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ABSTRACT 

By analyzing the states of knowledge that the processors attain in an unreliable system 
of asimple type, we capture some of the basic underlying structure of such systems. The 
analysis provides us with a better understanding of existing protocols for problems such as 
Byzantine agreement, generalizes them considerably, and facilitates the design of improved 
protocols for many related problems. 

149 



150 SESSION 4 

1. I n t r o d u c t i o n  

The problem of designing effective protocols for distributed systems whose components 
are unreliable is both important and difficult. In general, a protocol for a distributed system 
in which all components are liable to fail cannot unconditionally guarantee to achieve non. 
trivial goals. In particular, if all processors in the system fail at aaa early stage of an 
execution of the protocol, then fairly little will be achieved regardless of what actions the 
protocol intended for the processors to perform. However, such universal failures are not 
very common in practice, and we are often faced with the problem of seeking protocols 
that  will flmction correctly so long as the number, type, and pattern of failures during the 
execution of the protocol are reasonably limited. A requirement that is often made of such 
protocols is t-resiliency - -  that they be guaranteed to achieve a particular goal so long as 
no more than t processors fail. 

A good example of a desirable goal for a protocol in an unreliable system is called 
Simultaneous Byzantine Agreement (SBA), a variant of the Byzantine agreement problem 
introduced in [PSL]: 

Given are n processors, at most t of which might be faulty. Each processor Pi has 
an initial value zi E {0, 1}. Required is a protocol with the following properties: 

1. Every non-faulty processor pi irreversibly "decides" on a value Yi E {0~ 1}. 

2. The non-faulty processors all decide on the same value. 

3. The non-faulty processors all decide simultaneously, i.e., in the same round 
of computation. 

4. If all initial bits xi are identical, then all non-faulty processors decide xi. 

A related problem, in which condition 4 is modified to require that  the non-faulty 
processors decide xi only in case all processors start with xi and no failures occur, is called 
Weak Simultaneous Byzantine Agreement (WSBA). Throughout the paper we will use t to 

denote an upper bound on the number of faulty processors. We call a distributed system 
whose processors are unreliable a Byzantine environment. 

The Byzantine agreement problem embodies some of the fundamental issues involved 
in the design of effective protocols for unreliable systems, and has been studied extensively 
in the literature (see [F] for a survey). Interestingly, although many researchers have 
obtained a good intuition for the Byzantine agreement problem, many aspects of this 
problem still seem to be mysterious in many ways, and the general rules underlying some 
of the phenomena related to it are still unclear. 

A number of recent papers have looked at the role of knowledge in distributed com- 
puting (cf. [CM], [HM], [PR]). They suggest that knowledge is an important conceptual 
abstraction in distributed systems, and that the design and analysis of distributed proto- 
cols may benefit from explicitly reasoning about the states of knowledge that the system 
goes through during an execution of the protocol. In [ttM], special attention is given to 
states of knowledge of groups of processors, with the states of common knowledge and 
implicit knowledge singled out as states of knowledge that are of particular interest. As we 
will see, in order to be able to reach SBA on a decision value v, the non-faulty processors 
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must attain common knowledge that conditions that allow deciding v hold. In fact, the 
problem of attaining common knowledge of a given fact in a Byzantine environment turns 
out to be a direct generalization of the SBA problem. 

We wish to investigate the states of knowledge that can be attained by the group 
of non-faulty processors in a Byzantine environment. In particular, we are interested in 
determining what facts become common knowledge at the various stages of the execution 
of a particular protocol. In this paper we restrict our attention to systems in which 
communication is synchronous and reliable, and the only type of processor faults possible 
are crash failures: a faulty processor might crash at some point, after which it sends no 
messages at all. Despite the fact that crash failures are relatively benign, and dealing with 
arbitrary possibly malicious failures is often more complicated, work on the Byzantine 
agreement problem has shown that many of the difficulties of working in a Byzantine 
environment are already exhibited in this model. By analyzing the states of knowledge 
that processors can attain as a function of the pattern of messages in a given protocol, we 
can characterize the types of coordinated simultaneous actions that can be performed at 
various points in the execution of the protocol. The results of this analysis directly apply 
to the design of protocols for SBA, WSBA, and other problems. 

The main contribution of this paper is to illustrate how a knowledge-based analysis of 
protocols in a Byzantine environment can provide insight into the fundamental properties 
of such systems. This insight can be used to help us design improved t-resilient protocols 
for Byzantine agreement and related problems. We perform a careful analysis of the upper 
and lower bound proofs on the number of rounds necessary to reach common knowledge 
of facts in a Byzantine system. Our lower bound proofs generalize and simplify the proof 
of the t + 1 round worst-case lower bound for SBA (cf. [DLM], [DS], [CD], [FL], In], [LF]), 
and characterize for the first time exactly which patterns of failures require the protocol 
to run for t + 1 rounds. We similarly characterize the failure patterns that allow attaining 
SBA in/k rounds of communication, for all k < t + 1, and construct a simple protocol for 
SBA that always halts at the earliest possible round, given the pattern in which processors 
fail during a given run of the protocol. In many cases, this turns out to be much earlier 
than in any protocol previously known. 

The analysis also provides some insight into how assumptions about the reliability of 
the system affect the states of knowledge attainable in the system. We briefly consider 
some other reliability assumptions and apply our analysis to them. 

Section 2 contains the basic definitions and some of the fimdamental properties of our 
model of a distributed system and of knowledge in a distributed system. Section 3 inves- 
tigates the states of knowledge attainable in a particular fairly general protocol. Section 4 
contains an analysis of the lower bounds corresponding to the analysis of Section 3, sim- 
plifying and generalizing the well-known t + 1 round worst-case lower bound for reaching 
SBA. Section 5 discusses some applications of our analysis to problems related to SBA, 
and Section 6 includes some concluding remarks. 
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2. De f in i t i ons  a n d  p r e l l m l n a r y  r e su l t s  

In this section we present a number of basic definitions that will be used in the rest 
of the paper, and discuss some of their implications~ Our treatment will generally follow 
along the lines of [HM], simplified and modified for our purposes. 

We consider a synchronous distributed system consisting of a finite collection of n > 2 
processors (automata) {p, ,p~, . . . ,pn} ,  each pair of which are connected by a two-way 
communication link. The processors share a discrete global clock that starts out at time 0 
and advances by increments of one. Communication in the system proceeds in a sequence 
of rounds, with round k taking place between time k - 1 and time k. In each round, 
every processor first sends the messages it needs to send to other processors, and then it 
receives the messages that were sent to it by other processors in the same round. The 
identity of the sender and destination of each message, as well as the round in which it 
is sent, are assumed to be part of the message. At any given time, a processor's message 
history consists of the set of messages it has sent and received. Every processor p starts 
out with some initial state a. A processor's view at any given time consists of its initial 
state, message history, and the time on the global clock. We think of the processors as 
following a protocol, which specifies exactly what messages each processor is required to 
send (and what other actions the processor should take) at each round, as a deterministic 
function of the processor's view. However, a processor might be faulty, in which case it 
might commit a stopping failure at an arbitrary round k > 0. If a processor commits a 
stopping failure at round k (or simply fails at round k), then it obeys its protocol in all 
rounds preceding round k, it does not send any messages in the rounds following k, and in 
round k it sends an arbitrary (not necessarily strict) subset of the messages it is required 
by its protocol to send. (Since a failed processor sends no further messages, we need not 
make any assumptions regarding what messages it receives in its failing round and in later 
rounds.) For technical reasons, we assume that once a processor fails, its view becomes a 
distinguished failed view. The set A of active processors at time k consists of all of the 
processors that did not fail in the first k rounds. 

