
A Toolbox for Proving and MaintainingHybrid Speci�cationsMichael S. Branicky,? Ekaterina Dolginova,?? and Nancy Lynch???Dept. of Electrical Engineering and Computer ScienceMassachusetts Institute of TechnologyCambridge, MA 02139-4307 USAAbstract. Formal veri�cation in computer science often takes a worst-case view towards performance and uses induction to prove speci�ca-tion invariants. In control theory, robust control takes a worst-case viewtowards performance; nominal performance proofs often use derivativeinformation to prove invariance of speci�cation sets. In this note, we ex-plore a toolbox for proving (positive) invariance of state-space sets withrespect to the actions of dynamical systems. The focus is on dynamicalsystems given by di�erential equations, building up to hybrid systems.1 IntroductionWe are interested in the formal veri�cation of safety and performance propertiesof hybrid systems [1, 8, 17].In computer science, there is large formal veri�cation literature (e.g., [2, 5,9, 11, 12, 16, 19]) of discrete-dynamic systems, such as automata. Usually, theproofs that verify safety and performance involve the search for certain formulaswhich are (proven to be) invariant over the actions of the system. This samestyle can be translated, almost brute force, into dealing with hybrid systems byincluding both continuous and discrete system actions [13, 14, 15]. Conceptually,the solution appears clear. However, in chasing these solutions one can often getstuck by thinking of the \traces" or solutions of di�erential equations (intermixedwith discrete steps, of course) as the entities one is to verify.Herein, we take a step back from this conceptual viewpoint and begin to lookfor the mechanics and mechanisms of proof necessary when discrete and contin-uous actions interact. Speci�cally, we want to look at tools that enable one toprove the positive invariance of sets with respect to the action of hybrid dynam-ical systems. This is merely the abstraction of many problems of veri�cation: Isthe system performing within safety/performance speci�cations (specs.)?? During preparation: Post-doc, Lab. for Information and Decision Systems. Currently:Asst. Prof., Dept. of Electrical Eng. and Applied Physics, Case Western Reserve Uni-versity, 10900 Euclid Avenue, Cleveland, OH 44106-7221. branicky@eeap.cwru.edu?? Undergraduate student, Lab. for Computer Science. katya@theory.lcs.mit.edu??? Prof., Lab. for Computer Science. lynch@theory.lcs.mit.edu1

Thus, we consider S � Rn (more generally, S0 � Rn �R) to be our (time-varying) speci�cation set for a system �. The evolution of � is given by adynamical system � : Rn �R! 2Rn satisfying the following two properties:{ Initial Condition: �(x; 0) = x for all x.{ Transitivity: �(x; t1 + t2) 2 fx2 j x1 2 �(x; t1); x2 2 �(x1; t2)gThe speci�cations are enforced by requiring the system � be such that S is(positively) invariant with respect to the dynamics �, that is�(S; t) � S; for all t � 0: (1)The rest of this paper can be seen as making the above notion precise and givingtools for (a) verifying Equation (1), and (b) designing � so that Equation (1) isveri�ed, even in the presence of uncertainty.When the dynamical system � is a �nite automaton, t 2 Z, and a spec. isusually given by a state formula whose invariance is veri�ed via an inductionproof. This induction is on the discrete actions available to the automata.We want to develop similar tools in the case the dynamical systems are hybrid(viz., combining automata and di�erential equations). As a �rst step, we collectand develop tools here useful in proving invariance when the dynamical systemsare given by di�erential equations. We want the invariance proofs to again bebased on induction from local steps: we want to use derivative information, notsolve di�erential equations. The reason is that the global information of an ODEsolution is generally impossible to �nd.The paper is organized as follows. In the next section we review existing the-ory in our context. Then we develop more directly applicable tools in Section3. In Sections 4 and 5 we solve a toy example of platoon merge safety. We �rstformalize the problem with the computer science model of hybrid I/O automata[13] and then prove safety using our system theoretic tools. In this way, we ex-plicitly demonstrate how our tools mesh with both computer science and controltheory
