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Abstract

In this thesis we formally model a system consisting of two vehicles moving along a
single track, plus controllers that operate the vehicles, plus communication channels.
The modeling formalism used is the Hybrid Automata model developed by Lynch,
Segala, Vaandrager and Weinberg. We formulate a key safety requirement of such a
system, namely, that the two vehicles never collide at a relative velocity greater than
a given bound, vg;0,. We give necessary and sufficient conditions for the controller of
the follower vehicle to guarantee that the safety requirement is satisfied regardless of
the behavior of the leading vehicle. The model includes handling of communication
delays and uncertainty. The proofs use composition, invariants, and levels of abstrac-
tion, together with methods of mathematical analysis. This case study is derived
from the California PATH intelligent highway project.
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Chapter 1

Introduction

1.1 Problem Statement and Motivation

The Theory of Distributed Systems research group is currently working on modeling,
verifying and analyzing problems arising in automated transit systems. The formal
tools used include the standard techniques for distributed algorithms — invariants,
simulations (levels of abstraction) and automaton composition, plus standard meth-
ods for reasoning about continuous processes — differential equations and mathemat-
ical analysis. The work so far suggests that these methods are capable of providing
good results about safety and performance of automated transit systems.

Increasing highway congestion has spurred recent interest in the design of intelli-
gent, highway systems, in which cars operate under partial or total computer control.
An important new effort in this area is the California PATH project (see, for example,
[16]), which has developed a design for automating the operation of cars in several
lanes of selected California highways. This Master of Engineering thesis is a case
study of automated car maneuvers arising in the PATH project. We consider two
cars traveling in a single lane at a high speed with small distance between them. The
goal is for the second (follower) car to preserve safety, namely, that the two vehi-
cles never collide at a relative velocity greater than a given bound, given arbitrary
behavior of the first (leader) car.

The system is hybrid in that it involves both discrete and continuous behavior:



discrete behavior appears in the discrete actions of the controllers, points of collision,
plus communication among the various system components, whereas continuous be-
havior appears in the motion of the cars. The combination forms a hybrid system
of considerable complexity. The problem is further complicated by the presence of

delays and uncertainties in the behavior of sensors, brakes and controllers.

The goals of this project are to model this system using Hybrid Automata [12],
[13], and to derive and prove necessary and sufficient conditions that a controller of
the follower car must satisfy in order to guarantee the safety requirement regardless
of the behavior of the leading vehicle. In [4], a proof of such a safety property is
outlined, for the specific vehicle maneuver given in that paper. The key to the proof
turns out to be that the given maneuver always ensures that either (a) the vehicles
are sufficiently far apart that the second vehicle can slow down sufficiently before
hitting the first vehicle, or (b) the relative speeds of the two vehicles are already close

enough.

Although the outline [4] gives the key ideas, from our point of view, it is incomplete
as a safety verification. In particular, Frankel et al. do not include a complete
model of all system components — the discrete components are not modeled — and
do not seem to cover all cases that could arise — for instance, only some types of
communication delay are handled and uncertainties in the values of some parameters
are not considered. The analysis contains informal “jumps” in which certain types of
behavior are claimed to be the “worst possible”, and then only these cases are analyzed
carefully; however, it is not made clear how one can be sure that the claimed worst
cases are in fact the worst. Another problem is that the analysis is presented for
just the single maneuver, and is intertwined with the proofs of other properties for
that maneuver (success, time optimality). However, it seems that the analysis should
be decomposable, for example, proving the safety requirement in a way that allows
the proof to apply to other maneuvers. In this thesis, we model the whole system,
including delays and uncertainties, and reason about it in a modular fashion, so that

the proofs and the approach could be reused in other problems.
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1.2 Related Work

In [12], Lynch, Segala, Vaandrager and Weinberg have developed a formal model,
the hybrid (input/output) automaton model, for hybrid systems, together with as-
sociated proof techniques. These techniques include methods based on automaton
composition, invariant assertions, levels of abstraction, and mathematical analysis
for reasoning about continuous behavior. Lynch et al. have developed methods of

incorporating standard analysis techniques into automaton-based proofs.

These methods have been used to model and verify a variety of simple real-time
systems, including several very simple maneuvers arising in automated transporta-
tion systems [11],[17],[18]. Recently, some more complex systems have been modeled
and analyzed with the same approach: Livadas used similar methods in modeling
automated vehicle protection subsystems, as used in the Raytheon Personal Rapid
Transit project (PRT 2000) [6]; and Lygeros and Lynch modeled and analyzed the
Traffic Alert and Collision Avoidance System (TCAS) conflict resolution strategies
[9].

Lygeros and Lynch [10] have also worked on a problem similar to the one presented
in this thesis. The authors, using a similar approach, modeled a system comprised
of a string of vehicles moving along a single track and proved safety requirements
of such a system. However, their model involved an ideal system with no delays or
uncertainties. In this thesis, these complications are incorporated into the model, but
the problem is simplified by dealing only with 2 vehicles, and only worrying about
the safety of the first collision. In future work, it will be interesting to extend this
model to handle multiple vehicles. An alternative approach to proving safety for a

specific vehicle maneuver, based on game theory, is presented in [7],[8].