A run p of such a system is a complete history of its behavior, from time 0 until 
the end of time. This includes each processor's initial state, message history, and, if the 
processor fails, the round in which it fails. An execution is a pair (p, k), where p is a run 
and k is a natural  number. We will use (p, k) to refer to the state of p alter its first k 
rounds. Two executions (p, k) and (p', k) will be considered equal if all processors start in 
the same initial states and display the same behavior in the first k rounds of p and p~. The 
list of the processors' initial states is called the system's initial configuration. We denote 
processor p's view at (p, k) by v(p, p, k). Furthermore, we will sometimes parameterize the 
set A of active processors by the particular execution, denoted A(p, k). 

Following IHM], we identify a distributed system with the set S of the possible runs 
of a particular fixed protocol P = ( P ( 1 ) , . . . ,  P(n)), where P(i) is the part of the protocol 
followed by processor pi. This set essentially encodes all of the relevant information about 
the execution of the protocol in the system. In analyzing the properties of t-resilient 
protocols, the system we are interested in is the set of all possible runs of the protocol in 
which the system starts in one of a set of possible initial configurations, and no more than 
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t processors fail. Such a set will be called a t-uniform system for P. A given protocol is a 
t-resilient protocol for SBA if all runs of the t-uniform system in which the set of possible 
initial configurations is {0, 1} n satisfy the requirements of SBA. 

We assume the existence of an underlying logical language for representing ground 
facts about the system. By ground we mean facts about the state of the system that do 
not explicitly mention processors' knowledge. Formally, a ground fact to will be identified 
with a set of executions r(to) C S × N, where N is the set of naturM numbers. Given a run 
p E S of the system and a time k, we will say that ~o holds at (p, k), denoted (S, p, k) ~ Io, 
iff (p, k) C r(to). We will define various ground facts as we go along. The set of executions 
corresponding to these facts will be clear from the context. 

Giveh a system S, we now fornlally define what facts a processor is said to "know" at 
any given point (p, k) for p E S. (Our definition will correspond to [HM]'s "total view" in- 
terpretation of knowledge). We say that a processor Pi knows a fact ¢ in S at (p, k), denoted 
(S,p,k) ~ Ki¢, if for all executions (p', k) e S × {k} satisfying v(pi,p,k) = v(p,,p*,k) it is 
the case that (S, p*, k) ~ ¢. Roughly speaking, p, knows ¢ ff ¢ is guaranteed to hold, given 
pi's view of the run. Notice that this definition guarantees that the "knowledge axiom" 
Kito D ~ is validt (see [HM], [HM2] for other properties of K, under this definition). 

Having defined knowledge for individual processors, we now extend this definition to 
states of group knowledge. Given a group G C {p~,... ,p,~}, we first define G's view at 
(p,k), denoted v(G,p,k): 

= {(v, , (v ,  v, : y e a } .  

Thus, roughly speaking, G's view is simply the joint view of its members. Extending our 
definition for individuals' knowledge, we say that the group G has implicit knowledge of to 
at (p,k), denoted (S,p,k) ~ Ia~, ff for all runs p~ E S satisfying v(G,p,k) = v(G,p',k) 
it is the case that (S, p', k) ~ ~. Intuitively, G has implicit knowledge of p ff the joint 
view of G's members guarantees that to holds. Notice that if processor p knows to and 
processor q knows ~o D ¢, then together they have implicit knowledge of ¢, even if neither 
of them knows ¢ individually. We refer the reader to [HM] and [HM2] for a discussion and 
a formal treatment of Ia. In this paper we are mainly interested in states of knowledge of 
the group A of active processors. The set of active processors is said to implicitly know to, 
denoted IAto, exactly if Iato holds for the set G.= A. Stated more formally, 

(S,p,k) ~ I~o iff (S,p,k) ~ Iap for G = A(p,k). 

Although IA~ is defined in terms of Ia~, it is not the case that Ia and IQ have the same 
properties. The reason for this is that whereas G is a fixed set, membership in A may vary 
over time and differs from one run to another. Thus, for example, it is often the case that 
for G : A(p,k) we have (S,p,k) ~ Ia(A = G), because there is some run p' e S such that 
v(G,p,k) = v(G,p',k) and where G is a strict subset of A(p',k). Consequently, whereas 
the formula -Iato D It-Iota is valid, the corresponding formula ~Iato D IA-Iato is not 

I A formula is said to be valid if it is true of all executions in all systems. 
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valid! (Notice, however, that  lx(G C A) holds whenever G C A.) 2 Since the form of 
implicit knowledge that concerns us most is Ix, we wilt call it simply implicit knowledge, 
and denote it by I. 

We now show that, roughly speaking, in t-uniform systems once a fact about the past 
is not implicitly known it is lost forever; it will not become implicit knowledge at a later 
time. We say that  a fact ¢ is about the first k rounda if for all runs p E S it is the case 
that  (S,p,k) ~ ¢ iff (S,p,~) ~ ¢ for all t _> k. In particuh~r, facts about the first 0 rounds 
are facts about the initial configuration. We now have: 

T h e o r e m  1: Let S be a t-uniform system, let ¢ be a fact about the first k rounds, and 
let ~e > k. If (S,p,k) ~ I¢ then (S,p,t) ~ I¢. 

Proof :  Let ~e > k, and let p and ¢ be such that ¢ is about the first k rounds and 
(S,p,k)  ~ 1¢. Let G = A(p,k). It follows that thcre exists a run / ~ S such that 
v(G,p,k) = v(G,/ ,k),  and (S,p',k) ~ ¢. Let p" be a run with the following properties: 
(i) (p", k) = ( / ,  k); (ii) All processors in A(p',k)-G fail in round k +  1 of p" before sending 
any messages; and (iii) From round k + 1 on all processors in G behave in p" exactly as 
they do in p. Notice that p" E S since all of the processors follow the same protocol in p" 
and in p, and no more processors fail in p" than do in p. By construction of p" we have 
that A(p", i) = A(p, £) and that the active processors have identical views in (p",~e) and 
in (p,£). It follows that (S,p",£) ~ I¢ iff (S,p,e) ~ I¢. Since ¢ is a fact about the first 
k rounds and (p",k) = (p',k), we have that (S,p",e) ~= ¢ because (S,p',k) ~ ¢. Thus, in 
particular, (S,p",i) ~- I ¢  and it follows that  (S,p,t) ~ 1¢ and we are done. 

Fagin and Vardi perform an interesting analysis of implicit knowledge in reliable sys- 
tems (cf. [FV]). Among other things, they prove that the set of facts that are implicit 
knowledge about the initial configuration does not change with time. I.e., in reliable sys- 
tems the implication in the statement of the Theorem 1 becomes an equivalence. However, 
in t-uniform Byzantine systems it is clearly the case that  implicit knowledge can be "lost". 
For example, ff processor Pi may start in initial states a and a ' ,  and in a particular run 
of the system Pi starts in state a and fails in the first round before sending any messages, 
then whereas I("pi  started in state a") holds at time 0, it does not hold at any later time. 

We now introduce the two other states of group knowledge that axe central to our 
analysis. Given a group of processors G, E~p (read "everyone in G knows ~p') and Calo 
("~ is common knowledge in G") are defined as follows (cf. [HM]): 

pied 

E~+19 = Ea(E~), rn_> 1, and 

= A ^ ^ . . .  ^ ^ . . . .  

