~,k) ~ (p',k). Part (b) follows directly from (a).

Theorem 2 is very useful in relating common knowledge and actions that are guar-
anteed to be performed simultaneously. For example, we can use Theorem 2(b) and the
"induction axiom" in order to relate the ability or inability to attain common knowledge
of certain facts with the possibility or impossibility of reaching simultaneous Byzantine
agreement. We model a processor's "deciding v" by the processor sending the message

"the decision value is v" to itself, and have:

156 SESSION 4

C o r o l l a r y 3: Let S be a system in which the processors follow a protocol igor SBA. If
the active processors decide on a value v at (p, k), then

a) (S,p,k) ~ C("All processors are deciding v ') , and

b) (S,p, lk) ~ C("At least one processor had v as its initial value").

P roo f : Let ia be the fact "all processors are deciding v ' . Given that t:he protocol guar-
antees that SBA is attained in S, it is the case that whenever some processor decides v all
active processors do, and thus the formula W D Eia is valid in S (i.e., for all p C S and
k > 0 we have(S,p,k) ~ ia D E~). Thus, by Theorem 2(b) it follows that C (~ D Eto)
is also valid. The "induction axiom" states that C(~ D E~) D (in D C~p). Combining
these two facts we have that ia D C~ is valid, and thus if (S, p, k) ~ W then (S, p, k) ~ Cto
and we arc done with part (a). For (b), let ¢ be "at least one processor had v as its initial
value", and notice SBA guarantees that ia D ¢ is valid in S. Thus, by Theorem 2(b), so
is C(ia D ¢). The "consequence closure" axiom states that (Via A C(ta D ¢)) D C¢ h
valid, and we conclude that Cia D C¢ is valid. By part (a) we have that (S, p, k) ~ lo
implies that (S,p,k) ~ C(~), from which we can now conclude that (S,p,k) ~ C¢ and
we axe done.

3. A n a l y s i s o f a s i m p l e p ro toco l

In this section we take a close look at t-uniform systems S~ in which all processors
follow a simple and fairly general protocol P: For k _> O, in round k + 1 each processor
sends its view at time k (i.e., after k rounds) to all other processors.

We axe interested in the states of kndwledge about the initial configuration that the set
of active processors attains at different stages of the execution of this protocol. Intuitively,
the protocol P should provide the processors with "as much knowledge as possible" about
the initial configuration, and facilitate the ability of the system to perform actions that
depend on the initial configuration.

A fact ~a is called stable if once it becomes true it remains true forever (cf. [HM]). For
example, facts about the first k rounds, and in particular facts about the system's initial
configuration, are stable. Since a processor's knowledge is based on a processor's view,
and an active processor's view grows monotonically with time, it is the case that if lo is
stable then so axe Eia and Cia (although, as we have seen, this is not true for Iia).

A round in which no processor fails is callea a clean round. Similarly, a round that is
not clean is called dirty. If, for some k, round k of a run in which the processors all follow

is clean, then every active processor's view at the end of round k includes the view of
the active processors at time k - 1. In particular it follows that any stable fact that is
implicit knowledge at time k - 1 is known to everyone at time k. Consequently, at time k
all processors know exactly the same facts about the initial configuration. Furthermore,
Theorem 1 together with the fact that E ~ is stable when ~ is, imply that at any point after
a clean round, all of the processors have identical knowledge about the initial configuration.
Therefore, once it is common knowledge that there was a clean round, it is common
knowledge that the processors have an identical view of the initial configuration. Recall
that any property that holds at all points (p, k) is common knowledge at all points (p, k).

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 157

In particular, it is common knowledge no more than t processors can fail in any run of the
system, a~ud that all processors are following the protocol ~. We can now show:

Theorem 4: Let ~o be a fact about the initial configuration.

a) (S~,p,t + I) ~ I~ iff (S~,p,t + 1) ~ C~.

b) (Sp,pln - 1) ~ Ito iff (S , , p , n - 1) ~ C~.

P r o o f : Notice that the "if" direction in both cases is immediate, since C¢ D I ~ is
valid for all facts ¢. We now show the other direction. Let ~ be a fact about the initial
configuration. Since at most t processors fail in any run of S~, it follows by the pigeonhole
principle that at least one of the first t + 1 rounds tff every run is clean. By Theorem 1
and the discussion above we have that at any point following a clean round it is the case
that I ~ holds iff E ~ does. In particular, this means that in all runs of S~ it is the case
that after t + 1 rounds I ~ holds iff E ~ does. Notice also that Era ~ E(I~) is valid (since
K i ~ D ar~ is). Now by Theorem 2(b) and the "induction axiom" we are done. For part
(b), notice that in all runs of Sp one of the following two possibilities holds: either there
is a clean round by time n - 1, or there is at most one active processor at time n - 1. In
the first case we can argue as in Ca) that l p holds at time n - 1 iff E(I~) does. However,
this is also true in the second case, since when there is at most one active processor Pi it
is the case that K~¢ _= I ¢ ~ E ¢ . And since Ki¢ D Ki (I¢) is valid, for all facts ¢ we
have tha t I ¢ ~ E (I ¢) . Thus, again by Theorem 2(b) and the "induction axiom" we are
done.

