
Safety Veri�ation for Automated Vehile

Maneuvers

by

Ekaterina Dolginova

Submitted to the Department of Eletrial Engineering and Computer

Siene

in partial ful�llment of the requirements for the degrees of

Master of Engineering in Eletrial Engineering and Computer

Siene

and

Bahelor of Siene in Computer Siene and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 1998



 Ekaterina Dolginova, MCMXCVIII. All rights reserved.

The author hereby grants to MIT permission to reprodue and

distribute publily paper and eletroni opies of this thesis doument

in whole or in part, and to grant others the right to do so.

Signature of Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Department of Eletrial Engineering and Computer Siene

May 22, 1998

Certi�ed by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Nany A. Lynh

NEC Professor of Software Siene and Engineering

Thesis Supervisor

Aepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Arthur C. Smith

Chairman, Department Committee on Graduate Theses



2



Safety Veri�ation for Automated Vehile Maneuvers

by

Ekaterina Dolginova

Submitted to the Department of Eletrial Engineering and Computer Siene

on May 22, 1998, in partial ful�llment of the

requirements for the degrees of

Master of Engineering in Eletrial Engineering and Computer Siene

and

Bahelor of Siene in Computer Siene and Engineering

Abstrat

In this thesis we formally model a system onsisting of two vehiles moving along a

single trak, plus ontrollers that operate the vehiles, plus ommuniation hannels.

The modeling formalism used is the Hybrid Automata model developed by Lynh,

Segala, Vaandrager and Weinberg. We formulate a key safety requirement of suh a

system, namely, that the two vehiles never ollide at a relative veloity greater than

a given bound, v

allow

. We give neessary and suÆient onditions for the ontroller of

the follower vehile to guarantee that the safety requirement is satis�ed regardless of

the behavior of the leading vehile. The model inludes handling of ommuniation

delays and unertainty. The proofs use omposition, invariants, and levels of abstra-

tion, together with methods of mathematial analysis. This ase study is derived

from the California PATH intelligent highway projet.

Thesis Supervisor: Nany A. Lynh
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Chapter 1

Introdution

1.1 Problem Statement and Motivation

The Theory of Distributed Systems researh group is urrently working on modeling,

verifying and analyzing problems arising in automated transit systems. The formal

tools used inlude the standard tehniques for distributed algorithms | invariants,

simulations (levels of abstration) and automaton omposition, plus standard meth-

ods for reasoning about ontinuous proesses | di�erential equations and mathemat-

ial analysis. The work so far suggests that these methods are apable of providing

good results about safety and performane of automated transit systems.

Inreasing highway ongestion has spurred reent interest in the design of intelli-

gent highway systems, in whih ars operate under partial or total omputer ontrol.

An important new e�ort in this area is the California PATH projet (see, for example,

[16℄), whih has developed a design for automating the operation of ars in several

lanes of seleted California highways. This Master of Engineering thesis is a ase

study of automated ar maneuvers arising in the PATH projet. We onsider two

ars traveling in a single lane at a high speed with small distane between them. The

goal is for the seond (follower) ar to preserve safety, namely, that the two vehi-

les never ollide at a relative veloity greater than a given bound, given arbitrary

behavior of the �rst (leader) ar.

The system is hybrid in that it involves both disrete and ontinuous behavior:
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disrete behavior appears in the disrete ations of the ontrollers, points of ollision,

plus ommuniation among the various system omponents, whereas ontinuous be-

havior appears in the motion of the ars. The ombination forms a hybrid system

of onsiderable omplexity. The problem is further ompliated by the presene of

delays and unertainties in the behavior of sensors, brakes and ontrollers.

The goals of this projet are to model this system using Hybrid Automata [12℄,

[13℄, and to derive and prove neessary and suÆient onditions that a ontroller of

the follower ar must satisfy in order to guarantee the safety requirement regardless

of the behavior of the leading vehile. In [4℄, a proof of suh a safety property is

outlined, for the spei� vehile maneuver given in that paper. The key to the proof

turns out to be that the given maneuver always ensures that either (a) the vehiles

are suÆiently far apart that the seond vehile an slow down suÆiently before

hitting the �rst vehile, or (b) the relative speeds of the two vehiles are already lose

enough.

Although the outline [4℄ gives the key ideas, from our point of view, it is inomplete

as a safety veri�ation. In partiular, Frankel et al. do not inlude a omplete

model of all system omponents | the disrete omponents are not modeled | and

do not seem to over all ases that ould arise | for instane, only some types of

ommuniation delay are handled and unertainties in the values of some parameters

are not onsidered. The analysis ontains informal \jumps" in whih ertain types of

behavior are laimed to be the \worst possible", and then only these ases are analyzed

arefully; however, it is not made lear how one an be sure that the laimed worst

ases are in fat the worst. Another problem is that the analysis is presented for

just the single maneuver, and is intertwined with the proofs of other properties for

that maneuver (suess, time optimality). However, it seems that the analysis should

be deomposable, for example, proving the safety requirement in a way that allows

the proof to apply to other maneuvers. In this thesis, we model the whole system,

inluding delays and unertainties, and reason about it in a modular fashion, so that

the proofs and the approah ould be reused in other problems.

10



1.2 Related Work

In [12℄, Lynh, Segala, Vaandrager and Weinberg have developed a formal model,

the hybrid (input/output) automaton model , for hybrid systems, together with as-

soiated proof tehniques. These tehniques inlude methods based on automaton

omposition, invariant assertions, levels of abstration, and mathematial analysis

for reasoning about ontinuous behavior. Lynh et al. have developed methods of

inorporating standard analysis tehniques into automaton-based proofs.

These methods have been used to model and verify a variety of simple real-time

systems, inluding several very simple maneuvers arising in automated transporta-

tion systems [11℄,[17℄,[18℄. Reently, some more omplex systems have been modeled

and analyzed with the same approah: Livadas used similar methods in modeling

automated vehile protetion subsystems, as used in the Raytheon Personal Rapid

Transit projet (PRT 2000) [6℄; and Lygeros and Lynh modeled and analyzed the

TraÆ Alert and Collision Avoidane System (TCAS) onit resolution strategies

[9℄.

Lygeros and Lynh [10℄ have also worked on a problem similar to the one presented

in this thesis. The authors, using a similar approah, modeled a system omprised

of a string of vehiles moving along a single trak and proved safety requirements

of suh a system. However, their model involved an ideal system with no delays or

unertainties. In this thesis, these ompliations are inorporated into the model, but

the problem is simpli�ed by dealing only with 2 vehiles, and only worrying about

the safety of the �rst ollision. In future work, it will be interesting to extend this

model to handle multiple vehiles. An alternative approah to proving safety for a

spei� vehile maneuver, based on game theory, is presented in [7℄,[8℄.

A representative olletion of prior work in the modeling and veri�ation of hy-

brid systems is available in the proeedings of the workshops on hybrid systems

[1℄,[3℄,[5℄,[15℄. Nearly all of this work di�ers from ours in using either ontrol theory

methods, or else algorithmi tehniques (e.g., deision proedures based on �nite-state

analysis). Other formal models for hybrid systems appear in [14℄,[2℄; these di�er from
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ours primarily in plaing less emphasis on issues of external behavior, omposition

and abstration.

1.3 Our Approah

The approah of this researh projet is to formally model the entire system, inluding

the two vehiles and their sensors and ontrollers. This way, ommuniation delays,

and delay and unertainty in applying the ontrol ommands are inluded in the

model of the system. We use Hybrid Automata, desribed in [12℄,[13℄ as a framework

for modeling and reasoning about hybrid systems.

A parameterized safety riterion is formulated in terms of the model. The model

and the safety requirement are made very general, so that they an reet a variety

of situations. This approah allows the later reuse of the models and proofs in other

problems involving automated vehiles.

Neessary and suÆient safety onditions on ontrollers are devised and proved

for the simplest ase (namely, the no delays and no unertainties ase). Then, these

results are gradually generalized, using omposition and simulation relations, to in-

reasingly ompliated ases, until results are obtained for a realisti model with both

delays and unertainties. All the proofs are modular in that they onsist of several

lemmas and theorems, some of whih ould be reused in similar problems. More

importantly, the approah of starting with the simplest ase and then getting to the

more ompliated ones using simulation relations, should prove very useful. It allows

the use of levels of abstration to redue the omplexity of the problem.

1.4 Contributions of this Researh

In this ase study, we apply the hybrid automaton model and its assoiated proof

methods to the task of desribing and verifying safety for the PATH ar maneuvers.

This is a relatively omplex and realisti example, whih has pratial impliations.

We aim for an aurate, omplete model of the system, plus proofs that over all ases
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and aommodate all realisti variations, inluding delays and unertainties. Our

safety proofs should apply as generally as possible, for instane, to di�erent vehile

maneuvers. Our model should also be usable for proving other properties, suh as

suess and time optimality. The system and its proofs should admit deomposition

into separate parts, as far as possible, and should be easy to extend.

The ontributions of this researh are:

� De�nition of a reusable model of the automated ars, plus their ontrollers and

sensors, whih inorporates delays and unertainties diretly.

� Derivation and proof of neessary and suÆient onditions for satisfying the

safety requirement of the ars.

� A demonstration of the power of hybrid automata and its assoiated proof

methods for reasoning about interesting hybrid systems.

� A demonstration of the use of abstration levels as a means of handling om-

plexity for hybrid systems.
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Chapter 2

Hybrid Automata Model

The Hybrid Automata model presented in [12℄,[13℄ is apable of desribing both on-

tinuous and disrete behavior. The model allows ommuniation among omponents

using both shared variables and shared ations. Several HA tehniques make them

partiularly useful in modeling and reasoning about hybrid systems. These inlude

omposition, whih allows the formation of omplex automata from simple building

bloks; implementation relations, whih make it easy to use levels of abstration when

modeling omplex systems; and invariant assertions, whih desribe the non-hanging

properties of the system.

For a omplete desription of the hybrid automata model, its assoiated methods,

and proofs of all HA theorems stated below, please refer to the Hybrid I/O Automata

paper [12℄.

2.1 Hybrid Automata

A state of a HA is de�ned to be a valuation of a set of variables. A trajetory w

is a funtion that maps a left-losed interval I of the reals, with left endpoint equal

to 0, to states; a trajetory represents the ontinuous evolution of the state over an

interval of time. A trajetory with domain [0; 0℄ is alled a point trajetory.

A HA A onsists of:

� Two disjoint sets of external and internal variables. A valuation of these sets

15



onstitutes a state s of A.

� Two disjoint sets of external and internal disrete ations. We assume that there

is a speial external, environment ation e, whih represents the ourrene of

a disrete transition outside the system.

� A nonempty set of start states.

� A set of disrete transition, i.e. (state, ation, state) triples, satisfying

D: 8s : (s; e; s) is a valid disrete transition.

� A set T of trajetories w over the variables of A, satisfying

{ T1 (existene of point trajetories): 8s, the point trajetory p that maps

0 to s is in T ,

{ T2 (losure under subintervals): 8w 2 T and for all left-losed subintervals

J of dom(w) : (w restrited to J) 2 T , and

{ T3 (ompleteness): 8w on a left-losed interval J with left endpoint equal

to 0 : (8t 2 J : (w restrited to [0; t)) 2 T ) ) w 2 T .

Axioms T1-3 state some natural onditions on the set of trajetories: existene of

point trajetories, losure under subintervals, and the fat that w is a full trajetory

if and only if all its pre�xes are valid trajetories. (Atually, axiom T3 does not say

\if and only if", but the missing diretion follows easily from T2.)

2.2 Hybrid Exeutions and Hybrid Traes

A hybrid exeution fragment of A is a �nite or in�nite alternating sequene of traje-

tories and ations, ending with a trajetory, if it is a �nite exeution fragment. An

exeution fragment reords all the disrete hanges that our in an evolution of a

system, plus the ontinuous state hanges that our in between. The time duration

of a Hybrid exeution is the sum of the durations of its trajetories. Hybrid exeution

fragments are alled admissible if their time duration is in�nite.

16



A hybrid exeution is an exeution fragment in whih the �rst state is a start

state. A state of A is de�ned to be reahable if it is the last state of some �nite

hybrid exeution of A.

A hybrid trae of a hybrid exeution reords only the hanges to the external

variables. The hybrid traes of a HA A that arise from all the �nite and admissible

hybrid exeutions of A desribe its external behavior.

2.3 Simulation Relations

HAs A

1

and A

2

are omparable if they have the same external interfae, i.e., the same

external variables and ations. If A

1

and A

2

are omparable then A

1

implements A

2

,

denoted A

1

� A

2

, if the set of hybrid traes of A

1

is a subset of the set of hybrid

traes of A

2

. Intuitively, this means that any external behavior of A

1

is allowed by

A

2

, A

1

being more restritive.

Let A and B be omparable HAs. A simulation from A to B is a relation R from

states of A to states of B, satisfying the following onditions for states s

A

and s

B

of

A and B, respetively:

� If s

A

is a start state of A, then there exists a start state s

B

of B, suh that

s

A

Rs

B

.

� If a is an ation of A, (s

A

; a; s

0

A

) is a disrete transition of A, s

A

Rs

B

, and both

s

A

and s

B

are reahable, then B has a �nite exeution fragment starting with

s

B

, having a hybrid trae h that is idential to that of (s

A

; a; s

0

A

), and ending

with a state s

0

B

suh that s

0

A

Rs

0

B

.

� If w is a trajetory of A from s

A

to s

0

A

, s

A

Rs

B

, and both s

A

and s

B

are reahable,

then B has a �nite exeution fragment starting with s

B

, having a hybrid trae

that is idential to that of w, and ending with a state s

0

B

, suh that s

0

A

Rs

0

B

.

The following theorem desribes how one an prove that one HA implements

another HA. It's proof may be found in [12℄.
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Theorem 2.1 If A

1

and A

2

are omparable HAs and there is a simulation from A

1

to A

2

, then A

1

implements A

2

.

2.4 Composition

Another HA tehnique for reduing omplexity is omposition.

HAs A and B are ompatible if

1. Initial onditions of A and B are onsistent. Formally, there exists a valuation

s for V = V

A

[ V

B

, where V

A

and V

B

are the sets of variables of A and B,

respetively, suh that the valuation of variables of A and B in s omprise start

states of A and B, respetively.

2. Internal ations of A are disjoint from ations of B, and internal variables of A

are disjoint from variables of B. Similarly for B and A.