2 Whereas In satisfies the axioms of the logical system Sh, it is easy to show that Ia satisfies 
the axioms of $4 (cf. [HM2]). 
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The states EA and Ca, in which we will be most interested, are defined in the same way 
as E~: and Ca. Because membership in A is not explicitly given, it is sometimes useful to 
think of EA p in the following equivalent form: 

E a r  = A ( P i E A  D KIP), 
l < i < n  

It is interesting to note that in contrast to the case of implicit knowledge, the basic prop- 
erties of EA and Ca are the same as those of Ea and Ca, stated in [HM]. In particular, Ca 
satisfies the axioms of $5 (cf. [HM2]). Thus, in particular, CA satisfies the "consequence 
closure" axiom: 

CONSEQUENCE CLOSURE: (Cap A ~a(~ D ¢)) D Ca¢. 

A fact that is crucial in our proofs is that Ca satisfies the "induction" axiom: 

INDUCTION AXIOM: CA(P D Eap) D (~o D Cap). 

In the remainder of this paper, we will use I, E, and C as shorthand for I~, E~, and CA. 

Two executions (p,k) and (pt, k) are said to be directly Mmilar, denoted (p,k) ~ (p~,k), 
if for some processor p active in p at time k it is the case that v(p, p, k) = v(p, p', k). Thus, 
two executions are directly similar if some active processor cannot distinguish between 
them. As an immediate consequence of our the definitions, we have: 

(S,p,k) ~ Ep iff (S,p',k) ~ p for all p' E S such that (p,k) .~, (p',k) 

Notice that the .~ relation is reflexive and symmetric, but not transitive. We say that 
(p,k) and (p',k) are ~imear, denoted (p,k) ~ (p',k), if for ~ome finite m there are runs 

Pl, P2,..., Pm E S such that 

The similarity relation ~ is simply the transitive closure of the ,~ relation, and thus is an 

equivalence relation. 

We can now show: 

T h e o r e m  2: 
a) (S,p,k) ~ Up iff (S,p~,k) ~ p for all p~ ~ S such that (p,k) ~ (p~,k). 
b) If (S,p,k) ~ ~ for all pE  S, then (S,p,k) ~ Cp for all p ~  S. 

Proof :  (a) follows by a straightforward induction on m showing that (S,p,k) ~ Emp 
iff (S,p~,k) ~ p for all p~ such that there exist p~,...,p,n-~ with (p,k) = (p~,k) = ... 
(pm-~,k) ~ (p',k). Part (b) follows directly from (a). 

Theorem 2 is very useful in relating common knowledge and actions that are guar- 
anteed to be performed simultaneously. For example, we can use Theorem 2(b) and the 
"induction axiom" in order to relate the ability or inability to attain common knowledge 
of certain facts with the possibility or impossibility of reaching simultaneous Byzantine 
agreement. We model a processor's "deciding v" by the processor sending the message 

"the decision value is v" to itself, and have: 
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C o r o l l a r y  3: Let S be a system in which the processors follow a protocol igor SBA. If 
the active processors decide on a value v at (p, k), then 

a) (S,p,k) ~ C( "All processors are deciding v ' ) ,  and 

b) (S,p, lk) ~ C("At least one processor had v as its initial value"). 

P roo f :  Let ia be the fact "all processors are deciding v ' .  Given that t:he protocol guar- 
antees that SBA is attained in S, it is the case that whenever some processor decides v all 
active processors do, and thus the formula W D Eia is valid in S (i.e., for all p C S and 
k > 0 we have(S,p,k) ~ ia D E~). Thus, by Theorem 2(b) it follows that C (~  D Eto) 
is also valid. The "induction axiom" states that C(~  D E~)  D (in D C~p). Combining 
these two facts we have that ia D C~  is valid, and thus if (S, p, k) ~ W then (S, p, k) ~ Cto 
and we arc done with part (a). For (b), let ¢ be "at least one processor had v as its initial 
value", and notice SBA guarantees that ia D ¢ is valid in S. Thus, by Theorem 2(b), so 
is C(ia D ¢). The "consequence closure" axiom states that (Via A C(ta D ¢)) D C¢ h 
valid, and we conclude that Cia D C¢  is valid. By part (a) we have that (S, p, k) ~ lo 
implies that (S,p,k) ~ C(~),  from which we can now conclude that (S,p,k) ~ C¢ and 
we axe done. 

3. A n a l y s i s  o f  a s i m p l e  p ro toco l  

In this section we take a close look at t-uniform systems S~ in which all processors 
follow a simple and fairly general protocol P: For k _> O, in round k + 1 each processor 
sends its view at time k (i.e., after k rounds) to all other processors. 

We axe interested in the states of kndwledge about the initial configuration that the set 
of active processors attains at different stages of the execution of this protocol. Intuitively, 
the protocol P should provide the processors with "as much knowledge as possible" about 
the initial configuration, and facilitate the ability of the system to perform actions that 
depend on the initial configuration. 

A fact ~a is called stable if once it becomes true it remains true forever (cf. [HM]). For 
example, facts about the first k rounds, and in particular facts about the system's initial 
configuration, are stable. Since a processor's knowledge is based on a processor's view, 
and an active processor's view grows monotonically with time, it is the case that if lo is 
stable then so axe Eia and Cia (although, as we have seen, this is not true for Iia). 

A round in which no processor fails is callea a clean round. Similarly, a round that is 
not clean is called dirty. If, for some k, round k of a run in which the processors all follow 

is clean, then every active processor's view at the end of round k includes the view of 
the active processors at time k - 1. In particular it follows that any stable fact that is 
implicit knowledge at time k - 1 is known to everyone at time k. Consequently, at time k 
all processors know exactly the same facts about the initial configuration. Furthermore, 
Theorem 1 together with the fact that E ~  is stable when ~ is, imply that at any point after 
a clean round, all of the processors have identical knowledge about the initial configuration. 
Therefore, once it is common knowledge that there was a clean round, it is common 
knowledge that the processors have an identical view of the initial configuration. Recall 
that any property that holds at all points (p, k) is common knowledge at all points (p, k). 
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In particular, it is common knowledge no more than t processors can fail in any run of the 
system, a~ud that all processors are following the protocol ~. We can now show: 

Theorem 4: Let ~o be a fact about the initial configuration. 

a) (S~,p,t + I) ~ I~ iff (S~,p,t + 1) ~ C~. 

b) (Sp,pln - 1) ~ Ito iff ( S , , p , n -  1) ~ C~.  

P r o o f :  Notice that  the "if" direction in both cases is immediate, since C¢  D I ~  is 
valid for all facts ¢.  We now show the other direction. Let ~ be a fact about the initial 
configuration. Since at  most t processors fail in any run of S~, it follows by the pigeonhole 
principle that  at least one of the first t + 1 rounds tff every run is clean. By Theorem 1 
and the discussion above we have that at any point following a clean round it is the case 
that  I ~  holds iff E ~  does. In particular, this means that in all runs of S~ it is the case 
that  after t + 1 rounds I ~  holds iff E ~  does. Notice also that  Era ~ E(I~) is valid (since 
K i ~  D ar~ is). Now by Theorem 2(b) and the "induction axiom" we are done. For part  
(b), notice that  in all runs of Sp one of the following two possibilities holds: either there 
is a clean round by time n - 1, or there is at most one active processor at time n - 1. In 
the first case we can argue as in Ca) that l p  holds at time n - 1 iff E(I~) does. However, 
this is also true in the second case, since when there is at most one active processor Pi it 
is the case that  K~¢ _= I ¢  ~ E ¢ .  And since Ki¢  D Ki ( I¢ )  is valid, for all facts ¢ we 
have tha t  I ¢  ~ E ( I ¢ ) .  Thus, again by Theorem 2(b) and the "induction axiom" we are 
done. 