A representative collection of prior work in the modeling and verification of hy-
brid systems is available in the proceedings of the workshops on hybrid systems
[1],[3],15],[15]. Nearly all of this work differs from ours in using either control theory
methods, or else algorithmic techniques (e.g., decision procedures based on finite-state

analysis). Other formal models for hybrid systems appear in [14],[2]; these differ from
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ours primarily in placing less emphasis on issues of external behavior, composition

and abstraction.

1.3 Owur Approach

The approach of this research project is to formally model the entire system, including
the two vehicles and their sensors and controllers. This way, communication delays,
and delay and uncertainty in applying the control commands are included in the
model of the system. We use Hybrid Automata, described in [12],[13] as a framework
for modeling and reasoning about hybrid systems.

A parameterized safety criterion is formulated in terms of the model. The model
and the safety requirement are made very general, so that they can reflect a variety
of situations. This approach allows the later reuse of the models and proofs in other
problems involving automated vehicles.

Necessary and sufficient safety conditions on controllers are devised and proved
for the simplest case (namely, the no delays and no uncertainties case). Then, these
results are gradually generalized, using composition and simulation relations, to in-
creasingly complicated cases, until results are obtained for a realistic model with both
delays and uncertainties. All the proofs are modular in that they consist of several
lemmas and theorems, some of which could be reused in similar problems. More
importantly, the approach of starting with the simplest case and then getting to the
more complicated ones using simulation relations, should prove very useful. It allows

the use of levels of abstraction to reduce the complexity of the problem.

1.4 Contributions of this Research

In this case study, we apply the hybrid automaton model and its associated proof
methods to the task of describing and verifying safety for the PATH car maneuvers.
This is a relatively complex and realistic example, which has practical implications.

We aim for an accurate, complete model of the system, plus proofs that cover all cases

12



and accommodate all realistic variations, including delays and uncertainties. Our
safety proofs should apply as generally as possible, for instance, to different vehicle
maneuvers. Our model should also be usable for proving other properties, such as
success and time optimality. The system and its proofs should admit decomposition
into separate parts, as far as possible, and should be easy to extend.

The contributions of this research are:

e Definition of a reusable model of the automated cars, plus their controllers and

sensors, which incorporates delays and uncertainties directly.

e Derivation and proof of necessary and sufficient conditions for satisfying the

safety requirement of the cars.

e A demonstration of the power of hybrid automata and its associated proof

methods for reasoning about interesting hybrid systems.

e A demonstration of the use of abstraction levels as a means of handling com-

plexity for hybrid systems.

13
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Chapter 2

Hybrid Automata Model

The Hybrid Automata model presented in [12],[13] is capable of describing both con-
tinuous and discrete behavior. The model allows communication among components
using both shared variables and shared actions. Several HA techniques make them
particularly useful in modeling and reasoning about hybrid systems. These include
composition, which allows the formation of complex automata from simple building
blocks; implementation relations, which make it easy to use levels of abstraction when
modeling complex systems; and invariant assertions, which describe the non-changing
properties of the system.

For a complete description of the hybrid automata model, its associated methods,
and proofs of all HA theorems stated below, please refer to the Hybrid 1/0 Automata

paper [12].

2.1 Hybrid Automata

A state of a HA is defined to be a valuation of a set of variables. A trajectory w
is a function that maps a left-closed interval I of the reals, with left endpoint equal
to 0, to states; a trajectory represents the continuous evolution of the state over an
interval of time. A trajectory with domain [0, 0] is called a point trajectory.

A HA A consists of:

e Two disjoint sets of external and internal variables. A valuation of these sets

15



constitutes a state s of A.

Two disjoint sets of external and internal discrete actions. We assume that there
is a special external, environment action e, which represents the occurrence of

a discrete transition outside the system.

e A nonempty set of start states.

A set of discrete transition, i.e. (state, action, state) triples, satisfying

D: Vs: (s,e,s) is a valid discrete transition.

A set T of trajectories w over the variables of A, satisfying

— T1 (existence of point trajectories): Vs, the point trajectory p that maps

0tosisinT),

— T2 (closure under subintervals): Yw € T and for all left-closed subintervals

J of dom(w) : (w restricted to J) € T, and

— T3 (completeness): Yw on a left-closed interval J with left endpoint equal

to 0: (Vt € J: (w restricted to [0,t)) € T) = w e T.

Axioms T1-3 state some natural conditions on the set of trajectories: existence of
point trajectories, closure under subintervals, and the fact that w is a full trajectory
if and only if all its prefixes are valid trajectories. (Actually, axiom T3 does not say

“if and only if”, but the missing direction follows easily from T2.)

2.2 Hybrid Executions and Hybrid Traces

A hybrid execution fragment of A is a finite or infinite alternating sequence of trajec-
tories and actions, ending with a trajectory, if it is a finite execution fragment. An
execution fragment records all the discrete changes that occur in an evolution of a
system, plus the continuous state changes that occur in between. The time duration
of a Hybrid execution is the sum of the durations of its trajectories. Hybrid execution

fragments are called admissible if their time duration is infinite.
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A hybrid execution is an execution fragment in which the first state is a start
state. A state of A is defined to be reachable if it is the last state of some finite
hybrid execution of A.

A hybrid trace of a hybrid execution records only the changes to the external
variables. The hybrid traces of a HA A that arise from all the finite and admissible

hybrid executions of A describe its external behavior.

