
Safety Veri�
ation for Automated Vehi
le

Maneuvers

by

Ekaterina Dolginova

Submitted to the Department of Ele
tri
al Engineering and Computer

S
ien
e

in partial ful�llment of the requirements for the degrees of

Master of Engineering in Ele
tri
al Engineering and Computer

S
ien
e

and

Ba
helor of S
ien
e in Computer S
ien
e and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1998





 Ekaterina Dolginova, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reprodu
e and

distribute publi
ly paper and ele
troni
 
opies of this thesis do
ument

in whole or in part, and to grant others the right to do so.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Ele
tri
al Engineering and Computer S
ien
e

May 22, 1998

Certi�ed by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nan
y A. Lyn
h

NEC Professor of Software S
ien
e and Engineering

Thesis Supervisor

A

epted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arthur C. Smith

Chairman, Department Committee on Graduate Theses



2



Safety Veri�
ation for Automated Vehi
le Maneuvers

by

Ekaterina Dolginova

Submitted to the Department of Ele
tri
al Engineering and Computer S
ien
e

on May 22, 1998, in partial ful�llment of the

requirements for the degrees of

Master of Engineering in Ele
tri
al Engineering and Computer S
ien
e

and

Ba
helor of S
ien
e in Computer S
ien
e and Engineering

Abstra
t

In this thesis we formally model a system 
onsisting of two vehi
les moving along a

single tra
k, plus 
ontrollers that operate the vehi
les, plus 
ommuni
ation 
hannels.

The modeling formalism used is the Hybrid Automata model developed by Lyn
h,

Segala, Vaandrager and Weinberg. We formulate a key safety requirement of su
h a

system, namely, that the two vehi
les never 
ollide at a relative velo
ity greater than

a given bound, v

allow

. We give ne
essary and suÆ
ient 
onditions for the 
ontroller of

the follower vehi
le to guarantee that the safety requirement is satis�ed regardless of

the behavior of the leading vehi
le. The model in
ludes handling of 
ommuni
ation

delays and un
ertainty. The proofs use 
omposition, invariants, and levels of abstra
-

tion, together with methods of mathemati
al analysis. This 
ase study is derived

from the California PATH intelligent highway proje
t.
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Chapter 1

Introdu
tion

1.1 Problem Statement and Motivation

The Theory of Distributed Systems resear
h group is 
urrently working on modeling,

verifying and analyzing problems arising in automated transit systems. The formal

tools used in
lude the standard te
hniques for distributed algorithms | invariants,

simulations (levels of abstra
tion) and automaton 
omposition, plus standard meth-

ods for reasoning about 
ontinuous pro
esses | di�erential equations and mathemat-

i
al analysis. The work so far suggests that these methods are 
apable of providing

good results about safety and performan
e of automated transit systems.

In
reasing highway 
ongestion has spurred re
ent interest in the design of intelli-

gent highway systems, in whi
h 
ars operate under partial or total 
omputer 
ontrol.

An important new e�ort in this area is the California PATH proje
t (see, for example,

[16℄), whi
h has developed a design for automating the operation of 
ars in several

lanes of sele
ted California highways. This Master of Engineering thesis is a 
ase

study of automated 
ar maneuvers arising in the PATH proje
t. We 
onsider two


ars traveling in a single lane at a high speed with small distan
e between them. The

goal is for the se
ond (follower) 
ar to preserve safety, namely, that the two vehi-


les never 
ollide at a relative velo
ity greater than a given bound, given arbitrary

behavior of the �rst (leader) 
ar.

The system is hybrid in that it involves both dis
rete and 
ontinuous behavior:
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dis
rete behavior appears in the dis
rete a
tions of the 
ontrollers, points of 
ollision,

plus 
ommuni
ation among the various system 
omponents, whereas 
ontinuous be-

havior appears in the motion of the 
ars. The 
ombination forms a hybrid system

of 
onsiderable 
omplexity. The problem is further 
ompli
ated by the presen
e of

delays and un
ertainties in the behavior of sensors, brakes and 
ontrollers.

The goals of this proje
t are to model this system using Hybrid Automata [12℄,

[13℄, and to derive and prove ne
essary and suÆ
ient 
onditions that a 
ontroller of

the follower 
ar must satisfy in order to guarantee the safety requirement regardless

of the behavior of the leading vehi
le. In [4℄, a proof of su
h a safety property is

outlined, for the spe
i�
 vehi
le maneuver given in that paper. The key to the proof

turns out to be that the given maneuver always ensures that either (a) the vehi
les

are suÆ
iently far apart that the se
ond vehi
le 
an slow down suÆ
iently before

hitting the �rst vehi
le, or (b) the relative speeds of the two vehi
les are already 
lose

enough.

Although the outline [4℄ gives the key ideas, from our point of view, it is in
omplete

as a safety veri�
ation. In parti
ular, Frankel et al. do not in
lude a 
omplete

model of all system 
omponents | the dis
rete 
omponents are not modeled | and

do not seem to 
over all 
ases that 
ould arise | for instan
e, only some types of


ommuni
ation delay are handled and un
ertainties in the values of some parameters

are not 
onsidered. The analysis 
ontains informal \jumps" in whi
h 
ertain types of

behavior are 
laimed to be the \worst possible", and then only these 
ases are analyzed


arefully; however, it is not made 
lear how one 
an be sure that the 
laimed worst


ases are in fa
t the worst. Another problem is that the analysis is presented for

just the single maneuver, and is intertwined with the proofs of other properties for

that maneuver (su

ess, time optimality). However, it seems that the analysis should

be de
omposable, for example, proving the safety requirement in a way that allows

the proof to apply to other maneuvers. In this thesis, we model the whole system,

in
luding delays and un
ertainties, and reason about it in a modular fashion, so that

the proofs and the approa
h 
ould be reused in other problems.

10



1.2 Related Work

In [12℄, Lyn
h, Segala, Vaandrager and Weinberg have developed a formal model,

the hybrid (input/output) automaton model , for hybrid systems, together with as-

so
iated proof te
hniques. These te
hniques in
lude methods based on automaton


omposition, invariant assertions, levels of abstra
tion, and mathemati
al analysis

for reasoning about 
ontinuous behavior. Lyn
h et al. have developed methods of

in
orporating standard analysis te
hniques into automaton-based proofs.

These methods have been used to model and verify a variety of simple real-time

systems, in
luding several very simple maneuvers arising in automated transporta-

tion systems [11℄,[17℄,[18℄. Re
ently, some more 
omplex systems have been modeled

and analyzed with the same approa
h: Livadas used similar methods in modeling

automated vehi
le prote
tion subsystems, as used in the Raytheon Personal Rapid

Transit proje
t (PRT 2000) [6℄; and Lygeros and Lyn
h modeled and analyzed the

TraÆ
 Alert and Collision Avoidan
e System (TCAS) 
on
i
t resolution strategies

[9℄.

Lygeros and Lyn
h [10℄ have also worked on a problem similar to the one presented

in this thesis. The authors, using a similar approa
h, modeled a system 
omprised

of a string of vehi
les moving along a single tra
k and proved safety requirements

of su
h a system. However, their model involved an ideal system with no delays or

un
ertainties. In this thesis, these 
ompli
ations are in
orporated into the model, but

the problem is simpli�ed by dealing only with 2 vehi
les, and only worrying about

the safety of the �rst 
ollision. In future work, it will be interesting to extend this

model to handle multiple vehi
les. An alternative approa
h to proving safety for a

spe
i�
 vehi
le maneuver, based on game theory, is presented in [7℄,[8℄.

A representative 
olle
tion of prior work in the modeling and veri�
ation of hy-

brid systems is available in the pro
eedings of the workshops on hybrid systems

[1℄,[3℄,[5℄,[15℄. Nearly all of this work di�ers from ours in using either 
ontrol theory

methods, or else algorithmi
 te
hniques (e.g., de
ision pro
edures based on �nite-state

analysis). Other formal models for hybrid systems appear in [14℄,[2℄; these di�er from

11



ours primarily in pla
ing less emphasis on issues of external behavior, 
omposition

and abstra
tion.

1.3 Our Approa
h

The approa
h of this resear
h proje
t is to formally model the entire system, in
luding

the two vehi
les and their sensors and 
ontrollers. This way, 
ommuni
ation delays,

and delay and un
ertainty in applying the 
ontrol 
ommands are in
luded in the

model of the system. We use Hybrid Automata, des
ribed in [12℄,[13℄ as a framework

for modeling and reasoning about hybrid systems.

A parameterized safety 
riterion is formulated in terms of the model. The model

and the safety requirement are made very general, so that they 
an re
e
t a variety

of situations. This approa
h allows the later reuse of the models and proofs in other

problems involving automated vehi
les.

Ne
essary and suÆ
ient safety 
onditions on 
ontrollers are devised and proved

for the simplest 
ase (namely, the no delays and no un
ertainties 
ase). Then, these

results are gradually generalized, using 
omposition and simulation relations, to in-


reasingly 
ompli
ated 
ases, until results are obtained for a realisti
 model with both

delays and un
ertainties. All the proofs are modular in that they 
onsist of several

lemmas and theorems, some of whi
h 
ould be reused in similar problems. More

importantly, the approa
h of starting with the simplest 
ase and then getting to the

more 
ompli
ated ones using simulation relations, should prove very useful. It allows

the use of levels of abstra
tion to redu
e the 
omplexity of the problem.

1.4 Contributions of this Resear
h

In this 
ase study, we apply the hybrid automaton model and its asso
iated proof

methods to the task of des
ribing and verifying safety for the PATH 
ar maneuvers.

This is a relatively 
omplex and realisti
 example, whi
h has pra
ti
al impli
ations.

We aim for an a

urate, 
omplete model of the system, plus proofs that 
over all 
ases

12



and a

ommodate all realisti
 variations, in
luding delays and un
ertainties. Our

safety proofs should apply as generally as possible, for instan
e, to di�erent vehi
le

maneuvers. Our model should also be usable for proving other properties, su
h as

su

ess and time optimality. The system and its proofs should admit de
omposition

into separate parts, as far as possible, and should be easy to extend.

The 
ontributions of this resear
h are:

� De�nition of a reusable model of the automated 
ars, plus their 
ontrollers and

sensors, whi
h in
orporates delays and un
ertainties dire
tly.

� Derivation and proof of ne
essary and suÆ
ient 
onditions for satisfying the

safety requirement of the 
ars.

� A demonstration of the power of hybrid automata and its asso
iated proof

methods for reasoning about interesting hybrid systems.

� A demonstration of the use of abstra
tion levels as a means of handling 
om-

plexity for hybrid systems.

13
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Chapter 2

Hybrid Automata Model

The Hybrid Automata model presented in [12℄,[13℄ is 
apable of des
ribing both 
on-

tinuous and dis
rete behavior. The model allows 
ommuni
ation among 
omponents

using both shared variables and shared a
tions. Several HA te
hniques make them

parti
ularly useful in modeling and reasoning about hybrid systems. These in
lude


omposition, whi
h allows the formation of 
omplex automata from simple building

blo
ks; implementation relations, whi
h make it easy to use levels of abstra
tion when

modeling 
omplex systems; and invariant assertions, whi
h des
ribe the non-
hanging

properties of the system.

For a 
omplete des
ription of the hybrid automata model, its asso
iated methods,

and proofs of all HA theorems stated below, please refer to the Hybrid I/O Automata

paper [12℄.

2.1 Hybrid Automata

A state of a HA is de�ned to be a valuation of a set of variables. A traje
tory w

is a fun
tion that maps a left-
losed interval I of the reals, with left endpoint equal

to 0, to states; a traje
tory represents the 
ontinuous evolution of the state over an

interval of time. A traje
tory with domain [0; 0℄ is 
alled a point traje
tory.

A HA A 
onsists of:

� Two disjoint sets of external and internal variables. A valuation of these sets

15




onstitutes a state s of A.

� Two disjoint sets of external and internal dis
rete a
tions. We assume that there

is a spe
ial external, environment a
tion e, whi
h represents the o

urren
e of

a dis
rete transition outside the system.

� A nonempty set of start states.

� A set of dis
rete transition, i.e. (state, a
tion, state) triples, satisfying

D: 8s : (s; e; s) is a valid dis
rete transition.

� A set T of traje
tories w over the variables of A, satisfying

{ T1 (existen
e of point traje
tories): 8s, the point traje
tory p that maps

0 to s is in T ,

{ T2 (
losure under subintervals): 8w 2 T and for all left-
losed subintervals

J of dom(w) : (w restri
ted to J) 2 T , and

{ T3 (
ompleteness): 8w on a left-
losed interval J with left endpoint equal

to 0 : (8t 2 J : (w restri
ted to [0; t)) 2 T ) ) w 2 T .

Axioms T1-3 state some natural 
onditions on the set of traje
tories: existen
e of

point traje
tories, 
losure under subintervals, and the fa
t that w is a full traje
tory

if and only if all its pre�xes are valid traje
tories. (A
tually, axiom T3 does not say

\if and only if", but the missing dire
tion follows easily from T2.)

2.2 Hybrid Exe
utions and Hybrid Tra
es

A hybrid exe
ution fragment of A is a �nite or in�nite alternating sequen
e of traje
-

tories and a
tions, ending with a traje
tory, if it is a �nite exe
ution fragment. An

exe
ution fragment re
ords all the dis
rete 
hanges that o

ur in an evolution of a

system, plus the 
ontinuous state 
hanges that o

ur in between. The time duration

of a Hybrid exe
ution is the sum of the durations of its traje
tories. Hybrid exe
ution

fragments are 
alled admissible if their time duration is in�nite.

16



A hybrid exe
ution is an exe
ution fragment in whi
h the �rst state is a start

state. A state of A is de�ned to be rea
hable if it is the last state of some �nite

hybrid exe
ution of A.

A hybrid tra
e of a hybrid exe
ution re
ords only the 
hanges to the external

variables. The hybrid tra
es of a HA A that arise from all the �nite and admissible

hybrid exe
utions of A des
ribe its external behavior.

2.3 Simulation Relations

HAs A

1

and A

2

are 
omparable if they have the same external interfa
e, i.e., the same

external variables and a
tions. If A

1

and A

2

are 
omparable then A

1

implements A

2

,

denoted A

1

� A

2

, if the set of hybrid tra
es of A

1

is a subset of the set of hybrid

tra
es of A

2

. Intuitively, this means that any external behavior of A

1

is allowed by

A

2

, A

1

being more restri
tive.

Let A and B be 
omparable HAs. A simulation from A to B is a relation R from

states of A to states of B, satisfying the following 
onditions for states s

A

and s

B

of

A and B, respe
tively:

� If s

A

is a start state of A, then there exists a start state s

B

of B, su
h that

s

A

Rs

B

.

� If a is an a
tion of A, (s

A

; a; s

0

A

) is a dis
rete transition of A, s

A

Rs

B

, and both

s

A

and s

B

are rea
hable, then B has a �nite exe
ution fragment starting with

s

B

, having a hybrid tra
e h that is identi
al to that of (s

A

; a; s

0

A

), and ending

with a state s

0

B

su
h that s

0

A

Rs

0

B

.

� If w is a traje
tory of A from s

A

to s

0

A

, s

A

Rs

B

, and both s

A

and s

B

are rea
hable,

then B has a �nite exe
ution fragment starting with s

B

, having a hybrid tra
e

that is identi
al to that of w, and ending with a state s

0

B

, su
h that s

0

A

Rs

0

B

.

The following theorem des
ribes how one 
an prove that one HA implements

another HA. It's proof may be found in [12℄.
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Theorem 2.1 If A

1

and A

2

are 
omparable HAs and there is a simulation from A

1

to A

2

, then A

1

implements A

2

.