If A and B are ompatible then their omposition C = AjjB is de�ned as follows:

1. External and internal variables of C are the union of external and internal

variables, respetively, of A and B.

2. External and internal ations of C are the union of external and internal ations,

respetively, of A and B.

3. Start states are states of C that satisfy the initial onditions of both A and B.

4. Disrete transitions and trajetories are the union of the orresponding ompo-

nents of A and B.

We state without proof that C is in fat a HA.

The ruial result is that the omposition operator respets the implementation

relation: if A

1

implements A

2

then A

1

omposed with B implements A

2

omposed

with B. This result is also presented here without proof.

Theorem 2.2 Suppose A

1

; A

2

; B be HAs suh that A

1

� A

2

, and eah of A

1

and A

2

is ompatible with B. Then A

1

k B � A

2

k B.
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2.5 Hiding

Two natural hiding operations are de�ned on any HA A.

Let E, H designate the external and internal ations of a HA, respetively; W ,

X designate the external and internal variables of a HA, respetively; and e | the

environmental ation.

1. If E � E

A

� feg, then AtHide(E, A) is the HA B that is equal to A exept

that E

B

= E

A

� E and H

B

= H

A

[ E.

2. If W � W

A

, then VarHide(W, A) is the HA B that is equal to A exept that

W

B

= W

A

�W and X

B

= X

A

[W .

Theorem 2.3 Let E � E

A

�feg and W � W

A

. Then AtHide(E, A), VarHide(W ,

A) are HAs.

2.6 Modeling Conventions in This Thesis

A's visible behavior is ompletely desribed by hanges of its external variables. Here,

we subdivide the set of external variables into two disjoint sets of input and output

variables. This is done for notational onveniene only, and does not hange automata

properties.

In [12℄, two models are de�ned: Hybrid Automata and Hybrid I/O Automata.

Hybrid I/O Automata are an extension of Hybrid Automata, in that they di�erentiate

between input and output ations. They are also more restritive beause they have

more axioms assoiated with them. In this thesis we use the Hybrid Automata model

exlusively.

In all the automata de�ned in this work we assume, without expliitly speifying,

the following:

1. An external environmental ation e. It is always enabled (an happen at any

time), and it does not hange any of the state variables.
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2. All point trajetories are inluded. Only \non-trivial" (not point) trajetories

are spei�ed expliitly.

Item (1) satis�es axiom D, and item (2) satis�es axiom T1 of HAs. Therefore,

we only need to prove that an automaton satis�es axioms T2 and T3 to laim that

it is, in fat, a HA. T2 requires losure under subintervals; T3 requires ompleteness.

In order to satisfy T3, either (1) trajetories are never required to stop; or (2) if a

trajetory is required to stop, its time domain has to be a losed interval. It is easy

to see that T3 holds in either ase.
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Chapter 3

Math Preliminaries

3.1 Non-Negativity Theorems

The following theorem gives simple onditions that a di�erentiable funtion must

satisfy in order to be positive everywhere on a given interval.

Theorem 3.1 Given a ontinuous funtion f on an interval [a; b℄, if

1. f(a) � ; and

2. for all x 2 [a; b), if f(x) �  then f

0

(x) exists and f

0

(x) � 0,

then for all x 2 [a; b℄, f(x) � .

Proof: We prove this by ontradition. Suppose there exists b

0

2 [a; b℄ suh that

f(b

0

) < . Sine f(a) �  and f is ontinuous, there exists a

0

2 [a; b

0

) suh that

f(a

0

) =  and for all x 2 (a

0

; b

0

℄, f(x) <  by the Intermediate Value Theorem.

By the Mean Value Theorem, there exists x 2 (a

0

; b

0

) suh that f

0

(x) =

f(b

0

)�f(a

0

)

b

0

�a

0

.

Sine f(x) < , it follows by assumption 2 that f

0

(x) � 0. Thus, sine b

0

> a

0

, it

follows that f(b

0

) � f(a

0

). But sine f(a

0

) = , it follows that f(b

0

) � , whih is a

ontradition.
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We now prove a similar theorem for funtions that have right and left derivatives

that are not neessarily equal to eah other. The right and left derivatives of a

ontinuous funtion f are de�ned as follows:

f

0

(x

+

) = lim

t!x

+

f(t)� f(x)

t� x

(right derivative), and

f

0

(x

�

) = lim

t!x

�

f(t)� f(x)

t� x

(left derivative):

First, we prove a helpful lemma about right and left derivatives of a ontinuous

funtion at its loal maxima and minima.

Lemma 3.2 Let f be a ontinuous funtion de�ned on [a; b℄, whose both right and

left derivatives are de�ned on (a; b). Then,

1. if x 2 (a; b) is a loal maximum, then f

0

(x

+

) � 0 and f

0

(x

�

) � 0;

2. if x 2 (a; b) is a loal minimum, then f(x

+

) � 0, and f(x

�

) � 0.

Proof: Let x be a loal maximum. Then there exists Æ > 0 suh that f(q) � f(x)

for all q suh that jx� qj < Æ. Choose suh Æ so that

a < x� Æ < x < x + Æ < b:

Choose t suh that x� Æ < t < x. Then

f(t)� f(x)

t� x

� 0:

Letting t! x

�

, we see that f

0

(x

�

) � 0.

Now hoose t suh that x < t < x + Æ. Then

f(t)� f(x)

t� x

� 0;

whih shows that f

0

(x

+

) � 0.

The statement about loal minima an be proven analogously.

Using Lemma 3.2 we prove an analog of the Mean Value Theorem for funtions

whose right and left derivatives are not neessarily equal.
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Lemma 3.3 Let f be a ontinuous funtion de�ned on [a; b℄ whose right and left

derivatives are de�ned on (a; b). Then there exists x 2 (a; b) suh that either

f(b)� f(a)

b� a

� f

0

(x

+

), or

f(b)� f(a)

b� a

� f

0

(x

�

):

Also, there exists x 2 (a; b) suh that either

f(b)� f(a)

b� a

� f

0

(x

+

), or

f(b)� f(a)

b� a

� f

0

(x

�

):

Proof: Put h(t) = (f(b) � f(a))t � (b � a)f(t). Then h is ontinuous on [a; b℄, has

right and left derivatives on (a; b), and

h(a) = af(b)� bf(a) = h(b):

To prove the �rst half of the lemma it suÆes to show that either h

0

(x

+

) � 0 or

h

0

(x

�

) � 0 for some x 2 (a; b), sine

h

0

(x

+

) = f(b)� f(a)� (b� a)f

0

(x

+

) and h

0

(x

+

) = f(b)� f(a)� (b� a)f

0

(x

+

):

Case 1: h is onstant. Then, h

0

(x

+

) = h

0

(x

�

) = h

0

(x) = 0, so the ondition holds

for all x.

Case 2: h(t) > h(a) for some t 2 (a; b). By ontinuity of h, there exists x 2 (a; b)

whih is a loal maximum in (a; b). Lemma 3.2 shows that h

0

(x

�

) � 0.

Case 3: h(t) < h(a) for some t 2 (a; b). By ontinuity of h, there exists x 2 (a; b)

whih is a loal minimum in (a; b). Lemma 3.2 shows that h

0

(x

+

) � 0.

The seond part of the lemma is proved analogously.

Finally, we are able to prove a theorem similar to our �rst non-negativity theorem

(Theorem 3.1), but for funtions with unequal right and left derivatives.

Theorem 3.4 Let f be a ontinuous funtion de�ned on [a; b℄. If
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1. f(a) � ;

2. for all x 2 [a; b) and f(x) � , f

0

(x

+

) and f

0

(x

�

) exist, with f

0

(x

+

) � 0 and

f

0

(x

�

) � 0,

then for all x 2 [a; b℄, f(x) � .

Proof: Again, we use proof by ontradition. Suppose there exists b

0

2 [a; b℄ suh

that f(b

0

) < . Sine f(a) �  and f is ontinuous on [a; b℄, there exists a

0

2 [a; b

0

)

suh that f(a

0

) =  and for all x 2 (a

0

; b

0

℄, f(x) < , by the Intermediate Value

Theorem.

By Lemma 3.3 we have that either

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

0

+

) or

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

0

�

)

for some x

0

2 (a

0

; b

0

). Sine f(x) <  for all x 2 (a

0

; b

0

℄, both derivatives have to be

non-negative by property 2, so in either ase we have

f(b

0

)�f(a

0

)

b

0

�a

0

� 0. Also, b

0

> a

0

, so

we get f(b

0

) � f(a

0

). But f(a

0

) = , so f(b

0

) � , whih ontradits our assumption.

3.2 Non-Inreasing Funtions

The following lemma gives simple onditions for a funtion with unequal right and

left derivatives to be non-inreasing.

Lemma 3.5 Let f be a ontinuous funtion de�ned on [a; b℄ whose right and left

derivatives are de�ned on (a,b). Then if for all x 2 (a; b), f

0

(x

+

) � 0 and f

0

(x

�

) � 0,

then f is a non-inreasing funtion.

Proof: This follows diretly from Lemma 3.3. We have that for any a

0

< b

0

in [a; b℄,

there exists x 2 [a

0

; b

0

℄ suh that either

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

+

) or

f(b

0

)� f(a

0

)

b

0

� a

0

� f

0

(x

�

):
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But sine b

0

> a

0

and also f

0

(x

+

) � 0 and f

0

(x

�

) � 0, we get f(b

0

) � f(a

0

). Sine

a

0

; b

0

were hosen arbitrarily, it follows that f is non-inreasing.

3.3 Derivatives of The max Funtion

We prove a useful theorem about the right and left derivatives of the max funtion.

Theorem 3.6 Let f and g be di�erentiable funtions, and m(x) = max(f(x); g(x)).

Then,

1. the right derivative of m(x) exists and equals the right derivative of either f or

g;

2. the left derivative of m(x) exists and equals the left derivative of either f or g.

Proof:We start with the right derivative. First suppose that there exists Æ > 0, suh

that for all t 2 [x; x + Æ), m(t) = f(t). Then,

m

0

(x

+

) = lim

t!x

+

m(t)�m(x)

t� x

= lim

t!x

+

f(t)� f(x)

t� x

= f

0

(x

+

);

as needed. Analogously for m(t) = g(t).

Alternatively, suppose that no suh Æ exists. This means that for all Æ > 0, there

exists a point t

1

2 [x; x + Æ), suh that m(t

1

) = f(t

1

) > g(t

1

), and there also exists a

point t

2

2 [x; x + Æ), suh that m(t

2

) = g(t

2

) > f(t

2

).

Then the following two statements must be true:

1. f(x) = g(x) = p = m(x), where p is some real number.

Proof: Suppose this is not so. Let f(x) > g(x), without loss of generality.

Then, by ontinuity of f and g, there exists a neighborhood of x in whih for

all t, f(t) > g(t). But this ontradits our original assumption that there does

not exist a Æ-neighborhood of x in whih f(t) > g(t) for all t 2 [x; x + Æ).
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2. f

0

(x

+

) = g

0

(x

+

) = q, where q is some real number.

Proof: Suppose this is not so. Then f

0

(x

+

) = q

1

and g

0

(x

+

) = q

2

, where

q

1

6= q

2

. Without loss of generality, let's assume that q

1

> q

2

. From the

de�nition of the derivative, we know that for all � > 0, there exist Æ

1

; Æ

2

> 0,

suh that 8t

0

2 (x; x + Æ

1

) and 8t

00

2 (x; x + Æ

2

),

�

�

�

�

�

f(t

0

)� f(x)

t

0

� x

� q

1

�

�

�

�

�

< � and

�

�

�

�

�

g(t

00

)� g(x)

t

00

� x

� q

2

�

�

�

�

�

< �:

Let's pik � <

1

2

(q

1

� q

2

), and let Æ = min(Æ

1

; Æ

2

). Then, using the result from

statement 1, 8t 2 (x; x+ Æ),

�

�

�

�

�

f(t)� p

t� x

� q

1

�

�

�

�

�

< � and

�

�

�

�

�

g(t)� p

t� x

� q

2

�

�

�

�

�

< �:

From these inequalities, by hoie of �, and using the fat that t > x, it follows

that

f(t)� p

t� x

>

g(t)� p

t� x

f(t)� p > g(t)� p

f(t) > g(t)

This means that there exists a Æ-neighborhood of x in whih f(t) > g(t), whih

ontradits our original assumption.

From statement 2 we have that for all � > 0, there exists Æ > 0 suh that 8t 2

(x; x + Æ

1

) the following hold:

�

�

�

�

�

f(t)� f(x)

t� x

� q

�

�

�

�

�

< � and

�

�

�

�

�

g(t)� g(x)

t� x

� q

�

�

�

�

�

< �:

Then 8t 2 (x; x + Æ),

m(t)�m(x)

t� x

� q =

8

>

>

<

>

>

:

�

�

�

f(t)�p

t�x

� q

�

�

� < � if f(t) � g(t)

�

�

�

g(t)�p

t�x

� q

�

�

� < � if f(t) < g(t):
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Thus, in both ases,

�

�

�

m(t)�m(x)

t�x

� q

�

�

� < �. This means that

m

0

(x

+

) = lim

t!x

m(t)�m(x)

t� x

= q;

whih is the same as the right derivative of both f and g at x.

The left derivative part is proven analogously.
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Chapter 4

System Model

We onsider two vehiles, moving along a single trak. While the behavior of the

leading vehile is arbitrary, the seond vehile's ontroller must make sure that no

\bad" ollisions our. \Bad" ollisions are ollisions at a high relative speed. This

is alled the Safety requirement for the seond ontroller. This Safety requirement

is general for all vehile maneuvers, and is independent of the partiular algorithm

used. We devise the most nondeterministi safe ontroller, so that later we an use

this ontroller as a orretness hek: a ontroller implementing any vehile maneuver

must implement our safe ontroller in order to be orret. This should be useful in

formally proving orretness of ompliated algorithms.