As a consequence of Theorem 4 and the discussion preceding it we have that any action
that depends on the system's initial configuration can be carried out simultaneously in a
consistent way by the set of active processors at any time k > min{t 4- 11n - 1}. This is
consistent with the fact that there are simple t-resilient protocols for SBA that attain SBA
in t 4- 1 rounds. Interestingly, none of the known protocols for SBA attain SBA in less
than t 4- 1 rounds in any run. It is therefore natural to ask whether a protocol for SBA
can ever attain SBA in less than t + I rounds. Clearly, once it is common knowledge that
a clean round has occurred, SBA can be attained. And as we shall see, there are cases
in which the existence of a clean round becomes common knowledge before time t 4- 1.
When the existence of a clean round becomes common knowledge depends crucially on
the pattern of failures, and on the time in which failures become implicitly known to the
group of active processors. For example, if a processor p detects t failures in the first
round of a run of P, then the second round of the run will be clean, and at the end of
the second round all active processors will know that p detected t failures in round 1. It
follows from the induction axiom and Theorem 2(b) that at the end of round 2 it will be
common knowledge that all processors have an identical view of the initial configuration
(check!). Clearly, the processors can then perform any action that depends on the initial
configuration (e.g., SBA) in a consistent way. In the remainder of this section we show a
class of runs of S~ in which the processors attain conunon knowledge of an identical view
of the initial configuration at time k, for every k between 2 and t + I. In the next section,
we will prove that this is in fact a precise classification of the runs according to the time
in which common knowledge of an identical view of the initial configuration is attained.

158 SESSION 4

Intuitively, if there are more than k failures by the end of round k, then from the
point of view of the ability to delay the first clean round, [,~ilures h~ve been "wasted". In
particular, if for some k it is the case that there axe k + j failures by the end of round
k, then there must be a clean round before time t + 1 - j (in fact, between round k 4- 1
and round t + 1 - j) . This motivates the following definitions: We denote the number of
processors that fail by the end of round k in p by N(p, lc). We define the difference at
(p, k), denoted d(p, k), by

d(p,k) d=ef N(p,k) - k.

We also define the mazimal difference in (p,g), denoted D(p,~), by

def
D(p , e) = k<l

Observe that d(p,O) = 0 for all runs p, since N(p,O) = 0. Furthermore, in a t-uniform
system it is always the case that d(p, k) < ~ - k, since N(p, k) < t. Let D be a variable
whose value at a point (p,k) is D(p,k). Similarly, let d(k) be a variable whose value at
any point in p is d(p, k). An important observation is that if at time t 4- 1 - j it is common
knowledge that D > j , then it is common knowledge that a clean round has occurred, and
that all processors have an identical view of the initial configuration. As we will see, the
protocol .P has the property that if it ever becomes implicit knowledge that D > .i then at
time t + 1 - j it is common knowledge that D > j . This leads us to the following definition:
Given a system S, the wa~tefutne~ of (g, ~) with respect to S, denoted ~ (S , p, ~), is defined
by:

W(S,p,£) clef= max { j : (S,p,l) ~ I(D > j)}.

In words, the wastefulness of (p, ~) is the maximal value that the difference d(p, .) is im-
plicitly known to have assumed by time £. We now formally prove the claims informally
stated above. We start with a somewhat technical lemma discussing the properties of
wastefulness in the case of Sp:

L e m m a 5: L e t p E S ~ .

a) If ~(S~,p,£) = j then there is a particular k < £ such that (S~,p,e) ~ I(d(k) P_ i).

b) If I(d(k) _> j) holds at time k then at time k + 1 either E(d(k) > j) holds, or
I(d(k + 1) _> j) does.

c) ~(Sp,p,k + 1) > ~(Sp,p,k) for all k > 0.

P roof : For part (a), let p E S~ satisfy (Sp,p,t) ~ I(D _> . /) ,and assume that for no k
is it the case that (S,,p,t) ~ I(d(k)). j)). Let p' be a run of P such that (p',0) = (p,0),
and in which the only messages not to be delivered are those that are hnplicitly known
at (p,l) not to have been delivered. It is easy to check that p' E S~, since no more than
t processors fail in it, and processor failures are crash failures. Because it is not implicit
knowledge at (p,£) that d(k) _> j for any k, it follows that D(p',~) < j. If we show that
the group G = A(p,t) has exactly the same view in (p,~) and in (p',g) we will be done,
since this will contradict the assumption that (S~,p, ~) ~ I(D > j). We now prove that
A(p,l) has the same view in (p,~) and in (p',~). Define e (t) = : A(p,~). For k < / , assume

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 159

inductively that G (k + 1) is defined, and for all processors pi e G (k + 1) let g(pi,k) be the
set of processors from which p~ receives a message in round k + 1 of p. Define

a(k) U g(p,,k).

Let G'(~) = G(e), and for k < ~ define g'(pi,k) and a ' (k) from a'(Ik + 1) in an analogous
fashion (substituting G, g, and p by G I, g~, and p~). We now show by induction on £ - k that
if k < £ then for all P i e G(k + 1) we have that g(pi,k) = g'(pi,k) and that G(k) = G'(k).
Let k < g and assume inductively that G(k + 1) = G ' (k + 1). (Notice that we have defined
G(g) = G'(g).) Let Pi e G(k + 1). The protocol .P guarantees that the precise identity of
g(p,, k) for p~ E G(k + 1) is implicitly known at (p,£). It follows that processor Pi sends a
message to pi in round k + 1 of p iff PJ sends pi a round k + 1 message in p~. It thus follows
that g(pi,k) = g'(pi,k). Since this is true for all Pi E G(I¢ + 1), we have that G(k) = G'(k),
and the claim is proven. Notice that G(k) D G(k 4- 1). We now show by induction on k
that for all pi E G(k) it is the case that v(p~,p,k) = v(p,,p',lk). The case k = 0 follows
from the fact that (p,0) = (p',0) and G(0) = G'(0). Assume inductively the claim holds
for k - 1, and we prove it for k. Observe that v(pi, p, k) for pi E G(k) is determined by
v(pi, p, k - 1) and by v(g(pi, k - 1),p, k - 1). Since by the inductive hypothesis we have
that g(pi,k - 1) = g'(pi,k - 1), and that v(g(pi ,k - 1),p,k - 1) = v(g ' (p i ,p ' , Ik- 1), and
that v(pi ,p ,k - 1) = v(pi ,p ' ,k - 1), it follows that v(pi ,p,k) = v(pi,p' ,k) . It now follows
that v (G (O , p , l) = v(G(£),p',g), and we axe done with part (a).