As a consequence of Theorem 4 and the discussion preceding it we have that any action 
that depends on the system's initial configuration can be carried out simultaneously in a 
consistent way by the set of active processors at any time k > min{t 4- 11n - 1}. This is 
consistent with the fact that there are simple t-resilient protocols for SBA that attain SBA 
in t 4- 1 rounds. Interestingly, none of the known protocols for SBA attain SBA in less 
than t 4- 1 rounds in any run. It is therefore natural to ask whether a protocol for SBA 
can ever attain SBA in less than t + I rounds. Clearly, once it is common knowledge that 
a clean round has occurred, SBA can be attained. And as we shall see, there are cases 
in which the existence of a clean round becomes common knowledge before time t 4- 1. 
When the existence of a clean round becomes common knowledge depends crucially on 
the pattern of failures, and on the time in which failures become implicitly known to the 
group of active processors. For example, if a processor p detects t failures in the first 
round of a run of P, then the second round of the run will be clean, and at the end of 
the second round all active processors will know that p detected t failures in round 1. It 
follows from the induction axiom and Theorem 2(b) that at the end of round 2 it will be 
common knowledge that all processors have an identical view of the initial configuration 
(check!). Clearly, the processors can then perform any action that depends on the initial 
configuration (e.g., SBA) in a consistent way. In the remainder of this section we show a 
class of runs of S~ in which the processors attain conunon knowledge of an identical view 
of the initial configuration at time k, for every k between 2 and t + I. In the next section, 
we will prove that this is in fact a precise classification of the runs according to the time 
in which common knowledge of an identical view of the initial configuration is attained. 
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Intuitively, if there are more than k failures by the end of round k, then from the 
point of view of the ability to delay the first clean round, [,~ilures h~ve been "wasted". In 
particular, if for some k it is the case that there axe k + j failures by the end of round 
k, then there must be a clean round before time t + 1 - j (in fact, between round k 4- 1 
and round t + 1 - j) .  This motivates the following definitions: We denote the number of 
processors that fail by the end of round k in p by N(p, lc). We define the difference at 
(p, k), denoted d(p, k), by 

d(p,k) d=ef N(p,k) - k. 

We also define the mazimal difference in (p,g), denoted D(p,~), by 

def 
D(p , e )  = k<l 

Observe that d(p,O) = 0 for all runs p, since N(p,O) = 0. Furthermore, in a t-uniform 
system it is always the case that d(p, k) < ~ - k, since N(p, k) < t. Let D be a variable 
whose value at a point (p,k) is D(p,k). Similarly, let d(k) be a variable whose value at 
any point in p is d(p, k). An important observation is that if at time t 4- 1 - j it is common 
knowledge that D > j ,  then it is common knowledge that a clean round has occurred, and 
that  all processors have an identical view of the initial configuration. As we will see, the 
protocol .P has the property that if it ever becomes implicit knowledge that D > .i then at 
time t + 1 -  j it is common knowledge that D > j .  This leads us to the following definition: 
Given a system S, the wa~tefutne~ of (g, ~) with respect to S, denoted ~ ( S ,  p, ~), is defined 
by: 

W(S,p,£) clef= max { j :  (S,p,l) ~ I(D > j)}. 

In words, the wastefulness of (p, ~) is the maximal value that the difference d(p, .) is im- 
plicitly known to have assumed by time £. We now formally prove the claims informally 
stated above. We start with a somewhat technical lemma discussing the properties of 
wastefulness in the case of Sp: 

L e m m a  5: L e t p E S ~ .  

a) If ~(S~,p,£) = j then there is a particular k < £ such that (S~,p,e) ~ I(d(k) P_ i). 

b) If I(d(k) _> j) holds at time k then at time k + 1 either E(d(k) > j) holds, or 
I(d(k + 1) _> j )  does. 

c) ~(Sp,p,k  + 1) > ~(Sp,p,k) for all k > 0. 

P roof :  For part (a), let p E S~ satisfy (Sp,p,t) ~ I(D _> . / ) ,and assume that  for no k 
is it the case that (S,,p,t)  ~ I(d(k) ). j)). Let p' be a run of P such that (p',0) = (p,0), 
and in which the only messages not to be delivered are those that are hnplicitly known 
at (p,l)  not to have been delivered. It is easy to check that p' E S~, since no more than 
t processors fail in it, and processor failures are crash failures. Because it is not implicit 
knowledge at (p,£) that d(k) _> j for any k, it follows that D(p',~) < j. If we show that 
the group G = A(p,t) has exactly the same view in (p,~) and in (p',g) we will be done, 
since this will contradict the assumption that (S~,p, ~) ~ I(D > j). We now prove that 
A(p,l) has the same view in (p,~) and in (p',~). Define e ( t ) = :  A(p,~). For k < / ,  assume 
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inductively that  G ( k +  1) is defined, and for all processors pi e G ( k +  1) let g(pi,k) be the 
set of processors from which p~ receives a message in round k + 1 of p. Define 

a(k) U g(p,,k). 

Let G'(~) = G(e), and for k < ~ define g'(pi,k) and a ' (k)  from a'(Ik + 1) in an analogous 
fashion (substituting G, g, and p by G I, g~, and p~). We now show by induction on £ - k  that  
if k < £ then for all P i e  G(k + 1) we have that g(pi,k) = g'(pi,k) and that G(k) = G'(k). 
Let k < g and assume inductively that G(k + 1) = G ' ( k  + 1). (Notice that we have defined 
G(g) = G'(g).) Let Pi e G(k + 1). The protocol .P guarantees that the precise identity of 
g(p,, k) for p~ E G(k + 1) is implicitly known at (p,£). It follows that processor Pi sends a 
message to pi in round k + 1 of p iff PJ sends pi a round k + 1 message in p~. It thus follows 
that  g(pi,k) = g'(pi,k). Since this is true for all Pi E G(I¢ + 1), we have that G(k) = G'(k), 
and the claim is proven. Notice that G(k) D G(k 4- 1). We now show by induction on k 
that for all pi E G(k) it is the case that v(p~,p,k) = v(p,,p',lk). The case k = 0 follows 
from the fact that (p,0) = (p',0) and G(0) = G'(0). Assume inductively the claim holds 
for k - 1, and we prove it for k. Observe that v(pi, p, k) for pi E G(k) is determined by 
v(pi, p, k - 1) and by v(g(pi, k - 1),p, k -  1). Since by the inductive hypothesis we have 
that  g(pi,k - 1) = g'(pi,k - 1), and that  v(g(pi ,k - 1),p,k - 1) = v(g ' (p i ,p ' , Ik-  1), and 
that  v(pi ,p ,k  - 1) = v(pi ,p ' ,k  - 1), it follows that v(pi ,p,k)  = v(pi,p' ,k) .  It now follows 
that v ( G ( O , p , l  ) = v(G(£),p',g), and we axe done with part (a). 