4.1 Vehiles

Figure 4-1: Vehiles
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Constants:

l

i

, the length of the vehile

a

min

2 R

�

, the maximum emergeny deeleration

Variables:

Input: a

i

2 R, initially arbitrary

Output: x

i

2 R

�0

, initially x

2

= 0 and x

1

is arbitrary, subjet to x

1

� x

2

+ l

2

_x

i

2 R

�0

, initially arbitrary

�x

i

2 R, initially arbitrary

now, initially 0

ollided, Boolean, initially false

Ations:

Internal: ollide

Pre: x

1

= x

2

+ l

2

ollided = false

E�et: �x

i

:= arbitrary value, subjet to �x

i

� a

min

_x

i

:= arbitrary value

ollided := true

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. ollided is unhanged in w

2. �x

i

is integrable in w

3. for all t 2 I the following hold:

3.1. If ollided = false in w then

w(t):�x

i

= max(w(t):a

i

; a

min

)

else, w(t):�x

i

� a

min

3.2. w(t): _x

i

= w(0): _x

i

+

R

0

t

w(u):�x

i

du

3.3. w(t):x

i

= w(0):x

i

+

R

0

t

w(u): _x

i

du

3.4. w(t):x

2

+ l

2

� w(t):x

1

3.5. w(t):now = w(0):now + t

3.6. If w(t):x

1

= w(t):x

2

+ l

2

and t is not the right endpoint of I then

ollided = true.

Figure 4-2: The Vehiles Hybrid Automaton
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We ompose our system of a piee modeling the physial vehiles, and two piees

modeling the ontrollers of eah vehile. Eah piee is modeled by a hybrid automa-

ton. The real world piee is alled Vehiles.

Automaton 1(Vehiles): The automaton represents two vehiles, named 1 and 2,

where vehile 1 preedes vehile 2 on a single trak. Positions on the trak are labeled

with nonnegative reals, starting with 0 as a designated starting point, as shown in

Figure 4-1. The formal HA model for this automaton is given in Figure 4-2. We

assume that i 2 1; 2 throughout the model.

Constants

� l

i

is the length of the i-th vehile.

� a

min

< 0 is the maximum deeleration rate for the vehiles. We assume here

that all vehiles have idential breaking apabilities.

Variables

� a

i

denotes the aeleration ommanded by the ontroller. Note that it an

di�er from �x

i

, whih is the atual aeleration of the vehile, due to delays

and/or unertainties.

� x

i

, _x

i

, and �x

i

model the atual position of the vehile's rear, its veloity and

aeleration data. The dots are used as a syntati devie only, and do not

impose di�erential relationships.

� now models the urrent time. While it is not neessary for modeling the system,

it will be used later in stating some of the invariant assertions. Initially, now

= 0.

� ollided keeps trak of the �rst ourrene of a ollision; it will be used in our

statement of the orretness property | in this work we only want to guarantee

safety for zero or one ollisions, the multiple ollisions ase is not handled.
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Ations The ation ollide ours when the vehiles touh eah other for the �rst

time. The vehiles touh when the position of the rear of the leading vehile, x

1

,

equals the position of the front of the trailing vehile, x

2

+ l

2

. The e�et is that both

the vehile's aeleration and veloity assume arbitrary values. After the ollision,

the vehile's aeleration, �x

i

, is deoupled from what is ommanded by the ontroller,

while veloity and position are still obtained by integrating the aeleration, �x

i

.

Trajetories The �rst ondition (1) states that ollided an only be hanged by

disrete ations. Condition (2) requires the atual aeleration of the vehiles to be

integrable, so that veloity and position an be derived from it. (3) gives onditions

on all states of a trajetory. Condition (3.1) ensures that the vehile implements the

ontroller's aeleration (taking are not to go below a

min

), before the �rst ollision

ours. Conditions (3.2) and (3.3) give di�erential relationships between the atual

aeleration, veloity and position of the vehile at all times. (3.4) does not allow

vehiles to bypass eah other, whih is realisti assuming that the vehiles move only

in a single lane. (3.5) assigns the variable now, and (3.6) makes sure that when the

vehiles ollide, then either a) it is the right endpoint of the trajetory, and the ollide

ation will be sheduled (this happens for the �rst ollision), or b) it is after the �rst

ollision, and ollided already is true.

HA By disussion in Setion 2.6, we only need to show that axioms T2 and T3

are satis�ed. Sine the duration of trajetories is not restrited, \sub"-trajetories

are always valid, so T2 is satis�ed. The only time trajetories are required to stop is

when a ollide ation has to our. But by trajetory ondition (3.6), we allow these

trajetories to be losed, so T3 is also satis�ed. Therefore, this automaton is an HA.

Properties From this de�nition, several useful properties of all reahable state of

the Vehiles automaton an be dedued:

1. �x

i

� a

min

, by trajetory ondition (3);
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2. veloity and position are integrals of �x

i

, exept at the time of ollision, by

trajetory onditions (4) and (5);

3. x

2

+ l

2

� x

1

, meaning that vehiles never bypass eah other, by trajetory

ondition (6).

4.2 Controllers

Variables:

Input: �x

i

2 R, i 2 f1; 2g

_x

i

2 R

�0

, i 2 f1; 2g

x

i

2 R

�0

, i 2 f1; 2g

Output: a

j

, initially arbitrary, where a

j

� a

min

Internal: _x

intj

2 R

�0

, initially _x

intj

= _x

j

x

intj

2 R

�0

, initially x

intj

= x

j

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. a

j

is an integrable funtion

2. for all t 2 I , in state w(t)

2.1. _x

intj

= w(0): _x

intj

+

R

0

t

w(u):a

j

du

2.2. x

intj

= w(0):x

intj

+

R

0

t

w(u): _x

intj

du

2.3. If _x

j

� 0 then a

j

� 0

Figure 4-3: Controller

j

Hybrid Automaton, j 2 f1; 2g

We now de�ne the ontroller automaton.

Automaton 2(Controller

j

, j 2 f1; 2g): This automaton inputs the urrent posi-

tion, veloity and aeleration data of the vehile (from the Vehiles automaton) and

outputs new aeleration settings. It is an arbitrary hybrid automaton with the given

interfae, and it is restrited only by the physial limitations of the vehiles. It does

not have any disrete ations. The formal model for this automaton, where j is either

1 or 2, is given in Figure 4-3.
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Variables Controller

j

reeives the real position and veloity data of both vehiles

via sensors, whih we model by inputing the data from the Vehiles automaton.

Based on these inputs, the Controller

j

deides on a safe aeleration setting and

outputs it to Vehiles. The internal veloity and position variables ( _x

intj

and x

intj

)

are approximations to the real data of Vehiles, alulated based on the aeleration

the Controller

j

has ommanded. This data is obtained by integrating the aeleration

requests of the ontroller. Sine we have not inluded any delays or unertainties yet,

these variables should orrespond exatly to the atual position and veloity of the

vehile, so that x

intj

= x

j

and _x

intj

= _x

j

. However, when we add unertainty and

delay into our model, the internal variables will be di�erent from the input variables

(whih are reeived from sensors); the internal variables will use input variables and

aount for delays and unertainties to get better estimates of the atual data.

Trajetories Condition (1) requires that the ommanded aeleration be integrable

twie, so that the integrals for veloity and position are well de�ned. Conditions (2.1)

and (2.2) de�ne internal veloity and position data to be integrals of ommanded a-

eleration. Finally, ondition (2.3) guarantees that one the vehile has non-positive

veloity, the aeleration must be non-negative, keeping the vehiles from going bak-

wards.

HA No restritions on either the duration of a trajetory, or stopping trajetories

are plaes, so axioms T2 and T3 are satis�ed. Thus, by disussion in Setion 2.6,

Controller

j

is an HA.

We model the whole system by omposing the Vehiles automaton with 2 on-

trollers. These ontrollers must be implementations of Controller

j

. Thus, the om-

posed system is a \funtion" of the given ontrollers and the given implementation

of the Vehiles automaton.

Automaton 3(Controlled-Vehiles): Controlled-Vehiles(V , A

1

, A

2

) = Vehiles

k A

1

k A

2

, where V is an implementation of the Vehiles automaton, A

1

is an imple-

mentation of Controller

1

, and A

2

is an implementation of Controller

2

. The automata
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Figure 4-4: Controlled-Vehiles Model

are omposed using hybrid automata omposition rules, resulting in another HA au-

tomaton. The system models our vehile system with eah vehile having its own

ontroller. Figure 4-4 shows Controlled-Vehiles(Vehiles, Controller

1

, Controller

2

),

by showing the piees it onsists of and the interfaes between them.

4.3 Safety Condition

We de�ne a safety ondition for the states of Controlled-Vehiles. The safety ondition

guarantees that if the vehiles ever ollide, then the �rst time they do so, their relative

veloity is no more than v

allow

. We formulate this ondition formally as an invariant

assertion:

De�nition 1(Safety): If x

1

= x

2

+ l

2

and ollided = false, then _x

2

� _x

1

+ v

allow

.

We de�ne a new automaton, Safe-Vehiles, to serve as a orretness spei�ation.

Automaton 4(Safe-Vehiles): This automaton is exatly the same as Vehiles

with an added restrition on trajetories: all states are required to satisfy the Safety

ondition. Sine this restrition does not violate axioms T2 and T3, the Safe-Vehiles

automaton is still a valid HA.

Given an implementation V of Vehiles, we want to design an implementation

A

2

of Controller

2

suh that for any implementation A

1

of Controller

1

, the system

Controlled-Vehiles(V , A

1

, A

2

) implements the Safe-Vehiles automaton. Then we
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an say that it satis�es the Safety ondition. That is enough to ensure that the Safety

ondition of the spei�ation arries over to the implementation. Note that although

the Controlled-Vehiles automaton inludes ontrollers, it an still implement the

Safe-Vehiles automaton, sine they will have the same external interfae (position,

veloity, aeleration data, the now variable, and the ollided ag) and the ontrollers

only a�et the aeleration settings.

De�nition 2(Corretness): Given an implementation V of Vehiles, an implemen-

tation A

2

of Controller

2

is orret for V if and only if for every implementation A

1

of Controller

1

, Controlled-Vehiles(V , A

1

,A

2

) system implements Safe-Vehiles.
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Chapter 5

Safety In The Ideal Case

We start with a treatment of the safety property in the ideal setting. This allows us to

prove some important properties of the simpler model �rst, and then extend them to

the more ompliated models, whih inlude delays and unertainties, via simulation

mappings. By ideal setting we mean that there are no delays and/or unertainties in

either the sensors' data or the ontroller's diretives. In the next hapters we make

the model more realisti by relaxing these restritions.

5.1 Problem Statement

We want to give onditions on an implementation of Controller

2

that are both ne-

essary and suÆient to satisfy the orretness property of De�nition 2. In the next

setion we present suh onditions by showing an implementation of Controller

2

,

alled C

2

, whih guarantees orretness. Then, we show that the onditions are suÆ-

ient by proving that this onroller is orret. Finally, we give slightly less restritive

onditions on the ontroller and prove that these onditions are neessary.

5.2 The Model

In any state of Vehiles, de�ne
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safe-measure =max(x

1

� (x

2

+ l

2

) +

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

;

_x

1

+ v

allow

� _x

2

):

We are not interested in the atual value of safe-measure, but only in whether or

not it is negative. If it is nonnegative, it means that either (a) the distane between

the two vehiles is great enough to allow vehile 2 to stop before hitting vehile 1,

even if vehile 1 deelerates at its fastest possible rate, or (b) the relative veloities

of the two vehiles are already lose enough. Thus, nonnegative safe-measure gives

us the boundaries of the safe region for the seond vehile.

Variables:

Input, Output, Internal: same as in Controller

2

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. it satis�es ondition 1 of Controller

2

, plus

2. for all t 2 I ,

2.1-2.3 of Controller

2

are satis�ed

2.4. if ollided = false and safe-measure � 0 then w(t):a

2

= a

min

Figure 5-1: C

2

Hybrid Automaton

Automaton 5(C

2

): This automaton is exatly like Controller

2

, with one extra

restrition on its trajetories. The formal model is given in Figure 5-1. Condition

(2.4) ensures that if the position and veloity parameters are on the boundary de�ned

by safe-measure, then C

2

ommands maximum deeleration, by setting a

2

= a

min

.

In this ideal (no delays, no unertainties) setting, vehile 2 will exeute the ommand

exatly, beause �x

2

= a

2

, and so vehile 2 is deelerating as fast as possible. Sine

this restrition does not violate axioms T2 and T3, C

2

is a valid HA. We laim that

this restrition is suÆient to guarantee orretness.
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5.3 Corretness of C

2

We will now prove orretness of our ontroller. This means that any ontroller that

implements C

2

, will be orret (safe).

De�nition 3(Prediate S): If ollided = false then safe-measure � 0 .

The above de�nition says that before the �rst ollision ours, safe-measure is non-

negative. We will later prove that non-negativity of safe-measure guarantees safety.

We onstrut a new automaton, Init-Vehiles, whih is exatly likeVehiles, exept

that all its start states are restrited to satisfy Prediate S. This guarantees that the

system is safe initially.

Automaton 6(Init-Vehiles): Exatly like Vehiles, but guarantees safety initially.

The formal model is shown in Figure 5-2, with the new restritions in bold. Again,

it is a valid HA, sine the modi�ations do not violate axioms T2� 3.

C

2

is designed to guarantee expliitly that if S is ever violated, or is even in

danger of being violated (beause equality holds), vehile 2 is deelerating as fast

as possible. We laim that this strategy is suÆient to guarantee that S is always

true. To prove this, we will use the Non-negativity Theorem 3.4, whih states that all

funtions satisfying ertain onditions must be non-negative.

Lemma 5.1 Prediate S is true in every reahable state of Controlled-Vehiles(Init-

Vehiles, A

1

, C

2

), where A

1

is any implementation of Controller

1

.

Proof: By indution on the number of steps in a hybrid exeution. Initially, the

laim is true by the restrition on the initial states of Init-Vehiles.

The only disrete steps are ollide, e and the internal steps of A

1

. The latter

two steps do not hange any of the quantities involved. The e�et of the ollide step

ensures that ollided = true in the post-state, whih makes S true vauously.
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Constants:

l

i

, the length of the vehile

a

min

2 R

�

, the maximum emergeny deeleration

Variables:

Input: a

i

2 R, initially arbitrary

Output: x

i

2 R

�0

, initially x

2

= 0 and x

1

is arbitrary

_x

i

2 R

�0

, initially arbitrary

�x

i

2 R, initially arbitrary

now, initially 0

ollided, Boolean, initially false

initial state is subjet to Prediate S

Ations:

Internal: ollide

Pre: x

1

= x

2

+ l

2

ollided = false

E�et: �x

i

:= arbitrary value

_x

i

:= arbitrary value

ollided := true

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. ollided is unhanged in w

2. �x

i

is integrable twie in w

for all t 2 I the following hold:

3. If ollided = false in w then

w(t):�x

i

= max(w(t):a

i

; a

min

)

4. w(t): _x

i

= w(0): _x

i

+

R

0

t

w(u):�x

i

du

5. w(t):x

i

= w(0):x

i

+

R

0

t

w(u): _x

i

du

6. w(t):x

2

+ l

2

� w(t):x

1

7. w(t):now = w(0):now + t

8. If w(t):x

1

= w(t):x

2

+ l

2

and t is not the right endpoint of I then

ollided = true.