2.4 Composition

Another HA te
hnique for redu
ing 
omplexity is 
omposition.

HAs A and B are 
ompatible if

1. Initial 
onditions of A and B are 
onsistent. Formally, there exists a valuation

s for V = V

A

[ V

B

, where V

A

and V

B

are the sets of variables of A and B,

respe
tively, su
h that the valuation of variables of A and B in s 
omprise start

states of A and B, respe
tively.

2. Internal a
tions of A are disjoint from a
tions of B, and internal variables of A

are disjoint from variables of B. Similarly for B and A.

If A and B are 
ompatible then their 
omposition C = AjjB is de�ned as follows:

1. External and internal variables of C are the union of external and internal

variables, respe
tively, of A and B.

2. External and internal a
tions of C are the union of external and internal a
tions,

respe
tively, of A and B.

3. Start states are states of C that satisfy the initial 
onditions of both A and B.

4. Dis
rete transitions and traje
tories are the union of the 
orresponding 
ompo-

nents of A and B.

We state without proof that C is in fa
t a HA.

The 
ru
ial result is that the 
omposition operator respe
ts the implementation

relation: if A

1

implements A

2

then A

1


omposed with B implements A

2


omposed

with B. This result is also presented here without proof.

Theorem 2.2 Suppose A

1

; A

2

; B be HAs su
h that A

1

� A

2

, and ea
h of A

1

and A

2

is 
ompatible with B. Then A

1

k B � A

2

k B.
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2.5 Hiding

Two natural hiding operations are de�ned on any HA A.

Let E, H designate the external and internal a
tions of a HA, respe
tively; W ,

X designate the external and internal variables of a HA, respe
tively; and e | the

environmental a
tion.

1. If E � E

A

� feg, then A
tHide(E, A) is the HA B that is equal to A ex
ept

that E

B

= E

A

� E and H

B

= H

A

[ E.

2. If W � W

A

, then VarHide(W, A) is the HA B that is equal to A ex
ept that

W

B

= W

A

�W and X

B

= X

A

[W .

Theorem 2.3 Let E � E

A

�feg and W � W

A

. Then A
tHide(E, A), VarHide(W ,

A) are HAs.

2.6 Modeling Conventions in This Thesis

A's visible behavior is 
ompletely des
ribed by 
hanges of its external variables. Here,

we subdivide the set of external variables into two disjoint sets of input and output

variables. This is done for notational 
onvenien
e only, and does not 
hange automata

properties.

In [12℄, two models are de�ned: Hybrid Automata and Hybrid I/O Automata.

Hybrid I/O Automata are an extension of Hybrid Automata, in that they di�erentiate

between input and output a
tions. They are also more restri
tive be
ause they have

more axioms asso
iated with them. In this thesis we use the Hybrid Automata model

ex
lusively.

In all the automata de�ned in this work we assume, without expli
itly spe
ifying,

the following:

1. An external environmental a
tion e. It is always enabled (
an happen at any

time), and it does not 
hange any of the state variables.
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2. All point traje
tories are in
luded. Only \non-trivial" (not point) traje
tories

are spe
i�ed expli
itly.

Item (1) satis�es axiom D, and item (2) satis�es axiom T1 of HAs. Therefore,

we only need to prove that an automaton satis�es axioms T2 and T3 to 
laim that

it is, in fa
t, a HA. T2 requires 
losure under subintervals; T3 requires 
ompleteness.

In order to satisfy T3, either (1) traje
tories are never required to stop; or (2) if a

traje
tory is required to stop, its time domain has to be a 
losed interval. It is easy

to see that T3 holds in either 
ase.
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Chapter 3

Math Preliminaries

3.1 Non-Negativity Theorems

The following theorem gives simple 
onditions that a di�erentiable fun
tion must

satisfy in order to be positive everywhere on a given interval.

Theorem 3.1 Given a 
ontinuous fun
tion f on an interval [a; b℄, if

1. f(a) � 
; and

2. for all x 2 [a; b), if f(x) � 
 then f

0

(x) exists and f

0

(x) � 0,

then for all x 2 [a; b℄, f(x) � 
.

Proof: We prove this by 
ontradi
tion. Suppose there exists b

0

2 [a; b℄ su
h that

f(b

0

) < 
. Sin
e f(a) � 
 and f is 
ontinuous, there exists a

0

2 [a; b

0

) su
h that

f(a

0

) = 
 and for all x 2 (a

0

; b

0

℄, f(x) < 
 by the Intermediate Value Theorem.

By the Mean Value Theorem, there exists x 2 (a

0

; b

0

) su
h that f

0

(x) =

f(b

0

)�f(a

0

)

b

0

�a

0

.

Sin
e f(x) < 
, it follows by assumption 2 that f

0

(x) � 0. Thus, sin
e b

0

> a

0

, it

follows that f(b

0

) � f(a

0

). But sin
e f(a

0

) = 
, it follows that f(b

0

) � 
, whi
h is a


ontradi
tion.
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We now prove a similar theorem for fun
tions that have right and left derivatives

that are not ne
essarily equal to ea
h other. The right and left derivatives of a


ontinuous fun
tion f are de�ned as follows:

f

0

(x

+

) = lim

t!x

+

f(t)� f(x)

t� x

(right derivative), and

f

0

(x

�

) = lim

t!x

�

f(t)� f(x)

t� x

(left derivative):

First, we prove a helpful lemma about right and left derivatives of a 
ontinuous

fun
tion at its lo
al maxima and minima.

Lemma 3.2 Let f be a 
ontinuous fun
tion de�ned on [a; b℄, whose both right and

left derivatives are de�ned on (a; b). Then,

1. if x 2 (a; b) is a lo
al maximum, then f

0

(x

+

) � 0 and f

0

(x

�

) � 0;

2. if x 2 (a; b) is a lo
al minimum, then f(x

+

) � 0, and f(x

�

) � 0.

Proof: Let x be a lo
al maximum. Then there exists Æ > 0 su
h that f(q) � f(x)

for all q su
h that jx� qj < Æ. Choose su
h Æ so that

a < x� Æ < x < x + Æ < b:

Choose t su
h that x� Æ < t < x. Then

f(t)� f(x)

t� x

� 0:

Letting t! x

�

, we see that f

0

(x

�

) � 0.

Now 
hoose t su
h that x < t < x + Æ. Then

f(t)� f(x)

t� x

� 0;

whi
h shows that f

0

(x

+

) � 0.

The statement about lo
al minima 
an be proven analogously.

Using Lemma 3.2 we prove an analog of the Mean Value Theorem for fun
tions

whose right and left derivatives are not ne
essarily equal.
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Lemma 3.3 Let f be a 
ontinuous fun
tion de�ned on [a; b℄ whose right and left

derivatives are de�ned on (a; b). Then there exists x 2 (a; b) su
h that either

f(b)� f(a)

b� a

� f

0

(x

+

), or

f(b)� f(a)

b� a

� f

0

(x

�

):

Also, there exists x 2 (a; b) su
h that either

f(b)� f(a)

b� a

� f

0

(x

+

), or

f(b)� f(a)

b� a

� f

0

(x

�

):

Proof: Put h(t) = (f(b) � f(a))t � (b � a)f(t). Then h is 
ontinuous on [a; b℄, has

right and left derivatives on (a; b), and

h(a) = af(b)� bf(a) = h(b):

To prove the �rst half of the lemma it suÆ
es to show that either h

0

(x

+

) � 0 or

h

0

(x

�

) � 0 for some x 2 (a; b), sin
e

h

0

(x

+

) = f(b)� f(a)� (b� a)f

0

(x

+

) and h

0

(x

+

) = f(b)� f(a)� (b� a)f

0

(x

+

):

Case 1: h is 
onstant. Then, h

0

(x

+

) = h

0

(x

�

) = h

0

(x) = 0, so the 
ondition holds

for all x.

Case 2: h(t) > h(a) for some t 2 (a; b). By 
ontinuity of h, there exists x 2 (a; b)

whi
h is a lo
al maximum in (a; b). Lemma 3.2 shows that h

0

(x

�

) � 0.

Case 3: h(t) < h(a) for some t 2 (a; b). By 
ontinuity of h, there exists x 2 (a; b)

whi
h is a lo
al minimum in (a; b). Lemma 3.2 shows that h

0

(x

+

) � 0.

The se
ond part of the lemma is proved analogously.

Finally, we are able to prove a theorem similar to our �rst non-negativity theorem

(Theorem 3.1), but for fun
tions with unequal right and left derivatives.

Theorem 3.4 Let f be a 
ontinuous fun
tion de�ned on [a; b℄. If
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1. f(a) � 
;

2. for all x 2 [a; b) and f(x) � 
, f

0

(x

+

) and f

0

(x

�

) exist, with f

0

(x

+

) � 0 and

f

0

(x

�

) � 0,

then for all x 2 [a; b℄, f(x) � 
.

Proof: Again, we use proof by 
ontradi
tion. Suppose there exists b

0

2 [a; b℄ su
h

that f(b

0

) < 
. Sin
e f(a) � 
 and f is 
ontinuous on [a; b℄, there exists a

0

2 [a; b

0

)

su
h that f(a

0

) = 
 and for all x 2 (a

0

; b

0

℄, f(x) < 
, by the Intermediate Value

Theorem.

By Lemma 3.3 we have that either

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

0

+

) or

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

0

�

)

for some x

0

2 (a

0

; b

0

). Sin
e f(x) < 
 for all x 2 (a

0

; b

0

℄, both derivatives have to be

non-negative by property 2, so in either 
ase we have

f(b

0

)�f(a

0

)

b

0

�a

0

� 0. Also, b

0

> a

0

, so

we get f(b

0

) � f(a

0

). But f(a

0

) = 
, so f(b

0

) � 
, whi
h 
ontradi
ts our assumption.

3.2 Non-In
reasing Fun
tions

The following lemma gives simple 
onditions for a fun
tion with unequal right and

left derivatives to be non-in
reasing.

Lemma 3.5 Let f be a 
ontinuous fun
tion de�ned on [a; b℄ whose right and left

derivatives are de�ned on (a,b). Then if for all x 2 (a; b), f

0

(x

+

) � 0 and f

0

(x

�

) � 0,

then f is a non-in
reasing fun
tion.

Proof: This follows dire
tly from Lemma 3.3. We have that for any a

0

< b

0

in [a; b℄,

there exists x 2 [a

0

; b

0

℄ su
h that either

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

+

) or

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

�

):
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But sin
e b

0

> a

0

and also f

0

(x

+

) � 0 and f

0

(x

�

) � 0, we get f(b

0

) � f(a

0

). Sin
e

a

0

; b

0

were 
hosen arbitrarily, it follows that f is non-in
reasing.

3.3 Derivatives of The max Fun
tion

We prove a useful theorem about the right and left derivatives of the max fun
tion.

Theorem 3.6 Let f and g be di�erentiable fun
tions, and m(x) = max(f(x); g(x)).

Then,

1. the right derivative of m(x) exists and equals the right derivative of either f or

g;

2. the left derivative of m(x) exists and equals the left derivative of either f or g.

Proof:We start with the right derivative. First suppose that there exists Æ > 0, su
h

that for all t 2 [x; x + Æ), m(t) = f(t). Then,

m

0

(x

+

) = lim

t!x

+

m(t)�m(x)

t� x

= lim

t!x

+

f(t)� f(x)

t� x

= f

0

(x

+

);

as needed. Analogously for m(t) = g(t).

Alternatively, suppose that no su
h Æ exists. This means that for all Æ > 0, there

exists a point t

1

2 [x; x + Æ), su
h that m(t

1

) = f(t

1

) > g(t

1

), and there also exists a

point t

2

2 [x; x + Æ), su
h that m(t

2

) = g(t

2

) > f(t

2

).

Then the following two statements must be true:

1. f(x) = g(x) = p = m(x), where p is some real number.

Proof: Suppose this is not so. Let f(x) > g(x), without loss of generality.

Then, by 
ontinuity of f and g, there exists a neighborhood of x in whi
h for

all t, f(t) > g(t). But this 
ontradi
ts our original assumption that there does

not exist a Æ-neighborhood of x in whi
h f(t) > g(t) for all t 2 [x; x + Æ).
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2. f

0

(x

+

) = g

0

(x

+

) = q, where q is some real number.

Proof: Suppose this is not so. Then f

0

(x

+

) = q

1

and g

0

(x

+

) = q

2

, where

q

1

6= q

2

. Without loss of generality, let's assume that q

1

> q

2

. From the

de�nition of the derivative, we know that for all � > 0, there exist Æ

1

; Æ

2

> 0,

su
h that 8t

0

2 (x; x + Æ

1

) and 8t

00

2 (x; x + Æ

2

),

�

�

�

�

�

f(t

0

)� f(x)

t

0

� x

� q

1

�

�

�

�

�

< � and

�

�

�

�

�

g(t

00

)� g(x)

t

00

� x

� q

2

�

�

�

�

�

< �:

Let's pi
k � <

1

2

(q

1

� q

2

), and let Æ = min(Æ

1

; Æ

2

). Then, using the result from

statement 1, 8t 2 (x; x+ Æ),

�

�

�

�

�

f(t)� p

t� x

� q

1

�

�

�

�

�

< � and

�

�

�

�

�

g(t)� p

t� x

� q

2

�

�

�

�

�

< �:

From these inequalities, by 
hoi
e of �, and using the fa
t that t > x, it follows

that

f(t)� p

t� x

>

g(t)� p

t� x

f(t)� p > g(t)� p

f(t) > g(t)

This means that there exists a Æ-neighborhood of x in whi
h f(t) > g(t), whi
h


ontradi
ts our original assumption.

From statement 2 we have that for all � > 0, there exists Æ > 0 su
h that 8t 2

(x; x + Æ

1

) the following hold:

�

�

�

�

�

f(t)� f(x)

t� x

� q

�

�

�

�

�

< � and

�

�

�

�

�

g(t)� g(x)

t� x

� q

�

�

�

�

�

< �:

Then 8t 2 (x; x + Æ),

m(t)�m(x)

t� x

� q =

8

>

>

<

>

>

:

�

�

�

f(t)�p

t�x

� q

�

�

� < � if f(t) � g(t)

�

�

�

g(t)�p

t�x

� q

�

�

� < � if f(t) < g(t):
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Thus, in both 
ases,

�

�

�

m(t)�m(x)

t�x

� q

�

�

� < �. This means that

m

0

(x

+

) = lim

t!x

m(t)�m(x)

t� x

= q;

whi
h is the same as the right derivative of both f and g at x.

The left derivative part is proven analogously.
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Chapter 4

System Model

We 
onsider two vehi
les, moving along a single tra
k. While the behavior of the

leading vehi
le is arbitrary, the se
ond vehi
le's 
ontroller must make sure that no

\bad" 
ollisions o

ur. \Bad" 
ollisions are 
ollisions at a high relative speed. This

is 
alled the Safety requirement for the se
ond 
ontroller. This Safety requirement

is general for all vehi
le maneuvers, and is independent of the parti
ular algorithm

used. We devise the most nondeterministi
 safe 
ontroller, so that later we 
an use

this 
ontroller as a 
orre
tness 
he
k: a 
ontroller implementing any vehi
le maneuver

must implement our safe 
ontroller in order to be 
orre
t. This should be useful in

formally proving 
orre
tness of 
ompli
ated algorithms.