For part (b), assume that ( S , , p , k )  ~ I(d(k) > j) .  If d(k) > j is not known to 
everyone at (p, k "-I- 1) then there must be (at least one) processor, say q, that fails in 
round k + 1 by not sending a message to at least one processor, say p, that is active at 
time k + 1. Thus, in particular, p knows at time k + 1 that  q has failed. Now, ~ ensures 
that  all processors that fail by (p, k) are known by everyone at (p, k + 1) to have failed. 
It follows that if d(k) > j is not known to everyone at time k + 1 then d(k + 1) > j is 
implicit knowledge at that time. For (c), assume that  ~ ( p , k )  = j .  Then by part (a) there 
is some k' < k such that ( S , , p , k )  ~ I(d(k')  > j).  Without loss of generality let k' be 
the largest such number. If k ~ < k then by (b) we have that at time k t + 1 <_ k everyone 
knows that d(k') > j .  But E(d(k')  > j) is a stable fact because d(k') > i is, and in this 
case ~ (p ,  k + 1) > j ,  and the claim of (c) holds. If k' = k then part (b) implies that at 
time k 4- 1 either everyone will know that  d(k) >_ j or it will be implicit knowledge that  
d(k + 1) > j .  In both cases we will have ~ (p, k + 1) > j ,  and we are done. 

Lemma 5(c) suggests that we define the wastefulness of a run p, denoted "W(S, p), to 
be the maximal  value that ~ ( S ,  p, k) assumes. We now have: 

T h e o r e m  6: 

a) ~ ( S ~ , p )  : Y iff (S , ,p , t  + 1 - y) ~ E ( ~ ( S , ,  "the current run") = j ) .  

b) Let ~ be a fact about the initial configuration. If ~ (S~, p) = ] then 
( s , , p , t  + - .i) P- ( s , , p , t  + 1 - j )  
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Sketch of Proof: For (a), Notice that if 7~'(S~,p) = j for some k < t + I - j it is the 
case that (S~,p,k) ~ I(D > j), and at least one of the rounds k + 1,...,t- j is dean. 
Lemma 5(a) and (b) imply that I (D  ~ j )  is a stable fact in S, .  The claim of part(a) now 
follows. For (b), use part (a) to show that at t + 1 - j the existence of a clean round is 
common knowledge, and follow the proof of Theorem 4. 

Thus, certain patterns of failures help the processors to reach common knowledge of 
an identical view of the initial configuration early. As a consequence of Theorem 6 we 
have: 

C o r o l l a r y  7: There is a t-resilient protocol for SBA that reaches SBA in t + 1 - ~ (Sp, p). 
rounds in all runs p of the protocol in which at most t processors fail. 

P roof :  The protocol (identical .for all processors pi) is: 

for £ >_ O perform the following a¢ time £: 
i f  K ~ ( D  _> t + 1 - £) 

t h e n  halt (and send no messages in tile following rounds); 
decide 0 ifK~("some initial value xj  was 0"); 
decide 1 otherwise. 

else send Pi's current view to all processors in round t + 1. 

By Theorem 6(a) all correct processors halt after t + 1 - ~ (S~ ,p )  rounds. By The- 
orem 6(b) the active processors have common knowledge of the fact that  they have an 
identical view of the initial configuration. Thus, their decisions axe identical. The decision 
function clearly satisfies the requirements of SBA. 

Notice that in runs in which many failures become visible early it is the case that SBA 
is attained by this protocol significantly earlier than time t + 1. We axe aware of no other 
protocol for SBA that stops before time t + 1 in some cases. In the next section we will 
show that the protocol of Corollary 7 is optimal in the sense that for any given pattern of 
failures, it attains SBA no later than any other protocol for SBA does. 

The number of bits of information required to describe a processor's view at round k is 
exponential in k. Thus, messages in the above protocol might be too long to be practical. 
By modifying the protocol slightly so that messages specify only the sender's view of the 
initial configuration and of the failure pattern, we get a protocol for SBA with the same 
properties in which the length of each message is O(n + t log n). 

4. Lower  b o u n d s  

We are about to show that  the only non-trivial facts that can become common knowl- 
edge in a run p of a t-uniform system S before time t +  1 - ~  (S, p) are facts about the waste- 
fulness of the run. We do this by showing that  all executions (p, ~) with ~ ( S ,  p, t) _< t - l  are 
similar. However, we first need a lmnma that, roughly speaking, says that  if D(p, ~) <_ t - l  
then (p,£) is similar to an execution that looks just like (p, £) (in terms of the initial con- 
figuration and the pattern of failures), except that the last processor to fail in (p,£) never 
fails. More formally: 
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L e r n r n a  8: Let t YS n - 2, and let S be a t-uniform system. Let k < t, let (p, £) E S x {l} 
be an execution such that  D(p , l )  < t - l  and no processor fails in (p,l)  after round k. If 
p fails in round k of (p, £), then there exists a run 8 e S such that  (p, l) ... (8,£), where 
(p, k - 1) = (2, k - 1), the kth-round behavior of all processors p' ~ p is identical in p and 
in ~, processor p does not fail in (fi, t), and no processor fails in (2, l) after round k. 

P r o o f :  We will prove the claim by induction on j = l -  k. 

Case j = 0 (i.e., k = l): Let Q = {qi , . . . ,q . ,}  be the set of processors active at (p, l )  
to whom p fails to send a message in round k of p. If s = 0 then no processor active at 
(p, £) can dist inguish (p, ~e) from an execution (8,£) that differs from (p,£) only in that  p 
does not fail in (~,£). Assume that  s > 0. Since t < n - 2, there must be some processor 
Pi E A(p ,£)  - {q~}. Clearly, pi 's view at (p,£) is independent of whether or not p sent a 
message to qs in round L Thus, (p, l) .-~ (p', l) ,  where (p', £) differs from (p, l) only in that  
p does send a message to q.~ in round £ of (p',,e). Now, since q., is active at (p',£), and p 
does send q., a message in round £ of (p', ~e), processor q~'s view at (p', £) is independent of 
whether  p fails in (p', ~e), and thus (p', £) ..~ (8,l) ,  where (fi,£) has the desired properties. 
By t ransi t iv i ty  of .-~ we also have that  (p, £),-~ (8, ~). 

Case j > 0 (i.e., k < ,e): Assume inductively that  the claim holds for i - 1. Again, let 
Q = { q , , . . . ,  as } be the set of processors active at (p, £) to whom p fails to send a message 
in round k of (p, £). We prove our claim by induction on s. If s = 0 then no processor acgive 
in (p,£) can dist inguish whether p failed in round k or in round k + 1. Thus, (p,£) ,.~ (p ' , t ) ,  
where (p', l) differs from (p, ~e) only in that  rather than failing in round k, processor p fails 
in round k + 1 of (p',£) before sending any messages. Since l -  (k + 1) = j - 1, we have by 
the inductive :hypothesis that  (p',~e) ~.. (.~,~), where (8,l) has the desired properties. By 
t ransi t iv i ty  of ,-~ we have that  (p, l) --. (8, £). Now assume that s > 0 and that  the claim 
is true for s -  1. Let (p.,,l) be an execution such that  (p~,k) = (p,k), processor qs fails 
in round k + 1 of p.~ before sending any messages, and no other processor fails in p8 after 
round k. Clearly D(ps,  ~) <_ t - l ,  since d(ps,k ')  = d(p, k') < t - £ for all k' _< k, and 
d(ps ,k  + l) = N(ps ,  k + l) - (k + l) = N ( p , k ) + l - ( k + l )  = d ( p , k )  _< t -  t. Notice 
also tha t  no processor fails in (Ps, £) after round k + 1. Thus, by the inductive assumption 
on . / -  1, we have that  (Ps,£) "" (P,£). Let pi E A(ps,£). Clearly pi 's view at (p , , / )  is 