Figure 5-2: The Init-Vehiles Hybrid Automaton
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Now we onsider a trajetory w whose domain is the interval [0; T ℄. Sine a

trajetory annot hange ollided , and S is vauously true if ollided = true, we only

need to onsider the ase where ollided = false throughout w. We may assume (by

the indution hypothesis) that S is true in w(0). We must show that S is true in

w(T ). By de�nition of S, we may assume that safe-measure � 0 in state w(0) and

must show that this is also true in w(T ).

Here we will use the notation f(t) to mean w(t):f , where f is de�ned in terms

of state omponents of w(t). Let f(t) = x

1

� (x

2

+ l

2

) +

( _x

2

)

2

�( _x

1

)

2

�(v

allow

)

2

2a

min

, g(t) =

_x

1

+v

allow

� _x

2

. Then s(t) = max(f(t); g(t)) = safe-measure(t). We now use Theorem

3.4 to prove that if s(0) � 0, then 8t � 0; s(t) � 0.

Claim 1. s(t) is ontinuous.

Proof: By ontinuity of f(t) and g(t).

Claim 2. s(0) � 0.

Proof: Follows from the indution hypothesis.

Claim 3. For all t suh that s(t) � , it is the ase that s

0

(t

+

) and s

0

(t

�

) exist,

s

0

(t

+

) � 0 and s

0

(t

�

) � 0.

Proof: The right derivative of s equals the right derivative of either f(t) or g(t), and

the same is true for the left derivative, by Theorem 3.6. We need to hek that for

all t suh that s(t) � 0, we have

_

f(t) � 0 and _g(t) � 0. So, �x t suh that s(t) � 0.

Then, at t, we have:

_

f = _x

1

� _x

2

+

1

2a

min

(2 _x

2

�x

2

� 2 _x

1

�x

1

) = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

�x

1

)

By de�nition of C

2

we have that sine s � 0, a

2

= �x

2

= a

min

. Also, by restrition
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on Init-Vehiles, we have �x

1

� a

min

. Therefore,

_

f = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

�x

1

)

= _x

1

� _x

2

+ _x

2

a

min

a

min

� _x

1

�x

1

a

min

= _x

1

+ _x

1

�x

1

�a

min

� _x

1

+ _x

1

a

min

�a

min

= 0:

Now let's do the same for _g:

_g = �x

1

� �x

2

= �x

1

� a

min

� a

min

� a

min

= 0:

This proves Claim 3.

From Claims 1, 2 and 3, s satis�es the onditions of the Non-negativity Theorem

and, therefore, by Theorem 3.4, 8t s(t) � 0.

This suÆes.

As a simple onsequene of Lemma 5.1, we prove the safety property.

Lemma 5.2 In any reahable state of Controlled-Vehiles(Init-Vehiles, A

1

, C

2

),

where A

1

is any implementation of Controller

1

, if x

1

= x

2

+ l

2

and ollided = false,

then _x

2

� _x

1

+ v

allow

.

Proof: Initially, S is true by the restrition on initial states of Init-Vehiles. Consider

any reahable state in whih x

1

= x

2

+ l

2

and ollided = false. Then Lemma 5.1

implies that safe-measure � 0 . That is, either

x

1

� (x

2

+ l

2

) �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

or

_x

1

+ v

allow

� _x

2

:

In the latter ase, we are done. In the former, setting x

1

� (x

2

+ l

2

) = 0, we get
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( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

� 0

( _x

2

)

2

� ( _x

1

)

2

+ (v

allow

)

2

� ( _x

1

+ v

allow

)

2

_x

2

� _x

1

+ v

allow

;

as needed.

Now we use Lemma 5.2 to prove that the system is in fat orret, i.e., that it

implements Safe-Vehiles.

Lemma 5.3 Let f be the identity on all state omponents of Safe-Vehiles(veloities,

positions, aelerations, and the ollided ag). Then f is a forward simulation from

the omposed system Controlled-Vehiles(Init-Vehiles, A

1

, C

2

), where A

1

is any im-

plementation of Controller

1

, to Safe-Vehiles.

Proof: By indution on the number of steps in the hybrid exeution.

Start States: Suppose s

IP

is a start state of Controlled-Vehiles(Init-Vehiles, A

1

,

C

2

), and (s

IP

; s

SP

) 2 f . We have to prove that s

SP

is a valid start state of Safe-

Vehiles. By the de�nition of start states of Safe-Vehiles, it must satisfy the ondi-

tions of Init-Vehiles, whih follows from the fat that s

IP

is a start state of Controlled-

Vehiles and so it does satisfy all those onditions. Also, by Lemma 5.2, s

SP

satis�es

Safety .

Disrete Steps: The only disrete steps are ollide, e and the internal steps of A

1

.

The latter two steps annot hange any of the quantities involved. Sine the ollide

step is the same for both automata, it respets the simulation relation. Also, the

e�ets of the ollide step satisfy safety vauously, thus the state reahed after the

ollide ation is a valid state of Safe-Vehiles.

Trajetories: Suppose that w

IP

is an I-trajetory of Controlled-Vehiles and its

�rst state s

IP

is reahable. Suppose that s

SP

is a reahable state of Safe-Vehiles suh

that (s

IP

; s

SP

) 2 f . Let the orresponding hybrid exeution fragment of Safe-Vehiles
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onsist of a single trajetory w

SP

, where w

SP

(t): _x

i

= w

IP

(t): _x

i

, w

SP

(t):x

i

= w

IP

(t):x

i

for i 2 f1; 2g, w

SP

(t):ollided = w

IP

(t):ollided and w

SP

(t):now = w

IP

(t):now. It is

obvious that the two trajetories have the same hybrid trae and that the �nal states

of both trajetories are f -related.

We need to show that w

SP

is in fat a trajetory of Safe-Vehiles. By the de�nition

of a trajetory we must show that it satis�es all the properties of a trajetory of Init-

Vehiles, but this is trivial, sine it is a trajetory of Controlled-Vehiles whih has

all the restritions of Init-Vehiles. We must also show that it always satis�es the

safety ondition, but this follows diretly from Lemma 5.2. Therefore, f is also a

valid simulation relation for all the trajetories.

Theorem 5.4 C

2

is orret for Init-Vehiles, where orretness is de�ned by De�ni-

tion 2.

Proof: To prove orretness, we need to show that the Controlled-Vehiles(Init-

Vehiles, A

1

, C

2

) automaton, where A

1

is any implementation of Controller

1

, im-

plements Safe-Vehiles. Controlled-Vehiles(Init-Vehiles, A

1

, C

2

) and Safe-Vehiles

are omparable and by Lemma 5.3, there is a simulation relation f from Controlled-

Vehiles to Safe-Vehiles. Therefore, this omposed system implements Safe-Vehiles.

This proves orretness of C

2

.

5.4 Optimality of C

2

We devise a new ontroller, Neessary-C

2

, whih is slightly less restritive than C

2

and prove that Neessary-C

2

gives neessary onditions for satisfying orretness.

Automaton 7(Neessary-C

2

): This automaton is exatly like C

2

, exept that on-

dition (2.4) for trajetories is slightly modi�ed. In partiular, Neessary-C

2

ommands

maximum deeleration when safe-measure < 0 , while C

2

does it when safe-measure �

0 . The formal model is given in Figure 5-3; thus the only di�erene is the boundary in

ondition (2.4). We laim that this ondition is neessary to guarantee orretness.
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Variables:

Input, Output, Internal: same as in Controller

2

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. it satis�es ondition 1 of Controller

2

, plus

2. for all t 2 I ,

2.1-2.3 of Controller

2

are satis�ed

2.4. if ollided = false and safe-measure < 0 then w(t):a

2

= a

min

Figure 5-3: Neessary-C

2

Hybrid Automaton

We de�ne a notion of Bad ontrollers. Let B

1

and B

2

be implementations of

Controller

1

and Controller

2

, respetively. Then B

1

is Bad for B

2

if B

1

makes B

2

violate Prediate S by going out of the safe-measure region. B

2

is Bad if there exists

some B

1

whih is Bad for it.

De�nition 4(Bad Controller

1

): Let B

1

and B

2

be implementations of Controller

1

and Controller

2

, respetively. Then B

1

is Bad for B

2

if and only if in the system

Controlled-Vehiles(Init-Vehiles, B

1

, B

2

) there exists a reahable state s that does

not satisfy Prediate S.

De�nition 5(Bad Controller

2

): B

2

is Bad if and only if there exists some B

1

that

is Bad for this B

2

.

The following lemma shows that if B

2

is Bad, then we an onstrut a B

0

1

that is

Bad for B

2

and deelerates at the maximum rate one Prediate S is violated. This

B

0

1

will later be used to show that B

2

an violate Safety.

De�nition 6(VeryBad): Let an implementation B

0

1

of Controller

1

be alled Very-

Bad for an implementation B

2

of Controller

2

if

1. B

0

1

is Bad for B

2

;

2. In any exeution � of Controlled-Vehiles(Init-Vehiles, B

0

1

, B

2

), any state s

that does not satisfy Prediate S, and any state s

0

ourring stritly after s, it

is the ase that s

0

:a

1

= a

min

.
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Lemma 5.5 If B

2

is Bad then there exists an implementation B

0

1

of Controller

1

,

suh that B

0

1

is VeryBad for B

2

.

Proof: Sine B

2

is Bad, there exists B

1

that is Bad for this B

2

. Using B

1

, we onstrut

an implementation of Controller

1

, alled B

0

1

, as follows. We add an extra internal

variable stop, initially stop = false. In any exeution of the system Controlled-

Vehiles(Init-Vehiles, B

0

1

, B

2

),

1. B

0

1

behaves exatly like B

1

until Prediate S is violated.

2. Exatly when safe-measure < 0 , an internal variable stop is set to true. Note

that B

0

1

has enough information (positions and veloities of both vehiles, a

min

)

to detet when safe-measure < 0 .

3. If stop = true, then a

1

= a

min

.

B

0

1

preserves the behavior of B

1

up to the point when Prediate S is violated, so

B

0

1

is also Bad for B

2

. The seond ondition of the VeryBad de�nition is satis�ed by

onstrution. So B

0

1

is VeryBad for B

2

.

Lemma 5.6 Let B

2

be an implementation of Controller

2

. If there exists an im-

plementation B

1

of Controller

1

suh that Controlled-Vehiles(Init-Vehiles, B

1

, B

2

)

does not implement Controlled-Vehiles(Init-Vehiles, B

1

, Neessary-C

2

) then B

2

is

Bad.

Proof:We must show that there exists some implementation B

1

of Controller

1

, suh

that the system Controlled-Vehiles(Init-Vehiles, B

1

, B

2

) has a reahable state s

that does not satisfy Prediate S.

De�nition 7(Prediate T): If safe-measure < 0 then a

2

= a

min

.

The only restrition of Neessary-C

2

(trajetory ondition (2.4)) requires that if

ollided = false then Prediate T is satis�ed.

Claim 1. There exists B

1

suh that the system Controlled-Vehiles(Init-Vehiles,

B

1

, B

2

) has a reahable state s in whih ollided = false and Prediate T is not

satis�ed.
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Proof of Claim 1. Proof by ontradition. Suppose suh B

1

does not exist. Then,

for all implementations B

1

of Controller

1

, all the reahable states of Controlled-

Vehiles(Init-Vehiles, B

1

, B

2

) in whih ollided = false satisfy Prediate T . But

then all the hybrid traes of Controlled-Vehiles(Init-Vehiles, B

1

, B

2

) are allowed

by Controlled-Vehiles(Init-Vehiles, B

1

, Neessary-C

2

). It follows that for all imple-

mentations B

1

of Controller

1

, Controlled-Vehiles(Init-Vehiles, B

1

, B

2

) implements

Controlled-Vehiles(Init-Vehiles, B

1

, Neessary-C

2

). This ontradits the hypothesis

of the Lemma.

Claim 2. Prediate S is violated in state s of Controlled-Vehiles(Init-Vehiles,

B

1

, B

2

) in whih Prediate T is not satis�ed.

Proof of Claim 2. In state s, safe-measure < 0 and a

2

6= a

min

, sine Prediate

T is not satis�ed. But (beause ollided = false in s) this means that Prediate S is

also violated. This suÆes.

B

1

is Bad for B

2

by Claim 2. This proves that B

2

is Bad.

Let B

2

be Bad and B

0

1

be VeryBad for B

2

. Then Lemma 5.7, shows that in any

hybrid exeution of Controlled-Vehiles(Init-Vehiles, B

0

1

, B

2

), one Prediate S is

violated, it will ontinue to be violated throughout the hybrid exeution. In Lemma

5.8 we show that violation of Prediate S always leads to violation of safety. Finally,

Theorem 5.9 proves that if for an implementation B

2

there exists an implementa-

tion B

1

of Controller

1

suh that Controlled-Vehiles(Init-Vehiles, B

1

, B

2

) does not

implement Controlled-Vehiles(Init-Vehiles, B

1

, Neessary-C

2

) then this B

2

is not a

orret ontroller.

Lemma 5.7 Let B

2

be Bad, and B

0

1

be VeryBad for B

2

. Then, in any exeution of

Controlled-Vehiles(Init-Vehiles, B

0

1

, B

2

), Prediate S is violated in all the states

that our stritly after a state s in whih ollided = false and Prediate S is violated.

Proof: By indution on the number of steps in a �xed hybrid exeution h. Suppose

that there exists a state s in h in whih ollided = false and Prediate S is violated.

Initially, the laim is true vauously.
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The only disrete steps are ollide, e and the internal steps of B

0

1

. The latter

two steps annot hange any of the quantities involved. The e�et of the ollide step

ensures that ollided = true whih makes the Lemma true vauously.

Consider any trajetory w of h, whose domain is the interval [0; t℄, that ours

after Prediate S is violated and in whih ollided = false throughout the trajetory.

From the de�nition of B

0

1

, �x

1

= a

1

= a

min

throughout that trajetory.