2.3 Simulation Relations

HAs A; and A, are comparable if they have the same external interface, i.e., the same
external variables and actions. If A; and A, are comparable then A; implements A,,
denoted A; < As, if the set of hybrid traces of A; is a subset of the set of hybrid
traces of As. Intuitively, this means that any external behavior of A; is allowed by
Ag, Ay being more restrictive.

Let A and B be comparable HAs. A simulation from A to B is a relation R from
states of A to states of B, satisfying the following conditions for states s4 and sp of

A and B, respectively:

e If s, is a start state of A, then there exists a start state sg of B, such that

saRsp.

e If a is an action of A, (sa,a,s’y) is a discrete transition of A, s4Rsp, and both
sa and sp are reachable, then B has a finite execution fragment starting with
sp, having a hybrid trace h that is identical to that of (s4,a,s’;), and ending

with a state s’z such that s, Rs's.

e Ifwisa trajectory of A from s4 to sy, s4Rsp, and both s4 and sp are reachable,
then B has a finite execution fragment starting with sp, having a hybrid trace

that is identical to that of w, and ending with a state s, such that s, Rs's.

The following theorem describes how one can prove that one HA implements

another HA. It’s proof may be found in [12].
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Theorem 2.1 If A, and Ay are comparable HAs and there is a simulation from A;

to As, then A implements As.

2.4 Composition

Another HA technique for reducing complexity is composition.

HAs A and B are compatible if

1.

2.

Initial conditions of A and B are consistent. Formally, there exists a valuation
s for V.= V4 U Vg, where V, and Vg are the sets of variables of A and B,
respectively, such that the valuation of variables of A and B in s comprise start

states of A and B, respectively.

Internal actions of A are disjoint from actions of B, and internal variables of A

are disjoint from variables of B. Similarly for B and A.

If A and B are compatible then their composition C' = A||B is defined as follows:

1.

External and internal variables of C' are the union of external and internal

variables, respectively, of A and B.

External and internal actions of C' are the union of external and internal actions,

respectively, of A and B.

Start states are states of C' that satisfy the initial conditions of both A and B.

. Discrete transitions and trajectories are the union of the corresponding compo-

nents of A and B.

We state without proof that C'is in fact a HA.

The crucial result is that the composition operator respects the implementation

relation: if A; implements A, then A; composed with B implements A, composed

with B. This result is also presented here without proof.

Theorem 2.2 Suppose Ay, Ay, B be HAs such that A; < A, and each of Ay and A,
is compatible with B. Then A; || B < A, || B.

18



2.5 Hiding

Two natural hiding operations are defined on any HA A.
Let E, H designate the external and internal actions of a HA, respectively; W,
X designate the external and internal variables of a HA, respectively; and e — the

environmental action.

1. If EC E4 — {e}, then ActHide(E, A) is the HA B that is equal to A except
that EB :EA—E and HB :HAUE.

2. If W C Wy, then VarHide(W, A) is the HA B that is equal to A except that
WB:WA—WandXB:XAUW.

Theorem 2.3 Let E C Ex— {e} and W C Wy. Then ActHide(E, A), VarHide(W
A) are HAs.

2.6 Modeling Conventions in This Thesis

A’s visible behavior is completely described by changes of its external variables. Here,
we subdivide the set of external variables into two disjoint sets of input and output
variables. This is done for notational convenience only, and does not change automata
properties.

In [12], two models are defined: Hybrid Automata and Hybrid I/O Automata.
Hybrid I/O Automata are an extension of Hybrid Automata, in that they differentiate
between input and output actions. They are also more restrictive because they have
more axioms associated with them. In this thesis we use the Hybrid Automata model
exclusively.

In all the automata defined in this work we assume, without explicitly specifying,

the following:

1. An external environmental action e. It is always enabled (can happen at any

time), and it does not change any of the state variables.

19



2. All point trajectories are included. Only “non-trivial” (not point) trajectories

are specified explicitly.

[tem (1) satisfies axiom D, and item (2) satisfies axiom T'1 of HAs. Therefore,
we only need to prove that an automaton satisfies axioms 72 and T3 to claim that
it is, in fact, a HA. T'2 requires closure under subintervals; 7’3 requires completeness.
In order to satisfy T3, either (1) trajectories are never required to stop; or (2) if a
trajectory is required to stop, its time domain has to be a closed interval. It is easy

to see that 7'3 holds in either case.
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Chapter 3

Math Preliminaries

3.1 Non-Negativity Theorems

The following theorem gives simple conditions that a differentiable function must

satisfy in order to be positive everywhere on a given interval.

Theorem 3.1 Given a continuous function f on an interval [a,b], if
1. f(a) > ¢, and
2. for all x € [a,b), if f(x) <c then f'(x) exists and f'(z) > 0,

then for all x € [a,b], f(x) > c.

Proof: We prove this by contradiction. Suppose there exists b’ € [a,b] such that
f(') < c. Since f(a) > c and f is continuous, there exists a’ € [a,’) such that
f(a') = c and for all z € (a', V'], f(z) < ¢ by the Intermediate Value Theorem.

By the Mean Value Theorem, there exists = € (a/,0') such that f'(z) = W
Since f(x) < ¢, it follows by assumption 2 that f’'(x) > 0. Thus, since b’ > o', it
follows that f(b') > f(a’). But since f(a') = ¢, it follows that f(b') > ¢, which is a

contradiction.
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We now prove a similar theorem for functions that have right and left derivatives
that are not necessarily equal to each other. The right and left derivatives of a

continuous function f are defined as follows:

(left derivative).