For part (b), assume that (S , , p , k) ~ I(d(k) > j) . If d(k) > j is not known to
everyone at (p, k "-I- 1) then there must be (at least one) processor, say q, that fails in
round k + 1 by not sending a message to at least one processor, say p, that is active at
time k + 1. Thus, in particular, p knows at time k + 1 that q has failed. Now, ~ ensures
that all processors that fail by (p, k) are known by everyone at (p, k + 1) to have failed.
It follows that if d(k) > j is not known to everyone at time k + 1 then d(k + 1) > j is
implicit knowledge at that time. For (c), assume that ~ (p , k) = j . Then by part (a) there
is some k' < k such that (S , , p , k) ~ I(d(k') > j). Without loss of generality let k' be
the largest such number. If k ~ < k then by (b) we have that at time k t + 1 <_ k everyone
knows that d(k') > j . But E(d(k') > j) is a stable fact because d(k') > i is, and in this
case ~ (p , k + 1) > j , and the claim of (c) holds. If k' = k then part (b) implies that at
time k 4- 1 either everyone will know that d(k) >_ j or it will be implicit knowledge that
d(k + 1) > j . In both cases we will have ~ (p, k + 1) > j , and we are done.

Lemma 5(c) suggests that we define the wastefulness of a run p, denoted "W(S, p), to
be the maximal value that ~ (S , p, k) assumes. We now have:

T h e o r e m 6:

a) ~ (S ~ , p) : Y iff (S , ,p , t + 1 - y) ~ E (~ (S , , "the current run") = j) .

b) Let ~ be a fact about the initial configuration. If ~ (S~, p) =] then
(s , , p , t + - .i) P- (s , , p , t + 1 - j)

160 SESSION 4

Sketch of Proof: For (a), Notice that if 7~'(S~,p) = j for some k < t + I - j it is the
case that (S~,p,k) ~ I(D > j), and at least one of the rounds k + 1,...,t- j is dean.
Lemma 5(a) and (b) imply that I (D ~ j) is a stable fact in S, . The claim of part(a) now
follows. For (b), use part (a) to show that at t + 1 - j the existence of a clean round is
common knowledge, and follow the proof of Theorem 4.

Thus, certain patterns of failures help the processors to reach common knowledge of
an identical view of the initial configuration early. As a consequence of Theorem 6 we
have:

C o r o l l a r y 7: There is a t-resilient protocol for SBA that reaches SBA in t + 1 - ~ (Sp, p).
rounds in all runs p of the protocol in which at most t processors fail.

P roof : The protocol (identical .for all processors pi) is:

for £ >_ O perform the following a¢ time £:
i f K ~ (D _> t + 1 - £)

t h e n halt (and send no messages in tile following rounds);
decide 0 ifK~("some initial value xj was 0");
decide 1 otherwise.

else send Pi's current view to all processors in round t + 1.

By Theorem 6(a) all correct processors halt after t + 1 - ~ (S~ ,p) rounds. By The-
orem 6(b) the active processors have common knowledge of the fact that they have an
identical view of the initial configuration. Thus, their decisions axe identical. The decision
function clearly satisfies the requirements of SBA.

Notice that in runs in which many failures become visible early it is the case that SBA
is attained by this protocol significantly earlier than time t + 1. We axe aware of no other
protocol for SBA that stops before time t + 1 in some cases. In the next section we will
show that the protocol of Corollary 7 is optimal in the sense that for any given pattern of
failures, it attains SBA no later than any other protocol for SBA does.

The number of bits of information required to describe a processor's view at round k is
exponential in k. Thus, messages in the above protocol might be too long to be practical.
By modifying the protocol slightly so that messages specify only the sender's view of the
initial configuration and of the failure pattern, we get a protocol for SBA with the same
properties in which the length of each message is O(n + t log n).

4. Lower b o u n d s

We are about to show that the only non-trivial facts that can become common knowl-
edge in a run p of a t-uniform system S before time t + 1 - ~ (S, p) are facts about the waste-
fulness of the run. We do this by showing that all executions (p, ~) with ~ (S , p, t) _< t - l are
similar. However, we first need a lmnma that, roughly speaking, says that if D(p, ~) <_ t - l
then (p,£) is similar to an execution that looks just like (p, £) (in terms of the initial con-
figuration and the pattern of failures), except that the last processor to fail in (p,£) never
fails. More formally:

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 161

L e r n r n a 8: Let t YS n - 2, and let S be a t-uniform system. Let k < t, let (p, £) E S x {l}
be an execution such that D(p , l) < t - l and no processor fails in (p,l) after round k. If
p fails in round k of (p, £), then there exists a run 8 e S such that (p, l) ... (8,£), where
(p, k - 1) = (2, k - 1), the kth-round behavior of all processors p' ~ p is identical in p and
in ~, processor p does not fail in (fi, t), and no processor fails in (2, l) after round k.

P r o o f : We will prove the claim by induction on j = l - k.