Let's apply Lemma 3.5 to our problem. This Lemma states that if both the right

and left derivatives of a funtion on an interval are non-positive, then the funtion is

non-inreasing on that interval. Right and left derivatives of safe-measure are always

the right and left derivatives, respetively, of either f and g, as stated in Theorem

3.6. So we only have to prove that

_

f � 0 and _g � 0 throughout the interval [0; t℄. We

have:

_

f = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

�x

1

):

By the de�nition of B

0

1

, we have that �x

1

= a

min

. Also, by restrition on Init-

Vehiles, �x

2

= a

2

� a

min

. Therefore,

_

f = _x

1

� _x

2

+

1

a

min

( _x

2

�x

2

� _x

1

a

min

)

= _x

1

� _x

2

+

�

_x

2

�x

2

a

min

� _x

1

�

= _x

2

�

�x

2

a

min

� 1

�

� _x

2

�

a

min

a

min

� 1

�

= 0:

Similarly for _g:

_g = �x

1

� �x

2

= a

min

� �x

2

� a

min

� a

min

= 0:

Therefore, by Lemma 3.5, safe-measure is a non-inreasing funtion. Sine in

w(0), safe-measure < 0 , safe-measure is negative throughout the trajetory, whih
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means that the Controlled-Vehiles(Init-Vehiles, B

0

1

, B

2

) system violates Prediate

S throughout the trajetory.

Lemma 5.8 Let B

0

1

be VeryBad for B

2

. Then there exists a reahable state s

0

of

Controlled-Vehiles(Init-Vehiles, B

0

1

, B

2

) that does not satisfy safety.

Proof: By the fat that B

0

1

is VeryBad, there must exist some reahable state s of this

Controlled-Vehiles system, in whih Prediate S is violated. Then, if there exists a

state s

0

, reahable from s, in whih the vehiles do ollide, then by Lemma 5.7, in s

0

,

safe-measure < 0 . But that means that in s

0

, _x

2

> _x

1

+ v

allow

, violating safety. All

we have to prove now is that there exists a reahable state s

0

in whih the vehiles

do, in fat, ollide.

Suppose they don't ollide. Sine the �rst vehile eventually stops (it is deeler-

ating at its maximum rate), this means that the seond one also has to stop. Let x

i

,

_x

i

represent state omponents in state s, and x

i

0

represent the state omponents of

s

0

. Then,

x

1

0

= x

1

+

_x

2

1

�2a

min

and x

2

0

� x

2

+

_x

2

2

�2a

min

:

From our non-ollision assumption we get,

x

1

0

� x

2

0

+ l

2

x

1

+

_x

2

1

�2a

min

� x

2

+

_x

2

2

�2a

min

+ l

2

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

2a

min

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

;

whih means that safe-measure � 0 in state s. But then Prediate S is true in state

s, ontrary to our assumption.

Therefore, the vehiles do ollide in some reahable state s

0

, and s

0

does not satisfy

safety .

Theorem 5.4 shows that any ontroller of the trailing vehile that does not im-

plement Neessary-C

2

, and, therefore, violates Prediate S, violates safety for some

behavior of the leading vehile.
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Theorem 5.9 Let B

2

be an implementation of Controller

2

. If there exists an im-

plementation B

1

of Controller

1

, suh that Controlled-Vehiles(Init-Vehiles, B

1

, B

2

)

does not implement Controlled-Vehiles(Init-Vehiles, B

1

, Neessary-C

2

), then B

2

is

not a orret ontroller for Init-Vehiles.

Proof: B

2

must be Bad by Lemma 5.6. Then, by Lemma 5.5, there exists an im-

plementation B

0

1

of Controller

1

that is VeryBad for B

2

. Lemma 5.8 shows that the

system Controlled-Vehiles(Init-Vehiles,B

0

1

, B

2

) has a reahable state s

0

that violates

safety, whih means that B

2

is not orret.

5.5 Results

Theorem 5.4 shows that the ontroller C

2

is suÆient for guaranteeing orretness,

and Theorem 5.9 proves that the ontroller Neessary-C

2

is neessary to guarantee

orretness. Combining these two results, we an hek orretness, in terms of safety,

of any implementation C of Controller

2

. C is orret if it implements C

2

, and is not

orret if Controlled-Vehiles(Init-Vehiles, B

1

, C) does not implement Controlled-

Vehiles(Init-Vehiles, B

1

, Neessary-C

2

) for some implementation B

1

of Controller

1

.

Sine C

2

and Neessary-C

2

di�er in behavior only in the boundary ases, they an be

used to hek orretness of most ontrollers.
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Chapter 6

Delayed Response

In this hapter we onsider the delay between the reeipt of information by the on-

troller for vehile 2 and its resulting ation. There are two distint types of delay

to onsider | the inbound and the outbound delay; we model them separately. The

inbound delay is delay due to the ontroller's sensors getting the information (about

the position and veloity of the leading vehile). The outbound delay is the delay be-

tween the time the ontroller makes the deision and the time the deision is atually

implemented by the vehile.

These delays are between the vehile and its ontroller, and so only the delays in

the trailing vehile are relevant to our analysis, as we only are about the external

behavior of the leading vehile, and not about its ontroller. In partiular, if we were

to extend our analysis to a multi-ar ase, eah vehile ould have its own delay

harateristis; our analysis would still hold up, sine we would look at the delays in

the trailing vehile of eah vehile pair.

We use levels of abstrations to deal with the omplexity of the delayed ase.

First, we devise the \delayed" ontroller, and then we use simulation relations to the

ontroller of the �rst (ideal) ase, to show that this ontroller is suÆient for the

delayed ase. We also give a slightly less restritive ontroller spei�ation, and prove

that it is neessary to guarantee orretness.
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6.1 Delay Bu�ers

We model both the inbound and the outbound delays by speial delay bu�ers. To

obtain the delayed system, we ompose our new ontroller with the delay bu�ers.

First, we introdue a generi delay bu�er D-Bu�er, and then speify the inbound and

outbound delays as instanes of the generi automaton.

Parameters:

n | number of input variables

S

i

, S

o

- two disjoint sets of variables with n members in eah set

Let V (s), where s is a variable, be a valuation of the variable s;

V (S), where S is a set of variables, be a valuation of the entire set.

var : S

i

! S

o

, a 1-1 mapping from S

i

to S

o

d | the delay of the bu�er

Init : [0; d℄! V (S

o

) | a funtion giving the output of the bu�er for the initial d time period

Variables:

Input: S

i

Output: S

o

Internal: saved : [0 ; d ℄! V (S

o

), where saved ats as FIFO queue for outputs;

initially, saved = Init

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

for all t 2 I , t > 0, the following hold:

1. for all variables v

i

2 S

i

,

w(t):V (var(v

i

)) = w(t):saved(d):v

i

2. 8t

0

2 [0; d℄,

w(t):saved(t

0

) =

8

>

<

>

:

w(0):saved(t

0

� t) if t

0

> t;

w(t� t

0

):V (S

i

) otherwise.

Figure 6-1: D-Bu�er(n, S

i

, S

o

, var, d, Init) Hybrid Automaton

Automaton 8(D-Bu�er(n, S

i

, S

o

, var, d, Init)): The bu�er outputs its inputs

(the onnetion between inputs and outputs given by the var funtion) exatly in the

same order as reeived, and exatly time d later. Initially, it outputs values given by
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the Init funtion. The automaton is desribed formally in Figure 6-1.

Parameters

� n is the number of (input, output) variable pairs;

� S

i

, S

o

are two disjoint sets of input and output variables names, respetively;

� var : S

i

! S

o

is a 1-1 mapping from input to output variables. Eah pair

orresponds to a variable the bu�er is \delaying." For onveniene, we also

de�ne valuations of single variable names and their sets, by the funtion V .

� d is the maximum absolute delay. It is the same for all variables delayed by this

bu�er.

� Init is a funtion that sets up the initial \ontents" of the bu�er | it tells the

bu�er what to output for the initial d time period, when no inputs have reahed

the output yet.

Variables

� S

i

is a set of input variables, and S

o

is a set of output variables. Both sets are

given by the parameters of the automaton.

� saved is an internal variable that stores the input variables for the delay duration

d. Initially, it is prefed with information using the funtion Init. saved ats as

a First-In-First-Out ontinuous queue of the bu�ers inputs. saved(0) = V (S

i

)

and represents the most reent input; saved(d) represents the least reent input,

the one that is just about to be output.

Trajetories Condition (1) sets up the output variables to take their values from

the internal variable saved, exatly time d ago. Condition (2) updates the saved

variable with new information.
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HA Trajetories are not restrited in duration, so axiom T2 is satis�ed; also, tra-

jetories are never required to stop, so axiom T3 is also satis�ed. Thus, by disussion

in Setion 2.6, D-Bu�er is a HA.

Properties From the automaton de�nition, it follows that

1. For the initial d time period, output w(t):V (S

o

) = Init(t) (from the initializa-

tion of internal variable saved, and trajetory ondition (1)).

2. Afterwards, for all t, w(t):V (S

o

) = w(t � d):V (S

i

) (from trajetory onditions

(1) and (2)).

6.2 The System with Inbound and Outbound De-

lays

We ompose the delayed ontroller using two instanes of the delay bu�er D-Bu�er,

and a modi�ed ontroller.

First, we de�ne two instanes of the D-Bu�er automaton, the inbound and out-

bound delay bu�ers.

Automaton 9(D

i

, the inbound delay bu�er): D

i

= D-Bu�er(3, fx

1

; _x

1

; �x

1

g,

fx

d1

; _x

d1

; �x

d1

g, var, d

i

, Init), where var(x

1

) = x

d1

, var( _x

1

) = _x

d1

, and var(�x

1

) = �x

d1

;

d

i

2 R

�0

, the inbound delay, is the \information" delay { the time it takes the

ontroller to get the information from the sensors. The inbound delay automaton

delays the position, veloity and aeleration data of the �rst vehile, with delay d

i

.

Given arbitrary initial values for input values for x

1

; _x

1

; �x

1

, Init is set up so that

the Init(0) mathes up with these values. The least restritive onditions on the

behavior of the seond ontroller are obtained if we assume that the leading vehi-

le was deelerating at the maximum possible rate throughout the d

i

time period.

Then the seond ontroller does not have to push the brakes thinking that there is a

\dangerous" situation during the initial d

i

time period. Safety is preserved as long
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as Init(0) mathes up with the atual data at time 0. So, Init assumes vehile 1 was

deelerating at a

min

and �lls the position and veloity values aordingly.

Formally, Init is set up as follows. For any start values a

1

; a

2

; a

3

of x

1

; _x

1

; �x

1

,

respetively, onstrut a trajetory w of D

i

, of length d

i

suh that

8t 2 [0; d

i

); w(t):�x

1

= a

min

, and w(d

i

):�x

1

= a

3

;

8t 2 [0; d

i

℄; w(t): _x

1

= a

2

+ (t� d

i

)a

min

;

8t 2 [0; d

i

℄; w(t):x

1

= a

1

+ a

2

(t� d

i

) +

a

min

(t� d

i

)

2

2

:

Then, w(d

i

):fx

1

; _x

1

; �x

1

g = fa

1

; a

2

; a

3

g, so that it mathes up with real data at time

0. Let Init(t) = w(d

i

� t):(x

1

; _x

1

; �x

1

), then Init(0) mathes up with the atual values

at time 0.

Automaton 10(D

o

, the outbound delay bu�er): D

o

= D-Bu�er(1, fa

d2

g,

fa

2

g, var, d

o

, Init), where var(a

d2

) = a

2

; d

o

2 R

�0

, the outbound delay, is the

\ation delay" { the time that it an take for a vehile to reat to the ontroller's

diretives; 8t 2 [0; d

i

℄; Init(t) = a

min

. Setting Init so onservatively makes the vehiles

safe in the initial d

o

time interval even if the �rst vehile starts deelerating at the

maximum rate. This is the best we an do without any further knowledge. This

automaton delays the aeleration ommands by d

o

.

Finally, we modify the ontroller spei�ation so that it ommuniates with the

bu�ers orretly.

Automaton 11(Spe-D

2

): The ontroller Spe-D

2

(see Figure 6-2), omposed with

delay bu�ers D

i

and D

o

, implements Controller

2

. It is an HA sine the hanges to

trajetory de�nitions do not violate axioms T2�3. It is similar to Controller

2

, exept

that the input and output variables are hanged, and the restrition on trajetories

is modi�ed.

Variables The new ontroller gets its data about the �rst vehile from the inbound

delay bu�er D

i

, and the \self" data (data about the seond vehile) diretly from

the Init-Vehiles automaton. This models the situation in whih there is delay in

getting the information via the sensors about the other vehile, but there is perfet
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Variables:

Input: x

d1

; _x

d1

2 R

�0

, �x

d1

2 R

x

2

; _x

2

2 R

�0

, �x

2

2 R

Output: a

d2

, initially arbitrary, where a

d2

� a

min

Internal: internal variables of Controller

2

( _x

int2

and x

int2

),

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. w

0

is a trajetory of Controller

2

,

where w

0

is a trajetory onstruted from w suh that in all states of w

0

,

w

0

(t):x

1

= w(t):x

d1

, w

0

(t): _x

1

= w(t): _x

d1

, w

0

(t):�x

1

= w(t):�x

d1

,

w

0

(t):a

2

= w(t):a

d2

, and all other state omponents are the same as in Spe-D

2

Figure 6-2: Spe-D

2

Hybrid Automaton

self information. The output variable goes into the outbound delay bu�er D

o

.

Trajetories Condition (1) makes sure that the trajetories of Spe-D

2

are allowed

by Controller

2

, after the variable hange. It is needed to ensure that Spe-D

2

om-

posed with the delay bu�ers implements Controller

2

.

Finally, we ompose this new ontroller with the delay bu�ers, to get an automaton

that implements Controller

2

.

Automaton 12(Delayed-Controller

2

(D)): Delayed-Controller

2

(D) =

VarHide(fx

d1

, _x

d1

, �x

d1

, a

d2

g, D

i

k D k D

o

), where D is an implementation of

Spe-D

2

(see Figure 6-3). The variables that ommuniate between the sensors and

the ontroller are hidden so that Delayed-Controller

2

(D) is omparable to C

2

.

The following two theorems state relationships between the variables of Spe-D

2

at di�erent points in time.