First, we prove a helpful lemma about right and left derivatives of a continuous

function at its local maxima and minima.

Lemma 3.2 Let f be a continuous function defined on |a,b], whose both right and

left derivatives are defined on (a,b). Then,
1. if x € (a,b) is a local mazimum, then f'(z%) <0 and f'(x7) > 0;
2. if x € (a,b) is a local minimum, then f(x*) >0, and f(z7) < 0.

Proof: Let = be a local maximum. Then there exists § > 0 such that f(q) < f(x)

for all ¢ such that |z — ¢| < §. Choose such § so that
a<r—0<zr<x+0d<bh

Choose t such that z — § <t < z. Then
f(t)— f(x)

> 0.
t—x -
Letting t — x~, we see that f'(z~) > 0.

Now choose ¢ such that x <t < x + 6. Then
f(t) — f(x)

<0
t—=x -

Y

which shows that f'(z*) <0.
The statement about local minima can be proven analogously.

Using Lemma 3.2 we prove an analog of the Mean Value Theorem for functions

whose right and left derivatives are not necessarily equal.

22



Lemma 3.3 Let f be a continuous function defined on [a,b] whose right and left
derivatives are defined on (a,b). Then there exists x € (a,b) such that either
f(b) — f(a)
b—a

f(b) = f(a)

b—a
Also, there exists x € (a,b) such that either
f(b) — f(a)

b—a

f(b) = f(a)
b—a

> f'(z7), or

> f'(z).

< f'(@F), or

< f'(@7).

Proof: Put h(t) = (f(b) — f(a))t — (b — a)f(t). Then h is continuous on [a, b], has

right and left derivatives on (a,b), and
h(a) = af(b) —bf(a) = h(b).

To prove the first half of the lemma it suffices to show that either A’'(z*) > 0 or

h'(z~) > 0 for some x € (a,b), since
W(x") = f(b) = fa) = (b= a)f'(z") and W(z") = f(b) = f(a) = (b—a)f'(z").

Case 1: h is constant. Then, h'(z") = h'(xz7) = h'(z) = 0, so the condition holds
for all =.

Case 2: h(t) > h(a) for some t € (a,b). By continuity of h, there exists z € (a,b)
which is a local maximum in (a, ). Lemma 3.2 shows that h'(z~) > 0.

Case 3: h(t) < h(a) for some ¢ € (a,b). By continuity of h, there exists x € (a, b)
which is a local minimum in (a,b). Lemma 3.2 shows that A'(z™) > 0.

The second part of the lemma is proved analogously.

Finally, we are able to prove a theorem similar to our first non-negativity theorem

(Theorem 3.1), but for functions with unequal right and left derivatives.

Theorem 3.4 Let f be a continuous function defined on [a,b]. If
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1. fla) =z ¢

2. for all x € [a,b) and f(x) < ¢, f'(x%) and f'(x7) exist, with f'(xT) > 0 and

then for all x € [a,b], f(x) > c.

Proof: Again, we use proof by contradiction. Suppose there exists 0’ € [a,b] such
that f(0') < c¢. Since f(a) > ¢ and f is continuous on [a, b], there exists ' € [a, V)
such that f(a') = ¢ and for all x € (d',V], f(z) < ¢, by the Intermediate Value
Theorem.
By Lemma 3.3 we have that either
f) = f(d)

Y —a

f¥) — f(d)

Y —a

> f'(="")

> fl(fL'H_) or

for some z' € (a/,b'). Since f(z) < ¢ for all z € (a,V], both derivatives have to be
non-negative by property 2, so in either case we have % > 0. Also, b’ > d, so

we get f(b') > f(a'). But f(a') = ¢, so f(b') > ¢, which contradicts our assumption.
|

3.2 Non-Increasing Functions

The following lemma gives simple conditions for a function with unequal right and

left derivatives to be non-increasing.

Lemma 3.5 Let f be a continuous function defined on [a,b] whose right and left
derivatives are defined on (a,b). Then if for all x € (a,b), f'(x*) <0 and f'(x~) <0,

then f is a non-increasing function.

Proof: This follows directly from Lemma 3.3. We have that for any o’ < V' in [a, b],
there exists « € [d/, V'] such that either

f) — f(d)

Y —a

< f'(a") or

24



But since 8" > o’ and also f'(z7) < 0 and f'(z7) < 0, we get f(0') < f(a'). Since

a', b’ were chosen arbitrarily, it follows that f is non-increasing.

3.3 Derivatives of The maxr Function

We prove a useful theorem about the right and left derivatives of the maz function.

Theorem 3.6 Let f and g be differentiable functions, and m(x) = maz(f(x), g(z)).
Then,

1. the right derivative of m(x) erists and equals the right derivative of either f or

g5

2. the left derivative of m(x) exists and equals the left derivative of either f or g.

Proof: We start with the right derivative. First suppose that there exists 6 > 0, such
that for all ¢ € [x,x + 0), m(t) = f(¢). Then,

as needed. Analogously for m(t) = g(t).