4.1 Vehi
les

Figure 4-1: Vehi
les
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Constants:

l

i

, the length of the vehi
le

a

min

2 R

�

, the maximum emergen
y de
eleration

Variables:

Input: a



i

2 R, initially arbitrary

Output: x

i

2 R

�0

, initially x

2

= 0 and x

1

is arbitrary, subje
t to x

1

� x

2

+ l

2

_x

i

2 R

�0

, initially arbitrary

�x

i

2 R, initially arbitrary

now, initially 0


ollided, Boolean, initially false

A
tions:

Internal: 
ollide

Pre: x

1

= x

2

+ l

2


ollided = false

E�e
t: �x

i

:= arbitrary value, subje
t to �x

i

� a

min

_x

i

:= arbitrary value


ollided := true

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. 
ollided is un
hanged in w

2. �x

i

is integrable in w

3. for all t 2 I the following hold:

3.1. If 
ollided = false in w then

w(t):�x

i

= max(w(t):a



i

; a

min

)

else, w(t):�x

i

� a

min

3.2. w(t): _x

i

= w(0): _x

i

+

R

0

t

w(u):�x

i

du

3.3. w(t):x

i

= w(0):x

i

+

R

0

t

w(u): _x

i

du

3.4. w(t):x

2

+ l

2

� w(t):x

1

3.5. w(t):now = w(0):now + t

3.6. If w(t):x

1

= w(t):x

2

+ l

2

and t is not the right endpoint of I then


ollided = true.

Figure 4-2: The Vehi
les Hybrid Automaton
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We 
ompose our system of a pie
e modeling the physi
al vehi
les, and two pie
es

modeling the 
ontrollers of ea
h vehi
le. Ea
h pie
e is modeled by a hybrid automa-

ton. The real world pie
e is 
alled Vehi
les.

Automaton 1(Vehi
les): The automaton represents two vehi
les, named 1 and 2,

where vehi
le 1 pre
edes vehi
le 2 on a single tra
k. Positions on the tra
k are labeled

with nonnegative reals, starting with 0 as a designated starting point, as shown in

Figure 4-1. The formal HA model for this automaton is given in Figure 4-2. We

assume that i 2 1; 2 throughout the model.

Constants

� l

i

is the length of the i-th vehi
le.

� a

min

< 0 is the maximum de
eleration rate for the vehi
les. We assume here

that all vehi
les have identi
al breaking 
apabilities.

Variables

� a



i

denotes the a

eleration 
ommanded by the 
ontroller. Note that it 
an

di�er from �x

i

, whi
h is the a
tual a

eleration of the vehi
le, due to delays

and/or un
ertainties.

� x

i

, _x

i

, and �x

i

model the a
tual position of the vehi
le's rear, its velo
ity and

a

eleration data. The dots are used as a synta
ti
 devi
e only, and do not

impose di�erential relationships.

� now models the 
urrent time. While it is not ne
essary for modeling the system,

it will be used later in stating some of the invariant assertions. Initially, now

= 0.

� 
ollided keeps tra
k of the �rst o

urren
e of a 
ollision; it will be used in our

statement of the 
orre
tness property | in this work we only want to guarantee

safety for zero or one 
ollisions, the multiple 
ollisions 
ase is not handled.
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A
tions The a
tion 
ollide o

urs when the vehi
les tou
h ea
h other for the �rst

time. The vehi
les tou
h when the position of the rear of the leading vehi
le, x

1

,

equals the position of the front of the trailing vehi
le, x

2

+ l

2

. The e�e
t is that both

the vehi
le's a

eleration and velo
ity assume arbitrary values. After the 
ollision,

the vehi
le's a

eleration, �x

i

, is de
oupled from what is 
ommanded by the 
ontroller,

while velo
ity and position are still obtained by integrating the a

eleration, �x

i

.

Traje
tories The �rst 
ondition (1) states that 
ollided 
an only be 
hanged by

dis
rete a
tions. Condition (2) requires the a
tual a

eleration of the vehi
les to be

integrable, so that velo
ity and position 
an be derived from it. (3) gives 
onditions

on all states of a traje
tory. Condition (3.1) ensures that the vehi
le implements the


ontroller's a

eleration (taking 
are not to go below a

min

), before the �rst 
ollision

o

urs. Conditions (3.2) and (3.3) give di�erential relationships between the a
tual

a

eleration, velo
ity and position of the vehi
le at all times. (3.4) does not allow

vehi
les to bypass ea
h other, whi
h is realisti
 assuming that the vehi
les move only

in a single lane. (3.5) assigns the variable now, and (3.6) makes sure that when the

vehi
les 
ollide, then either a) it is the right endpoint of the traje
tory, and the 
ollide

a
tion will be s
heduled (this happens for the �rst 
ollision), or b) it is after the �rst


ollision, and 
ollided already is true.

HA By dis
ussion in Se
tion 2.6, we only need to show that axioms T2 and T3

are satis�ed. Sin
e the duration of traje
tories is not restri
ted, \sub"-traje
tories

are always valid, so T2 is satis�ed. The only time traje
tories are required to stop is

when a 
ollide a
tion has to o

ur. But by traje
tory 
ondition (3.6), we allow these

traje
tories to be 
losed, so T3 is also satis�ed. Therefore, this automaton is an HA.

Properties From this de�nition, several useful properties of all rea
hable state of

the Vehi
les automaton 
an be dedu
ed:

1. �x

i

� a

min

, by traje
tory 
ondition (3);
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2. velo
ity and position are integrals of �x

i

, ex
ept at the time of 
ollision, by

traje
tory 
onditions (4) and (5);

3. x

2

+ l

2

� x

1

, meaning that vehi
les never bypass ea
h other, by traje
tory


ondition (6).

4.2 Controllers

Variables:

Input: �x

i

2 R, i 2 f1; 2g

_x

i

2 R

�0

, i 2 f1; 2g

x

i

2 R

�0

, i 2 f1; 2g

Output: a



j

, initially arbitrary, where a



j

� a

min

Internal: _x

intj

2 R

�0

, initially _x

intj

= _x

j

x

intj

2 R

�0

, initially x

intj

= x

j

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. a



j

is an integrable fun
tion

2. for all t 2 I , in state w(t)

2.1. _x

intj

= w(0): _x

intj

+

R

0

t

w(u):a



j

du

2.2. x

intj

= w(0):x

intj

+

R

0

t

w(u): _x

intj

du

2.3. If _x

j

� 0 then a



j

� 0

Figure 4-3: Controller

j

Hybrid Automaton, j 2 f1; 2g

We now de�ne the 
ontroller automaton.

Automaton 2(Controller

j

, j 2 f1; 2g): This automaton inputs the 
urrent posi-

tion, velo
ity and a

eleration data of the vehi
le (from the Vehi
les automaton) and

outputs new a

eleration settings. It is an arbitrary hybrid automaton with the given

interfa
e, and it is restri
ted only by the physi
al limitations of the vehi
les. It does

not have any dis
rete a
tions. The formal model for this automaton, where j is either

1 or 2, is given in Figure 4-3.
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Variables Controller

j

re
eives the real position and velo
ity data of both vehi
les

via sensors, whi
h we model by inputing the data from the Vehi
les automaton.

Based on these inputs, the Controller

j

de
ides on a safe a

eleration setting and

outputs it to Vehi
les. The internal velo
ity and position variables ( _x

intj

and x

intj

)

are approximations to the real data of Vehi
les, 
al
ulated based on the a

eleration

the Controller

j

has 
ommanded. This data is obtained by integrating the a

eleration

requests of the 
ontroller. Sin
e we have not in
luded any delays or un
ertainties yet,

these variables should 
orrespond exa
tly to the a
tual position and velo
ity of the

vehi
le, so that x

intj

= x

j

and _x

intj

= _x

j

. However, when we add un
ertainty and

delay into our model, the internal variables will be di�erent from the input variables

(whi
h are re
eived from sensors); the internal variables will use input variables and

a

ount for delays and un
ertainties to get better estimates of the a
tual data.

Traje
tories Condition (1) requires that the 
ommanded a

eleration be integrable

twi
e, so that the integrals for velo
ity and position are well de�ned. Conditions (2.1)

and (2.2) de�ne internal velo
ity and position data to be integrals of 
ommanded a
-


eleration. Finally, 
ondition (2.3) guarantees that on
e the vehi
le has non-positive

velo
ity, the a

eleration must be non-negative, keeping the vehi
les from going ba
k-

wards.

HA No restri
tions on either the duration of a traje
tory, or stopping traje
tories

are pla
es, so axioms T2 and T3 are satis�ed. Thus, by dis
ussion in Se
tion 2.6,

Controller

j

is an HA.

We model the whole system by 
omposing the Vehi
les automaton with 2 
on-

trollers. These 
ontrollers must be implementations of Controller

j

. Thus, the 
om-

posed system is a \fun
tion" of the given 
ontrollers and the given implementation

of the Vehi
les automaton.

Automaton 3(Controlled-Vehi
les): Controlled-Vehi
les(V , A

1

, A

2

) = Vehi
les

k A

1

k A

2

, where V is an implementation of the Vehi
les automaton, A

1

is an imple-

mentation of Controller

1

, and A

2

is an implementation of Controller

2

. The automata
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Figure 4-4: Controlled-Vehi
les Model

are 
omposed using hybrid automata 
omposition rules, resulting in another HA au-

tomaton. The system models our vehi
le system with ea
h vehi
le having its own


ontroller. Figure 4-4 shows Controlled-Vehi
les(Vehi
les, Controller

1

, Controller

2

),

by showing the pie
es it 
onsists of and the interfa
es between them.

4.3 Safety Condition

We de�ne a safety 
ondition for the states of Controlled-Vehi
les. The safety 
ondition

guarantees that if the vehi
les ever 
ollide, then the �rst time they do so, their relative

velo
ity is no more than v

allow

. We formulate this 
ondition formally as an invariant

assertion:

De�nition 1(Safety): If x

1

= x

2

+ l

2

and 
ollided = false, then _x

2

� _x

1

+ v

allow

.

We de�ne a new automaton, Safe-Vehi
les, to serve as a 
orre
tness spe
i�
ation.

Automaton 4(Safe-Vehi
les): This automaton is exa
tly the same as Vehi
les

with an added restri
tion on traje
tories: all states are required to satisfy the Safety


ondition. Sin
e this restri
tion does not violate axioms T2 and T3, the Safe-Vehi
les

automaton is still a valid HA.

Given an implementation V of Vehi
les, we want to design an implementation

A

2

of Controller

2

su
h that for any implementation A

1

of Controller

1

, the system

Controlled-Vehi
les(V , A

1

, A

2

) implements the Safe-Vehi
les automaton. Then we
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an say that it satis�es the Safety 
ondition. That is enough to ensure that the Safety


ondition of the spe
i�
ation 
arries over to the implementation. Note that although

the Controlled-Vehi
les automaton in
ludes 
ontrollers, it 
an still implement the

Safe-Vehi
les automaton, sin
e they will have the same external interfa
e (position,

velo
ity, a

eleration data, the now variable, and the 
ollided 
ag) and the 
ontrollers

only a�e
t the a

eleration settings.

De�nition 2(Corre
tness): Given an implementation V of Vehi
les, an implemen-

tation A

2

of Controller

2

is 
orre
t for V if and only if for every implementation A

1

of Controller

1

, Controlled-Vehi
les(V , A

1

,A

2

) system implements Safe-Vehi
les.
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Chapter 5

Safety In The Ideal Case

We start with a treatment of the safety property in the ideal setting. This allows us to

prove some important properties of the simpler model �rst, and then extend them to

the more 
ompli
ated models, whi
h in
lude delays and un
ertainties, via simulation

mappings. By ideal setting we mean that there are no delays and/or un
ertainties in

either the sensors' data or the 
ontroller's dire
tives. In the next 
hapters we make

the model more realisti
 by relaxing these restri
tions.

5.1 Problem Statement

We want to give 
onditions on an implementation of Controller

2

that are both ne
-

essary and suÆ
ient to satisfy the 
orre
tness property of De�nition 2. In the next

se
tion we present su
h 
onditions by showing an implementation of Controller

2

,


alled C

2

, whi
h guarantees 
orre
tness. Then, we show that the 
onditions are suÆ-


ient by proving that this 
onroller is 
orre
t. Finally, we give slightly less restri
tive


onditions on the 
ontroller and prove that these 
onditions are ne
essary.

5.2 The Model

In any state of Vehi
les, de�ne
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safe-measure =max(x

1

� (x

2

+ l

2

) +

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

;

_x

1

+ v

allow

� _x

2

):

We are not interested in the a
tual value of safe-measure, but only in whether or

not it is negative. If it is nonnegative, it means that either (a) the distan
e between

the two vehi
les is great enough to allow vehi
le 2 to stop before hitting vehi
le 1,

even if vehi
le 1 de
elerates at its fastest possible rate, or (b) the relative velo
ities

of the two vehi
les are already 
lose enough. Thus, nonnegative safe-measure gives

us the boundaries of the safe region for the se
ond vehi
le.

Variables:

Input, Output, Internal: same as in Controller

2

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. it satis�es 
ondition 1 of Controller

2

, plus

2. for all t 2 I ,

2.1-2.3 of Controller

2

are satis�ed

2.4. if 
ollided = false and safe-measure � 0 then w(t):a



2

= a

min

Figure 5-1: C

2

Hybrid Automaton

Automaton 5(C

2

): This automaton is exa
tly like Controller

2

, with one extra

restri
tion on its traje
tories. The formal model is given in Figure 5-1. Condition

(2.4) ensures that if the position and velo
ity parameters are on the boundary de�ned

by safe-measure, then C

2


ommands maximum de
eleration, by setting a



2

= a

min

.

In this ideal (no delays, no un
ertainties) setting, vehi
le 2 will exe
ute the 
ommand

exa
tly, be
ause �x

2

= a



2

, and so vehi
le 2 is de
elerating as fast as possible. Sin
e

this restri
tion does not violate axioms T2 and T3, C

2

is a valid HA. We 
laim that

this restri
tion is suÆ
ient to guarantee 
orre
tness.
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5.3 Corre
tness of C

2

We will now prove 
orre
tness of our 
ontroller. This means that any 
ontroller that

implements C

2

, will be 
orre
t (safe).

De�nition 3(Predi
ate S): If 
ollided = false then safe-measure � 0 .

The above de�nition says that before the �rst 
ollision o

urs, safe-measure is non-

negative. We will later prove that non-negativity of safe-measure guarantees safety.

We 
onstru
t a new automaton, Init-Vehi
les, whi
h is exa
tly likeVehi
les, ex
ept

that all its start states are restri
ted to satisfy Predi
ate S. This guarantees that the

system is safe initially.

Automaton 6(Init-Vehi
les): Exa
tly like Vehi
les, but guarantees safety initially.

The formal model is shown in Figure 5-2, with the new restri
tions in bold. Again,

it is a valid HA, sin
e the modi�
ations do not violate axioms T2� 3.

C

2

is designed to guarantee expli
itly that if S is ever violated, or is even in

danger of being violated (be
ause equality holds), vehi
le 2 is de
elerating as fast

as possible. We 
laim that this strategy is suÆ
ient to guarantee that S is always

true. To prove this, we will use the Non-negativity Theorem 3.4, whi
h states that all

fun
tions satisfying 
ertain 
onditions must be non-negative.

Lemma 5.1 Predi
ate S is true in every rea
hable state of Controlled-Vehi
les(Init-

Vehi
les, A

1

, C

2

), where A

1

is any implementation of Controller

1

.

Proof: By indu
tion on the number of steps in a hybrid exe
ution. Initially, the


laim is true by the restri
tion on the initial states of Init-Vehi
les.