Theorem 6.1 Let A

1

be any implementation of Controller

1

, s

00

be a reahable state

of the Controlled-Vehiles(Vehiles, A

1

, Delayed-Controller

2

(Spe-D

2

)) system, and

s

0

be a state reahable from s

00

suh that s

0

:now = s

00

:now+ d

i

and ollided = false in

s

0

. Then,

s

0

:x

d1

= s

00

:x

1

; s

0

: _x

d1

= s

00

: _x

1

, and s

0

:�x

d1

= s

00

:�x

1

:
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Figure 6-3: Delayed-Controller

2

(D) hybrid automaton

Proof: The theorem states the relationships between a state s

00

, and a s

0

that ourred

time d

i

after s

00

(see Figure 6-5). It states that the data reeived through the input

bu�er D

i

is exatly the same as the atual data time d

i

ago. This follows from

Property 2 of D-Bu�er (outputs of a bu�er in state s equal the bu�er's inputs in

state s

0

that ourred time d ago).

Theorem 6.2 Let A

1

be any implementation of Controller

1

, s

0

be a reahable state

of the Controlled-Vehiles(Vehiles, A

1

, Delayed-Controller

2

(Spe-D

2

)) system, and s

be a state reahable from s

0

suh that s:now = s

0

:now + d

o

, ollided = false in s, and

s is reahable from s

0

. Then,

1. s: _x

1

� s

0

: _x

d1

+ a

min

t

0

, where t

0

= min (

�s

0

: _x

d1

a

min

; d

i

+ d

o

).

2. s:x

1

� s

0

:x

d1

+ s

0

: _x

d1

t

0

+

1

2

a

min

t

0

2

, where t

0

= min (

�s

0

: _x

d1

a

min

; d

i

+ d

o

).

Proof: The theorem states the relationships between a state s

0

, and a state s that

ours time d

o

after s

0

(see Figure 6-5). By Theorem 6.1, the position, veloity and

aeleration data in state s

0

equal the \delayed" values in state s. By Properties 1

(�x

i

� a

min

) and 2 (the fat that position and veloity are integrals of aeleration)
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of Vehiles (see hapter 4), the position and veloity bounds an be obtained by

integrating the maximum deeleration.

In partiular, the �rst lause states that the atual veloity of vehile 1 in state s

is at least as great as its veloity in state s

00

that ourred time d

i

+ d

o

in the past,

plus the maximum possible derease in veloity during that time. The seond lause

states that the atual position of vehile 1 in state s is at least as great as its position

in state s

00

that ourred time d

i

+ d

o

ago, adjusted by the veloity time d

i

+ d

o

ago

and the maximum allowed deeleration.

6.3 Corretness of Delayed-Controller

2

We give an implementation of Spe-D

2

that is suÆient to guarantee orretness.

Automaton 13(D

2

): The ontroller D

2

(see Figure 6-4) is a suÆient ontroller to

guarantee orretness of Delayed-Controller

2

(D

2

). It is an HA sine the hanges from

Spe-D

2

do not violate axioms T2� 3. It is similar to C

2

in that it also tries to keep

the seond vehile within the bounds set by safe-measure

d

, whih is safe-measure

rede�ned for the delayed ase.

De�nition safe-measure

d

is exatly like safe-measure, modi�ed by replaing the

position, veloity and aeleration data of vehiles by their delayed values. For vehile

2, the delayed values are the values resulting from exeuting the ontroller's ommands

for the outbound delay time d

o

, as given by x

int2

and _x

int2

; for vehile 1, the \worst

possible" delayed values are generated by deelerating at the maximum possible rate

for the last d

i

+ d

o

time units, sine the ontroller's information is d

i

+ d

o

time units

\old." In partiular, using Theorems 6.2 and 6.3,

replae x

1

by x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

replae x

2

by x

int2

replae _x

1

by _x

d1

+ a

min

t

0

replae _x

2

by _x

int2
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De�nition:

safe-measure

d

= max((x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

)� (x

int2

+ l

2

) +

(_x

int2

)

2

�(_x

d1

+a

min

t

0

)

2

�(v

allow

)

2

2a

min

,

( _x

d1

+ a

min

t

0

)� _x

int2

+ v

allow

),

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

)

Variables:

Input: same as Spe-D

2

Output: a

d2

, initially if safe-measure

d

� 0 , then a

d2

= a

min

,

else arbitrary, where a

d2

� a

min

Internal: internal variables of Spe-D

2

, plus

a

2

- maps from an interval [0; d

o

℄ to R,

initially, 8t 2 [0; d

o

℄; a

2

(t) = a

min

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. w is a trajetory of Spe-D

2

2. if ollided = false in w(0) then for all t 2 I , t > 0:

2.1. if in state w(t) safe-measure

d

� 0 then a

d2

= a

min

else a

d2

� 0

2.2. 8t

0

2 [0; d

o

℄,

w(t):a

2

(t

0

) =

8

>

<

>

:

w(0):a

2

(t

0

� t) if t

0

> t

w(t� t

0

):a

d2

otherwise

2.3. w(t): _x

int2

= w(t): _x

2

+

R

0

d

o

w(t):a

2

(u)du

2.4. w(t):x

int2

= w(t):x

2

+

R

0

d

o

w(t): _x

int2

du

Figure 6-4: D

2

Hybrid Automaton

Variables External variables are the same as in Spe-D

2

. x

int2

, _x

int2

, represent the

position and veloity of the seond vehile after time d

o

passes, provided ollided

still equals false. They are used for safe-measure

d

alulations. In order to alulate

the values of these variables, we add a speial bu�er, a

2

, that stores the ontroller's

aeleration ommands that have not been exeuted yet (due to the outbound delay).

Initially, 8t 2 [0; d

o

℄; a

2

(t) = a

min

, so that it mathes the initial information in the

outbound bu�er.
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Trajetories Condition (1) restrits eah trajetory to satisfy Spe-D

2

require-

ments. Condition (2.1) is the same as for C

2

, substituting the new safe-measure

d

de�nition. Clause (2.2) sets up a

2

to save aeleration ommands output by the on-

troller in the last d

o

time units. a

2

(0) represents the most reent ommand issued,

and a

2

(d

o

) represents the ommand that is going to be exeuted next. Finally, lauses

(2.3) and (2.4) set up x

int2

and _x

int2

to be the integrals of the ommanded aelera-

tion. Sine there is no unertainty, these variables represent the atual values of the

orresponding variables in Init-Vehiles, but at time d

o

in the future (see Theorem

6.3).

Theorem 6.3 Let A

1

be any implementation of Controller

1

, s

0

be reahable states of

Controlled-Vehiles(Vehiles, A

1

, Delayed-Controller

2

(Spe-D

2

)), and s be reahable

from s

0

, suh that s:now = s

0

:now + d

o

, ollided = false in s. Then,

1. s: _x

2

= s

0

: _x

int2

;

2. s:x

2

= s

0

:x

int2

:

Proof: The theorem states that the atual position and veloity of vehile 2 in state

s

0

are equal to the \predited" values (given by the internal variables) in state s that

ourred time d

o

earlier. This follows from Property 2 of D-Bu�er (bu�er outputs in

state s equal bu�er inputs in state s

0

that happened time d before s), Property 2 of

Vehiles (position and veloity are integrals of aeleration), and Conditions (2.3-4)

of D

2

trajetories.

We prove that D

2

is suÆient to guarantee orretness. Throughout the rest of

this setion we will use the following notation:

For any implementation A

1

of Controller

1

, let

CV

I

(A

1

) = Controlled-Vehiles(Init-Vehiles, A

1

, Delayed-Controller

2

(D

2

)), and

CV

D

(A

1

) = Controlled-Vehiles(Init-Vehiles, A

1

, C

2

).

We show that CV

D

(A

1

) implements CV

I

(A

1

).

The key result, proven in Lemma 6.4 proves that if the old safe-measure (the

one used in the ideal ase) is non-positive in some state of a trajetory of Delayed-
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Figure 6-5: The timing diagram of the in- and outbound ontroller

Controller

2

(D

2

), then Delayed-Controller

2

(D

2

) will also output maximum deelera-

tion, just as the old (ideal) ontroller C

2

would. Formally,

Lemma 6.4 Let A

1

be any implementation of Controller

1

, and let s be a reahable

state of the CV

D

(A

1

) system, suh that s:ollided = false and safe-measure � 0 .

Then s:a

2

= a

min

.

Proof: By indution on the number of disrete and ontinuous steps in the hybrid

exeution. Initially, the lemma is true by restrition on the start states of D

2

. The

disrete steps e and the internal steps of A

1

do not hange any of the quantities

involved; the ollide step makes the Lemma true vauously.

Without loss of generality, onsider hybrid exeutions where all trajetories have

duration less than d

o

. Let s be any reahable state suh that s:ollided = false

and safe-measure � 0 in s. If s:now < d

o

(we are still in the initial period when

the ontroller's ommands do not reah the vehile, and D

o

just outputs maximum

deeleration), then by de�nition of the outbound bu�er D

o

(from the Init funtion),

a

2

= a

min

and we are done. Otherwise, at s we have

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

(6.1)

and

_x

2

� _x

1

+ v

allow

: (6.2)

Let's look at any reahable state s

0

of this system suh that s

0

:now = s:now � d

o

(see Figure 6-5), and from whih s is reahable in time d

o

(s

0

is the state in whih the
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ontrollerD

2

deided what aeleration the vehile should have in state s). This states

s

0

annot be in the same trajetory beause of our restrition on hybrid exeutions,

so we an use the indutive hypothesis on s

0

. For suh a state, by Theorem 6.3,

s

0

:x

int2

= s:x

2

and s

0

: _x

int2

= s: _x

2

. Also, by Theorem 6.2,

s: _x

1

� s

0

: _x

d1

+ a

min

t

0

;

s:x

1

� s

0

:x

d1

+ s

0

: _x

d1

t

0

+

a

min

t

0

2

2

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

We take inequality 6.1, and substitute the delayed values for the atual ones (using

the statements above), still keeping the orretness of the inequality.

x

1

� (x

2

+ l

2

) � �

( _x

2

)

2

� ( _x

1

)

2

� (v

allow

)

2

2a

min

(at s)

x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

� (x

int2

+ l

2

) � �

( _x

int2

)

2

� ( _x

d1

+ a

min

t

0

)

2

� (v

allow

)

2

2a

min

;

(at s

0

)

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

But this is exatly equivalent to the �rst part of safe-measure

d

at s

0

!

We do the same with inequality 6.2.

_x

2

� _x

1

+ v

allow

(at s)

_x

int2

� _x

d1

+ a

min

t

0

+ v

allow

; (at s

0

)

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

But this is exatly equivalent to the seond part of safe-measure

d

at s

0

!

We proved that in s

0

, both parts of safe-measure

d

will be non-positive and, so,

safe-measure

d

� 0 . Then the de�nition of D

2

guarantees that s

0

:a

d2

= a

min

.

And by the de�nition of D

o

, s:a

2

= s

0

:a

d2

. Thus, in Delayed-Controller

2

(D

2

),

s:a

2

= a

min

as needed.
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Lemma 6.5 Let A

1

be any implementation of Controller

1

, and let f be the identity

relation on all the omponents of the CV

I

(A

1

) system, exept that CV

I

(A

1

):x

int2

=

CV

D

(A

1

):x

2

, and CV

I

(A

1

): _x

int2

= CV

D

(A

1

): _x

2

. Then f is a forward simulation from

the omposed system CV

D

(A

1

) to CV

I

(A

1

).

Proof: By indution on the number of steps in the hybrid exeution.

Start States: Trivial, sine all the restritions on start states of C

2

are also restri-

tions on start states of Delayed-Controller

2

(D

2

).

Disrete Steps: The only disrete steps are ollide, e and the internal steps of A

1

.

The latter two steps annot hange any of the quantities involved. Sine the ollide

step is the same for both automata, it respets the simulation relation. Also, the

e�ets of the ollide step satisfy Prediate S vauously, thus the state reahed after

the ollide ation is a valid state of CV

I

(A

1

).

Trajetories: Suppose that w

D

is an I-trajetory of the delayed ontroller system

CV

D

(A

1

) and its �rst state s

D

is reahable. Suppose that s

C

is a reahable state

of CV

I

(A

1

) suh that (s

D

; s

C

) 2 f . Then let the orresponding hybrid exeution

fragment of CV

I

(A

1

) onsist of a single trajetory w

C

, where w

C

(t) = w

D

(t) (all

variables have the same values). It is obvious that the two trajetories have the same

hybrid trae and that the �nal states of both trajetories are f -related.

The only remaining thing to show is that w

C

is in fat a trajetory allowed by C

2

.

By the de�nition of a trajetory of C

2

we must show that

1. w

C

is a trajetory of Controller

2

. This is trivial, sine it is also a restrition on

the trajetories of D

2

, and the bu�ers do not hange any of the values involved.

2. If ollided = false in w

C

(0) then in all reahable states s of trajetory w

C

, if

safe-measure � 0 , then s:a

2

= a

min

. This follows diretly from Lemma 6.4.
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Theorem 6.6 Delayed-Controller

2

(D

2

) is a orret ontroller for Init-Vehiles.

Proof: We need to prove that for any implementation A

1

of Controller

1

, CV

D

(A

1

)

implements the safety spei�ation automaton Safe-Vehiles. CV

D

(A

1

) is omparable

to CV

I

(A

1

), and, by Lemma 6.5, there exists a simulation relation from CV

D

(A

1

) to

CV

I

(A

1

). So CV

D

(A

1

) implements CV

I

(A

1

).

CV

I

(A

1

) implements Safe-Vehiles by Theorem 5.4. Thus, CV

D

(A

1

) also imple-

ments Safe-Vehiles , whih means that Delayed-Controller

2

(D

2

) is, in fat, orret,

by de�nition 2.

6.4 Optimality of D

2

We give and prove neessary onditions for an implementation of Spe-D

2

to be orret.

We base the proofs on the fat that if an implementation B

2

of Controller

2

is orret,

then for any implementation B

1

of Controller

1

, Controlled-Vehiles(Init-Vehiles, B

1

,

B

2

) must implement Controlled-Vehiles(Init-Vehiles, B

1

, Neessary-C

2

) (see se-

tion 5.4). First, we de�ne a new automaton, Neessary-D

2

, whih gives neessary

onditions for safety. Then, we show that if for some implementation D of Spe-D

2

there exists an implementation B

1

of Controller

1

suh that Controlled-Vehiles(Init-

Vehiles, B

1

, Delayed-Controller

2

(D)) does not implement Controlled-Vehiles(Init-

Vehiles, B

1

, Delayed-Controller

2

(Neessary-D

2

)), then the Delayed-Controller

2

(D)

system will not be orret. This should be intuitively lear, sine we only hanged

safe-measure to aount for the \worst-ase" (but possible) behavior of the vehiles

during the last d

i

+d

o

time period of the delays. Relying on the fat that Neessary-C

2

is neessary simpli�es the proofs: we only need to show that a ontroller that would

let safe-measure

d

get negative, will eventually lead to a state in whih safe-measure

itself is negative. Then we an use neessity of Neessary-C

2

to show that any suh

ontroller would not be orret.