avors of reasoning about hybrid systems.2 The Basics2.1 On Being InvariantA formal treatment of positive invariant sets for di�erential equations appearsin Bhatia and Szeg�o's �ne book [4, pp. 306{322]. Their Corollary 3.4.22 (p. 316)follows some preliminaries.We discuss the autonomous system_x = g(x); (2)where x 2 Rn and with solution denoted by �. Throughout, we assume that forEquation (2), g is continuous on an open set U � Rn.2

De�nition1. A curve
 is a continuous function mapping some interval D
into Rn. We always let D
 represent the domain of the curve
. If F is a familyof curves, we say
� 2 F is an extension of
 if D
 � D
� and
 =
� on D
 .We say that
 is maximal in F if the only extension of
 is
 itself; that ismaximal refers to the domain and not to the function values. For any curve
,the notation
(�; t; x) means that t 2 D
 and
(t; t; x) = x.De�nition2. A set S � U is called positively (negatively) weakly invariant forEquation (2) if for each x 2 S there exists a maximal solution �(�; x) = � suchthat �(t; x) 2 S for all t 2 [0; supD�) (for all t 2 (infD�; 0]). A set S 2 Uis called positively (negatively) invariant if for each x 2 S and each �(�; x),�(t; x) 2 S for all t 2 [0; supD�) (for all t 2 (infD�; 0]). S is (weakly) invariantif it is both positively and negatively (weakly) invariant.De�nition3. For S � Rn, x 2 S and v 2 Rn, we say v is subtangential to Sat x if d(S; x+ tv)=t! 0 as t! 0+:Theorem4. The relatively closed set S is positively weakly invariant if and onlyif g(x) is subtangential to S at x for all x 2 S.Corollary5. If each solution �(�; x) of Equation (2) is uniquely determined bythe initial condition x, then S is positively invariant if and only if g(y) is sub-tangential to S for all y 2 S.Statements for negative invariance hold replacing g by �g above; invariancewhen both hold.2.2 Fences that Hold SolutionsThe following is summarized from [10]. Consider the �rst-order ODE_x = f(t; x); (3)where x 2 R and with solutions x = u(t). A \fence" is some other functionx = �(t) that channels the solutions in the direction of the vector �eld.De�nition6. A continuous and continuously di�erentiable function �(t) is alower (resp. upper) fence if_�(t) � f(t; �(t)); [resp. f(t; �(t)) � _�(t)];A fence is strong when the above inequalities are strict. A lower fence isnonporous if whenever �(t0) � u(t0), then �(t) � u(t) for all t > t0; reversingthe inequalities de�nes nonporous for upper fences.Notes: (a) The de�nition of nonporous in [10] has the second inequality strict.We only require the given, weaker property. (b) Piecewise di�erentiable fencescan be taken care of by checking that the required inequalities hold for both leftand right derivatives.Theorem7. A strong fence is nonporous.Theorem8. If f is Lipschitz with respect to x, then any fence is nonporous.3

3 Moving Forward3.1 Multi-Dimensional FencesThe theory of fences discussed above is given only for one-dimensional state-spaces, i.e., x 2 R in Equation (3) above. A similar theory exists for a classof ODEs in Rn known as monotone systems [18]. We outline a more generalapproach, motivated by the well-known concept of a Lyapunov function, below.The approach is distinct from Lyapunov functions in the usual sense, e.g., thefunction need not be positive de�nite.The method starts by identifying with the speci�cation set S � Rn a scalarfunction s : Rn ! R such thats(x) is 8<:> 0; x 2 intS= 0; x 2 S \ @S< 0; x 62 S (4)Note that s is a generalized indicator function for the set S, viz. S = fx j s(x) �0g. Thus, we may restrict our attention to showing the invariance of the non-negative reals under