Alternatively, suppose that no such ¢ exists. This means that for all § > 0, there
exists a point ¢t; € [x,x + J), such that m(t;) = f(¢1) > ¢(¢1), and there also exists a
point ¢y € [z, + 0), such that m(tz) = g(t2) > f(t2).

Then the following two statements must be true:

1. f(x) = g(z) = p=m(x), where p is some real number.

Proof: Suppose this is not so. Let f(z) > g(z), without loss of generality.
Then, by continuity of f and g, there exists a neighborhood of x in which for
all t, f(t) > ¢g(t). But this contradicts our original assumption that there does
not exist a d-neighborhood of x in which f(¢) > g(¢) for all t € [z,z +4§). N
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2. f'(z7) = ¢'(x) = q, where ¢ is some real number.

Proof: Suppose this is not so. Then f'(z7) = ¢ and ¢'(z7) = ¢2, where
¢1 # q2. Without loss of generality, let’s assume that ¢; > ¢o. From the
definition of the derivative, we know that for all € > 0, there exist d;,d, > 0,

such that V' € (z,z + ¢;) and Vi € (z,x + d2),

—q1| < € and — @z < e

‘g(t”) —9(7)

t"—x

Let’s pick € < %(ql — ¢2), and let & = min(dy, ;). Then, using the result from
statement 1, Vt € (z,x + 0),
(t)—p

< € and ‘gti—qg

< €.

Rl

From these inequalities, by choice of €, and using the fact that ¢t > =z, it follows

that

f(t)—p . g(t) —p

t—x t—=x
ft)—p>gt)—p
f(t) >g(t)

This means that there exists a §-neighborhood of z in which f(¢) > ¢(t), which

contradicts our original assumption.

From statement 2 we have that for all e > 0, there exists § > 0 such that V¢ €

(x,x + 01) the following hold:

‘f(t)—f(rr) - ‘g@_g(x) e
t—x t—x
Then Vt € (z,z +9),
mt) —m(x) | —d<e i 50) 2 00)
b= 4022 — | < e if £(t) < g(t).
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M _ q‘ < €. This means that

Thus, in both cases, —

oy g () —m(@)
m'(z )—%l_r)r% PR =q,

which is the same as the right derivative of both f and ¢ at z.

The left derivative part is proven analogously.
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Chapter 4

System Model

We consider two vehicles, moving along a single track. While the behavior of the
leading vehicle is arbitrary, the second vehicle’s controller must make sure that no
“bad” collisions occur. “Bad” collisions are collisions at a high relative speed. This
is called the Safety requirement for the second controller. This Safety requirement
is general for all vehicle maneuvers, and is independent of the particular algorithm
used. We devise the most nondeterministic safe controller, so that later we can use
this controller as a correctness check: a controller implementing any vehicle maneuver
must implement our safe controller in order to be correct. This should be useful in

formally proving correctness of complicated algorithms.

4.1 Vehicles

Trailing vehicle Leading wehicle

¥

D IE- X;;. +.','12 xj

Figure 4-1: Vehicles

29



Constants:
l;, the length of the vehicle
Gmin € R™, the maximum emergency deceleration
Variables:
Input: ace; € R, initially arbitrary
Output: z; € R20, initially o2 = 0 and z; is arbitrary, subject to z1 > x2 + [
#; € RZ°, initially arbitrary
Z; € R, initially arbitrary
now, initially 0

collided, Boolean, initially false

Actions:
Internal: collide
Pre: 1 =22 + I
collided = false
Effect: #; := arbitrary value, subject to &; > amin
Z; := arbitrary value
collided := true
Trajectories:

an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. collided is unchanged in w
2. Z; is integrable in w
3. for all ¢ € I the following hold:
3.1. If collided = false in w then
w(t).Z; = maz(w(t).acc;, amin)

else, w(t).&; > amin

3.2. w(t).d; = w(0).d; + [, w(u).éidu
3.3. w(t).x; = w(0).x; + fotw(u).x‘idu
3.4. w(t).xe + 1o <w(t).x

3.5. w(t).now = w(0).now + t

3.6. If w(t).z; = w(t).z2 + Iz and ¢ is not the right endpoint of I then

collided = true.

Figure 4-2: The Vehicles Hybrid Automaton
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We compose our system of a piece modeling the physical vehicles, and two pieces
modeling the controllers of each vehicle. Each piece is modeled by a hybrid automa-
ton. The real world piece is called Vehicles.

Automaton 1(Vehicles): The automaton represents two vehicles, named 1 and 2,
where vehicle 1 precedes vehicle 2 on a single track. Positions on the track are labeled
with nonnegative reals, starting with 0 as a designated starting point, as shown in
Figure 4-1. The formal HA model for this automaton is given in Figure 4-2. We

assume that ¢ € 1,2 throughout the model.

Constants
e [; is the length of the i-th vehicle.

® G, < 0is the maximum deceleration rate for the vehicles. We assume here

that all vehicles have identical breaking capabilities.