¢ 

independent  of whether p sent a message to as in round k of (Ps, ~e). Thus, (ps, £) "~ (Ps, l),  
where P~s differs from p~ in that  p does send a message to qs in round k of p'~. Again by 
the induct ive hypothesis for j -  1 we have that  (p~,£) ": (p',£), where (p~,k) = (p' ,k) 
and no processor fails in (p',£) after round k. Processor p fails to send round k messages 
only to s - 1 processors in p~, and thus by the inductive hypothesis for s - 1 we have that  
(p',£) ..~ (~,£), where (8, l)  has the desired properties. By the symmetry  and transit ivity 

of .~, we have that  (p, £) .-. (~, £), and we are done. 
Recall  tha t  a t-resilient protocol for SBA is required to at tain SBA in all runs of 

the protocol in which the initial configuration is in {0,1} n and there are no more than t 
failures. Notice that  in this set the initial states of the different processors are independent. 
We say tha t  a t-uniform system is independent if the set of initial configurations possible 
in the system is of the form ~ l  × ~2 × "'" × ~]n, for fixed sets Ei. Tha t  is, there is no 
necessary dependence between the initial states of the different processors. We can now 

use L e m m a  8 to show: 
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T h e o r e m  9: Let  t < n - 2 and let  S be an independent  t-uniform system. 

a) If  e < t then all failure-free executions (p, g) C S × {e} are similar. 

b) If ~(S,p,e) < t - £ and T/(S,p',£) < t- g, then (p,~) ,- (p',t), 

P r o o f :  (a) Assume that  t < t and let (p, t) and (,3, t~) be failure-free executions. We wish 
to show that  (p, £) ..~ (,3, £). Let Q - { q , , . . . ,  q~ } be the set of processors whose initial states 
in p and ~8 differ. We prove by induction on s that  (p,£) ~ (fi,~e). If 8 = 0 then (p,t~) = 03,e) 
and we are done. Let s > 0 and assume inductively that  all failure-free executions that 
differ from (~, g) in the initial  state of no more than  s - 1 processors axe similar  to it. Let 
(p.,,£) be an execution such tha t  (p,0) = (p~,0), in which q~ fails in the first round without 
sending any messages, and no other processor fails. Clearly D(p.,,£) = 0 _< t - g ,  and by 
L e m m a  8 we have that  (p.,,g) --, (p,t) .  Let pi E A(p~,~e). Given that  S is an independent  
t-uniform system, processor pi 's  view at (p.,, £) is independent  of whether  the initial state 
of q., is as in p or as in ~8. Thus,  (ps, ~) --. (p'~, e), where p.', differs from p., only in that  the 
init ial  state of q, in p'~ is as in ,8. Again by Lemma 8 we have tha t  (p'~, g) .-~ (p',~e), where 
(p'~, 0) = (p', 0), and  (p', g) is failure-free. Since (p', £) differs from (,3, £) only on the initial 
states of s - 1 processors, by the inductive assumpt ion we have that  (p', g) -.~ (~, e), and by 
the symmet ry  and t ransi t iv i ty  of--- we have (p, ~) .-~ (fi, ~), and we axe done with par t  (a). 

(b) If  ~ ( S , p , £ )  _< t - g then in par t icular  it is not  implicit  knowledge at (p,g) that 
d(k) > t -  l for some k < L It follows that  (p,.e) ... (fi, e), for some fi c S satisfying 
D(fi, l) < t - l. Using L e m m a  8, a s traightforward induction on the number  of processors 
that  fail in (fi, t) shows that  (fi, g) .-. (,8,e), where (fi, t~) is failure-free. By t ransi t ivi ty  of 
.-. we have that  (p,.e) ... (fi,~e). The same argument  applies to (p',£), and the claim now 
follows from part  (a). 

Observe that  the assumpt ion of independence of the initial configurations is essential 
to this lower bound.  Lemma  8 can also be used to characterize non- independent  systems. 
L e m m a  8 and Theorem 9(a) generalize and somewhat  simplify the t + 1 round lower bound 
on the worst-case behavior  of SBA in our model  (see [DLM], [DS], [EL], [H], [CD]). As we 
will see in the sequel, Theorem 9(b) allows us to completely characterize the runs in which 
t + 1 rounds axe necessary for a t ta in ing SBA, as well as those that  require k rounds, for 
all k. More generally, Theorem 2(a) and Theorem 9(b) provide us with a lower bound on 
the t ime by which facts can become common knowledge in t-uniform systems. Formally, 
we have: 

T h e o r e m  10: Let t < n - 2, let S be an independent  t-uniform system, and let p' E S 
satisfy ~ ( S , p ' )  < t - g .  If (S,p' ,e)  ~ ~, then (S,p,g) ~ C p  for all p E S satisfying 
'w(s,p) < t - t .  

Theorem 10 and Theorem 6(b) completely characterize when non-tr ivial  facts about 
the initial  configuration become common knowledge in the runs of S~. In a precise sense, 
they hnply that  the only fact that  is common knowledge at (p,k), for k < t - h](Sp,p) ,  is 
that  the wastefulness is less than  t + 1 - k. Formally, we have: 
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C o r o l l a r y  11: Let t < n - 2, let S~ be an independent t-uniform system for P, and let 
(Sp, p) < t - L Then (Sp, p, l) ~ C~o iff for all p' E Sp sach that "W (S~, p', l)  < t - l it 

is the case that (S~, p', l) ~ p. 

Furthermore, Corollary 3 and Theorem 10 immediately imply: 

C o r o l l a r y  12: Let t < n -  2, let P be a t-resilient protocol for SBA, and let S be 
a t-uniform system for P, with p E S. Then SBA is not attained in p in fewer than 
t + 1 - ~ (S, p) rounds. 

Corollary 12 proves that SBA cannot be attained in the runs of ~ any earlier than it is 
attained by the protocol of Corollary 7. IIowever, it still seems possible that using another 
protocol SBA will be attainable in fewer rounds than in the Drotocol of Corollary 7. We now 
show that  this protocol is optimal in a rather strong sense: given an initial configuration 
and the pattern in which failures occur, no protocol protocol attains SBA in fewer rounds 
than the protocol of Corollary 7. In order to state this claim rigorously and prove it, we 
need to make a few definitions. 

We denote the initial configuration of the system by ~. A failure pattern is a list lr of 
faulty processors, and for each faulty processor Pi a specification of a round ri in which it 
fails and a "forbidden" subset Qi of the processors to whom it necessarily does not send 
messages in its failing round. Notice that given a protocol P, the initial configuration 
and failure pattern uniquely determine a run of the protocol. (However, a run of the 
protocol may be the result of more than one failure pattern in protocols that don't require 
all processors to send messages to all other processors in every round.) Thus, we can 
represent a run by a triple (F ,~ , r ) .  We are now ready to show that the wastefulness of 
a run resulting from a given initial configuration and failure pattern is no greater than its 
wastefulness in Sp. Given Corollary 12, this will imply that the protocol of Corollary 7 
always attains SBA at the earliest possible time, given the initial configuration and failure 
pattern. 

T h e o r e m  13: Let S be a t-uniform system for a protocol P, and let p = (P,~,~r), and 
let ~ = ( P , ~ , r ) .  Then ~(S ,p )  _< ~(S~,~).  