the action of our dynamical system.Suppose we wish to show that a speci�cation region, given by s(x) � 0 isinvariant over time. Thus, we want to show that s(t) = s(x(t)) � 0 for all t > t0.Theorem9. Suppose _s(t)js=0 � 0. Then s(t) � 0 is invariant if either1. There exists � > 0 such that _s(t) > 0 for all s 2 (��; 0),2. _s(t)js=0 is piecewise di�erentiable, and there exists � > 0 such that _s(t) � 0for all s 2 (��; 0),3. _s(t)js=0 is Lipschitz.Proof. For parts (1) and (3), set f(s; t) = _s(t)js and lower fence �(t) � 0. ApplyTheorems 7 and 8. For part (2), use �(t) = s(t) as a fence for the constantfunction f � 0.3.2 Towards Robust Veri�cationWe may address robustness issues by enforcing conditions such ass(t) � �1 > 0_s(t)j�1 � �2 > 0This provides the basis for \robust veri�cation," in which a nominal system isprovably veri�ed by hand, and for which the e�ects of classes of perturbations(e.g., delay, sensor noise, unmodeled dynamics) can be provably ignored.Below, we give three variations on a theme for using bounds on invariants inproving the correctness of perturbed systems given proofs for the nominal caseand vice versa. Examples will be given in Section 5.2.4

Bounding Invariants. Suppose there exists a function sL(t) � s(t), then toprove s(t) � 0 is invariant, it is su�cient to demonstrate sL(t) � 0. Such a tacticis obviously useful in comparing systems; it might also be used if the derivativeof s(t) can not be computed but those of lower bound can be.Bounding the Nomimal Below. Suppose that in our perturbed system, wecan only measure ŝ(t), but thats(t) 2 [ŝ(t)� L; ŝ(t) +H];where L, H 2 R. Suppose that we have veri�ed a control law u(s) such thatu(0) results in _s(t) � 0. Then, if we use u(0) whenever ŝ(t) � L � 0, we obtaininvariance of s(t) � 0 via an implementation relation (cf. [13]). Note: Theconstant L can be replaced with a function L(t) with the same e�ect.Bounding the Perturbed Above. Suppose that in our perturbed system, wecan only measure ŝ(t), but thatŝ(t) 2 [s(t) � l; s(t) + h];where l, h 2 R. Suppose that we have a control law that maintains s(t) � l.Then, we have an existence proof that ŝ can be kept above zero. However, sucha control law might not be implementable only knowing ŝ. Again, l and h maybe replaced by time-varying functions.4 Platoon Merge Example{Setup4.1 IntroductionIn [7], a \robust merge platoon maneuver" is described and analyzed. There arefour high-level speci�cations the system should meet:1. Safety|the platoons are not supposed to collide at a relative speed greaterthan vallow.2. The merge should succeed, within a particular amount of time.3. The merge is optimal, in that there is no other maneuver that could causethe merge to complete faster.4. Passenger comfort, as measured by bounds on acceleration and jerk, is guar-anteed.Herein, we only address the issue of safety. We consider two platoons ofvehicles, named 1 and 2, where platoon 1 precedes platoon 2 on a single track.Positions on the track are labeled with nonnegative reals, starting with 0 at adesignated beginning point.We assume the following constants:5

{ vallow 2 R�0 is the value of the allowable (read also safe or acceptable)collision velocity,{ amin 2 R�0 is the absolute value of the maximum emergency deceleration.The analysis in Appendix I of [7] is done in terms of vehicle velocities. Trans-lating to vehicle positions, their analysis implies that safety is maintained (ifd = 0) if �x(t) � v22(t)� v21(t) � v2allow2amin (5)where{ x1, x2 are the positions of the lead and trailing platoons,{ �x = x1 � x2, the di�erence in position of the lead and trailing platoons,{ v1 � _x1; v2 � _x2, are the velocities of the lead and trailing platoons.In the remainder of this section we give a formal model of the platoon safetyproblem in terms of hybrid I/O automata [13]. In the next section, we prove in-variance of Equation 5, in the presence of an abstract controller, using derivativeinformation only.4.2 SafetyPlatoons . We model the system by