The only dis
rete steps are 
ollide, e and the internal steps of A

1

. The latter

two steps do not 
hange any of the quantities involved. The e�e
t of the 
ollide step

ensures that 
ollided = true in the post-state, whi
h makes S true va
uously.
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Constants:

l

i

, the length of the vehi
le

a

min

2 R

�

, the maximum emergen
y de
eleration

Variables:

Input: a



i

2 R, initially arbitrary

Output: x

i

2 R

�0

, initially x

2

= 0 and x

1

is arbitrary

_x

i

2 R

�0

, initially arbitrary

�x

i

2 R, initially arbitrary

now, initially 0


ollided, Boolean, initially false

initial state is subje
t to Predi
ate S

A
tions:

Internal: 
ollide

Pre: x

1

= x

2

+ l

2


ollided = false

E�e
t: �x

i

:= arbitrary value

_x

i

:= arbitrary value


ollided := true

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. 
ollided is un
hanged in w

2. �x

i

is integrable twi
e in w

for all t 2 I the following hold:

3. If 
ollided = false in w then

w(t):�x

i

= max(w(t):a



i

; a

min

)

4. w(t): _x

i

= w(0): _x

i

+

R

0

t

w(u):�x

i

du

5. w(t):x

i

= w(0):x

i

+

R

0

t

w(u): _x

i

du

6. w(t):x

2

+ l

2

� w(t):x

1

7. w(t):now = w(0):now + t

8. If w(t):x

1

= w(t):x

2

+ l

2

and t is not the right endpoint of I then


ollided = true.

Figure 5-2: The Init-Vehi
les Hybrid Automaton
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Now we 
onsider a traje
tory w whose domain is the interval [0; T ℄. Sin
e a

traje
tory 
annot 
hange 
ollided , and S is va
uously true if 
ollided = true, we only

need to 
onsider the 
ase where 
ollided = false throughout w. We may assume (by

the indu
tion hypothesis) that S is true in w(0). We must show that S is true in

w(T ). By de�nition of S, we may assume that safe-measure � 0 in state w(0) and

must show that this is also true in w(T ).

Here we will use the notation f(t) to mean w(t):f , where f is de�ned in terms

of state 
omponents of w(t). Let f(t) = x

1

� (x

2

+ l

2

) +

( _x

2

)

2

�( _x

1

)

2

�(v

allow

)

2

2a

min

, g(t) =

_x

1

+v

allow

� _x

2

. Then s(t) = max(f(t); g(t)) = safe-measure(t). We now use Theorem

3.4 to prove that if s(0) � 0, then 8t � 0; s(t) � 0.

Claim 1. s(t) is 
ontinuous.

Proof: By 
ontinuity of f(t) and g(t).

Claim 2. s(0) � 0.

Proof: Follows from the indu
tion hypothesis.

Claim 3. For all t su
h that s(t) � 
, it is the 
ase that s

0

(t

+

) and s

0

(t

�

) exist,

s

0

(t

+

) � 0 and s

0

(t

�

) � 0.

Proof: The right derivative of s equals the right derivative of either f(t) or g(t), and

the same is true for the left derivative, by Theorem 3.6. We need to 
he
k that for

all t su
h that s(t) � 0, we have

_

f(t) � 0 and _g(t) � 0. So, �x t su
h that s(t) � 0.

Then, at t, we have:

_

f = _x

1

� _x

2

+

1

2a

min

(2 _x

2

�x

2

� 2 _x

1

�x

1

) = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

�x

1

)

By de�nition of C

2

we have that sin
e s � 0, a



2

= �x

2

= a

min

. Also, by restri
tion
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on Init-Vehi
les, we have �x

1

� a

min

. Therefore,

_

f = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

�x

1

)

= _x

1

� _x

2

+ _x

2

a

min

a

min

� _x

1

�x

1

a

min

= _x

1

+ _x

1

�x

1

�a

min

� _x

1

+ _x

1

a

min

�a

min

= 0:

Now let's do the same for _g:

_g = �x

1

� �x

2

= �x

1

� a

min

� a

min

� a

min

= 0:

This proves Claim 3.

From Claims 1, 2 and 3, s satis�es the 
onditions of the Non-negativity Theorem

and, therefore, by Theorem 3.4, 8t s(t) � 0.

This suÆ
es.

As a simple 
onsequen
e of Lemma 5.1, we prove the safety property.

Lemma 5.2 In any rea
hable state of Controlled-Vehi
les(Init-Vehi
les, A

1

, C

2

),

where A

1

is any implementation of Controller

1

, if x

1

= x

2

+ l

2

and 
ollided = false,

then _x

2

� _x

1

+ v

allow

.

Proof: Initially, S is true by the restri
tion on initial states of Init-Vehi
les. Consider

any rea
hable state in whi
h x

1

= x

2

+ l

2

and 
ollided = false. Then Lemma 5.1

implies that safe-measure � 0 . That is, either

x

1

� (x

2

+ l

2

) �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

or

_x

1

+ v

allow

� _x

2

:

In the latter 
ase, we are done. In the former, setting x

1

� (x

2

+ l

2

) = 0, we get
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( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

� 0

( _x

2

)

2

� ( _x

1

)

2

+ (v

allow

)

2

� ( _x

1

+ v

allow

)

2

_x

2

� _x

1

+ v

allow

;

as needed.

Now we use Lemma 5.2 to prove that the system is in fa
t 
orre
t, i.e., that it

implements Safe-Vehi
les.

Lemma 5.3 Let f be the identity on all state 
omponents of Safe-Vehi
les(velo
ities,

positions, a

elerations, and the 
ollided 
ag). Then f is a forward simulation from

the 
omposed system Controlled-Vehi
les(Init-Vehi
les, A

1

, C

2

), where A

1

is any im-

plementation of Controller

1

, to Safe-Vehi
les.

Proof: By indu
tion on the number of steps in the hybrid exe
ution.

Start States: Suppose s

IP

is a start state of Controlled-Vehi
les(Init-Vehi
les, A

1

,

C

2

), and (s

IP

; s

SP

) 2 f . We have to prove that s

SP

is a valid start state of Safe-

Vehi
les. By the de�nition of start states of Safe-Vehi
les, it must satisfy the 
ondi-

tions of Init-Vehi
les, whi
h follows from the fa
t that s

IP

is a start state of Controlled-

Vehi
les and so it does satisfy all those 
onditions. Also, by Lemma 5.2, s

SP

satis�es

Safety .

Dis
rete Steps: The only dis
rete steps are 
ollide, e and the internal steps of A

1

.

The latter two steps 
annot 
hange any of the quantities involved. Sin
e the 
ollide

step is the same for both automata, it respe
ts the simulation relation. Also, the

e�e
ts of the 
ollide step satisfy safety va
uously, thus the state rea
hed after the


ollide a
tion is a valid state of Safe-Vehi
les.

Traje
tories: Suppose that w

IP

is an I-traje
tory of Controlled-Vehi
les and its

�rst state s

IP

is rea
hable. Suppose that s

SP

is a rea
hable state of Safe-Vehi
les su
h

that (s

IP

; s

SP

) 2 f . Let the 
orresponding hybrid exe
ution fragment of Safe-Vehi
les
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onsist of a single traje
tory w

SP

, where w

SP

(t): _x

i

= w

IP

(t): _x

i

, w

SP

(t):x

i

= w

IP

(t):x

i

for i 2 f1; 2g, w

SP

(t):
ollided = w

IP

(t):
ollided and w

SP

(t):now = w

IP

(t):now. It is

obvious that the two traje
tories have the same hybrid tra
e and that the �nal states

of both traje
tories are f -related.

We need to show that w

SP

is in fa
t a traje
tory of Safe-Vehi
les. By the de�nition

of a traje
tory we must show that it satis�es all the properties of a traje
tory of Init-

Vehi
les, but this is trivial, sin
e it is a traje
tory of Controlled-Vehi
les whi
h has

all the restri
tions of Init-Vehi
les. We must also show that it always satis�es the

safety 
ondition, but this follows dire
tly from Lemma 5.2. Therefore, f is also a

valid simulation relation for all the traje
tories.

Theorem 5.4 C

2

is 
orre
t for Init-Vehi
les, where 
orre
tness is de�ned by De�ni-

tion 2.

Proof: To prove 
orre
tness, we need to show that the Controlled-Vehi
les(Init-

Vehi
les, A

1

, C

2

) automaton, where A

1

is any implementation of Controller

1

, im-

plements Safe-Vehi
les. Controlled-Vehi
les(Init-Vehi
les, A

1

, C

2

) and Safe-Vehi
les

are 
omparable and by Lemma 5.3, there is a simulation relation f from Controlled-

Vehi
les to Safe-Vehi
les. Therefore, this 
omposed system implements Safe-Vehi
les.

This proves 
orre
tness of C

2

.

5.4 Optimality of C

2

We devise a new 
ontroller, Ne
essary-C

2

, whi
h is slightly less restri
tive than C

2

and prove that Ne
essary-C

2

gives ne
essary 
onditions for satisfying 
orre
tness.

Automaton 7(Ne
essary-C

2

): This automaton is exa
tly like C

2

, ex
ept that 
on-

dition (2.4) for traje
tories is slightly modi�ed. In parti
ular, Ne
essary-C

2


ommands

maximum de
eleration when safe-measure < 0 , while C

2

does it when safe-measure �

0 . The formal model is given in Figure 5-3; thus the only di�eren
e is the boundary in


ondition (2.4). We 
laim that this 
ondition is ne
essary to guarantee 
orre
tness.
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Variables:

Input, Output, Internal: same as in Controller

2

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. it satis�es 
ondition 1 of Controller

2

, plus

2. for all t 2 I ,

2.1-2.3 of Controller

2

are satis�ed

2.4. if 
ollided = false and safe-measure < 0 then w(t):a



2

= a

min

Figure 5-3: Ne
essary-C

2

Hybrid Automaton

We de�ne a notion of Bad 
ontrollers. Let B

1

and B

2

be implementations of

Controller

1

and Controller

2

, respe
tively. Then B

1

is Bad for B

2

if B

1

makes B

2

violate Predi
ate S by going out of the safe-measure region. B

2

is Bad if there exists

some B

1

whi
h is Bad for it.

De�nition 4(Bad Controller

1

): Let B

1

and B

2

be implementations of Controller

1

and Controller

2

, respe
tively. Then B

1

is Bad for B

2

if and only if in the system

Controlled-Vehi
les(Init-Vehi
les, B

1

, B

2

) there exists a rea
hable state s that does

not satisfy Predi
ate S.

De�nition 5(Bad Controller

2

): B

2

is Bad if and only if there exists some B

1

that

is Bad for this B

2

.

The following lemma shows that if B

2

is Bad, then we 
an 
onstru
t a B

0

1

that is

Bad for B

2

and de
elerates at the maximum rate on
e Predi
ate S is violated. This

B

0

1

will later be used to show that B

2


an violate Safety.

De�nition 6(VeryBad): Let an implementation B

0

1

of Controller

1

be 
alled Very-

Bad for an implementation B

2

of Controller

2

if

1. B

0

1

is Bad for B

2

;

2. In any exe
ution � of Controlled-Vehi
les(Init-Vehi
les, B

0

1

, B

2

), any state s

that does not satisfy Predi
ate S, and any state s

0

o

urring stri
tly after s, it

is the 
ase that s

0

:a



1

= a

min

.
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Lemma 5.5 If B

2

is Bad then there exists an implementation B

0

1

of Controller

1

,

su
h that B

0

1

is VeryBad for B

2

.

Proof: Sin
e B

2

is Bad, there exists B

1

that is Bad for this B

2

. Using B

1

, we 
onstru
t

an implementation of Controller

1

, 
alled B

0

1

, as follows. We add an extra internal

variable stop, initially stop = false. In any exe
ution of the system Controlled-

Vehi
les(Init-Vehi
les, B

0

1

, B

2

),

1. B

0

1

behaves exa
tly like B

1

until Predi
ate S is violated.

2. Exa
tly when safe-measure < 0 , an internal variable stop is set to true. Note

that B

0

1

has enough information (positions and velo
ities of both vehi
les, a

min

)

to dete
t when safe-measure < 0 .

3. If stop = true, then a



1

= a

min

.

B

0

1

preserves the behavior of B

1

up to the point when Predi
ate S is violated, so

B

0

1

is also Bad for B

2

. The se
ond 
ondition of the VeryBad de�nition is satis�ed by


onstru
tion. So B

0

1

is VeryBad for B

2

.

Lemma 5.6 Let B

2

be an implementation of Controller

2

. If there exists an im-

plementation B

1

of Controller

1

su
h that Controlled-Vehi
les(Init-Vehi
les, B

1

, B

2

)

does not implement Controlled-Vehi
les(Init-Vehi
les, B

1

, Ne
essary-C

2

) then B

2

is

Bad.

Proof:We must show that there exists some implementation B

1

of Controller

1

, su
h

that the system Controlled-Vehi
les(Init-Vehi
les, B

1

, B

2

) has a rea
hable state s

that does not satisfy Predi
ate S.

De�nition 7(Predi
ate T): If safe-measure < 0 then a

2

= a

min

.

The only restri
tion of Ne
essary-C

2

(traje
tory 
ondition (2.4)) requires that if


ollided = false then Predi
ate T is satis�ed.

Claim 1. There exists B

1

su
h that the system Controlled-Vehi
les(Init-Vehi
les,

B

1

, B

2

) has a rea
hable state s in whi
h 
ollided = false and Predi
ate T is not

satis�ed.
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Proof of Claim 1. Proof by 
ontradi
tion. Suppose su
h B

1

does not exist. Then,

for all implementations B

1

of Controller

1

, all the rea
hable states of Controlled-

Vehi
les(Init-Vehi
les, B

1

, B

2

) in whi
h 
ollided = false satisfy Predi
ate T . But

then all the hybrid tra
es of Controlled-Vehi
les(Init-Vehi
les, B

1

, B

2

) are allowed

by Controlled-Vehi
les(Init-Vehi
les, B

1

, Ne
essary-C

2

). It follows that for all imple-

mentations B

1

of Controller

1

, Controlled-Vehi
les(Init-Vehi
les, B

1

, B

2

) implements

Controlled-Vehi
les(Init-Vehi
les, B

1

, Ne
essary-C

2

). This 
ontradi
ts the hypothesis

of the Lemma.

Claim 2. Predi
ate S is violated in state s of Controlled-Vehi
les(Init-Vehi
les,

B

1

, B

2

) in whi
h Predi
ate T is not satis�ed.

Proof of Claim 2. In state s, safe-measure < 0 and a

2

6= a

min

, sin
e Predi
ate

T is not satis�ed. But (be
ause 
ollided = false in s) this means that Predi
ate S is

also violated. This suÆ
es.

B

1

is Bad for B

2

by Claim 2. This proves that B

2

is Bad.

Let B

2

be Bad and B

0

1

be VeryBad for B

2

. Then Lemma 5.7, shows that in any

hybrid exe
ution of Controlled-Vehi
les(Init-Vehi
les, B

0

1

, B

2

), on
e Predi
ate S is

violated, it will 
ontinue to be violated throughout the hybrid exe
ution. In Lemma

5.8 we show that violation of Predi
ate S always leads to violation of safety. Finally,

Theorem 5.9 proves that if for an implementation B

2

there exists an implementa-

tion B

1

of Controller

1

su
h that Controlled-Vehi
les(Init-Vehi
les, B

1

, B

2

) does not

implement Controlled-Vehi
les(Init-Vehi
les, B

1

, Ne
essary-C

2

) then this B

2

is not a


orre
t 
ontroller.

Lemma 5.7 Let B

2

be Bad, and B

0

1

be VeryBad for B

2

. Then, in any exe
ution of

Controlled-Vehi
les(Init-Vehi
les, B

0

1

, B

2

), Predi
ate S is violated in all the states

that o

ur stri
tly after a state s in whi
h 
ollided = false and Predi
ate S is violated.

Proof: By indu
tion on the number of steps in a �xed hybrid exe
ution h. Suppose

that there exists a state s in h in whi
h 
ollided = false and Predi
ate S is violated.