Case j = 0 (i.e., k = l): Let Q = {qi , . . . ,q . ,} be the set of processors active at (p, l)
to whom p fails to send a message in round k of p. If s = 0 then no processor active at
(p, £) can dist inguish (p, ~e) from an execution (8,£) that differs from (p,£) only in that p
does not fail in (~,£). Assume that s > 0. Since t < n - 2, there must be some processor
Pi E A(p ,£) - {q~}. Clearly, pi 's view at (p,£) is independent of whether or not p sent a
message to qs in round L Thus, (p, l) .-~ (p', l) , where (p', £) differs from (p, l) only in that
p does send a message to q.~ in round £ of (p',,e). Now, since q., is active at (p',£), and p
does send q., a message in round £ of (p', ~e), processor q~'s view at (p', £) is independent of
whether p fails in (p', ~e), and thus (p', £) ..~ (8,l) , where (fi,£) has the desired properties.
By t ransi t iv i ty of .-~ we also have that (p, £),-~ (8, ~).

Case j > 0 (i.e., k < ,e): Assume inductively that the claim holds for i - 1. Again, let
Q = { q , , . . . , as } be the set of processors active at (p, £) to whom p fails to send a message
in round k of (p, £). We prove our claim by induction on s. If s = 0 then no processor acgive
in (p,£) can dist inguish whether p failed in round k or in round k + 1. Thus, (p,£) ,.~ (p ' , t) ,
where (p', l) differs from (p, ~e) only in that rather than failing in round k, processor p fails
in round k + 1 of (p',£) before sending any messages. Since l - (k + 1) = j - 1, we have by
the inductive :hypothesis that (p',~e) ~.. (.~,~), where (8,l) has the desired properties. By
t ransi t iv i ty of ,-~ we have that (p, l) --. (8, £). Now assume that s > 0 and that the claim
is true for s - 1. Let (p.,,l) be an execution such that (p~,k) = (p,k), processor qs fails
in round k + 1 of p.~ before sending any messages, and no other processor fails in p8 after
round k. Clearly D(ps, ~) <_ t - l , since d(ps,k ') = d(p, k') < t - £ for all k' _< k, and
d(ps ,k + l) = N(ps , k + l) - (k + l) = N (p , k) + l - (k + l) = d (p , k) _< t - t. Notice
also tha t no processor fails in (Ps, £) after round k + 1. Thus, by the inductive assumption
on . / - 1, we have that (Ps,£) "" (P,£). Let pi E A(ps,£). Clearly pi 's view at (p , , /) is

¢

independent of whether p sent a message to as in round k of (Ps, ~e). Thus, (ps, £) "~ (Ps, l),
where P~s differs from p~ in that p does send a message to qs in round k of p'~. Again by
the induct ive hypothesis for j - 1 we have that (p~,£) ": (p',£), where (p~,k) = (p' ,k)
and no processor fails in (p',£) after round k. Processor p fails to send round k messages
only to s - 1 processors in p~, and thus by the inductive hypothesis for s - 1 we have that
(p',£) ..~ (~,£), where (8, l) has the desired properties. By the symmetry and transit ivity

of .~, we have that (p, £) .-. (~, £), and we are done.
Recall tha t a t-resilient protocol for SBA is required to at tain SBA in all runs of

the protocol in which the initial configuration is in {0,1} n and there are no more than t
failures. Notice that in this set the initial states of the different processors are independent.
We say tha t a t-uniform system is independent if the set of initial configurations possible
in the system is of the form ~ l × ~2 × "'" × ~]n, for fixed sets Ei. Tha t is, there is no
necessary dependence between the initial states of the different processors. We can now

use L e m m a 8 to show:

162 SESSION 4

T h e o r e m 9: Let t < n - 2 and let S be an independent t-uniform system.

a) If e < t then all failure-free executions (p, g) C S × {e} are similar.

b) If ~(S,p,e) < t - £ and T/(S,p',£) < t- g, then (p,~) ,- (p',t),

P r o o f : (a) Assume that t < t and let (p, t) and (,3, t~) be failure-free executions. We wish
to show that (p, £) ..~ (,3, £). Let Q - { q , , . . . , q~ } be the set of processors whose initial states
in p and ~8 differ. We prove by induction on s that (p,£) ~ (fi,~e). If 8 = 0 then (p,t~) = 03,e)
and we are done. Let s > 0 and assume inductively that all failure-free executions that
differ from (~, g) in the initial state of no more than s - 1 processors axe similar to it. Let
(p.,,£) be an execution such tha t (p,0) = (p~,0), in which q~ fails in the first round without
sending any messages, and no other processor fails. Clearly D(p.,,£) = 0 _< t - g , and by
L e m m a 8 we have that (p.,,g) --, (p,t) . Let pi E A(p~,~e). Given that S is an independent
t-uniform system, processor pi 's view at (p.,, £) is independent of whether the initial state
of q., is as in p or as in ~8. Thus, (ps, ~) --. (p'~, e), where p.', differs from p., only in that the
init ial state of q, in p'~ is as in ,8. Again by Lemma 8 we have tha t (p'~, g) .-~ (p',~e), where
(p'~, 0) = (p', 0), and (p', g) is failure-free. Since (p', £) differs from (,3, £) only on the initial
states of s - 1 processors, by the inductive assumpt ion we have that (p', g) -.~ (~, e), and by
the symmet ry and t ransi t iv i ty of--- we have (p, ~) .-~ (fi, ~), and we axe done with par t (a).