a hybrid automaton that we call Platoons .Each platoon i has a position xi and a velocity _xi. The hybrid automatonPlatoons has the following (non-e [13]) discrete actions:Input:noneOutput:none Internal:collideThe variables are:Input:noneOutput:_xi 2 R�0, i 2 f1; 2g, initially arbitraryxi 2 R�0, i 2 f1; 2g; initially x2 = 0 and x1 is arbitrarycollided, a Boolean, initially false Internal:noneThus, we assume that the velocities are nonnegative|the vehicles will nevergo backwards. Also, platoon 2 starts at the beginning position on the track.collidePrecondition:x1 = x2collided = falseE�ect:collided = true_xi := arbitrary value, i 2 f1; 2g 6

We allow for fairly arbitrary behavior when cars collide: the velocities of bothvehicles may change arbitrarily.A trajectory of the hybrid system over the interval I (or I-trajectory [13]) wis included among the set of nontrivial trajectories exactly if:1. collided is unchanged in w.2. _xi is an integrable function in w, i 2 f1; 2g.3. For every t 2 I, the following are true about w(t):(a) x2 � x1.(b) The xi values at t are obtained by integrals, working from _xi.4. For every t 2 I that is not the right endpoint of I, the following is true aboutw(t): If x1 = x2 then collided = true.Thus, we only consider executions in which the platoons do not bypass eachother. The collided variable just keeps track of the �rst occurrence of a collision.This will be used in our statement of the correctness property below|we onlywant to assert what happens the �rst time a collision occurs.Safety Condition.We consider the following safety condition on states ofPlatoons:1. (Safety) If x1 = x2 and collided = false, then _x2 � _x1 + vallow.Note that this condition is formulated as an invariant assertion.Let Safe-Platoons be the same as Platoons except that all the states are re-stricted to satisfy the safety condition. We will use Safe-Platoons as a correctnessspeci�cation. It says that under all circumstances, the system guarantees that ifthe platoons ever collide, then the �rst time they do so, their relative velocity isno more than vallow.Implementation Structure. For implementations, we consider composed sys-tems consisting of a piece modeling the real world, plus two pieces modeling con-trollers for the two cars. The real world model is like the Platoons automaton,except that the velocities of the two cars are normally controlled by accelera-tion variables set by two separate controllers. However, once a collision occurs,we uncouple the velocities from the controllers. This corresponds to allowingarbitrary behavior after the �rst collision.De�ne Controlled-Platoons to be the same as Platoons , except for the follow-ing changes. Controlled-Platoons includes new input variables:�xi 2 R, i 2 f1; 2g, initially arbitraryAn I-trajectory w is included among the set of nontrivial trajectories ofControlled-Platoons exactly if:1. w is a trajectory of Platoons .2. If collided = false in w then _xi is obtained by integration from �xi, i 2 f1; 2g.Now we describe Controller1. Its input and output variables are:7

Input:_xi 2 R�0, i 2 f1; 2gxi 2 R�0, i 2 f1; 2gcollided, a BooleanOutput:�x1Controller1 has no external actions.Controller1 is an arbitrary hybrid automaton with the given interface, subjectonly to the following restrictions:1. In any trajectory, �x1 is a bounded, piecewise continuous (and hence inte-grable) function.2. In any state,(a) �x1 � �amin .(b) If _x1 = 0 then �x1 � 0. (It does not ask that the velocity go negative.)The interface of Controller2 is analogous. Its input and output variables are:Input:_xi 2 R�0, i 2 f1; 2gxi 2 R�0, i 2 f1; 2gcollided, a BooleanOutput:�x2Controller2 has no external actions. Controller1 is an arbitrary hybrid automa-ton with the given interface, subject only to restrictions on �x2 and _x2 as for �x1and _x1, resp., in Controller1 above.The System. ComposeControlled-Platoons,Controller1 andController2 usinghybrid automaton composition.We are supposed to design an instance of Controller2 so that when it iscomposed in this way with arbitrary Controller1, the resulting system satis�esthe safety condition. We say that it implements the Safe-Platoons automaton,using a notion of implementation based on preserving hybrid traces. Here, thehybrid trace includes the output variables, which are the positions and velocitiesof both platoons plus the collided