Initially, the 
laim is true va
uously.
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The only dis
rete steps are 
ollide, e and the internal steps of B

0

1

. The latter

two steps 
annot 
hange any of the quantities involved. The e�e
t of the 
ollide step

ensures that 
ollided = true whi
h makes the Lemma true va
uously.

Consider any traje
tory w of h, whose domain is the interval [0; t℄, that o

urs

after Predi
ate S is violated and in whi
h 
ollided = false throughout the traje
tory.

From the de�nition of B

0

1

, �x

1

= a



1

= a

min

throughout that traje
tory.

Let's apply Lemma 3.5 to our problem. This Lemma states that if both the right

and left derivatives of a fun
tion on an interval are non-positive, then the fun
tion is

non-in
reasing on that interval. Right and left derivatives of safe-measure are always

the right and left derivatives, respe
tively, of either f and g, as stated in Theorem

3.6. So we only have to prove that

_

f � 0 and _g � 0 throughout the interval [0; t℄. We

have:

_

f = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

�x

1

):

By the de�nition of B

0

1

, we have that �x

1

= a

min

. Also, by restri
tion on Init-

Vehi
les, �x

2

= a



2

� a

min

. Therefore,

_

f = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

a

min

)

= _x

1

� _x

2

+

�

_x

2

�x

2

a

min

� _x

1

�

= _x

2

�

�x

2

a

min

� 1

�

� _x

2

�

a

min

a

min

� 1

�

= 0:

Similarly for _g:

_g = �x

1

� �x

2

= a

min

� �x

2

� a

min

� a

min

= 0:

Therefore, by Lemma 3.5, safe-measure is a non-in
reasing fun
tion. Sin
e in

w(0), safe-measure < 0 , safe-measure is negative throughout the traje
tory, whi
h
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means that the Controlled-Vehi
les(Init-Vehi
les, B

0

1

, B

2

) system violates Predi
ate

S throughout the traje
tory.

Lemma 5.8 Let B

0

1

be VeryBad for B

2

. Then there exists a rea
hable state s

0

of

Controlled-Vehi
les(Init-Vehi
les, B

0

1

, B

2

) that does not satisfy safety.

Proof: By the fa
t that B

0

1

is VeryBad, there must exist some rea
hable state s of this

Controlled-Vehi
les system, in whi
h Predi
ate S is violated. Then, if there exists a

state s

0

, rea
hable from s, in whi
h the vehi
les do 
ollide, then by Lemma 5.7, in s

0

,

safe-measure < 0 . But that means that in s

0

, _x

2

> _x

1

+ v

allow

, violating safety. All

we have to prove now is that there exists a rea
hable state s

0

in whi
h the vehi
les

do, in fa
t, 
ollide.

Suppose they don't 
ollide. Sin
e the �rst vehi
le eventually stops (it is de
eler-

ating at its maximum rate), this means that the se
ond one also has to stop. Let x

i

,

_x

i

represent state 
omponents in state s, and x

i

0

represent the state 
omponents of

s

0

. Then,

x

1

0

= x

1

+

_x

2

1

�2a

min

and x

2

0

� x

2

+

_x

2

2

�2a

min

:

From our non-
ollision assumption we get,

x

1

0

� x

2

0

+ l

2

x

1

+

_x

2

1

�2a

min

� x

2

+

_x

2

2

�2a

min

+ l

2

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

2a

min

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

;

whi
h means that safe-measure � 0 in state s. But then Predi
ate S is true in state

s, 
ontrary to our assumption.

Therefore, the vehi
les do 
ollide in some rea
hable state s

0

, and s

0

does not satisfy

safety .

Theorem 5.4 shows that any 
ontroller of the trailing vehi
le that does not im-

plement Ne
essary-C

2

, and, therefore, violates Predi
ate S, violates safety for some

behavior of the leading vehi
le.
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Theorem 5.9 Let B

2

be an implementation of Controller

2

. If there exists an im-

plementation B

1

of Controller

1

, su
h that Controlled-Vehi
les(Init-Vehi
les, B

1

, B

2

)

does not implement Controlled-Vehi
les(Init-Vehi
les, B

1

, Ne
essary-C

2

), then B

2

is

not a 
orre
t 
ontroller for Init-Vehi
les.

Proof: B

2

must be Bad by Lemma 5.6. Then, by Lemma 5.5, there exists an im-

plementation B

0

1

of Controller

1

that is VeryBad for B

2

. Lemma 5.8 shows that the

system Controlled-Vehi
les(Init-Vehi
les,B

0

1

, B

2

) has a rea
hable state s

0

that violates

safety, whi
h means that B

2

is not 
orre
t.

5.5 Results

Theorem 5.4 shows that the 
ontroller C

2

is suÆ
ient for guaranteeing 
orre
tness,

and Theorem 5.9 proves that the 
ontroller Ne
essary-C

2

is ne
essary to guarantee


orre
tness. Combining these two results, we 
an 
he
k 
orre
tness, in terms of safety,

of any implementation C of Controller

2

. C is 
orre
t if it implements C

2

, and is not


orre
t if Controlled-Vehi
les(Init-Vehi
les, B

1

, C) does not implement Controlled-

Vehi
les(Init-Vehi
les, B

1

, Ne
essary-C

2

) for some implementation B

1

of Controller

1

.

Sin
e C

2

and Ne
essary-C

2

di�er in behavior only in the boundary 
ases, they 
an be

used to 
he
k 
orre
tness of most 
ontrollers.
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Chapter 6

Delayed Response

In this 
hapter we 
onsider the delay between the re
eipt of information by the 
on-

troller for vehi
le 2 and its resulting a
tion. There are two distin
t types of delay

to 
onsider | the inbound and the outbound delay; we model them separately. The

inbound delay is delay due to the 
ontroller's sensors getting the information (about

the position and velo
ity of the leading vehi
le). The outbound delay is the delay be-

tween the time the 
ontroller makes the de
ision and the time the de
ision is a
tually

implemented by the vehi
le.

These delays are between the vehi
le and its 
ontroller, and so only the delays in

the trailing vehi
le are relevant to our analysis, as we only 
are about the external

behavior of the leading vehi
le, and not about its 
ontroller. In parti
ular, if we were

to extend our analysis to a multi-
ar 
ase, ea
h vehi
le 
ould have its own delay


hara
teristi
s; our analysis would still hold up, sin
e we would look at the delays in

the trailing vehi
le of ea
h vehi
le pair.

We use levels of abstra
tions to deal with the 
omplexity of the delayed 
ase.

First, we devise the \delayed" 
ontroller, and then we use simulation relations to the


ontroller of the �rst (ideal) 
ase, to show that this 
ontroller is suÆ
ient for the

delayed 
ase. We also give a slightly less restri
tive 
ontroller spe
i�
ation, and prove

that it is ne
essary to guarantee 
orre
tness.
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6.1 Delay Bu�ers

We model both the inbound and the outbound delays by spe
ial delay bu�ers. To

obtain the delayed system, we 
ompose our new 
ontroller with the delay bu�ers.

First, we introdu
e a generi
 delay bu�er D-Bu�er, and then spe
ify the inbound and

outbound delays as instan
es of the generi
 automaton.

Parameters:

n | number of input variables

S

i

, S

o

- two disjoint sets of variables with n members in ea
h set

Let V (s), where s is a variable, be a valuation of the variable s;

V (S), where S is a set of variables, be a valuation of the entire set.

var : S

i

! S

o

, a 1-1 mapping from S

i

to S

o

d | the delay of the bu�er

Init : [0; d℄! V (S

o

) | a fun
tion giving the output of the bu�er for the initial d time period

Variables:

Input: S

i

Output: S

o

Internal: saved : [0 ; d ℄! V (S

o

), where saved a
ts as FIFO queue for outputs;

initially, saved = Init

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

for all t 2 I , t > 0, the following hold:

1. for all variables v

i

2 S

i

,

w(t):V (var(v

i

)) = w(t):saved(d):v

i

2. 8t

0

2 [0; d℄,

w(t):saved(t

0

) =

8

>

<

>

:

w(0):saved(t

0

� t) if t

0

> t;

w(t� t

0

):V (S

i

) otherwise.

Figure 6-1: D-Bu�er(n, S

i

, S

o

, var, d, Init) Hybrid Automaton

Automaton 8(D-Bu�er(n, S

i

, S

o

, var, d, Init)): The bu�er outputs its inputs

(the 
onne
tion between inputs and outputs given by the var fun
tion) exa
tly in the

same order as re
eived, and exa
tly time d later. Initially, it outputs values given by
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the Init fun
tion. The automaton is des
ribed formally in Figure 6-1.

Parameters

� n is the number of (input, output) variable pairs;

� S

i

, S

o

are two disjoint sets of input and output variables names, respe
tively;

� var : S

i

! S

o

is a 1-1 mapping from input to output variables. Ea
h pair


orresponds to a variable the bu�er is \delaying." For 
onvenien
e, we also

de�ne valuations of single variable names and their sets, by the fun
tion V .

� d is the maximum absolute delay. It is the same for all variables delayed by this

bu�er.

� Init is a fun
tion that sets up the initial \
ontents" of the bu�er | it tells the

bu�er what to output for the initial d time period, when no inputs have rea
hed

the output yet.

Variables

� S

i

is a set of input variables, and S

o

is a set of output variables. Both sets are

given by the parameters of the automaton.

� saved is an internal variable that stores the input variables for the delay duration

d. Initially, it is prefed with information using the fun
tion Init. saved a
ts as

a First-In-First-Out 
ontinuous queue of the bu�ers inputs. saved(0) = V (S

i

)

and represents the most re
ent input; saved(d) represents the least re
ent input,

the one that is just about to be output.

Traje
tories Condition (1) sets up the output variables to take their values from

the internal variable saved, exa
tly time d ago. Condition (2) updates the saved

variable with new information.
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HA Traje
tories are not restri
ted in duration, so axiom T2 is satis�ed; also, tra-

je
tories are never required to stop, so axiom T3 is also satis�ed. Thus, by dis
ussion

in Se
tion 2.6, D-Bu�er is a HA.

Properties From the automaton de�nition, it follows that

1. For the initial d time period, output w(t):V (S

o

) = Init(t) (from the initializa-

tion of internal variable saved, and traje
tory 
ondition (1)).

2. Afterwards, for all t, w(t):V (S

o

) = w(t � d):V (S

i

) (from traje
tory 
onditions

(1) and (2)).

6.2 The System with Inbound and Outbound De-

lays

We 
ompose the delayed 
ontroller using two instan
es of the delay bu�er D-Bu�er,

and a modi�ed 
ontroller.

First, we de�ne two instan
es of the D-Bu�er automaton, the inbound and out-

bound delay bu�ers.

Automaton 9(D

i

, the inbound delay bu�er): D

i

= D-Bu�er(3, fx

1

; _x

1

; �x

1

g,

fx

d1

; _x

d1

; �x

d1

g, var, d

i

, Init), where var(x

1

) = x

d1

, var( _x

1

) = _x

d1

, and var(�x

1

) = �x

d1

;

d

i

2 R

�0

, the inbound delay, is the \information" delay { the time it takes the


ontroller to get the information from the sensors. The inbound delay automaton

delays the position, velo
ity and a

eleration data of the �rst vehi
le, with delay d

i

.

Given arbitrary initial values for input values for x

1

; _x

1

; �x

1

, Init is set up so that

the Init(0) mat
hes up with these values. The least restri
tive 
onditions on the

behavior of the se
ond 
ontroller are obtained if we assume that the leading vehi-


le was de
elerating at the maximum possible rate throughout the d

i

time period.

Then the se
ond 
ontroller does not have to push the brakes thinking that there is a

\dangerous" situation during the initial d

i

time period. Safety is preserved as long
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as Init(0) mat
hes up with the a
tual data at time 0. So, Init assumes vehi
le 1 was

de
elerating at a

min

and �lls the position and velo
ity values a

ordingly.

Formally, Init is set up as follows. For any start values a

1

; a

2

; a

3

of x

1

; _x

1

; �x

1

,

respe
tively, 
onstru
t a traje
tory w of D

i

, of length d

i

su
h that

8t 2 [0; d

i

); w(t):�x

1

= a

min

, and w(d

i

):�x

1

= a

3

;

8t 2 [0; d

i

℄; w(t): _x

1

= a

2

+ (t� d

i

)a

min

;

8t 2 [0; d

i

℄; w(t):x

1

= a

1

+ a

2

(t� d

i

) +

a

min

(t� d

i

)

2

2

:

Then, w(d

i

):fx

1

; _x

1

; �x

1

g = fa

1

; a

2

; a

3

g, so that it mat
hes up with real data at time

0. Let Init(t) = w(d

i

� t):(x

1

; _x

1

; �x

1

), then Init(0) mat
hes up with the a
tual values

at time 0.

Automaton 10(D

o

, the outbound delay bu�er): D

o

= D-Bu�er(1, fa



d2

g,

fa



2

g, var, d

o

, Init), where var(a



d2

) = a



2

; d

o

2 R

�0

, the outbound delay, is the

\a
tion delay" { the time that it 
an take for a vehi
le to rea
t to the 
ontroller's

dire
tives; 8t 2 [0; d

i

℄; Init(t) = a

min

. Setting Init so 
onservatively makes the vehi
les

safe in the initial d

o

time interval even if the �rst vehi
le starts de
elerating at the

maximum rate. This is the best we 
an do without any further knowledge. This

automaton delays the a

eleration 
ommands by d

o

.

Finally, we modify the 
ontroller spe
i�
ation so that it 
ommuni
ates with the

bu�ers 
orre
tly.

Automaton 11(Spe
-D

2

): The 
ontroller Spe
-D

2

(see Figure 6-2), 
omposed with

delay bu�ers D

i

and D

o

, implements Controller

2

. It is an HA sin
e the 
hanges to

traje
tory de�nitions do not violate axioms T2�3. It is similar to Controller

2

, ex
ept

that the input and output variables are 
hanged, and the restri
tion on traje
tories

is modi�ed.

Variables The new 
ontroller gets its data about the �rst vehi
le from the inbound

delay bu�er D

i

, and the \self" data (data about the se
ond vehi
le) dire
tly from

the Init-Vehi
les automaton. This models the situation in whi
h there is delay in

getting the information via the sensors about the other vehi
le, but there is perfe
t
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Variables:

Input: x

d1

; _x

d1

2 R

�0

, �x

d1

2 R

x

2

; _x

2

2 R

�0

, �x

2

2 R

Output: a



d2

, initially arbitrary, where a



d2

� a

min

Internal: internal variables of Controller

2

( _x

int2

and x

int2

),

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. w

0

is a traje
tory of Controller

2

,

where w

0

is a traje
tory 
onstru
ted from w su
h that in all states of w

0

,

w

0

(t):x

1

= w(t):x

d1

, w

0

(t): _x

1

= w(t): _x

d1

, w

0

(t):�x

1

= w(t):�x

d1

,

w

0

(t):a



2

= w(t):a



d2

, and all other state 
omponents are the same as in Spe
-D

2

Figure 6-2: Spe
-D

2

Hybrid Automaton

self information. The output variable goes into the outbound delay bu�er D

o

.

Traje
tories Condition (1) makes sure that the traje
tories of Spe
-D

2

are allowed

by Controller

2

, after the variable 
hange. It is needed to ensure that Spe
-D

2


om-

posed with the delay bu�ers implements Controller

2

.

Finally, we 
ompose this new 
ontroller with the delay bu�ers, to get an automaton

that implements Controller

2

.

Automaton 12(Delayed-Controller

2

(D)): Delayed-Controller

2

(D) =

VarHide(fx

d1

, _x

d1

, �x

d1

, a



d2

g, D

i

k D k D

o

), where D is an implementation of

Spe
-D

2

(see Figure 6-3). The variables that 
ommuni
ate between the sensors and

the 
ontroller are hidden so that Delayed-Controller

2

(D) is 
omparable to C

2

.