Proof :  We will show a more general fact from which the theorem will follow. Given an 
initial configuration ~', and a failure pattern ~r', let p' = (P, 5', ~r') and ~' = (P, ~', r ' ) .  
Notice that  A(p, k') = A(fi, k') for all k'. We claim that for all k and all P i e  A(p, k) it is 
the case that  if v(pi,~,k) = v(pi,l~',k) then v(pi,p,k) = v(pi,p',k). We argue by induction 
on k. The case k = 0 is immediate. Let k > 0 and assume inductively that the claim 
holds for all processors in A(p, k -  1) at time k -  1. Thus, if v(pi, ~, k) = v(pi, ~', k) and P1 
sends a round k message to Pi in fi, then P1 has the same view at (~, k -  1) and (~', k -  1), 
and P1 also sends pi a round k message in ~.  In this case both r and r ' determine that 
round k messages from P1 to pi are delivered. By the inductive assumption P1 also has the 
same view in (p, k - 1) and in (p', k - 1). It follows that P requires P1 to act identically 
in round k of both p and p'. And if P1 is required to send pi a round k message in p then 
it is required to send Pi the same message in round k of p~. Processor P1 does not send a 
round k message to Pi in ~ only if r determines that Pi cannot send pi such a message. But 
then for similar reasons r r must also determine that Pi does not send p / a  round k message. 
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It follows that  in this case pj does not send p~ a round k message in p or in pt° Thus, for 
all processors pj it is the case that  pi receives a round k message from pj in p iff p~ receives 
an identical message from pj in round k of p'. The inductive assumption also implies that  
v(pi,p,k - 1) = v (p i , p ' , k -  1), and it now follows that  v(pi,p,k) = v(p~,p',k) and we axe 
done with the claim. We now show how the theorem follows from this claim. Assume that  
~(S ,p)  = j and that  ~ (S~ ,~)  < j .  Thcn there is a time k such that (S,p,k) ~ I (D > i), 
and (S,,t3, k) ~: I(D > j). Let G = A(~,k) (notice that  G = A(p,k) as well). It  follows 
that  there is a run ~' E Sp such tha t  v(G, t3, k) = v(G,~',k) and D(~',k) < j .  Let ~' and 7r' 
be the initial configuration and failure pat tern in ~'. Let p' be the run of P corresponding 
to ~' and ~r J. Since v(G,~,k) = v(G, lY, k), our claim implies that  v(G,p,k) = v(G,p~,k). 
But since D(p',k) = D(~',k) < j and A(p,k) = e ,  we have that  (S,p,k) ~: I(D > j}, 
contradicting our original assumption, 

Theorem 13 and Corollary 12 now imply that  the protocol of Corollary 7 is indeed 
optimal in the strong sense we intended: given any initial configuration and failure pat tern,  
it at tains SBA as early as any t-resilient protocol for SBA can. In light of Theorem 13, 
we can talk about the inherent wastefulness w(n') of a failure pat tern lr, defined to be 
~ ( S p ,  (2 ,G~ ' ) ) .  That  w0r ) is well defined follows from the fact that  runs p of S~ have the 
property that  ~ ( S ~ ,  p, k) depends only on the pattern of failures and is independent of the 
initial configuration. This can be proved by a straightforward induction on k, and is left 
to the reader. Lemma 8 through Corollary 12 can now be viewed as statements about the 
effect of the failure pat tern on the similarity of executions and on what facts can become 
common knowledge at various times in the execution of an arbitrary t-resilient protocol. 
Corollaries 7 and 12 tell us that  exactly .t + 1 - w(zr) rounds are necessary to at tain SBA 
in runs of any t-resilient protocol for SBA that  have pat tern failure r (in the rest of the 
paper we will use r to refer to the failure pat tern of the run in question). This provides a 
complete characterization of the number of rounds required to reach SBA in a run, gives 
the pat tern in which failures occur. 

We have seen that  the only facts that  become common knowledge before time t + 
1 - w(Tr) are facts about the wastefulness of the run. In the previous section we saw that  
in runs of S~ the processors at tain common knowledge of an identical view of the initial 
configuration at time t + 1 - w(~'). Thus, we have a complete description of when facts 
about the initial configuration become common knowledge. It is interesting to ask the more 
general question of when arbi t rary facts become common knowledge. Using Lemma 5 it is 
possible to show that  at time t + 1 - w(Tr) in a run of S~ it is not only common knowledge 
that  there was a clean round, but there is a particular round that  is commonly known to 
have appeared clean to all active processors. Let k(~') denote the latest such round. Thus, 
at time t + 1 - w(zr) it is common knowledge that  the processors have an identical view of 
the first k(~r) - 1 rounds. There is some number, say f of processors that  are commonly 
known at time t + l - w ( ~ ' )  to have failed by time k0r ) - 1 .  Let t' = t - f .  Roughly speaking, 
time k( r )  cart now be regarded as the start  of a new run, and for appropriate definitions of 
d'(k) and w ' ( r ) ,  we get that  at time k(lr) + t '  + 1 - w'(~') the system will at tain common 
knowledge of a common view of the state of the system at time k(~r). Interestingly, it can 
be shown that  k(zr)+t' + 1 - w ' 0 r  ) = t + 2 -w(~r ) .  That  is, one round after the processors 
at tain common knowledge of (a common view of) the state of the run at time k ( n ) -  1, 
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they attain common knowledge of the state of the run at time k(~). In fact, at the end 
of each round following time t + 1 - w(zr) the active processors attain common knowledge 
of a common view of at least one (sometimes more) additional past round. Again, the 
techniques of Sections 3 ~u~d 4 can be used to show that the pattern of failures determines 
when an arbitrary fact about the first k rounds may become common knowledge, and the 
simple protocol P of Section 3 is in a precise sense the fastest to attain common knowledge 
of such facts. Details are left to the reader. 

5. A p p l i c a t i o n s  

Throughout the paper we have shown how our results regarding when common knowl- 
edge of various facts is attained in a Byzantine system affect the SBA problem. In this 
section we discuss some further consequences of the analysis presented in the previous 
sections. This is intended to illustrate the types of applications that the analysis can be 
used for. We start by considering some problems that axe closely related to SBA. 

The problem of Weak SBA (WSBA) mentioned in the introduction, which differs 
from SBA in that  clause (4) is changed so that the active processors are required to decide 
on a value v only if all initial values were v and no processor fails was introduced by 
Lamport as a weakening of SBA. However, Theorem 9(b) immediately implies that the 
active processors do not have common knowledge of whether any processors failed before 
time t + 1 - w(n), in any run of a t-resilient protocol for WSBA with failure pattern zr. 
And since SBA can already be performed at time t + 1 - w(rr), we have that t-resilient 
protocols cannot attain WSBA any earlier than they can SBA. Theorem 9 also describes 
why the variant of SBA used in this paper (which was introduced by [FL]) is essentially 
equivalent to the original version of the Byzantine General8 problem of [PSL], in which 
only one processor initially has a value, and the processors need to decide on this value ff 
the processor does not fail, and on a consistent value otherwise. 

It has been a folk conjecture that a t-resilient protocol that guarantees to perform 
any non-trivial action simultaneously requires t + 1 rounds in the worst case. We will now 
show that this is not the case. Let Bivalent Agreement be defined by clauses (1)-(3) of 
SBA, and replacing clause (4) by: 

4'. At least one run of the protocol decides 0, and at least one run decides 1. 