ag. That is enough to ensure that the safetycondition of the spec. carries over to the implementation.A Controller Implementation. We de�ne a speci�c Controller2, which wecall C2. We describe it very nondeterministically. The interface is already speci-�ed. C2 has no discrete actions, and no internal variables.In any state of Platoons , de�nesafe-measure = x1(t) � x2(t)� (_x2(t))2 � (_x1(t))2 � (vallow)22aminThis says that the distance between the two platoons is great enough to al-low platoon 2 to slow down su�ciently before hitting platoon 1, even if platoon8

1 decelerates at its fastest possible rate.4 The initial value of �x2 is constrainedas follows. In the initial state, if safe-measure � 0, then �x2 = �amin . (Other-wise, �x2 is arbitrary.) Therefore, if the position and velocity parameters are onthe boundary of a certain \region", then �x2 is guaranteed to be the minimumpossible|that is, platoon 2 is guaranteed to be decelerating as fast as possible.C2 is an arbitrary Controller2, subject only to the following additional re-striction on any I-trajectory w:If collided = false in w(0) then for every t 2 I, the following is trueabout w(t): If safe-measure � 0, then �x2 = �amin .The system we consider, called Implemented-Platoons is the composition ofControlled-Platoons, an arbitrary Controller1, and C2.Correctness. We de�ne a predicate S on states of Implemented-Platoons , asfollows:Predicate S: If collided = false then safe-measure � 0.Note that C2 is designed to guarantee explicitly that if S is ever violated,or even if it is in danger of being violated (because equality holds), platoon 2is decelerating as fast as possible. We claim that this strategy is su�cient toguarantee that S is always true:Lemma10. If S is true in the initial state of the system, then S is true in everyreachable state.Proof. By induction on the number of steps in a hybrid execution. Initially, theclaim is true by assumptions. The only (non-e) discrete steps are collide andinternal steps of Controller1.1. collideThe e�ect of the action ensures that collided = true in the post-state, whichmakes S true vacuously.2. Internal step of Controller1This does not a�ect any of the quantities involved in S.Now we consider a trajectory w based on a closed interval [0; t]. Since atrajectory cannot change collided , and S is vacuously true if collided = true, weonly need to consider the case where collided = false throughout w. We may4 It can be shown [6] that the regionsafe-measure = max�x1 � x2 � (_x2)2 � (_x1)2 � (vallow)22amin ; _x1 + vallow � _x2�corresponds to the biggest possible safe region. The \relaxation" corresponding tothe second argument of the max function says that the relative velocities of the twoplatoons are already close enough. Invariance has been proven using Theorem 9, part2. 9

assume that S is true in w(0). We must show that S is true in w(t). By de�nitionof S, we may assume that safe-measure � 0 in state w(0) and must show thatthis is true in state w(t).The remaining continuous action arguments are shown in the next section(see Remark 1), using only derivative information.Lemma11. S implies the safety condition.Proof. If collided = true, then S implies the safety condition vacuously. Hence,we must only deal with the case when collided = false. This involves continuousvariables and is shown in the next section (see Remark 2).5 Platoon Merge Example{AnalysisIn this section, we provide a system theoretic proof of the \correctness" of the\abstract controller" for platoon merge proposed in the previous section. Here,correctness means that safety is maintained; abstract controller means that