The following two theorems state relationships between the variables of Spe
-D

2

at di�erent points in time.

Theorem 6.1 Let A

1

be any implementation of Controller

1

, s

00

be a rea
hable state

of the Controlled-Vehi
les(Vehi
les, A

1

, Delayed-Controller

2

(Spe
-D

2

)) system, and

s

0

be a state rea
hable from s

00

su
h that s

0

:now = s

00

:now+ d

i

and 
ollided = false in

s

0

. Then,

s

0

:x

d1

= s

00

:x

1

; s

0

: _x

d1

= s

00

: _x

1

, and s

0

:�x

d1

= s

00

:�x

1

:
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Figure 6-3: Delayed-Controller

2

(D) hybrid automaton

Proof: The theorem states the relationships between a state s

00

, and a s

0

that o

urred

time d

i

after s

00

(see Figure 6-5). It states that the data re
eived through the input

bu�er D

i

is exa
tly the same as the a
tual data time d

i

ago. This follows from

Property 2 of D-Bu�er (outputs of a bu�er in state s equal the bu�er's inputs in

state s

0

that o

urred time d ago).

Theorem 6.2 Let A

1

be any implementation of Controller

1

, s

0

be a rea
hable state

of the Controlled-Vehi
les(Vehi
les, A

1

, Delayed-Controller

2

(Spe
-D

2

)) system, and s

be a state rea
hable from s

0

su
h that s:now = s

0

:now + d

o

, 
ollided = false in s, and

s is rea
hable from s

0

. Then,

1. s: _x

1

� s

0

: _x

d1

+ a

min

t

0

, where t

0

= min (

�s

0

: _x

d1

a

min

; d

i

+ d

o

).

2. s:x

1

� s

0

:x

d1

+ s

0

: _x

d1

t

0

+

1

2

a

min

t

0

2

, where t

0

= min (

�s

0

: _x

d1

a

min

; d

i

+ d

o

).

Proof: The theorem states the relationships between a state s

0

, and a state s that

o

urs time d

o

after s

0

(see Figure 6-5). By Theorem 6.1, the position, velo
ity and

a

eleration data in state s

0

equal the \delayed" values in state s. By Properties 1

(�x

i

� a

min

) and 2 (the fa
t that position and velo
ity are integrals of a

eleration)
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of Vehi
les (see 
hapter 4), the position and velo
ity bounds 
an be obtained by

integrating the maximum de
eleration.

In parti
ular, the �rst 
lause states that the a
tual velo
ity of vehi
le 1 in state s

is at least as great as its velo
ity in state s

00

that o

urred time d

i

+ d

o

in the past,

plus the maximum possible de
rease in velo
ity during that time. The se
ond 
lause

states that the a
tual position of vehi
le 1 in state s is at least as great as its position

in state s

00

that o

urred time d

i

+ d

o

ago, adjusted by the velo
ity time d

i

+ d

o

ago

and the maximum allowed de
eleration.

6.3 Corre
tness of Delayed-Controller

2

We give an implementation of Spe
-D

2

that is suÆ
ient to guarantee 
orre
tness.

Automaton 13(D

2

): The 
ontroller D

2

(see Figure 6-4) is a suÆ
ient 
ontroller to

guarantee 
orre
tness of Delayed-Controller

2

(D

2

). It is an HA sin
e the 
hanges from

Spe
-D

2

do not violate axioms T2� 3. It is similar to C

2

in that it also tries to keep

the se
ond vehi
le within the bounds set by safe-measure

d

, whi
h is safe-measure

rede�ned for the delayed 
ase.

De�nition safe-measure

d

is exa
tly like safe-measure, modi�ed by repla
ing the

position, velo
ity and a

eleration data of vehi
les by their delayed values. For vehi
le

2, the delayed values are the values resulting from exe
uting the 
ontroller's 
ommands

for the outbound delay time d

o

, as given by x

int2

and _x

int2

; for vehi
le 1, the \worst

possible" delayed values are generated by de
elerating at the maximum possible rate

for the last d

i

+ d

o

time units, sin
e the 
ontroller's information is d

i

+ d

o

time units

\old." In parti
ular, using Theorems 6.2 and 6.3,

repla
e x

1

by x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

repla
e x

2

by x

int2

repla
e _x

1

by _x

d1

+ a

min

t

0

repla
e _x

2

by _x

int2

58



De�nition:

safe-measure

d

= max((x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

)� (x

int2

+ l

2

) +

(_x

int2

)

2

�(_x

d1

+a

min

t

0

)

2

�(v

allow

)

2

2a

min

,

( _x

d1

+ a

min

t

0

)� _x

int2

+ v

allow

),

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

)

Variables:

Input: same as Spe
-D

2

Output: a



d2

, initially if safe-measure

d

� 0 , then a



d2

= a

min

,

else arbitrary, where a



d2

� a

min

Internal: internal variables of Spe
-D

2

, plus

a

2

- maps from an interval [0; d

o

℄ to R,

initially, 8t 2 [0; d

o

℄; a

2

(t) = a

min

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. w is a traje
tory of Spe
-D

2

2. if 
ollided = false in w(0) then for all t 2 I , t > 0:

2.1. if in state w(t) safe-measure

d

� 0 then a



d2

= a

min

else a



d2

� 0

2.2. 8t

0

2 [0; d

o

℄,

w(t):a

2

(t

0

) =

8

>

<

>

:

w(0):a

2

(t

0

� t) if t

0

> t

w(t� t

0

):a



d2

otherwise

2.3. w(t): _x

int2

= w(t): _x

2

+

R

0

d

o

w(t):a

2

(u)du

2.4. w(t):x

int2

= w(t):x

2

+

R

0

d

o

w(t): _x

int2

du

Figure 6-4: D

2

Hybrid Automaton

Variables External variables are the same as in Spe
-D

2

. x

int2

, _x

int2

, represent the

position and velo
ity of the se
ond vehi
le after time d

o

passes, provided 
ollided

still equals false. They are used for safe-measure

d


al
ulations. In order to 
al
ulate

the values of these variables, we add a spe
ial bu�er, a

2

, that stores the 
ontroller's

a

eleration 
ommands that have not been exe
uted yet (due to the outbound delay).

Initially, 8t 2 [0; d

o

℄; a

2

(t) = a

min

, so that it mat
hes the initial information in the

outbound bu�er.
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Traje
tories Condition (1) restri
ts ea
h traje
tory to satisfy Spe
-D

2

require-

ments. Condition (2.1) is the same as for C

2

, substituting the new safe-measure

d

de�nition. Clause (2.2) sets up a

2

to save a

eleration 
ommands output by the 
on-

troller in the last d

o

time units. a

2

(0) represents the most re
ent 
ommand issued,

and a

2

(d

o

) represents the 
ommand that is going to be exe
uted next. Finally, 
lauses

(2.3) and (2.4) set up x

int2

and _x

int2

to be the integrals of the 
ommanded a

elera-

tion. Sin
e there is no un
ertainty, these variables represent the a
tual values of the


orresponding variables in Init-Vehi
les, but at time d

o

in the future (see Theorem

6.3).

Theorem 6.3 Let A

1

be any implementation of Controller

1

, s

0

be rea
hable states of

Controlled-Vehi
les(Vehi
les, A

1

, Delayed-Controller

2

(Spe
-D

2

)), and s be rea
hable

from s

0

, su
h that s:now = s

0

:now + d

o

, 
ollided = false in s. Then,

1. s: _x

2

= s

0

: _x

int2

;

2. s:x

2

= s

0

:x

int2

:

Proof: The theorem states that the a
tual position and velo
ity of vehi
le 2 in state

s

0

are equal to the \predi
ted" values (given by the internal variables) in state s that

o

urred time d

o

earlier. This follows from Property 2 of D-Bu�er (bu�er outputs in

state s equal bu�er inputs in state s

0

that happened time d before s), Property 2 of

Vehi
les (position and velo
ity are integrals of a

eleration), and Conditions (2.3-4)

of D

2

traje
tories.

We prove that D

2

is suÆ
ient to guarantee 
orre
tness. Throughout the rest of

this se
tion we will use the following notation:

For any implementation A

1

of Controller

1

, let

CV

I

(A

1

) = Controlled-Vehi
les(Init-Vehi
les, A

1

, Delayed-Controller

2

(D

2

)), and

CV

D

(A

1

) = Controlled-Vehi
les(Init-Vehi
les, A

1

, C

2

).

We show that CV

D

(A

1

) implements CV

I

(A

1

).

The key result, proven in Lemma 6.4 proves that if the old safe-measure (the

one used in the ideal 
ase) is non-positive in some state of a traje
tory of Delayed-
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Figure 6-5: The timing diagram of the in- and outbound 
ontroller

Controller

2

(D

2

), then Delayed-Controller

2

(D

2

) will also output maximum de
elera-

tion, just as the old (ideal) 
ontroller C

2

would. Formally,

Lemma 6.4 Let A

1

be any implementation of Controller

1

, and let s be a rea
hable

state of the CV

D

(A

1

) system, su
h that s:
ollided = false and safe-measure � 0 .

Then s:a



2

= a

min

.

Proof: By indu
tion on the number of dis
rete and 
ontinuous steps in the hybrid

exe
ution. Initially, the lemma is true by restri
tion on the start states of D

2

. The

dis
rete steps e and the internal steps of A

1

do not 
hange any of the quantities

involved; the 
ollide step makes the Lemma true va
uously.

Without loss of generality, 
onsider hybrid exe
utions where all traje
tories have

duration less than d

o

. Let s be any rea
hable state su
h that s:
ollided = false

and safe-measure � 0 in s. If s:now < d

o

(we are still in the initial period when

the 
ontroller's 
ommands do not rea
h the vehi
le, and D

o

just outputs maximum

de
eleration), then by de�nition of the outbound bu�er D

o

(from the Init fun
tion),

a



2

= a

min

and we are done. Otherwise, at s we have

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

(6.1)

and

_x

2

� _x

1

+ v

allow

: (6.2)

Let's look at any rea
hable state s

0

of this system su
h that s

0

:now = s:now � d

o

(see Figure 6-5), and from whi
h s is rea
hable in time d

o

(s

0

is the state in whi
h the
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ontrollerD

2

de
ided what a

eleration the vehi
le should have in state s). This states

s

0


annot be in the same traje
tory be
ause of our restri
tion on hybrid exe
utions,

so we 
an use the indu
tive hypothesis on s

0

. For su
h a state, by Theorem 6.3,

s

0

:x

int2

= s:x

2

and s

0

: _x

int2

= s: _x

2

. Also, by Theorem 6.2,

s: _x

1

� s

0

: _x

d1

+ a

min

t

0

;

s:x

1

� s

0

:x

d1

+ s

0

: _x

d1

t

0

+

a

min

t

0

2

2

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

We take inequality 6.1, and substitute the delayed values for the a
tual ones (using

the statements above), still keeping the 
orre
tness of the inequality.

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

(at s)

x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

� (x

int2

+ l

2

) � �

( _x

int2

)

2

� ( _x

d1

+ a

min

t

0

)

2

� (v

allow

)

2

2a

min

;

(at s

0

)

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

But this is exa
tly equivalent to the �rst part of safe-measure

d

at s

0

!

We do the same with inequality 6.2.

_x

2

� _x

1

+ v

allow

(at s)

_x

int2

� _x

d1

+ a

min

t

0

+ v

allow

; (at s

0

)

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

But this is exa
tly equivalent to the se
ond part of safe-measure

d

at s

0

!

We proved that in s

0

, both parts of safe-measure

d

will be non-positive and, so,

safe-measure

d

� 0 . Then the de�nition of D

2

guarantees that s

0

:a



d2

= a

min

.

And by the de�nition of D

o

, s:a



2

= s

0

:a



d2

. Thus, in Delayed-Controller

2

(D

2

),

s:a



2

= a

min

as needed.
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Lemma 6.5 Let A

1

be any implementation of Controller

1

, and let f be the identity

relation on all the 
omponents of the CV

I

(A

1

) system, ex
ept that CV

I

(A

1

):x

int2

=

CV

D

(A

1

):x

2

, and CV

I

(A

1

): _x

int2

= CV

D

(A

1

): _x

2

. Then f is a forward simulation from

the 
omposed system CV

D

(A

1

) to CV

I

(A

1

).

Proof: By indu
tion on the number of steps in the hybrid exe
ution.

Start States: Trivial, sin
e all the restri
tions on start states of C

2

are also restri
-

tions on start states of Delayed-Controller

2

(D

2

).

Dis
rete Steps: The only dis
rete steps are 
ollide, e and the internal steps of A

1

.

The latter two steps 
annot 
hange any of the quantities involved. Sin
e the 
ollide

step is the same for both automata, it respe
ts the simulation relation. Also, the

e�e
ts of the 
ollide step satisfy Predi
ate S va
uously, thus the state rea
hed after

the 
ollide a
tion is a valid state of CV

I

(A

1

).

Traje
tories: Suppose that w

D

is an I-traje
tory of the delayed 
ontroller system

CV

D

(A

1

) and its �rst state s

D

is rea
hable. Suppose that s

C

is a rea
hable state

of CV

I

(A

1

) su
h that (s

D

; s

C

) 2 f . Then let the 
orresponding hybrid exe
ution

fragment of CV

I

(A

1

) 
onsist of a single traje
tory w

C

, where w

C

(t) = w

D

(t) (all

variables have the same values). It is obvious that the two traje
tories have the same

hybrid tra
e and that the �nal states of both traje
tories are f -related.

The only remaining thing to show is that w

C

is in fa
t a traje
tory allowed by C

2

.

By the de�nition of a traje
tory of C

2

we must show that

1. w

C

is a traje
tory of Controller

2

. This is trivial, sin
e it is also a restri
tion on

the traje
tories of D

2

, and the bu�ers do not 
hange any of the values involved.

2. If 
ollided = false in w

C

(0) then in all rea
hable states s of traje
tory w

C

, if

safe-measure � 0 , then s:a



2

= a

min

. This follows dire
tly from Lemma 6.4.
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Theorem 6.6 Delayed-Controller

2

(D

2

) is a 
orre
t 
ontroller for Init-Vehi
les.

Proof: We need to prove that for any implementation A

1

of Controller

1

, CV

D

(A

1

)

implements the safety spe
i�
ation automaton Safe-Vehi
les. CV

D

(A

1

) is 
omparable

to CV

I

(A

1

), and, by Lemma 6.5, there exists a simulation relation from CV

D

(A

1

) to

CV

I

(A

1

). So CV

D

(A

1

) implements CV

I

(A

1

).

CV

I

(A

1

) implements Safe-Vehi
les by Theorem 5.4. Thus, CV

D

(A

1

) also imple-

ments Safe-Vehi
les , whi
h means that Delayed-Controller

2

(D

2

) is, in fa
t, 
orre
t,

by de�nition 2.

6.4 Optimality of D

2

We give and prove ne
essary 
onditions for an implementation of Spe
-D

2

to be 
orre
t.