Automaton 14(Neessary-D

2

): This automaton is exatly like D

2

, exept that

ondition (2.1) for trajetories is slightly modi�ed. In partiular, Neessary-D

2

om-

mands maximum deeleration when safe-measure

d

< 0 , while D

2

does it when
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Variables:

Input, Output, Internal: same as in D

2

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

it satis�es ondition 1 of D

2

, plus

2. for all t 2 I ,

2.1. if ollided = false and safe-measure

d

< 0 then w(t):a

2

= a

min

onditions 2.2-2.4 of D

2

are satis�ed

Figure 6-6: Neessary-D

2

Hybrid Automaton

safe-measure � 0 . The formal model is given in Figure 6-6; thus the only di�er-

ene is the boundary in ondition (2.1). We laim that this ondition is neessary to

guarantee orretness.

De�nition 8(Prediate S

d

): If ollided = false then safe-measure

d

� 0 .

We now de�ne Bad

d

ontrollers, similar to the Bad ontrollers in the ideal ase

in the last hapter.

De�nition 9(Bad

d

): Let B

1

and B

d2

be implementations of Controller

1

and Spe-

D

2

, respetively. Then B

1

is Bad

d

for B

d2

if and only if in the system Controlled-

Vehiles(Init-Vehiles, B

1

, Delayed-Controller

2

(B

d2

)) there exists a reahable state s

that violates Prediate S

d

. B

d2

is Bad

d

if and only if there exists some B

1

that is

Bad

d

for this B

d2

.

De�nition 10(VeryBad

d

): Let an implementation B

0

1

of Controller

1

be alled

VeryBad

d

for an implementation D of Controller

2

if

1. B

0

1

is Bad

d

for B

d2

;

2. In any exeution of Controlled-Vehiles(Init-Vehiles, B

0

1

, B

d2

), for any state s

that does not satisfy Prediate S, stritly after the ourrene of s, a

1

= a

min

.

Based on the above de�nitions, we state an existene lemma, very similar to

Lemma 5.5.
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Lemma 6.7 If B

d2

is Bad

d

then there exists an implementation B

0

1

of Controller

1

,

suh that B

0

1

is VeryBad for B

d2

.

Proof: The proof is idential to proof of a similar Lemma 5.5 in the previous Chapter.

Next, we prove that if an implementation of Spe-D

2

does not implement D

2

then

it must be Bad

d

.

Lemma 6.8 Let B

d2

be an implementation of Spe-D

2

. If there exists an implemen-

tation B

1

of Controller

1

suh that Controlled-Vehiles(Init-Vehiles, B

1

, Delayed-

Controller

2

(B

d2

)) does not implement Controlled-Vehiles(Init-Vehiles, B

1

, Delayed-

Controller

2

(Neessary-D

2

)) then B

d2

is Bad

d

.

Proof: Idential to that of Lemma 5.6.

Lemma 6.9 relates the Bad

d

and Bad terms.

Lemma 6.9 Let B

d2

be an implementation B

d2

of Spe-D

2

. If B

d2

is Bad

d

, then

Delayed-Controller

2

(B

d2

) is Bad.

Proof: Let B

d2

be a Bad

d

implementation of Spe-D

2

. Then, by Lemma 6.7, there

must exist an implementation B

0

1

of Controller

1

that is VeryBad for B

d2

. We need

to prove that B

0

1

is Bad for Delayed-Controller

2

(B

d2

), and not only Bad

d

for B

d2

.

In partiular, we need to show that there exists a reahable state of Controlled-

Vehiles(Init-Vehiles, B

0

1

, Delayed-Controller

2

(B

d2

)) that violates Prediate S, and

not only Prediate S

d

(violation of Prediate S

d

follows from the de�nition of Bad

d

).

Let's look at a reahable state s of this Controlled-Vehiles system that violates

Prediate S

d

; existene of this state follows from the fat that B

d2

is Bad

d

. For suh

s, ollided = false and safe-measure

d

< 0 , meaning that

x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

� (x

int2

+ l

2

) < �

( _x

int2

)

2

� ( _x

d1

+ a

min

t

0

)

2

� (v

allow

)

2

2a

min

(6.3)
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and

_x

d1

+ a

min

t

0

< _x

int2

� v

allow

; (6.4)

where t

0

= min (�

_x

d1

a

min

; d

i

+ d

o

).

By the de�nition of B

0

1

, it always deelerates at the maximum allowable rate, a

min

.

Let's look at a state s

0

reahable from s in time d

o

, suh that s

0

:now = s:now + d

o

.

Then in s

0

,

s

0

: _x

1

= s: _x

d1

+ a

min

t

0

;

s

0

:x

1

= s:x

d1

+ s: _x

d1

t

0

+

1

2

a

min

t

0

2

;

s

0

: _x

2

= s: _x

int2

and s

0

:x

2

= s:x

int2

;

where t

0

= min (�

_x

d1

a

min

; d

i

+ d

o

). The �rst 2 equations follow from the fat that po-

sition and veloity are integrals of aeleration (Property 2 of Vehiles); the last 2

follow from Theorem 6.3. Note that these equalities also hold in the initial d

i

time

interval, beause our data in the inbound delay bu�er assumes that the �rst ontroller

is deelerating at the maximum rate.

Substituting these equations into the above inequalities will yield the two parts of

safe-measure in state s

0

; moreover, both parts turn out to be negative, whih means

that in state s

0

, safe-measure < 0 . But safe-measure < 0 means that Prediate S is

violated, and, therefore, Delayed-Controller

2

(B

d2

) is Bad.

Sine we have just shown that the delayed ontroller (omposed with delay bu�ers)

implements the non-delayed one, we an use the neessity property of the ideal ase

ontroller, to easily prove the neessity of the delayed ontroller:

Theorem 6.10 Let B

d2

be an implementation of Spe-D

2

. If there exists an imple-

mentation B

1

of Controller

1

suh that Controlled-Vehiles(Init-Vehiles, B

1

, Delayed-

Controller

2

(B

d2

)) does not implement Controlled-Vehiles(Init-Vehiles, B

1

, Delayed-

Controller

2

(Neessary-D

2

)) then Delayed-Controller

2

(B

d2

) is not orret.

Proof: B

d2

must be Bad

d

, by Lemma 6.8. By Lemma 6.9, Delayed-Controller

2

(B

d2

)

is Bad. But then, by Theorem 5.9, there exists an implementation B

1

of Controller

1

,
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suh that a system Controlled-Vehiles(Init-Vehiles, B

1

, Delayed-Controller

2

(B

d2

))

has a reahable state that violates safety. Sine this Controlled-Vehiles system

violates safety, it does not implement Safe-Vehiles, whih means that Delayed-

Controller

2

(B

d2

) is not orret, by De�nition 2.

Theorem 6.6 proves that Delayed-Controller

2

(D

2

) is suÆient, and Theorem 6.10

proves that Delayed-Controller

2

(Neessary-D

2

) is neessary to guarantee orretness.

Sine the distintion between D

2

and Neessary-D

2

is very small, they an serve as

the orretness spei�ation.
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Chapter 7

Unertainty

Our model already inludes both the inbound and the outbound delays in sending and

reeiving information between the ontroller and Init-Vehiles. We introdue extra

omplexity whih makes the model even more realisti: the inbound and outbound

unertainty (inexatness) in information. The inbound unertainty is the maximum

absolute di�erene between the atual position and veloity data of the vehile and

the data reported by the sensors to the ontroller; it arises from inexat sensors that

ommuniate data to the ontrollers. The outbound unertainty is the maximum

absolute di�erene between the aeleration ommanded by the ontroller and the

aeleration atually implemented by the vehile; it is due to the inherent inexatness

in the performane of the brakes and aelerators.

We use similar methods to the ones used in the delay ase. A speial \unertainty

bu�er" automaton is de�ned, similar to the previous D-Bu�er automaton. We use two

instanes of this parameterized bu�er to get the inbound and outbound unertainty.

Then, we ompose these two bu�ers with the modi�ed ontroller that aounts for

unertainties, and prove that this new omposed ontroller is suÆient to guarantee

safety. The proof uses the fat that the Delayed-Controller

2

(D

2

) is suÆient. This

use of levels of abstration makes the proofs for this ompliated ase, involving both

delays and unertainties, easier to write and understand.
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7.1 The Unertainty Bu�er

We introdue a parameterized unertainty bu�er, similar in funtion to the delay

bu�er.

Parameters:

n - the number of input variables

S

i

, S

o

- two disjoint sets of variables with n members in eah set

Let V be a valuation funtion, same as in D-Bu�er

var : S

i

! S

o

� R

+

, with seletors v

o

and �u

Variables:

Input: S

i

Output:S

o

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. for all v

o

2 S

o

, v

o

(t) is an integrable funtion

2. for all t 2 I , t > 0 the following holds for all v

i

2 S

i

:

V (var(v

i

):v

o

) 2 [V (v

i

)� var(v

i

):�u; V (v

i

) + var(v

i

):�u℄

Figure 7-1: U-Bu�er (n, S

i

, S

o

, var) Hybrid I/O Automaton

Automaton 15(U-Bu�er(n, S

i

, S

o

, var)): The U-Bu�er automaton nondetermin-

istially perturbs all input variables within given bounds to produe output variables.

Parameters

� n is the number of input variables;

� S

i

, S

o

are two disjoint sets of input and output variables, respetively;

� var : S

i

! S

o

�R

+

is a 1-1 mapping from input to pairs onsisting of an output

variable and an unertainty bound. So, the input variable v

i

beomes output

variable var(v

i

):v

o

, with maximum unertainty var(v

i

):�u, where v

i

2 S

i

; v

o

2

S

o

;�u 2 R

+

.

Variables The input and output variables are parameterized by the S

i

and S

o

sets.

It does not matter for the generalized automaton whih variables it perturbs.
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Trajetories The �rst restrition guarantees that all the data is still integrable

after the unertainty bu�er. This is important, beause both the ontrollers and

the Init-Vehiles automata integrate the data from the bu�ers to obtain position and

veloity data. Condition (2) lets outputs vary within given bounds of the inputs. The

bounds are given by the var(v

i

):�u funtion and represent the maximum absolute

value of unertainty in the data for variable v

i

.

Theorem 7.1 In all reahable states s of U-Bu�er, for all v

i

2 S

i

,

1. s:V (var(v

i

):v

o

) � s:V (v

i

)� var(v

i

):�u,

2. s:V (var(v

i

):v

o

) � s:V (v

i

) + var(v

i

):�u:

Proof: By restrition (2) on trajetories of U-Bu�er.

7.2 The System

The ontrollerD

2

is implemented by a omposition of three hybrid automata: another

ontroller U

2

and two instanes of the unertainty bu�er | the inbound and outbound

unertainty bu�ers.The omposed system is alled Unertain-Controller

2

(see Figure

7-2).

We de�ne two instanes of the U-Bu�er automaton { the inbound and outbound

unertainty bu�ers. These bu�ers use the following onstants:

� Æ - the maximum absolute unertainty in position data;

�

_

Æ - the maximum absolute unertainty in veloity data;

�

�

Æ - the maximum absolute unertainty in aeleration.

Automaton 16(U

i

): U

i

= U-Bu�er(3, fx

d1

; _x

d1

; �x

d1

g, fx

u1

; _x

u1

; �x

u1

g, var), where

var(x

d1

) = (x

u1

; Æ), var( _x

d1

) = ( _x

u1

;

_

Æ), and var(�x

d1

) = (�x

u1

;

�

Æ). This automaton

inputs the delayed position, veloity and aeleration data from the inbound delay

bu�er D

i

, and outputs them with \unertainty" to the ontroller U

2

.
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Figure 7-2: Sensor-Unertainty Vehiles Model

Automaton 17(U

o

): U

o

= U-Bu�er(1, fa

u1

g, fa

d1

g, var), where var(a

u1

) =

(a

d1

;

�

Æ). The outbound unertainty bu�er automaton inputs the aeleration om-

mands from the ontroller U

2

, and outputs the perturbed values to the outbound

delay bu�er D

o

.

In the unertainty ase we give a spei� ontroller U

2

that aounts for uner-

tainties, and prove that it is suÆient to guarantee orretness. No spei�ation

ontroller, or parameterized omposition automaton is given in this ase | optimal-

ity results are not presented, and only suÆieny of a spei� ontroller is proved.

This ontroller is presented below.

Automaton 18(U

2

): The ontroller U

2

(shown in �gure 7-3) is the same as D

2

exept that:

1. Input and output variables ommuniate through unertainty bu�ers; the a

2

bu�ers remembers the new output variable a

u2

.

2. _x

int2

is rede�ned to aount for the \worst" possible unertainty in the brake

performane, i.e., it assumes that the vehile aelerates at a

u2

+

�

Æ.

3. safe-measure

u

is de�ned to aount for the unertainties.

72



De�nition:

safe-measure

u

= max(((x

u1

� Æ) + (_x

u1

�

_

Æ)t

00

+

a

min

t

00

2

2

)� (x

int2

+ _x

int2

d

o

+

�

Æd

2

o

2

+ l

2

)

+

( _x

int2

+

�

Æd

o

)

2

�( _x

u1

�

_

Æ+a

min

t

00

)

2

�(v

allow

)

2

2a

min

;

( _x

u1

�

_

Æ) + a

min

t

00

� ( _x

int2

+

�

Æd

o

) + v

allow

);

where t

00

= min(d

i

+ d

o

;�

_x

u1

+

_

Æ

a

min

)

Variables:

Input: x

u1

; _x

u1

2 R

�0

, �x

u1

2 R

x

2

; _x

2

2 R

�0

, �x

2

2 R

Output: a

u2

, initially if safe-measure

u

� 0 , then a

u2

= a

min

�

�

Æ,

else arbitrary, where a

u2

� a

min

Internal: a

2

- maps from an interval [0; d

o

℄ to R,

initially, 8t 2 [0; d

o

℄; a

2

(t) = a

min

�

�

Æ

x

int2

, _x

int2

- the position and veloity of the seond vehile after time d

o

passes,

provided ollided = false ;

initially, _x

int2

= _x

2

+ a

min

t; x

int2

= x

2

+ _x

2

t+

a

min

t

2

2

, where t = min(d

o

;�

_x

2

a

min

).