Variables

e acc; denotes the acceleration commanded by the controller. Note that it can
differ from z;, which is the actual acceleration of the vehicle, due to delays

and/or uncertainties.

e 1;, ;, and #; model the actual position of the vehicle’s rear, its velocity and
acceleration data. The dots are used as a syntactic device only, and do not

impose differential relationships.

e now models the current time. While it is not necessary for modeling the system,

it will be used later in stating some of the invariant assertions. Initially, now

=0.

e collided keeps track of the first occurrence of a collision; it will be used in our
statement of the correctness property — in this work we only want to guarantee

safety for zero or one collisions, the multiple collisions case is not handled.
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Actions The action collide occurs when the vehicles touch each other for the first
time. The vehicles touch when the position of the rear of the leading vehicle, x1,
equals the position of the front of the trailing vehicle, x5 4 5. The effect is that both
the vehicle’s acceleration and velocity assume arbitrary values. After the collision,
the vehicle’s acceleration, #;, is decoupled from what is commanded by the controller,

while velocity and position are still obtained by integrating the acceleration, ;.

Trajectories The first condition (1) states that collided can only be changed by
discrete actions. Condition (2) requires the actual acceleration of the vehicles to be
integrable, so that velocity and position can be derived from it. (3) gives conditions
on all states of a trajectory. Condition (3.1) ensures that the vehicle implements the
controller’s acceleration (taking care not to go below a,,;,), before the first collision
occurs. Conditions (3.2) and (3.3) give differential relationships between the actual
acceleration, velocity and position of the vehicle at all times. (3.4) does not allow
vehicles to bypass each other, which is realistic assuming that the vehicles move only
in a single lane. (3.5) assigns the variable now, and (3.6) makes sure that when the
vehicles collide, then either a) it is the right endpoint of the trajectory, and the collide
action will be scheduled (this happens for the first collision), or b) it is after the first

collision, and collided already is true.

HA By discussion in Section 2.6, we only need to show that axioms 72 and 73
are satisfied. Since the duration of trajectories is not restricted, “sub”-trajectories
are always valid, so T2 is satisfied. The only time trajectories are required to stop is
when a collide action has to occur. But by trajectory condition (3.6), we allow these

trajectories to be closed, so T'3 is also satisfied. Therefore, this automaton is an HA.

Properties From this definition, several useful properties of all reachable state of

the Vehicles automaton can be deduced:

1. &; > amin, by trajectory condition (3);
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2. velocity and position are integrals of #;, except at the time of collision, by

trajectory conditions (4) and (5);

3. w9 + I < x1, meaning that vehicles never bypass each other, by trajectory

condition (6).

4.2 Controllers

Variables:
Input: Z; € Ryie€{1,2}
i; € R0, i e {1,2}
z; € R20 i€ {1,2}
Output: acc;, initially arbitrary, where acc; > amin
Internal:  #n¢; € RZ0, initially @iy = 3
Tintj € RZO, initially Tini; = x;
Trajectories:

an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. accj is an integrable function
2. for all t € I, in state w(t)
2.1. @ipej = w(0).Eing; + fotw(u).accjdu
2.2, Zinj = w(0).Tintj + fotw(u).j:mtjdu

2.3. If £; <0 then acc; >0

Figure 4-3: Controller; Hybrid Automaton, j € {1,2}

We now define the controller automaton.
Automaton 2(Controller;, j € {1,2}): This automaton inputs the current posi-
tion, velocity and acceleration data of the vehicle (from the Vehicles automaton) and
outputs new acceleration settings. It is an arbitrary hybrid automaton with the given
interface, and it is restricted only by the physical limitations of the vehicles. It does
not have any discrete actions. The formal model for this automaton, where j is either

1 or 2, is given in Figure 4-3.
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Variables Controller; receives the real position and velocity data of both vehicles
via sensors, which we model by inputing the data from the Vehicles automaton.
Based on these inputs, the Controller; decides on a safe acceleration setting and
outputs it to Vehicles. The internal velocity and position variables (&;,:; and ;)
are approximations to the real data of Vehicles, calculated based on the acceleration
the Controller; has commanded. This data is obtained by integrating the acceleration
requests of the controller. Since we have not included any delays or uncertainties yet,
these variables should correspond exactly to the actual position and velocity of the
vehicle, so that ;,;; = z; and @;,,; = ;. However, when we add uncertainty and
delay into our model, the internal variables will be different from the input variables
(which are received from sensors); the internal variables will use input variables and

account for delays and uncertainties to get better estimates of the actual data.

Trajectories Condition (1) requires that the commanded acceleration be integrable
twice, so that the integrals for velocity and position are well defined. Conditions (2.1)
and (2.2) define internal velocity and position data to be integrals of commanded ac-
celeration. Finally, condition (2.3) guarantees that once the vehicle has non-positive
velocity, the acceleration must be non-negative, keeping the vehicles from going back-

wards.

HA No restrictions on either the duration of a trajectory, or stopping trajectories
are places, so axioms 72 and T3 are satisfied. Thus, by discussion in Section 2.6,
Controller; is an HA.

We model the whole system by composing the Vehicles automaton with 2 con-
trollers. These controllers must be implementations of Controller;. Thus, the com-
posed system is a “function” of the given controllers and the given implementation
of the Vehicles automaton.

Automaton 3(Controlled-Vehicles): Controlled-Vehicles(V, Ay, As) = Vehicles
|| A1 || Az, where V' is an implementation of the Vehicles automaton, A; is an imple-

mentation of Controller;, and A, is an implementation of Controller,. The automata
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. p
Controfler, ‘

ACC,

Controfler, ‘
\Comroffed- Vehicles J

Figure 4-4: Controlled- Vehicles Model

are composed using hybrid automata composition rules, resulting in another HA au-
tomaton. The system models our vehicle system with each vehicle having its own
controller. Figure 4-4 shows Controlled-Vehicles( Vehicles, Controller;, Controllery),

by showing the pieces it consists of and the interfaces between them.