Thus, so long as no more than t processors fail, all processors must decide on the same 
value simultaneously, and both 0 and 1 mnst be attainable values. Theorem 2 implies 
that any action that is guaranteed to be performed simultaneously requires some fact to 
become common knowledge before the action can be performed. Theorem 6(b) implies 
that at the end of round 2 of Sp it is common knowledge whether or not the wastefulness 
of the run is t - 1 (i.e., whether t processors were seen to have failed in the first round). 
Thus, we can easily derive a t.resilient protocol for Bivalent agreement: Each processor 
follows )~ for the first two rounds, and then decides 0 if it knows that t processors failed in 
the first round, and 1 otherwise. This protocol attains Bivalent agreement in two rounds, 
and Theorem 10 implies that there is no faster protocol for Bivalent agreement so long 
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as t < n -  2. Furthermore, it implies that  in a precise sense this is the only two-round 
protocol for Bivalent agreement. We leave it to the reader to check that if t > n - 1 then 
there is a protocol for Bivalent agreement that requires only one round. Thus, Bivalent 
agreement is a truly easier problem than SBA. We note that  [FLP] and [DDS] prove that 
in an asynchronous system there is no 1-resilient protocol for an even weaker variant of 
Bivalent agreement. 

We have stressed the connection between common knowledge and simultaneous ac- 
tions. Interestingly, the lower bounds on the time required for attaining common knowledge 
imply worst-case bounds on the behavior of t-resilient protocols that  perform coordinated 
actions that  are not required to be performed simultaneously. For example, Eventual 
Byzantine Agreement (EBA) is defined by clauses (1), (2), and (4) of SBA: the proces- 
sors' decisions need not be simultaneous (cf. [DRS]). There are well-known protocols that 
at tain EBA after two rounds in failure-free runs (for which w(rr) = 0). However, using 
Theorems 2, 10, and 13 it is not hard to show that  a t-resilient protocol for EBA must 
require t + 1 rounds in some runs with w(zr) = 0. More generally, these theorems show 
that  such a protocol must require t + 1 - j rounds in some runs with w(~r) = j .  This is 
a slight refinement of the well-known fact that  EBA requires t + I rounds in the worst 
case (cf. [DRS]). Many very relevant mad interesting aspects of EBA are not covered by 
our analysis. We believe that  an analysis of EBA should involve a study of when the 
states of e-common knowledge and eventual common knowledge (cf. [HM]) are attained in 
a Byzantine environment. This is an interesting open problem. 

As our investigation centered around t-resilient :protocols, we now briefly discuss some 
other possible reliability assumptions. Recall that  Theorem 4 states that  all active proces- 
sors are guaranteed to have an identical view of the system's initial configuration at time 
t + 1 in every run of a t-uniform system for P. This follows simply from the fact that  at 
time t + 1 it is common knowledge that one of the previous rounds was clean. Instead of 
t-resiliency, we could require that  a protocol for SBA be guaranteed to attain SBA so long 
as no more than k consecutive rounds are dirty. In the system corresponding to all the 
runs of P in which at most k consecutive rounds are dirty, it is common knowledge at time 
k + 1 that  a clean round has occurred, ~md P can be converted in to a protocol for SBA 
that  is guaranteed to attain SBA in no more than k + 1 rounds. This means, for example, 
that  if processors in a Byzantine system are known to fail at least two at a time, SBA can 
be achieved in t / 2 + l  rounds. Having a bound of k consecutive dirty rounds seems in many 
cases to be a more appropriate assumption about a system than having a bound of t on 
the total number of failures possible, since the latter is not a local assumption. Of course, 
these two assumptions are not mutually exclusive, and we may often have a small bound 
on the possible number of consecutive dirty rounds, when only a much larger bound holds 
for the total number of failures. The bound on the number of consecutive dirty rounds 
implies a good upper bound on SBA in the case of crash failures. 

Another way we can consider varying the reliability assumptions about tile system 
is by restricting the number of possible processor failures that  can occur in a round. For 
example, let us consider the assumption that  at most one processor can fail in any given 
round of the computation, and at most t processors might fail overall. We are interested in 
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the question of whether such assumptions allow us to attain SBA quickly. Unfortunately, 
the lower bound proofs of Lemma 8 and Theorem 9 work very well for this reliability 
model. In fact, since all of the runs of such a system are gtlaranteed to have wastefulness 
0, even Bivalent agreement cannot be attained in any rtm of the system in less than 
t + 1 rounds! SBA and WSBA clearly require t + 1 rounds in all runs of the system. 
We now present a somewhat artificial variant of this assumption that provides us with a 
non-uniform reliability assumption whose behavior is interesting and somewhat counter- 
intuitive: We say that  a protocol for SBA is one visible failure resistant (1-VFR) if it is 
guaranteed to attain SBA so long as no more than one processor failure becomes visible 
to the active processors in any given round. The set of possible runs of a protocol P that 
display such behavior will be called a visibly restrained system for P. It is possible to show 
that in the visibly restrained system for the simple protocol P of Section 3 it is common 
knowledge at time 2 whether round 1 is clean, and therefore WSBA can be attained in 
two rounds. However, SBA can be shown to require n -  1 rounds in runs of P in which 
one processor fails in every round except possibly the (r~ - 1)st round. (If one adds a 
bound of t < n - 2 on the total number of failures possible, n - 1 is replaced by t + 1.) 
Interestingly, there is a 1-VFR protocol for SBA that is guaranteed to attain SBA in three 
rounds (in all runs)! Thus, for the !-VFR reliability model, our simple protocol is no 
longer a most general protocol. The reason for the odd behavior of 1-VFR protocols is 
that the patterns of failures of the runs that satisfy 1-VFR are intimately related to the 
structure of the protocol. Thus, the protocol can restrict the patterns of failures possible 
and make effective use of the 1-VFR assumption. Details and further discussion are given 
in the full paper. 

6. Concluslons 

This paper analyzes the states of knowledge attainable in the course of the execution 
of various protocols in the system, for the case of a particular simple model of unreliable 
distributed systems that  is fairly popular in the literature. Motivated by the work of [HM], 
the analysis focused mainly on when facts that are implicitly known become common 
knowledge in systems in which there is an upper bound of t on the number of possible 
faulty processors. This problem was shown to be a direct generalization of problems 
such as Simultaneous Byzantine Agreement, in which it is required that consistent actions 
be performed simultaneously at Ml non-faulty sites of the system. By deriving exact 
bounds on the question of when facts become'common knowledge, we immediately got 
exact bounds for SBA and many other problems. An interesting fact that came out of 
the analysis was that  the pattern in which processors fail in a given run determines a 
lower bound on the time in which facts about the system's initial configuration become 
common knowledge, with different patterns determining different bounds. Ironically, facts 
become common knowledge faster in cases when many processors fail early in the run. 
The somewhat paradoxical argunlent for this is that, given an upper bound on the total 
number of failures possible, if many processors fail early then only few can fail later. The 
protocol can make use of the fact that the rest of the run is relatively free of failures. As 
a by-product of the analysis, we were able to derive a simple improved protocol for SBA 

that is optimal in all runs. 
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Our analysis shows that the essential driving force behind many of the phenomena 
in unreliable systems seems to be tile inherent uncertainty that a particular site in such a 
system has about the global state of the system. We come to grips with this uncertainty by 
performing a knowledge-based analysis of such a system. We stress that our analysis was 
by and large restricted to protocols for simultaneous actions in a rather clean and simple 
model of unreliable systems: synchronous systems with global clocks and crash failures. 
We believe that performing similar analyses for nastier models of failures will prove very 
exciting, and will provide a much better understanding of the true structure underlying 
the richer failure models, and of the differences between the failure models. The ideas and 
techniques developed in this paper should provide a sound basis on which to build such an 
analysis, although it is clear that a number of additional ideas would be required. 

In summary, the treatment in this paper differs from the usual approach to Byzantine 
agreement type problems in that we make explicit and essential use of reasoning about 
knowledge in order to reach conclusions about the possibility or impossibility of carrying 
out certain desired actions in a distributed environment. The generality and applicability 
of our results suggest that this is a promising approach. 
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