We base the proofs on the fa
t that if an implementation B

2

of Controller

2

is 
orre
t,

then for any implementation B

1

of Controller

1

, Controlled-Vehi
les(Init-Vehi
les, B

1

,

B

2

) must implement Controlled-Vehi
les(Init-Vehi
les, B

1

, Ne
essary-C

2

) (see se
-

tion 5.4). First, we de�ne a new automaton, Ne
essary-D

2

, whi
h gives ne
essary


onditions for safety. Then, we show that if for some implementation D of Spe
-D

2

there exists an implementation B

1

of Controller

1

su
h that Controlled-Vehi
les(Init-

Vehi
les, B

1

, Delayed-Controller

2

(D)) does not implement Controlled-Vehi
les(Init-

Vehi
les, B

1

, Delayed-Controller

2

(Ne
essary-D

2

)), then the Delayed-Controller

2

(D)

system will not be 
orre
t. This should be intuitively 
lear, sin
e we only 
hanged

safe-measure to a

ount for the \worst-
ase" (but possible) behavior of the vehi
les

during the last d

i

+d

o

time period of the delays. Relying on the fa
t that Ne
essary-C

2

is ne
essary simpli�es the proofs: we only need to show that a 
ontroller that would

let safe-measure

d

get negative, will eventually lead to a state in whi
h safe-measure

itself is negative. Then we 
an use ne
essity of Ne
essary-C

2

to show that any su
h


ontroller would not be 
orre
t.

Automaton 14(Ne
essary-D

2

): This automaton is exa
tly like D

2

, ex
ept that


ondition (2.1) for traje
tories is slightly modi�ed. In parti
ular, Ne
essary-D

2


om-

mands maximum de
eleration when safe-measure

d

< 0 , while D

2

does it when
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Variables:

Input, Output, Internal: same as in D

2

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

it satis�es 
ondition 1 of D

2

, plus

2. for all t 2 I ,

2.1. if 
ollided = false and safe-measure

d

< 0 then w(t):a



2

= a

min


onditions 2.2-2.4 of D

2

are satis�ed

Figure 6-6: Ne
essary-D

2

Hybrid Automaton

safe-measure � 0 . The formal model is given in Figure 6-6; thus the only di�er-

en
e is the boundary in 
ondition (2.1). We 
laim that this 
ondition is ne
essary to

guarantee 
orre
tness.

De�nition 8(Predi
ate S

d

): If 
ollided = false then safe-measure

d

� 0 .

We now de�ne Bad

d


ontrollers, similar to the Bad 
ontrollers in the ideal 
ase

in the last 
hapter.

De�nition 9(Bad

d

): Let B

1

and B

d2

be implementations of Controller

1

and Spe
-

D

2

, respe
tively. Then B

1

is Bad

d

for B

d2

if and only if in the system Controlled-

Vehi
les(Init-Vehi
les, B

1

, Delayed-Controller

2

(B

d2

)) there exists a rea
hable state s

that violates Predi
ate S

d

. B

d2

is Bad

d

if and only if there exists some B

1

that is

Bad

d

for this B

d2

.

De�nition 10(VeryBad

d

): Let an implementation B

0

1

of Controller

1

be 
alled

VeryBad

d

for an implementation D of Controller

2

if

1. B

0

1

is Bad

d

for B

d2

;

2. In any exe
ution of Controlled-Vehi
les(Init-Vehi
les, B

0

1

, B

d2

), for any state s

that does not satisfy Predi
ate S, stri
tly after the o

urren
e of s, a



1

= a

min

.

Based on the above de�nitions, we state an existen
e lemma, very similar to

Lemma 5.5.
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Lemma 6.7 If B

d2

is Bad

d

then there exists an implementation B

0

1

of Controller

1

,

su
h that B

0

1

is VeryBad for B

d2

.

Proof: The proof is identi
al to proof of a similar Lemma 5.5 in the previous Chapter.

Next, we prove that if an implementation of Spe
-D

2

does not implement D

2

then

it must be Bad

d

.

Lemma 6.8 Let B

d2

be an implementation of Spe
-D

2

. If there exists an implemen-

tation B

1

of Controller

1

su
h that Controlled-Vehi
les(Init-Vehi
les, B

1

, Delayed-

Controller

2

(B

d2

)) does not implement Controlled-Vehi
les(Init-Vehi
les, B

1

, Delayed-

Controller

2

(Ne
essary-D

2

)) then B

d2

is Bad

d

.

Proof: Identi
al to that of Lemma 5.6.

Lemma 6.9 relates the Bad

d

and Bad terms.

Lemma 6.9 Let B

d2

be an implementation B

d2

of Spe
-D

2

. If B

d2

is Bad

d

, then

Delayed-Controller

2

(B

d2

) is Bad.

Proof: Let B

d2

be a Bad

d

implementation of Spe
-D

2

. Then, by Lemma 6.7, there

must exist an implementation B

0

1

of Controller

1

that is VeryBad for B

d2

. We need

to prove that B

0

1

is Bad for Delayed-Controller

2

(B

d2

), and not only Bad

d

for B

d2

.

In parti
ular, we need to show that there exists a rea
hable state of Controlled-

Vehi
les(Init-Vehi
les, B

0

1

, Delayed-Controller

2

(B

d2

)) that violates Predi
ate S, and

not only Predi
ate S

d

(violation of Predi
ate S

d

follows from the de�nition of Bad

d

).

Let's look at a rea
hable state s of this Controlled-Vehi
les system that violates

Predi
ate S

d

; existen
e of this state follows from the fa
t that B

d2

is Bad

d

. For su
h

s, 
ollided = false and safe-measure

d

< 0 , meaning that

x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

� (x

int2

+ l

2

) < �

( _x

int2

)

2

� ( _x

d1

+ a

min

t

0

)

2

� (v

allow

)

2

2a

min

(6.3)
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and

_x

d1

+ a

min

t

0

< _x

int2

� v

allow

; (6.4)

where t

0

= min (�

_x

d1

a

min

; d

i

+ d

o

).

By the de�nition of B

0

1

, it always de
elerates at the maximum allowable rate, a

min

.

Let's look at a state s

0

rea
hable from s in time d

o

, su
h that s

0

:now = s:now + d

o

.

Then in s

0

,

s

0

: _x

1

= s: _x

d1

+ a

min

t

0

;

s

0

:x

1

= s:x

d1

+ s: _x

d1

t

0

+

1

2

a

min

t

0

2

;

s

0

: _x

2

= s: _x

int2

and s

0

:x

2

= s:x

int2

;

where t

0

= min (�

_x

d1

a

min

; d

i

+ d

o

). The �rst 2 equations follow from the fa
t that po-

sition and velo
ity are integrals of a

eleration (Property 2 of Vehi
les); the last 2

follow from Theorem 6.3. Note that these equalities also hold in the initial d

i

time

interval, be
ause our data in the inbound delay bu�er assumes that the �rst 
ontroller

is de
elerating at the maximum rate.

Substituting these equations into the above inequalities will yield the two parts of

safe-measure in state s

0

; moreover, both parts turn out to be negative, whi
h means

that in state s

0

, safe-measure < 0 . But safe-measure < 0 means that Predi
ate S is

violated, and, therefore, Delayed-Controller

2

(B

d2

) is Bad.

Sin
e we have just shown that the delayed 
ontroller (
omposed with delay bu�ers)

implements the non-delayed one, we 
an use the ne
essity property of the ideal 
ase


ontroller, to easily prove the ne
essity of the delayed 
ontroller:

Theorem 6.10 Let B

d2

be an implementation of Spe
-D

2

. If there exists an imple-

mentation B

1

of Controller

1

su
h that Controlled-Vehi
les(Init-Vehi
les, B

1

, Delayed-

Controller

2

(B

d2

)) does not implement Controlled-Vehi
les(Init-Vehi
les, B

1

, Delayed-

Controller

2

(Ne
essary-D

2

)) then Delayed-Controller

2

(B

d2

) is not 
orre
t.

Proof: B

d2

must be Bad

d

, by Lemma 6.8. By Lemma 6.9, Delayed-Controller

2

(B

d2

)

is Bad. But then, by Theorem 5.9, there exists an implementation B

1

of Controller

1

,
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su
h that a system Controlled-Vehi
les(Init-Vehi
les, B

1

, Delayed-Controller

2

(B

d2

))

has a rea
hable state that violates safety. Sin
e this Controlled-Vehi
les system

violates safety, it does not implement Safe-Vehi
les, whi
h means that Delayed-

Controller

2

(B

d2

) is not 
orre
t, by De�nition 2.

Theorem 6.6 proves that Delayed-Controller

2

(D

2

) is suÆ
ient, and Theorem 6.10

proves that Delayed-Controller

2

(Ne
essary-D

2

) is ne
essary to guarantee 
orre
tness.

Sin
e the distin
tion between D

2

and Ne
essary-D

2

is very small, they 
an serve as

the 
orre
tness spe
i�
ation.
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Chapter 7

Un
ertainty

Our model already in
ludes both the inbound and the outbound delays in sending and

re
eiving information between the 
ontroller and Init-Vehi
les. We introdu
e extra


omplexity whi
h makes the model even more realisti
: the inbound and outbound

un
ertainty (inexa
tness) in information. The inbound un
ertainty is the maximum

absolute di�eren
e between the a
tual position and velo
ity data of the vehi
le and

the data reported by the sensors to the 
ontroller; it arises from inexa
t sensors that


ommuni
ate data to the 
ontrollers. The outbound un
ertainty is the maximum

absolute di�eren
e between the a

eleration 
ommanded by the 
ontroller and the

a

eleration a
tually implemented by the vehi
le; it is due to the inherent inexa
tness

in the performan
e of the brakes and a

elerators.

We use similar methods to the ones used in the delay 
ase. A spe
ial \un
ertainty

bu�er" automaton is de�ned, similar to the previous D-Bu�er automaton. We use two

instan
es of this parameterized bu�er to get the inbound and outbound un
ertainty.

Then, we 
ompose these two bu�ers with the modi�ed 
ontroller that a

ounts for

un
ertainties, and prove that this new 
omposed 
ontroller is suÆ
ient to guarantee

safety. The proof uses the fa
t that the Delayed-Controller

2

(D

2

) is suÆ
ient. This

use of levels of abstra
tion makes the proofs for this 
ompli
ated 
ase, involving both

delays and un
ertainties, easier to write and understand.
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7.1 The Un
ertainty Bu�er

We introdu
e a parameterized un
ertainty bu�er, similar in fun
tion to the delay

bu�er.

Parameters:

n - the number of input variables

S

i

, S

o

- two disjoint sets of variables with n members in ea
h set

Let V be a valuation fun
tion, same as in D-Bu�er

var : S

i

! S

o

� R

+

, with sele
tors v

o

and �u

Variables:

Input: S

i

Output:S

o

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. for all v

o

2 S

o

, v

o

(t) is an integrable fun
tion

2. for all t 2 I , t > 0 the following holds for all v

i

2 S

i

:

V (var(v

i

):v

o

) 2 [V (v

i

)� var(v

i

):�u; V (v

i

) + var(v

i

):�u℄

Figure 7-1: U-Bu�er (n, S

i

, S

o

, var) Hybrid I/O Automaton

Automaton 15(U-Bu�er(n, S

i

, S

o

, var)): The U-Bu�er automaton nondetermin-

isti
ally perturbs all input variables within given bounds to produ
e output variables.

Parameters

� n is the number of input variables;

� S

i

, S

o

are two disjoint sets of input and output variables, respe
tively;

� var : S

i

! S

o

�R

+

is a 1-1 mapping from input to pairs 
onsisting of an output

variable and an un
ertainty bound. So, the input variable v

i

be
omes output

variable var(v

i

):v

o

, with maximum un
ertainty var(v

i

):�u, where v

i

2 S

i

; v

o

2

S

o

;�u 2 R

+

.

Variables The input and output variables are parameterized by the S

i

and S

o

sets.

It does not matter for the generalized automaton whi
h variables it perturbs.
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Traje
tories The �rst restri
tion guarantees that all the data is still integrable

after the un
ertainty bu�er. This is important, be
ause both the 
ontrollers and

the Init-Vehi
les automata integrate the data from the bu�ers to obtain position and

velo
ity data. Condition (2) lets outputs vary within given bounds of the inputs. The

bounds are given by the var(v

i

):�u fun
tion and represent the maximum absolute

value of un
ertainty in the data for variable v

i

.

Theorem 7.1 In all rea
hable states s of U-Bu�er, for all v

i

2 S

i

,

1. s:V (var(v

i

):v

o

) � s:V (v

i

)� var(v

i

):�u,

2. s:V (var(v

i

):v

o

) � s:V (v

i

) + var(v

i

):�u:

Proof: By restri
tion (2) on traje
tories of U-Bu�er.

7.2 The System

The 
ontrollerD

2

is implemented by a 
omposition of three hybrid automata: another


ontroller U

2

and two instan
es of the un
ertainty bu�er | the inbound and outbound

un
ertainty bu�ers.The 
omposed system is 
alled Un
ertain-Controller

2

(see Figure

7-2).

We de�ne two instan
es of the U-Bu�er automaton { the inbound and outbound

un
ertainty bu�ers. These bu�ers use the following 
onstants:

� Æ - the maximum absolute un
ertainty in position data;

�

_

Æ - the maximum absolute un
ertainty in velo
ity data;

�

�

Æ - the maximum absolute un
ertainty in a

eleration.

Automaton 16(U

i

): U

i

= U-Bu�er(3, fx

d1

; _x

d1

; �x

d1

g, fx

u1

; _x

u1

; �x

u1

g, var), where

var(x

d1

) = (x

u1

; Æ), var( _x

d1

) = ( _x

u1

;

_

Æ), and var(�x

d1

) = (�x

u1

;

�

Æ). This automaton

inputs the delayed position, velo
ity and a

eleration data from the inbound delay

bu�er D

i

, and outputs them with \un
ertainty" to the 
ontroller U

2

.
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Figure 7-2: Sensor-Un
ertainty Vehi
les Model

Automaton 17(U

o

): U

o

= U-Bu�er(1, fa



u1

g, fa



d1

g, var), where var(a



u1

) =

(a



d1

;

�

Æ). The outbound un
ertainty bu�er automaton inputs the a

eleration 
om-

mands from the 
ontroller U

2

, and outputs the perturbed values to the outbound

delay bu�er D

o

.

In the un
ertainty 
ase we give a spe
i�
 
ontroller U

2

that a

ounts for un
er-

tainties, and prove that it is suÆ
ient to guarantee 
orre
tness. No spe
i�
ation


ontroller, or parameterized 
omposition automaton is given in this 
ase | optimal-

ity results are not presented, and only suÆ
ien
y of a spe
i�
 
ontroller is proved.

This 
ontroller is presented below.

Automaton 18(U

2

): The 
ontroller U

2

(shown in �gure 7-3) is the same as D

2

ex
ept that:

1. Input and output variables 
ommuni
ate through un
ertainty bu�ers; the a

2

bu�ers remembers the new output variable a



u2

.

2. _x

int2

is rede�ned to a

ount for the \worst" possible un
ertainty in the brake

performan
e, i.e., it assumes that the vehi
le a

elerates at a



u2

+

�

Æ.

3. safe-measure

u

is de�ned to a

ount for the un
ertainties.
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De�nition:

safe-measure

u

= max(((x

u1

� Æ) + (_x

u1

�

_

Æ)t

00

+

a

min

t

00

2

2

)� (x

int2

+ _x

int2

d

o

+

�

Æd

2

o

2

+ l

2

)

+

( _x

int2

+

�

Æd

o

)

2

�( _x

u1

�

_

Æ+a

min

t

00

)

2

�(v

allow

)

2

2a

min

;

( _x

u1

�

_

Æ) + a

min

t

00

� ( _x

int2

+

�

Æd

o

) + v

allow

);

where t

00

= min(d

i

+ d

o

;�

_x

u1

+

_

Æ

a

min

)

Variables:

Input: x

u1

; _x

u1

2 R

�0

, �x

u1

2 R

x

2

; _x

2

2 R

�0

, �x

2

2 R

Output: a



u2

, initially if safe-measure

u

� 0 , then a



u2

= a

min

�

�

Æ,

else arbitrary, where a



u2

� a

min

Internal: a

2

- maps from an interval [0; d

o

℄ to R,

initially, 8t 2 [0; d

o

℄; a

2

(t) = a

min

�

�

Æ

x

int2

, _x

int2

- the position and velo
ity of the se
ond vehi
le after time d

o

passes,

provided 
ollided = false ;

initially, _x

int2

= _x

2

+ a

min

t; x

int2

= x

2

+ _x

2

t+

a

min

t

2

2

, where t = min(d

o

;�

_x

2

a

min

).