thecontrol law is speci�ed by a list of (hopefully) minimal constraints. Any actualcontroller implementation that satis�es these constraints will maintain safety byinclusion. In other words, if we have proved the system correct when it is con-nected to an arbitrary set of behaviors (e.g., which satisfy some constraints orassumptions), then the system will behave correctly when any particular behav-ior within that set is actually connected. Note that this is simply the viewpointof worst-case analysis.Note:Wemust only �nish the continuous parts missing from Lemmas 10 and11. From those proofs, we may consider only the case where collided = false inour continuous analysis below, which yields some simpli�cations in the resultingS and s.5.1 The Nominal CaseRecall that the safety property that we wish to verify isS : If �x(t) = 0; then v2(t) � v1(t) � vallow:This says that if a collision occurs, it must be the case that the relative platoonvelocity is less than the allowable collision velocity.The following restrictions which were made on trajectories of Implemented-Platoonsabove are relevant in this section:A1: �xi � �amin, i = 1; 2.A2: vi � 0, i = 1; 2.We also use the following \safety invariant," which is a rewriting of Equation(5) above: s(t) � �x(t) + v21(t)� v22(t) + v2allow2amin (6)10

Remark 1. s(t) � 0 is invariant5 if the following condition is met:C : �x2(t) = �amin when s(t) = 0:Proof. Dropping dependence on t, Equation (6) is equivalent tos � x1 � x2 + _x21 � _x22 + v2allow2amin ;so _s = _x1 � _x2 + _x1�x1 � _x2�x2amin :But \control law" C says_sjs�0 = _x1 � _x2 + _x1�x1 + _x2aminamin ;� _x1 � _x2 + � _x1amin + _x2aminamin � 0;where the last inequality follows from A1. The conclusion then follows fromTheorem 9, Part 2.Note that the condition C represents the conditions of the abstract controllermentioned above. Any actual controller (implementation) that satis�es C willalso maintain the invariant s(t) � 0. It remains to show that the invariantguarantees safety, i.e., it remains to showRemark 2. s(t) � 0 implies S.Proof. First note that due to A2, S is automatically satis�ed if v2 = 0. Otherwiseassume, for contradiction, that S is not met: �x = 0 andv2 > vallow + v1:Squaring both sides and again noting A2 yields the contradiction.5.2 Perturbed CasesIn this section, we use the tools of Section 3.2 to easily prove safety under variousrelaxations from the nominal case, including (1) inbound delay, (2) outbounddelay, and (3) sensor noise.Below, we will use approximations of the formŝ(t) � x̂1(t)� x̂2(t) + v̂21(t) � v̂22(t) + v2allow2amin :In this case (and dropping dependence on t)s � ŝ � e = (x1 � x̂1) � (x2 � x̂2) + (v21 � v̂21) � (v22 � v̂22)2amin : (7)Note that if e(t) � e(t) � e(t), then s(t) � ŝ(t) + e(t).5 Technically, f(x1; x2; v1; v2) j s(x1; x2; v1; v2) � 0g is a positive invariant set.11

InboundDelay. This is the lag time in communicating sensor information fromthe �rst to second platoons. Hence, if the inbound delay is d thenx̂1(t) = x1(t� d); v̂1(t) = v1(t� d);x̂2(t) = x2(t); v̂2(t) = v2(t� d);in Equation 7 above. A simple calculation, taking into account A1;2, shows thate(t) � e(t) wheree(t) � v1(t� d) ~d� amin ~d2=2 + [(v1(t � d)� amin ~d)2 � v21(t� d)]2amin = 0;~d = minfd; v1(t� d)=aming, and the last equality follows after some algebra. So,by the arguments in Section 3.2, safety is maintained as long as full-braking isinvoked for platoon 2 whenever ŝ(t) � 0.OutboundDelay. In this case, the acceleration command for platoon 2 at timet, namely �x2(t), is based on sensed readings at time t�d if the outbound delay isd. Hence, we have Equation 7 but with all variables at time t+ d. The situationis similar to inbound delay above in that one may compute bounds on ŝ(t + d)versus s(t + d) as a function of positions and velocities measured up to time t.For x1, _x1 this case is the same as above, and we can simply usex̂1(t + d) = x1(t); v̂1(t + d) = v1(t):This case is di�erent than the previous one, though, in the sense that