(b) If ~ (S , p , £) _< t - g then in par t icular it is not implicit knowledge at (p,g) that
d(k) > t - l for some k < L It follows that (p,.e) ... (fi, e), for some fi c S satisfying
D(fi, l) < t - l. Using L e m m a 8, a s traightforward induction on the number of processors
that fail in (fi, t) shows that (fi, g) .-. (,8,e), where (fi, t~) is failure-free. By t ransi t ivi ty of
.-. we have that (p,.e) ... (fi,~e). The same argument applies to (p',£), and the claim now
follows from part (a).

Observe that the assumpt ion of independence of the initial configurations is essential
to this lower bound. Lemma 8 can also be used to characterize non- independent systems.
L e m m a 8 and Theorem 9(a) generalize and somewhat simplify the t + 1 round lower bound
on the worst-case behavior of SBA in our model (see [DLM], [DS], [EL], [H], [CD]). As we
will see in the sequel, Theorem 9(b) allows us to completely characterize the runs in which
t + 1 rounds axe necessary for a t ta in ing SBA, as well as those that require k rounds, for
all k. More generally, Theorem 2(a) and Theorem 9(b) provide us with a lower bound on
the t ime by which facts can become common knowledge in t-uniform systems. Formally,
we have:

T h e o r e m 10: Let t < n - 2, let S be an independent t-uniform system, and let p' E S
satisfy ~ (S , p ') < t - g . If (S,p' ,e) ~ ~, then (S,p,g) ~ C p for all p E S satisfying
'w(s,p) < t - t .

Theorem 10 and Theorem 6(b) completely characterize when non-tr ivial facts about
the initial configuration become common knowledge in the runs of S~. In a precise sense,
they hnply that the only fact that is common knowledge at (p,k), for k < t - h](Sp,p) , is
that the wastefulness is less than t + 1 - k. Formally, we have:

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 16..3

C o r o l l a r y 11: Let t < n - 2, let S~ be an independent t-uniform system for P, and let
(Sp, p) < t - L Then (Sp, p, l) ~ C~o iff for all p' E Sp sach that "W (S~, p', l) < t - l it

is the case that (S~, p', l) ~ p.

Furthermore, Corollary 3 and Theorem 10 immediately imply:

C o r o l l a r y 12: Let t < n - 2, let P be a t-resilient protocol for SBA, and let S be
a t-uniform system for P, with p E S. Then SBA is not attained in p in fewer than
t + 1 - ~ (S, p) rounds.

Corollary 12 proves that SBA cannot be attained in the runs of ~ any earlier than it is
attained by the protocol of Corollary 7. IIowever, it still seems possible that using another
protocol SBA will be attainable in fewer rounds than in the Drotocol of Corollary 7. We now
show that this protocol is optimal in a rather strong sense: given an initial configuration
and the pattern in which failures occur, no protocol protocol attains SBA in fewer rounds
than the protocol of Corollary 7. In order to state this claim rigorously and prove it, we
need to make a few definitions.

We denote the initial configuration of the system by ~. A failure pattern is a list lr of
faulty processors, and for each faulty processor Pi a specification of a round ri in which it
fails and a "forbidden" subset Qi of the processors to whom it necessarily does not send
messages in its failing round. Notice that given a protocol P, the initial configuration
and failure pattern uniquely determine a run of the protocol. (However, a run of the
protocol may be the result of more than one failure pattern in protocols that don't require
all processors to send messages to all other processors in every round.) Thus, we can
represent a run by a triple (F ,~ , r) . We are now ready to show that the wastefulness of
a run resulting from a given initial configuration and failure pattern is no greater than its
wastefulness in Sp. Given Corollary 12, this will imply that the protocol of Corollary 7
always attains SBA at the earliest possible time, given the initial configuration and failure
pattern.

T h e o r e m 13: Let S be a t-uniform system for a protocol P, and let p = (P,~,~r), and
let ~ = (P , ~ , r) . Then ~(S ,p) _< ~(S~,~).

Proof : We will show a more general fact from which the theorem will follow. Given an
initial configuration ~', and a failure pattern ~r', let p' = (P, 5', ~r') and ~' = (P, ~', r ') .
Notice that A(p, k') = A(fi, k') for all k'. We claim that for all k and all P i e A(p, k) it is
the case that if v(pi,~,k) = v(pi,l~',k) then v(pi,p,k) = v(pi,p',k). We argue by induction
on k. The case k = 0 is immediate. Let k > 0 and assume inductively that the claim
holds for all processors in A(p, k - 1) at time k - 1. Thus, if v(pi, ~, k) = v(pi, ~', k) and P1
sends a round k message to Pi in fi, then P1 has the same view at (~, k - 1) and (~', k - 1),
and P1 also sends pi a round k message in ~. In this case both r and r ' determine that
round k messages from P1 to pi are delivered. By the inductive assumption P1 also has the
same view in (p, k - 1) and in (p', k - 1). It follows that P requires P1 to act identically
in round k of both p and p'. And if P1 is required to send pi a round k message in p then
it is required to send Pi the same message in round k of p~. Processor P1 does not send a
round k message to Pi in ~ only if r determines that Pi cannot send pi such a message. But
then for similar reasons r r must also determine that Pi does not send p / a round k message.