Traje
tories:

an I-traje
tory w is in
luded among the set of nontrivial traje
tories exa
tly if

1. w is a traje
tory of Controller

2

2. if 
ollided = false in w(0) then for all t 2 I , t > 0:

2.1. if in w(t), safe-measure

u

� 0 then a



u2

= a

min

�

�

Æ else a



u2

� a

min

2.2. 8t

0

2 [0; d

o

℄,

w(t):a

2

(t

0

) =

8

>

<

>

:

w(0):a

2

(t

0

� t) if t

0

> t

w(t� t

0

):a



d2

otherwise

2.3. w(t): _x

int2

= w(t): _x

2

+

R

0

d

o

(w(t):a

2

(u) +

�

Æ)du

2.4. w(t):x

int2

= w(t):x

2

+

R

0

d

o

w(t): _x

int2

du

Figure 7-3: U

2

Hybrid I/O Automaton
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The only 
hanges from safe-measure

d

are that the �rst vehi
le's data is adjusted

to the \worst possible" un
ertainty in the behavior of the �rst vehi
le. This \worst

possible" behavior is de�ned by the following inequalities:

1. x

d1

� x

u1

� Æ;

2. _x

d1

� _x

u1

�

_

Æ;

3. x

D

2

int2

� x

D

2

int2

+ _x

U

2

int2

d

o

+

�

Æd

2

o

2

;

4. _x

D

2

int2

� _x

U

2

int2

+

�

Æd

o

;

These inequalities are used in 
hanging safe-measure

d

to safe-measure

u

. The

proof of these relationships is given below, in Theorem 7.2.

Automaton 19(Un
ertain-Controller

2

): Un
ertain-Controller

2

= VarHide(fx

u1

,

_x

u1

, �x

u1

, a



u1

g, U

i

k U

2

k U

o

), is the 
omposition of the un
ertainty bu�ers with

the new 
ontroller. We show that it implements D

2

in the 
ontext of the Controlled-

Vehi
les system. This automaton is not parameterized by the 
hoi
e of the 
ontroller,

unlike the previous 
omposed 
ontrollers. No parameterization is ne
essary be
ause

only suÆ
ien
y of the spe
i�
 
ontroller U

2

is proven.

Theorem 7.2 Let A

1

be any implementation of Controller

1

. Then, in any rea
h-

able state s of the Controlled-Vehi
les(Vehi
les, A

1

, Delayed-Controller

2

(Un
ertain-

Controller

2

)) system su
h that s:
ollided = false, the following hold:

1. a



d2

� a



u2

+

�

Æ;

2. x

d1

� x

u1

� Æ;

3. _x

d1

� _x

u1

�

_

Æ;

4. �x

d1

� �x

u1

�

�

Æ;

5. x

D

2

int2

� x

U

2

int2

+ _x

U

2

int2

d

o

+

�

Æd

2

o

2

;

6. _x

D

2

int2

� _x

U

2

int2

+

�

Æd

o

.
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Proof: Claim (1) follows from Property 2 of U-Bu�er; 
laims (2)-(4) follow from

Property 1 of U-Bu�er. Finally, 
laims (5) and (6) follow from 
laim (1) of this the-

orem and Property 2 of Vehi
les (position and velo
ity are integrals of a

eleration).

Note that the symmetri
 properties also hold, but these are the relationships that

are used later on in the proofs.

7.3 Corre
tness of U

2

As in the delayed 
ase, we want to simulate the previous delayed system using the

new un
ertain system, and thus show that the new 
ontroller is suÆ
ient.

Throughout this se
tion we will use the following notation: for any implementation

A

1

of Controller

1

, let

CV

U

(A

1

) = Controlled-Vehi
les(Init-Vehi
les, A

1

, Delayed-Controller

2

(Un
ertain-

Controller

2

)), and

and CV

D

(A

1

) = Controlled-Vehi
les(Init-Vehi
les, A

1

, Delayed-Controller

2

(D

2

)).

First we show that if the old safe-measure

d

(the one used in the delayed 
ase) is

non-positive in some state of Un
ertain-Controller

2

, then the new 
ontroller U

2

(the

one that has inbound and outbound un
ertainty), also outputs maximum de
eleration.

Formally,

Lemma 7.3 Let A

1

be any implementation of Controller

1

, and let s be a rea
hable

state of the CV

U

(A

1

) system, su
h that s:
ollided = false and safe-measure

d

� 0 .

Then, safe-measure

u

� 0 and s:a



u2

= a

min

�

�

Æ.

Proof: Initially, the lemma is true by restri
tion on initial 
onditions of Un
ertain-

Controller

2

. Consider any rea
hable state s of CV

U

(A

1

), su
h that s:
ollided = false

and safe-measure

d

� 0. At s we have

(x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

)� (x

D

2

int2

+ l

2

) +

( _x

D

2

int2

)

2

� ( _x

d1

+ a

min

t

0

)

2

� (v

allow

)

2

2a

min

� 0

(7.1)
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and

_x

d1

+ a

min

t

0

+ v

allow

� _x

D

2

int2

� 0 (7.2)

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

Let t

00

= min(d

i

+ d

o

;�

_x

D

2

int2

+

_

Æ

a

min

). Then, by Theorem 7.2, in s,

1. x

d1

� x

u1

� Æ;

2. _x

d1

� _x

u1

�

_

Æ;

3. x

D

2

int2

� x

U

2

int2

+ _x

U

2

int2

d

o

+

�

Æd

2

o

2

;

4. _x

D

2

int2

� _x

U

2

int2

+

�

Æd

o

.

Using the above inequalities, we repla
e ea
h delayed variable (x

d1

, _x

d1

, x

D

2

int2

,

_x

D

2

int2

) in inequalities 7.1 and 7.2 with an expression that is smaller than the delayed

variable, and using only the \un
ertain" values, whi
h are the ones known to U

2

.

Then, we get exa
tly the two parts of safe-measure

u

; moreover, sin
e we used only

smaller values, the resulting expressions are still non-positive. So,

safe-measure

u

� 0

Then, by the de�nition of U

2

, a



u2

= a

min

�

�

Æ, as needed.

Lemma 7.4 Let A

1

be any implementation of Controller

1

, and let f be an identity

relation on all state 
omponents of CV

D

(A

1

), ex
ept that a



CV

D

d2

= max(a



CV

U

u2

; a

min

).

Then f is a simulation from CV

U

(A

1

) to CV

D

(A

1

).

Proof: By indu
tion on the number of steps in the hybrid exe
ution.

Start States: The restri
tions on start states of CV

D

(A

1

) and CV

U

(A

1

) are iden-

ti
al.
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Dis
rete Steps: The only dis
rete steps are 
ollide, e and the internal steps of A

1

.

The latter two steps 
annot 
hange any of the quantities involved. Sin
e the 
ollide

step is the same for both automata, it respe
ts the simulation relation. Also, the

e�e
ts of the 
ollide step satisfy Predi
ate S

d

va
uously, thus the state rea
hed after

the 
ollide a
tion is a valid state of CV

D

(A

1

).

Traje
tories: Suppose that w

U

is an I-traje
tory of the un
ertainty-bu�ered sys-

tem CV

U

(A

1

) and its �rst state s

U

is rea
hable. Suppose that s

D

is a rea
hable state

of CV

D

(A

1

) su
h that (s

U

; s

D

) 2 f . Then let the 
orresponding hybrid exe
ution

fragment of CV

D

(A

1

) 
onsist of a single traje
tory w

D

, where all the state 
ompo-

nents in all the states of w

D

are equal to 
orresponding 
omponents in w

U

, ex
ept

that w

D

:a



d2

= max(w

U

:a



d2

; a

min

). It is 
lear that the two traje
tories have the

same hybrid tra
e and that the �nal states of both traje
tories are f -related.

The only remaining thing to show is that w

D

is in fa
t a traje
tory of CV

D

(A

1

). In

parti
luar, we must show that the proje
tions of w

D

on the 
omponents of CV

D

(A

1

)

are allowed by these 
omponents.

First, we show that w

D

is allowed by the Delayed-Controller

2

(D

2

) 
ontroller. By

the de�nition of a traje
tory we must show that

1. w

D

is allowed by Controller

2

.

This is trivial, sin
e it is also a restri
tion on the traje
tories of U

2

, and the

bu�ers preserve these 
onditions by preserving integrability.

2. If 
ollided = false in w

D

(0) then 8t 2 I su
h that safe-measure

d

� 0 we have

w

D

(t):a



d2

= a

min

.

Consider the traje
tory w

U

of CV

U

(A

1

). Sin
e safe-measure

d

uses the same

variables with the same values in both the CV

D

(A

1

) and the CV

U

(A

1

) systems,

we 
an apply Lemma 7.3, so that w

U

(t):a



u2

= a

min

�

�

Æ. By Theorem 7.2, in

all rea
hable states s of CV

U

(A

1

), s:a



d2

� s:a



u2

+

�

Æ, so w

U

(t):a



d2

� a

min

.

Then, using the de�nition of traje
tory w

D

,

w

D

(t):a



d2

= max(w

U

(t):a



d2

; a

min

) = a

min

;

77



as needed.

We also show that the proje
tion of w

D

on Init-Vehi
les is allowed by Init-Vehi
les,

and has the same hybrid tra
e as w

U

.

We know that w

U

is allowed by Init-Vehi
les. But w

D

is exa
tly the same as

w

U

, ex
ept for the input variable a



2

. Also, sin
e all the variables are the same,

the hybrid tra
e of w

D

and w

U

is the same. Thus, we only need to show that the


ondition (3) of Init-Vehi
les traje
tories, namely, that w

D

:�x

2

= max(w

D

:a



2

; a

min

),

is preserved.

By the de�nition of w

D

, w

D

(t):�x

2

= w

U

(t):�x

2

for all t throughout the traje
tory.

By restri
tion (3) on traje
tories of Init-Vehi
les, w

U

(t):�x

2

= max(w

U

(t):a



2

; a

min

).

Also, by the de�nition of w

D

, w

D

(t):a



2

= max(w

U

(t):a



2

; a

min

). Putting these

equations together we get

w

D

(t):�x

2

= w

U

(t):�x

2

= max(w

U

(t):a



2

; a

min

) = w

D

(t):a



2

= max(w

D

(t):a



2

; a

min

):

Therefore, w

D

is a valid traje
tory of Init-Vehi
les.

Theorem 7.5 Delayed-Controller

2

(Un
ertain-Controller

2

) is a 
orre
t 
ontroller for

Init-Vehi
les.

Proof: We need to prove that for any implementation A

1

of Controller

1

, CV

U

(A

1

),

implements Safe-Vehi
les. By Lemma 7.4, there is a simulation relation f from

CV

U

(A

1

) to CV

D

(A

1

). Sin
e CV

U

(A

1

) and CV

D

(A

1

) are 
omparable, CV

U

(A

1

) im-

plements CV

D

(A

1

).

By Theorem 6.6, Delayed-Controller

2

(D

2

) is 
orre
t, whi
h means that CV

D

(A

1

)

implements Safe-Vehi
les. Then, sin
e CV

U

(A

1

) implements CV

D

(A

1

), CV

U

(A

1

) also

implements Safe-Vehi
les. It follows that Delayed-Controller

2

(Un
ertain-Controller

2

)

is 
orre
t.
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7.4 Optimality

We do not present a ne
essary 
ontroller here, as opposed to the 
ontrollers 
onsid-

ered in the previous 
hapters. Before, we always made safe-measure to a

ount for

the \worst-
ase", but possible, 
onditions. Then, we were able to prove ne
essity by

making the �rst vehi
le have its worst possible behavior. However, with the un
er-

tainty involved, we did not make safe-measure as tight as possible. The problem is

that in our analysis, the position and velo
ity data are used independently. However,

the position and velo
ity data are dependent upon ea
h other, and thus we 
ould use

the relationship between the two values to get tighter approximations to their real

values, resulting in a more optimal 
ontroller. We did not model it this way be
ause it

is not realisti
: in most situations it is impra
ti
al to dedu
e the tighter bounds, sin
e

just 
al
ulating these bounds takes too mu
h time, eliminating any bene�ts obtained

from using tighter bounds. This would ultimately de
rease the performan
e, instead

of improving it.
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Chapter 8

Con
lusion and Future Work

The system 
onsisting of two vehi
les moving on a single tra
k has been modeled

using hybrid automata, in
luding all the 
omponents (physi
al vehi
les, 
ontrollers,

delay and un
ertainty bu�ers), and the intera
tions among them. Safety 
onditions

were formulated using invariant assertions. Corre
tness and optimality of 
ontrollers

were proved using 
omposition, simulation mappings and invariants, and the meth-

ods of mathemati
al analysis. Complexity (delays and un
ertainty) was introdu
ed

gradually, using levels of abstra
tion, signi�
antly simplifying the proofs.

The 
ase study formally des
ribes a general 
ontroller that is ne
essary and suf-

�
ient to guarantee the safety requirement regardless of the behavior of the leading

vehi
le. Su
h a 
ontroller 
an be later reused to prove 
orre
tness of 
ompli
ated

maneuvers, su
h as merging and splitting, where the setup is similar.

There are two important results of this resear
h. Generally, it demonstrates the

power of the hybrid automata model, the asso
iated proof methods in reasoning about

interesting hybrid systems, and the use of abstra
tion levels as a way of handling


omplexity. More spe
i�
ally, we give a reusable model of the automated vehi
les,

in
luding their 
ontrollers and sensors, whi
h in
orporates delays and un
ertainties

dire
tly, and we derive and prove ne
essary and suÆ
ient 
onditions for satisfying the

safety requirement of the vehi
les.

Future work will address the following problems:
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1. In reality, the 
ontrollers 
an only 
ontrol the jerk, and not the a

eleration of

the vehi
les. Without further 
ompli
ating the models, we 
an still model the


ontrollers as 
ontrolling the a

eleration, but the outbound delay (and, possi-

bly, un
ertainty) have to be in
reased to a

ount for the fa
t that it takes some

time for the 
ontroller to rea
h desired a

eleration. Using this approa
h, the

outbound delay and/or un
ertainty might be
ome fun
tions of 
urrent a

eler-

ation, and not 
onstants.

2. We have developed ne
essary and suÆ
ient 
onditions for a 
ontroller to guar-

antee safety in the presen
e of delays and un
ertainties. This 
ontroller 
an

now serve as a 
orre
tness spe
i�
ation. We 
ould prove 
orre
tness of \real"

algorithms, for merging or splitting, by testing them with our 
ontroller.

3. In this thesis we only handled the �rst 
ollision, when in fa
t, even in the 
ase

of two vehi
les, multiple 
ollisions 
an o

ur. Although all of the models do not

have to be 
hanged, most of the proofs would have to be reworked to handle

this 
ase. This would be similar to Lygeros and Lyn
h's work in [10℄, but would

have more detailed vehi
le models, in
luding delays and un
ertainties.

4. Finally, it would be interesting to extend the models and the proofs to the mul-

tiple vehi
le 
ase. If we limit the analysis to only pairwise 
ollisions (ex
luding

simultaneous 
ollisions of three or more vehi
les), then the models and some

of the analysis from this thesis 
an be reused, but many new problems would

arise. In order to remove the pairwise-only 
ollisions restri
tion, some of the

models would have to be reworked to model these 
ollisions. The results would

be more general than in [10℄, sin
e delays and un
ertainties would be in
luded

in the model.
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