4.3 Safety Condition

We define a safety condition for the states of Controlled-Vehicles. The safety condition
guarantees that if the vehicles ever collide, then the first time they do so, their relative
velocity is no more than vg,,. We formulate this condition formally as an invariant
assertion:
Definition 1(Safety): If 21 = xo + [, and collided = false, then £y < &1 + Vapow-
We define a new automaton, Safe-Vehicles, to serve as a correctness specification.
Automaton 4(Safe-Vehicles): This automaton is exactly the same as Vehicles
with an added restriction on trajectories: all states are required to satisfy the Safety
condition. Since this restriction does not violate axioms T2 and T3, the Safe- Vehicles
automaton is still a valid HA.
Given an implementation V' of Vehicles, we want to design an implementation
Ag of Controller, such that for any implementation A; of Controller;, the system

Controlled-Vehicles(V, Aj, As) implements the Safe-Vehicles automaton. Then we
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can say that it satisfies the Safety condition. That is enough to ensure that the Safety
condition of the specification carries over to the implementation. Note that although
the Controlled-Vehicles automaton includes controllers, it can still implement the
Safe-Vehicles automaton, since they will have the same external interface (position,
velocity, acceleration data, the now variable, and the collided flag) and the controllers
only affect the acceleration settings.

Definition 2(Correctness): Given an implementation V' of Vehicles, an implemen-
tation Ay of Controllers is correct for V' if and only if for every implementation A

of Controller;, Controlled-Vehicles(V, A1,As) system implements Safe-Vehicles.
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Chapter 5

Safety In The Ideal Case

We start with a treatment of the safety property in the ideal setting. This allows us to
prove some important properties of the simpler model first, and then extend them to
the more complicated models, which include delays and uncertainties, via simulation
mappings. By ideal setting we mean that there are no delays and/or uncertainties in
either the sensors’ data or the controller’s directives. In the next chapters we make

the model more realistic by relaxing these restrictions.

5.1 Problem Statement

We want to give conditions on an implementation of Controller, that are both nec-
essary and sufficient to satisfy the correctness property of Definition 2. In the next
section we present such conditions by showing an implementation of Controllers,
called C5, which guarantees correctness. Then, we show that the conditions are suffi-
cient by proving that this conroller is correct. Finally, we give slightly less restrictive

conditions on the controller and prove that these conditions are necessary.

5.2 The Model

In any state of Vehicles, define
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(1.'2)2 - (1.'1)2 - (vallow)2

2amin

safe-measure = max(x; — (T9 + lo) + ,

1.'1 + Vallow — x?)

We are not interested in the actual value of safe-measure, but only in whether or
not it is negative. If it is nonnegative, it means that either (a) the distance between
the two vehicles is great enough to allow vehicle 2 to stop before hitting vehicle 1,
even if vehicle 1 decelerates at its fastest possible rate, or (b) the relative velocities
of the two vehicles are already close enough. Thus, nonnegative safe-measure gives

us the boundaries of the safe region for the second vehicle.

Variables:
Input, Output, Internal: same as in Controller
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. it satisfies condition 1 of Controller s, plus
2. foralltel,
2.1-2.3 of Controller» are satisfied

2.4. if collided = false and safe-measure < 0 then w(t).acco = Gmin

Figure 5-1: Cy Hybrid Automaton

Automaton 5(C5): This automaton is exactly like Controllery, with one extra
restriction on its trajectories. The formal model is given in Figure 5-1. Condition
(2.4) ensures that if the position and velocity parameters are on the boundary defined
by safe-measure, then Cy commands maximum deceleration, by setting acca = amip -
In this ideal (no delays, no uncertainties) setting, vehicle 2 will execute the command
exactly, because Iy = acco, and so vehicle 2 is decelerating as fast as possible. Since
this restriction does not violate axioms 72 and T'3, C5 is a valid HA. We claim that

this restriction is sufficient to guarantee correctness.
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5.3 Correctness of ()

We will now prove correctness of our controller. This means that any controller that
implements Cs, will be correct (safe).
Definition 3(Predicate S): If collided = false then safe-measure > 0.

The above definition says that before the first collision occurs, safe-measure is non-
negative. We will later prove that non-negativity of safe-measure guarantees safety.

We construct a new automaton, Init- Vehicles, which is exactly like Vehicles, except
that all its start states are restricted to satisfy Predicate S. This guarantees that the
system is safe initially.

Automaton 6(Init-Vehicles): Exactly like Vehicles, but guarantees safety initially.
The formal model is shown in Figure 5-2, with the new restrictions in bold. Again,
it is a valid HA, since the modifications do not violate axioms 72 — 3.

Cs is designed to guarantee explicitly that if S is ever violated, or is even in
danger of being violated (because equality holds), vehicle 2 is decelerating as fast
as possible. We claim that this strategy is sufficient to guarantee that S is always
true. To prove this, we will use the Non-negativity Theorem 3.4, which states that all

functions satisfying certain conditions must be non-negative.

Lemma 5.1 Predicate S is true in every reachable state of Controlled-Vehicles(Init-

Vehicles, Ay, Cy), where Ay is any implementation of Controller.