164 SESSION 4

It follows that in this case pj does not send p~ a round k message in p or in pt° Thus, for
all processors pj it is the case that pi receives a round k message from pj in p iff p~ receives
an identical message from pj in round k of p'. The inductive assumption also implies that
v(pi,p,k - 1) = v (p i , p ' , k - 1), and it now follows that v(pi,p,k) = v(p~,p',k) and we axe
done with the claim. We now show how the theorem follows from this claim. Assume that
~(S ,p) = j and that ~ (S~ ,~) < j . Thcn there is a time k such that (S,p,k) ~ I (D > i),
and (S,,t3, k) ~: I(D > j). Let G = A(~,k) (notice that G = A(p,k) as well). It follows
that there is a run ~' E Sp such tha t v(G, t3, k) = v(G,~',k) and D(~',k) < j . Let ~' and 7r'
be the initial configuration and failure pat tern in ~'. Let p' be the run of P corresponding
to ~' and ~r J. Since v(G,~,k) = v(G, lY, k), our claim implies that v(G,p,k) = v(G,p~,k).
But since D(p',k) = D(~',k) < j and A(p,k) = e , we have that (S,p,k) ~: I(D > j},
contradicting our original assumption,

Theorem 13 and Corollary 12 now imply that the protocol of Corollary 7 is indeed
optimal in the strong sense we intended: given any initial configuration and failure pat tern,
it at tains SBA as early as any t-resilient protocol for SBA can. In light of Theorem 13,
we can talk about the inherent wastefulness w(n') of a failure pat tern lr, defined to be
~ (S p , (2 ,G~ ')) . That w0r) is well defined follows from the fact that runs p of S~ have the
property that ~ (S ~ , p, k) depends only on the pattern of failures and is independent of the
initial configuration. This can be proved by a straightforward induction on k, and is left
to the reader. Lemma 8 through Corollary 12 can now be viewed as statements about the
effect of the failure pat tern on the similarity of executions and on what facts can become
common knowledge at various times in the execution of an arbitrary t-resilient protocol.
Corollaries 7 and 12 tell us that exactly .t + 1 - w(zr) rounds are necessary to at tain SBA
in runs of any t-resilient protocol for SBA that have pat tern failure r (in the rest of the
paper we will use r to refer to the failure pat tern of the run in question). This provides a
complete characterization of the number of rounds required to reach SBA in a run, gives
the pat tern in which failures occur.

We have seen that the only facts that become common knowledge before time t +
1 - w(Tr) are facts about the wastefulness of the run. In the previous section we saw that
in runs of S~ the processors at tain common knowledge of an identical view of the initial
configuration at time t + 1 - w(~'). Thus, we have a complete description of when facts
about the initial configuration become common knowledge. It is interesting to ask the more
general question of when arbi t rary facts become common knowledge. Using Lemma 5 it is
possible to show that at time t + 1 - w(Tr) in a run of S~ it is not only common knowledge
that there was a clean round, but there is a particular round that is commonly known to
have appeared clean to all active processors. Let k(~') denote the latest such round. Thus,
at time t + 1 - w(zr) it is common knowledge that the processors have an identical view of
the first k(~r) - 1 rounds. There is some number, say f of processors that are commonly
known at time t + l - w (~ ') to have failed by time k0r) - 1 . Let t' = t - f . Roughly speaking,
time k(r) cart now be regarded as the start of a new run, and for appropriate definitions of
d'(k) and w ' (r) , we get that at time k(lr) + t ' + 1 - w'(~') the system will at tain common
knowledge of a common view of the state of the system at time k(~r). Interestingly, it can
be shown that k(zr)+t' + 1 - w ' 0 r) = t + 2 -w(~r) . That is, one round after the processors
at tain common knowledge of (a common view of) the state of the run at time k (n) - 1,

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 165

they attain common knowledge of the state of the run at time k(~). In fact, at the end
of each round following time t + 1 - w(zr) the active processors attain common knowledge
of a common view of at least one (sometimes more) additional past round. Again, the
techniques of Sections 3 ~u~d 4 can be used to show that the pattern of failures determines
when an arbitrary fact about the first k rounds may become common knowledge, and the
simple protocol P of Section 3 is in a precise sense the fastest to attain common knowledge
of such facts. Details are left to the reader.

5. A p p l i c a t i o n s

Throughout the paper we have shown how our results regarding when common knowl-
edge of various facts is attained in a Byzantine system affect the SBA problem. In this
section we discuss some further consequences of the analysis presented in the previous
sections. This is intended to illustrate the types of applications that the analysis can be
used for. We start by considering some problems that axe closely related to SBA.

The problem of Weak SBA (WSBA) mentioned in the introduction, which differs
from SBA in that clause (4) is changed so that the active processors are required to decide
on a value v only if all initial values were v and no processor fails was introduced by
Lamport as a weakening of SBA. However, Theorem 9(b) immediately implies that the
active processors do not have common knowledge of whether any processors failed before
time t + 1 - w(n), in any run of a t-resilient protocol for WSBA with failure pattern zr.
And since SBA can already be performed at time t + 1 - w(rr), we have that t-resilient
protocols cannot attain WSBA any earlier than they can SBA. Theorem 9 also describes
why the variant of SBA used in this paper (which was introduced by [FL]) is essentially
equivalent to the original version of the Byzantine General8 problem of [PSL], in which
only one processor initially has a value, and the processors need to decide on this value ff
the processor does not fail, and on a consistent value otherwise.

It has been a folk conjecture that a t-resilient protocol that guarantees to perform
any non-trivial action simultaneously requires t + 1 rounds in the worst case. We will now
show that this is not the case. Let Bivalent Agreement be defined by clauses (1)-(3) of
SBA, and replacing clause (4) by:

4'. At least one run of the protocol decides 0, and at least one run decides 1.