Trajetories:

an I-trajetory w is inluded among the set of nontrivial trajetories exatly if

1. w is a trajetory of Controller

2

2. if ollided = false in w(0) then for all t 2 I , t > 0:

2.1. if in w(t), safe-measure

u

� 0 then a

u2

= a

min

�

�

Æ else a

u2

� a

min

2.2. 8t

0

2 [0; d

o

℄,

w(t):a

2

(t

0

) =

8

>

<

>

:

w(0):a

2

(t

0

� t) if t

0

> t

w(t� t

0

):a

d2

otherwise

2.3. w(t): _x

int2

= w(t): _x

2

+

R

0

d

o

(w(t):a

2

(u) +

�

Æ)du

2.4. w(t):x

int2

= w(t):x

2

+

R

0

d

o

w(t): _x

int2

du

Figure 7-3: U

2

Hybrid I/O Automaton
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The only hanges from safe-measure

d

are that the �rst vehile's data is adjusted

to the \worst possible" unertainty in the behavior of the �rst vehile. This \worst

possible" behavior is de�ned by the following inequalities:

1. x

d1

� x

u1

� Æ;

2. _x

d1

� _x

u1

�

_

Æ;

3. x

D

2

int2

� x

D

2

int2

+ _x

U

2

int2

d

o

+

�

Æd

2

o

2

;

4. _x

D

2

int2

� _x

U

2

int2

+

�

Æd

o

;

These inequalities are used in hanging safe-measure

d

to safe-measure

u

. The

proof of these relationships is given below, in Theorem 7.2.

Automaton 19(Unertain-Controller

2

): Unertain-Controller

2

= VarHide(fx

u1

,

_x

u1

, �x

u1

, a

u1

g, U

i

k U

2

k U

o

), is the omposition of the unertainty bu�ers with

the new ontroller. We show that it implements D

2

in the ontext of the Controlled-

Vehiles system. This automaton is not parameterized by the hoie of the ontroller,

unlike the previous omposed ontrollers. No parameterization is neessary beause

only suÆieny of the spei� ontroller U

2

is proven.

Theorem 7.2 Let A

1

be any implementation of Controller

1

. Then, in any reah-

able state s of the Controlled-Vehiles(Vehiles, A

1

, Delayed-Controller

2

(Unertain-

Controller

2

)) system suh that s:ollided = false, the following hold:

1. a

d2

� a

u2

+

�

Æ;

2. x

d1

� x

u1

� Æ;

3. _x

d1

� _x

u1

�

_

Æ;

4. �x

d1

� �x

u1

�

�

Æ;

5. x

D

2

int2

� x

U

2

int2

+ _x

U

2

int2

d

o

+

�

Æd

2

o

2

;

6. _x

D

2

int2

� _x

U

2

int2

+

�

Æd

o

.
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Proof: Claim (1) follows from Property 2 of U-Bu�er; laims (2)-(4) follow from

Property 1 of U-Bu�er. Finally, laims (5) and (6) follow from laim (1) of this the-

orem and Property 2 of Vehiles (position and veloity are integrals of aeleration).

Note that the symmetri properties also hold, but these are the relationships that

are used later on in the proofs.

7.3 Corretness of U

2

As in the delayed ase, we want to simulate the previous delayed system using the

new unertain system, and thus show that the new ontroller is suÆient.

Throughout this setion we will use the following notation: for any implementation

A

1

of Controller

1

, let

CV

U

(A

1

) = Controlled-Vehiles(Init-Vehiles, A

1

, Delayed-Controller

2

(Unertain-

Controller

2

)), and

and CV

D

(A

1

) = Controlled-Vehiles(Init-Vehiles, A

1

, Delayed-Controller

2

(D

2

)).

First we show that if the old safe-measure

d

(the one used in the delayed ase) is

non-positive in some state of Unertain-Controller

2

, then the new ontroller U

2

(the

one that has inbound and outbound unertainty), also outputs maximum deeleration.

Formally,

Lemma 7.3 Let A

1

be any implementation of Controller

1

, and let s be a reahable

state of the CV

U

(A

1

) system, suh that s:ollided = false and safe-measure

d

� 0 .

Then, safe-measure

u

� 0 and s:a

u2

= a

min

�

�

Æ.

Proof: Initially, the lemma is true by restrition on initial onditions of Unertain-

Controller

2

. Consider any reahable state s of CV

U

(A

1

), suh that s:ollided = false

and safe-measure

d

� 0. At s we have

(x

d1

+ _x

d1

t

0

+

a

min

t

0

2

2

)� (x

D

2

int2

+ l

2

) +

( _x

D

2

int2

)

2

� ( _x

d1

+ a

min

t

0

)

2

� (v

allow

)

2

2a

min

� 0

(7.1)
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and

_x

d1

+ a

min

t

0

+ v

allow

� _x

D

2

int2

� 0 (7.2)

where t

0

= min(d

i

+ d

o

;�

_x

d1

a

min

).

Let t

00

= min(d

i

+ d

o

;�

_x

D

2

int2

+

_

Æ

a

min

). Then, by Theorem 7.2, in s,

1. x

d1

� x

u1

� Æ;

2. _x

d1

� _x

u1

�

_

Æ;

3. x

D

2

int2

� x

U

2

int2

+ _x

U

2

int2

d

o

+

�

Æd

2

o

2

;

4. _x

D

2

int2

� _x

U

2

int2

+

�

Æd

o

.

Using the above inequalities, we replae eah delayed variable (x

d1

, _x

d1

, x

D

2

int2

,

_x

D

2

int2

) in inequalities 7.1 and 7.2 with an expression that is smaller than the delayed

variable, and using only the \unertain" values, whih are the ones known to U

2

.

Then, we get exatly the two parts of safe-measure

u

; moreover, sine we used only

smaller values, the resulting expressions are still non-positive. So,

safe-measure

u

� 0

Then, by the de�nition of U

2

, a

u2

= a

min

�

�

Æ, as needed.

Lemma 7.4 Let A

1

be any implementation of Controller

1

, and let f be an identity

relation on all state omponents of CV

D

(A

1

), exept that a

CV

D

d2

= max(a

CV

U

u2

; a

min

).

Then f is a simulation from CV

U

(A

1

) to CV

D

(A

1

).

Proof: By indution on the number of steps in the hybrid exeution.

Start States: The restritions on start states of CV

D

(A

1

) and CV

U

(A

1

) are iden-

tial.
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Disrete Steps: The only disrete steps are ollide, e and the internal steps of A

1

.

The latter two steps annot hange any of the quantities involved. Sine the ollide

step is the same for both automata, it respets the simulation relation. Also, the

e�ets of the ollide step satisfy Prediate S

d

vauously, thus the state reahed after

the ollide ation is a valid state of CV

D

(A

1

).

Trajetories: Suppose that w

U

is an I-trajetory of the unertainty-bu�ered sys-

tem CV

U

(A

1

) and its �rst state s

U

is reahable. Suppose that s

D

is a reahable state

of CV

D

(A

1

) suh that (s

U

; s

D

) 2 f . Then let the orresponding hybrid exeution

fragment of CV

D

(A

1

) onsist of a single trajetory w

D

, where all the state ompo-

nents in all the states of w

D

are equal to orresponding omponents in w

U

, exept

that w

D

:a

d2

= max(w

U

:a

d2

; a

min

). It is lear that the two trajetories have the

same hybrid trae and that the �nal states of both trajetories are f -related.

The only remaining thing to show is that w

D

is in fat a trajetory of CV

D

(A

1

). In

partiluar, we must show that the projetions of w

D

on the omponents of CV

D

(A

1

)

are allowed by these omponents.

First, we show that w

D

is allowed by the Delayed-Controller

2

(D

2

) ontroller. By

the de�nition of a trajetory we must show that

1. w

D

is allowed by Controller

2

.

This is trivial, sine it is also a restrition on the trajetories of U

2

, and the

bu�ers preserve these onditions by preserving integrability.

2. If ollided = false in w

D

(0) then 8t 2 I suh that safe-measure

d

� 0 we have

w

D

(t):a

d2

= a

min

.

Consider the trajetory w

U

of CV

U

(A

1

). Sine safe-measure

d

uses the same

variables with the same values in both the CV

D

(A

1

) and the CV

U

(A

1

) systems,

we an apply Lemma 7.3, so that w

U

(t):a

u2

= a

min

�

�

Æ. By Theorem 7.2, in

all reahable states s of CV

U

(A

1

), s:a

d2

� s:a

u2

+

�

Æ, so w

U

(t):a

d2

� a

min

.

Then, using the de�nition of trajetory w

D

,

w

D

(t):a

d2

= max(w

U

(t):a

d2

; a

min

) = a

min

;
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as needed.

We also show that the projetion of w

D

on Init-Vehiles is allowed by Init-Vehiles,

and has the same hybrid trae as w

U

.

We know that w

U

is allowed by Init-Vehiles. But w

D

is exatly the same as

w

U

, exept for the input variable a

2

. Also, sine all the variables are the same,

the hybrid trae of w

D

and w

U

is the same. Thus, we only need to show that the

ondition (3) of Init-Vehiles trajetories, namely, that w

D

:�x

2

= max(w

D

:a

2

; a

min

),

is preserved.

By the de�nition of w

D

, w

D

(t):�x

2

= w

U

(t):�x

2

for all t throughout the trajetory.

By restrition (3) on trajetories of Init-Vehiles, w

U

(t):�x

2

= max(w

U

(t):a

2

; a

min

).

Also, by the de�nition of w

D

, w

D

(t):a

2

= max(w

U

(t):a

2

; a

min

). Putting these

equations together we get

w

D

(t):�x

2

= w

U

(t):�x

2

= max(w

U

(t):a

2

; a

min

) = w

D

(t):a

2

= max(w

D

(t):a

2

; a

min

):

Therefore, w

D

is a valid trajetory of Init-Vehiles.

Theorem 7.5 Delayed-Controller

2

(Unertain-Controller

2

) is a orret ontroller for

Init-Vehiles.

Proof: We need to prove that for any implementation A

1

of Controller

1

, CV

U

(A

1

),

implements Safe-Vehiles. By Lemma 7.4, there is a simulation relation f from

CV

U

(A

1

) to CV

D

(A

1

). Sine CV

U

(A

1

) and CV

D

(A

1

) are omparable, CV

U

(A

1

) im-

plements CV

D

(A

1

).

By Theorem 6.6, Delayed-Controller

2

(D

2

) is orret, whih means that CV

D

(A

1

)

implements Safe-Vehiles. Then, sine CV

U

(A

1

) implements CV

D

(A

1

), CV

U

(A

1

) also

implements Safe-Vehiles. It follows that Delayed-Controller

2

(Unertain-Controller

2

)

is orret.
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7.4 Optimality

We do not present a neessary ontroller here, as opposed to the ontrollers onsid-

ered in the previous hapters. Before, we always made safe-measure to aount for

the \worst-ase", but possible, onditions. Then, we were able to prove neessity by

making the �rst vehile have its worst possible behavior. However, with the uner-

tainty involved, we did not make safe-measure as tight as possible. The problem is

that in our analysis, the position and veloity data are used independently. However,

the position and veloity data are dependent upon eah other, and thus we ould use

the relationship between the two values to get tighter approximations to their real

values, resulting in a more optimal ontroller. We did not model it this way beause it

is not realisti: in most situations it is impratial to dedue the tighter bounds, sine

just alulating these bounds takes too muh time, eliminating any bene�ts obtained

from using tighter bounds. This would ultimately derease the performane, instead

of improving it.
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Chapter 8

Conlusion and Future Work

The system onsisting of two vehiles moving on a single trak has been modeled

using hybrid automata, inluding all the omponents (physial vehiles, ontrollers,

delay and unertainty bu�ers), and the interations among them. Safety onditions

were formulated using invariant assertions. Corretness and optimality of ontrollers

were proved using omposition, simulation mappings and invariants, and the meth-

ods of mathematial analysis. Complexity (delays and unertainty) was introdued

gradually, using levels of abstration, signi�antly simplifying the proofs.

The ase study formally desribes a general ontroller that is neessary and suf-

�ient to guarantee the safety requirement regardless of the behavior of the leading

vehile. Suh a ontroller an be later reused to prove orretness of ompliated

maneuvers, suh as merging and splitting, where the setup is similar.

There are two important results of this researh. Generally, it demonstrates the

power of the hybrid automata model, the assoiated proof methods in reasoning about

interesting hybrid systems, and the use of abstration levels as a way of handling

omplexity. More spei�ally, we give a reusable model of the automated vehiles,

inluding their ontrollers and sensors, whih inorporates delays and unertainties

diretly, and we derive and prove neessary and suÆient onditions for satisfying the

safety requirement of the vehiles.

Future work will address the following problems:
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1. In reality, the ontrollers an only ontrol the jerk, and not the aeleration of

the vehiles. Without further ompliating the models, we an still model the

ontrollers as ontrolling the aeleration, but the outbound delay (and, possi-

bly, unertainty) have to be inreased to aount for the fat that it takes some

time for the ontroller to reah desired aeleration. Using this approah, the

outbound delay and/or unertainty might beome funtions of urrent aeler-

ation, and not onstants.

2. We have developed neessary and suÆient onditions for a ontroller to guar-

antee safety in the presene of delays and unertainties. This ontroller an

now serve as a orretness spei�ation. We ould prove orretness of \real"

algorithms, for merging or splitting, by testing them with our ontroller.

3. In this thesis we only handled the �rst ollision, when in fat, even in the ase

of two vehiles, multiple ollisions an our. Although all of the models do not

have to be hanged, most of the proofs would have to be reworked to handle

this ase. This would be similar to Lygeros and Lynh's work in [10℄, but would

have more detailed vehile models, inluding delays and unertainties.

4. Finally, it would be interesting to extend the models and the proofs to the mul-

tiple vehile ase. If we limit the analysis to only pairwise ollisions (exluding

simultaneous ollisions of three or more vehiles), then the models and some

of the analysis from this thesis an be reused, but many new problems would

arise. In order to remove the pairwise-only ollisions restrition, some of the

models would have to be reworked to model these ollisions. The results would

be more general than in [10℄, sine delays and unertainties would be inluded

in the model.
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