secondplatoon's controller may take into account the command it has sent over the pastd time units in estimating its own position and velocity d units hence (assumingno collisions in between, of course). Summarizing, it usesx̂2(t+ d) = x2(t) + v2(t)d+ Z d0 (d� �)�x2(t� d+ �) d�;v̂2(t+ d) = v2(t) + Z d0 �x2(t� d+ �) d�:Invariance is maintained if we command full-braking at all times t (i.e., set�x2(t) = �amin for all times t) such that ŝ(t+ d) � 0.Sensor Noise. Here, we measure x̂i and v̂i. We assume (the same) uniformnoise bound on the measurements of all variables, e.g., jx1(t) � x̂1(t)j � � andsimilarly for the other three measurements. Unequal bounds follow easily. Then,we have e(t) � e wheree � �� � � + v21 � (v1 + �)2 � v22 + (v2 �m)22amin = �2� � 2v1� + 2v2m + �2 �m22amin ;where m = min(v2; �).Again, safety is maintained as long as full-braking is invoked for platoon2 whenever ŝ(t) + e � 0. If this is too conservative, a real application couldget better estimates by considering intervals of measurements and the dynamicrelationship of measured variables. 12

References1. Panos Anstaklis et al., editors. Hybrid Systems II. vol. 999, Lecture Notes inComputer Science. Springer, New York, 1995.2. A. Benveniste and G. Berry, guest editors. Proc. of the IEEE, 79(9), 1991. SpecialIssue on The Synchronous Approach to Reactive and Real-Time Systems.3. A. Benveniste and P. Le Guernic. Hybrid dynamical systems theory and the signallanguage. IEEE Transactions on Automatic Control, 35(5), 1990.4. N. P. Bhatia and G. P. Szeg�o. Dynamical Systems: Stability Theory and Applica-tions, vol. 35 of Lecture Notes in Mathematics. Springer, Berlin, 1967.5. J. W. de Bakker et al., editors. Real-Time: Theory in Practice, vol. 600 of LectureNotes in Computer Science. Springer, New York, 1991.6. E. Dolginova and N. Lynch. \Safety Veri�cation for Automated Platoon Manuev-ers: A Case Study." In Proc. of the International Workshop on Hybrid and Real-Time Systems (HART '97), Grenoble, France, March 1997. To appear.7. J. Frankel et al. \Robust Platoon Maneuvers for AVHS," California PATH report,UCB, 1995. Preprint.8. R. L. Grossman et al., editors. Hybrid Systems, vol. 736 of Lecture Notes in Com-puter Science. Springer, New York, 1993. .9. N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic,Boston 1993.10. J.H. Hubbard and B.H. West. Di�erential Equations: A Dynamical Systems Ap-proach. Springer, New York, 1990.11. M. Joseph, editor. Formal Techniques in Real-Time and Fault-Tolerant Systems,vol. 331 of Lecture Notes in Computer Science. Springer, New York, 1988.12. N. Lynch. Distributed Algorithms. Morgan Kaufmann, San Francisco, 1996.13. N. Lynch et al. Hybrid I/O Automata. In R. Alur, T. Henzinger, and E. Sontag,editors, Hybrid Systems III, pp. 496{510, Lecture Notes in Computer Science, vol.1066, Springer, 1996.14. O. Maler, Z. Manna, and A. Pnueli. From timed to hybrid systems. In de Bakkeret al. [5], pp. 447{484.15. Z. Manna and A. Pnueli. Verifying hybrid systems. In Grossman et al. [8], pp.4{35.16. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.Springer, New York, 1991.17. A. Pnueli and J. Sifakis, guest editors. Theoretical Computer Science, 138(1), 1995.Special Issue on Hybrid Systems.18. H.L. Smith. Monotone Dynamical Systems: An Introduction to the Theory of Com-petitive and Cooperative Systems. Mathematical Surveys and Monographs, Vol. 41.American Mathematical Society, Providence, RI, 1995.19. Y.-J. Wei and P.E. Caines. Hierarchical COCOLOG for �nite machines. InG. Cohen and J-P. Quadrat, editors, Proc. 11th INRIA International Conferenceon the Analysis and Optimization of Systems, vol. 199 of Lecture Notes in Controland Information Sciences, pp. 29{38, New York, 1994. Springer.20. J. Lygeros, D. Godbole, S. Sastry. A veri�ed hybrid control design for automatedvehicles. Preprint.21. A. Puri and P. Varaiya. Veri�cation of hybrid systems using abstractions. Preprint.This article was processed using the LaTEX macro package with LLNCS style13