Thus, so long as no more than t processors fail, all processors must decide on the same
value simultaneously, and both 0 and 1 mnst be attainable values. Theorem 2 implies
that any action that is guaranteed to be performed simultaneously requires some fact to
become common knowledge before the action can be performed. Theorem 6(b) implies
that at the end of round 2 of Sp it is common knowledge whether or not the wastefulness
of the run is t - 1 (i.e., whether t processors were seen to have failed in the first round).
Thus, we can easily derive a t.resilient protocol for Bivalent agreement: Each processor
follows)~ for the first two rounds, and then decides 0 if it knows that t processors failed in
the first round, and 1 otherwise. This protocol attains Bivalent agreement in two rounds,
and Theorem 10 implies that there is no faster protocol for Bivalent agreement so long

166 SESSION 4

as t < n - 2. Furthermore, it implies that in a precise sense this is the only two-round
protocol for Bivalent agreement. We leave it to the reader to check that if t > n - 1 then
there is a protocol for Bivalent agreement that requires only one round. Thus, Bivalent
agreement is a truly easier problem than SBA. We note that [FLP] and [DDS] prove that
in an asynchronous system there is no 1-resilient protocol for an even weaker variant of
Bivalent agreement.

We have stressed the connection between common knowledge and simultaneous ac-
tions. Interestingly, the lower bounds on the time required for attaining common knowledge
imply worst-case bounds on the behavior of t-resilient protocols that perform coordinated
actions that are not required to be performed simultaneously. For example, Eventual
Byzantine Agreement (EBA) is defined by clauses (1), (2), and (4) of SBA: the proces-
sors' decisions need not be simultaneous (cf. [DRS]). There are well-known protocols that
at tain EBA after two rounds in failure-free runs (for which w(rr) = 0). However, using
Theorems 2, 10, and 13 it is not hard to show that a t-resilient protocol for EBA must
require t + 1 rounds in some runs with w(zr) = 0. More generally, these theorems show
that such a protocol must require t + 1 - j rounds in some runs with w(~r) = j . This is
a slight refinement of the well-known fact that EBA requires t + I rounds in the worst
case (cf. [DRS]). Many very relevant mad interesting aspects of EBA are not covered by
our analysis. We believe that an analysis of EBA should involve a study of when the
states of e-common knowledge and eventual common knowledge (cf. [HM]) are attained in
a Byzantine environment. This is an interesting open problem.

As our investigation centered around t-resilient :protocols, we now briefly discuss some
other possible reliability assumptions. Recall that Theorem 4 states that all active proces-
sors are guaranteed to have an identical view of the system's initial configuration at time
t + 1 in every run of a t-uniform system for P. This follows simply from the fact that at
time t + 1 it is common knowledge that one of the previous rounds was clean. Instead of
t-resiliency, we could require that a protocol for SBA be guaranteed to attain SBA so long
as no more than k consecutive rounds are dirty. In the system corresponding to all the
runs of P in which at most k consecutive rounds are dirty, it is common knowledge at time
k + 1 that a clean round has occurred, ~md P can be converted in to a protocol for SBA
that is guaranteed to attain SBA in no more than k + 1 rounds. This means, for example,
that if processors in a Byzantine system are known to fail at least two at a time, SBA can
be achieved in t / 2 + l rounds. Having a bound of k consecutive dirty rounds seems in many
cases to be a more appropriate assumption about a system than having a bound of t on
the total number of failures possible, since the latter is not a local assumption. Of course,
these two assumptions are not mutually exclusive, and we may often have a small bound
on the possible number of consecutive dirty rounds, when only a much larger bound holds
for the total number of failures. The bound on the number of consecutive dirty rounds
implies a good upper bound on SBA in the case of crash failures.

Another way we can consider varying the reliability assumptions about tile system
is by restricting the number of possible processor failures that can occur in a round. For
example, let us consider the assumption that at most one processor can fail in any given
round of the computation, and at most t processors might fail overall. We are interested in

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 167

the question of whether such assumptions allow us to attain SBA quickly. Unfortunately,
the lower bound proofs of Lemma 8 and Theorem 9 work very well for this reliability
model. In fact, since all of the runs of such a system are gtlaranteed to have wastefulness
0, even Bivalent agreement cannot be attained in any rtm of the system in less than
t + 1 rounds! SBA and WSBA clearly require t + 1 rounds in all runs of the system.
We now present a somewhat artificial variant of this assumption that provides us with a
non-uniform reliability assumption whose behavior is interesting and somewhat counter-
intuitive: We say that a protocol for SBA is one visible failure resistant (1-VFR) if it is
guaranteed to attain SBA so long as no more than one processor failure becomes visible
to the active processors in any given round. The set of possible runs of a protocol P that
display such behavior will be called a visibly restrained system for P. It is possible to show
that in the visibly restrained system for the simple protocol P of Section 3 it is common
knowledge at time 2 whether round 1 is clean, and therefore WSBA can be attained in
two rounds. However, SBA can be shown to require n - 1 rounds in runs of P in which
one processor fails in every round except possibly the (r~ - 1)st round. (If one adds a
bound of t < n - 2 on the total number of failures possible, n - 1 is replaced by t + 1.)
Interestingly, there is a 1-VFR protocol for SBA that is guaranteed to attain SBA in three
rounds (in all runs)! Thus, for the !-VFR reliability model, our simple protocol is no
longer a most general protocol. The reason for the odd behavior of 1-VFR protocols is
that the patterns of failures of the runs that satisfy 1-VFR are intimately related to the
structure of the protocol. Thus, the protocol can restrict the patterns of failures possible
and make effective use of the 1-VFR assumption. Details and further discussion are given
in the full paper.

6. Concluslons

This paper analyzes the states of knowledge attainable in the course of the execution
of various protocols in the system, for the case of a particular simple model of unreliable
distributed systems that is fairly popular in the literature. Motivated by the work of [HM],
the analysis focused mainly on when facts that are implicitly known become common
knowledge in systems in which there is an upper bound of t on the number of possible
faulty processors. This problem was shown to be a direct generalization of problems
such as Simultaneous Byzantine Agreement, in which it is required that consistent actions
be performed simultaneously at Ml non-faulty sites of the system. By deriving exact
bounds on the question of when facts become'common knowledge, we immediately got
exact bounds for SBA and many other problems. An interesting fact that came out of
the analysis was that the pattern in which processors fail in a given run determines a
lower bound on the time in which facts about the system's initial configuration become
common knowledge, with different patterns determining different bounds. Ironically, facts
become common knowledge faster in cases when many processors fail early in the run.
The somewhat paradoxical argunlent for this is that, given an upper bound on the total
number of failures possible, if many processors fail early then only few can fail later. The
protocol can make use of the fact that the rest of the run is relatively free of failures. As
a by-product of the analysis, we were able to derive a simple improved protocol for SBA

that is optimal in all runs.

168 SESSION 4

Our analysis shows that the essential driving force behind many of the phenomena
in unreliable systems seems to be tile inherent uncertainty that a particular site in such a
system has about the global state of the system. We come to grips with this uncertainty by
performing a knowledge-based analysis of such a system. We stress that our analysis was
by and large restricted to protocols for simultaneous actions in a rather clean and simple
model of unreliable systems: synchronous systems with global clocks and crash failures.
We believe that performing similar analyses for nastier models of failures will prove very
exciting, and will provide a much better understanding of the true structure underlying
the richer failure models, and of the differences between the failure models. The ideas and
techniques developed in this paper should provide a sound basis on which to build such an
analysis, although it is clear that a number of additional ideas would be required.

In summary, the treatment in this paper differs from the usual approach to Byzantine
agreement type problems in that we make explicit and essential use of reasoning about
knowledge in order to reach conclusions about the possibility or impossibility of carrying
out certain desired actions in a distributed environment. The generality and applicability
of our results suggest that this is a promising approach.

Acknowledgements : We wish to thank Brian Cons, Ron Fagin, Joe Halpern, Nancy
Lynch, and Moshe Vardi for stimulating discussions. The work of the second author was
supported in part by an IBM Post-doctoral fellowship. Some of the work was done while
he was at Stanford University, supported by DARPA contract N00039-82-C-0250, and by
an IBM Research Student Associateship.

[CD]

[CM]

[DLM]

[DDS]

[DRS]

[DS]

References

B. Coan and C. Dwork, Simultaneity is harder than agreement, To appear, Proceed-
ings of the Fifth Symposium on Reliability in Distributed Software and Database
Systems, 1986.

K. M. Chandy and J. Misra, How processes learn, Proceedings of the Fourth ACM
Symposium on the Principles of Distributed Computing, 1985, pp. 204-214.

R. DeMillo, N. A. Lynch, and M. Merritt, Cryptographic Protocols, Proceedings
of the Fourteenth Annual ACM Symposium on the Theory of Computing, 1982,
pp. 383-400.

D. Dolev, C. Dwork, and L. Stockmeyer, On the minimal synchronization needed
for distributed consensus, Proceedings of the 24th Annual Symposium on Founda-
tions of Computer Science, 1983, pp. 369-397.

D. Dolev, R. Reischuk, and H. R. Strong, Eventual is earlier than immediate,
Proceedings of the 23th Annual Symposium on Foundations of Computer Science,
1982, pp. 196-203.

D. Dolev H. R. Strong, Polynomial algorithms for multiple processor agreement,
Proceedings of the Fourteenth Annual A CM Symposium on the Theory of Comput-
ing, 1982, pp. 401-407.

[FV]

IF]

[FL]

[FLP]

In]

[HM]

[HM2]

[LF]

[PR]

[PSL]

KNOWLEDGE IN BYZANTINE ENVIRONMENTS 169

R. Fagin and M. Y. Vardi, Knowledge and implicit knowledge in a distributed
environment, Proceedings of the Conference on Theoretical Aspects of Reasoning
About Knowledge, Monterey, 1986.

M. J. Fischer, The consensus problem in unreliable distributed systems (A brief
survey), Yale University Technical Report YALEU/DCS/RR-e73, 1983.

M. J. Fischer and N. A. Lynch, A lower bound for the time to assure interactive
consistency, Information Processing Letters, 14:4, 1982, pp. 183-186.

M. J. Fischer, N. A. Lynch, and M. Paterson, Impossibility of distributed consensus
with one faulty process, Proceedings of the second Symposium on Principles o.f
Database Systems, 1983.

V. Hadzilacos, A lower bound for Byzantine agreement with fail-stop processors,
Harvard University Technical Report TR-21-83.

J. Y. Halpern and Y. Moses, Knowledge and common knowledge in a distributed
environment, Version of December 1985 is available as an IBM RJ. Early versions
appeared in Proceedings of the Third A CM Symposium on the Principles off Dis-
tributed Computing, 1984, pp. 50-61; revised as IBM research report RJ 4421,
1984.

J. Y. Halpern and Y. Moses, A guide to the modal logic of knowledge and belief~
Proceedings of the Ninth International Joint Conference on Artificial Intelligence,
1985, pp. 480-490.

L. Lamport and M. J. Fischer, Byzantine grenerals and transaction commit proto-
cols, SRI Technical Report 0p.62, 1982.

R. Parikh and R. Ramanujam, Distributed processes and the logic of knowledge
(preliminary report), Proceedings of the Workshop on Logics of Programs, 1985,
pp. 256-268.
M. Pease, R. Shostak, and L. Lamport, Reaching agreement in the presence of
faults, JACM, 27:2, 1980, pp. 228-234.