Proof: By induction on the number of steps in a hybrid execution. Initially, the
claim is true by the restriction on the initial states of Init- Vehicles.

The only discrete steps are collide, e and the internal steps of A;. The latter
two steps do not change any of the quantities involved. The effect of the collide step

ensures that collided = true in the post-state, which makes S true vacuously.
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Constants:
l;, the length of the vehicle
Gmin € R™, the maximum emergency deceleration
Variables:
Input: ace; € R, initially arbitrary
Output: z; € R0, initially 25 = 0 and z; is arbitrary
#; € RZ°, initially arbitrary
Z; € R, initially arbitrary
now, initially 0
collided, Boolean, initially false

initial state is subject to Predicate S

Actions:
Internal:  collide
Pre: 1 =22 + I
collided = false
Effect: &; := arbitrary value
Z; := arbitrary value
collided := true
Trajectories:

an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. collided is unchanged in w
2. Z; is integrable twice in w
for all ¢ € I the following hold:
3. If collided = false in w then

w(t).2; = maz(w(t). acci,amin)

E

(t).3; = w(0) a:,+f0 u).@;du
(t).z; = w(0).x; + fo u).2Z;du
w(t).zs + 12 <w(t).x
(t

g

w(t).now = w(0).now + t

© N o vtoe

If w(t).xy = w(t).z2 + Il and ¢ is not the right endpoint of I then

collided = true.

Figure 5-2: The Init-Vehicles Hybrid Automaton
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Now we consider a trajectory w whose domain is the interval [0,7]. Since a
trajectory cannot change collided, and S is vacuously true if collided = true, we only
need to consider the case where collided = false throughout w. We may assume (by
the induction hypothesis) that S is true in w(0). We must show that S is true in
w(T'). By definition of S, we may assume that safe-measure > 0 in state w(0) and

must show that this is also true in w(T).

Here we will use the notation f(¢) to mean w(t).f, where f is defined in terms

of state components of w(t). Let f(t) = x1 — (2 + l3) + (82" ~(81)° ~(Vaiton)® g(t) =

2amin

E1+Vapiow — 2. Then s(t) = max(f(t), g(t)) = safe-measure(t). We now use Theorem

3.4 to prove that if s(0) > 0, then V¢ > 0, s(t) > 0.
Claim 1. s(t) is continuous.

Proof: By continuity of f(t) and ¢(?). |

Claim 2. s(0) > 0.

Proof: Follows from the induction hypothesis. [

Claim 3. For all ¢ such that s(t) < ¢, it is the case that s'(t*) and §'(¢7) exist,
§'(tT) > 0and §'(t7) > 0.

Proof: The right derivative of s equals the right derivative of either f(¢) or ¢(¢), and
the same is true for the left derivative, by Theorem 3.6. We need to check that for
all ¢ such that s(t) < 0, we have f(¢) > 0 and §(t) > 0. So, fix ¢ such that s(t) < 0.

Then, at ¢, we have:

A 1
f=a1— a9+

(2.%'2.%'2 - 2.%'11‘1) - i‘l - 1.'2 + (1‘2!.['2 - IL'11'1)

Amin Amin

By definition of C5 we have that since s < 0, acca = T2 = ap;n. Also, by restriction
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on Init-Vehicles, we have &1 > @,,i,. Therefore,

f=a1 —ady+ (Tody — d121)
min
. . . Amin . X
=T — To + Ty — I
Gmin Qmin
. . I
=x +2
—Qmin
. . Omin
> T+ T
—Qmin
=0.

Now let’s do the same for ¢:
g:jl_fi?:fil_amin > Umin — Qmin = 0.

This proves Claim 3. |

From Claims 1, 2 and 3, s satisfies the conditions of the Non-negativity Theorem
and, therefore, by Theorem 3.4, V¢ s(t) > 0.
This suffices. L

As a simple consequence of Lemma 5.1, we prove the safety property.

Lemma 5.2 In any reachable state of Controlled-Vehicles(Init-Vehicles, Ay, Cs),
where Ay is any implementation of Controller,, if v1 = x9 + Iy and collided = false,

then l"g S i‘l + Vallow -

Proof: Initially, S is true by the restriction on initial states of Init- Vehicles. Consider
any reachable state in which x;y = x5 + Iy and collided = false. Then Lemma 5.1
implies that safe-measure > (. That is, either

(5”2)2 - (J'Ul)2 - (Ualzow)2

1 — (1’2 + l2) Z 2amm

or

«/L.ll + Vailow Z «/L.'2-
In the latter case, we are done. In the former, setting x; — (22 + l) = 0, we get
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(1.'2)2 — (1.'1)2 - (vallow)2

2amin

(-'tQ)Q S (1.'1)2 + (Uallow)2 S (IL‘1 + vallow)2

<0

1.'2 S -'tl + Vallow
as needed. [ |

Now we use Lemma 5.2 to prove that the system is in fact correct, i.e., that it

implements Safe- Vehicles.

Lemma 5.3 Let f be the identity on all state components of Safe-Vehicles(velocities,
positions, accelerations, and the collided flag). Then f is a forward simulation from
the composed system Controlled-Vehicles(Init- Vehicles, Ay, Cs), where Ay is any im-

plementation of Controller,, to Safe-Vehicles.

Proof: By induction on the number of steps in the hybrid execution.

Start States: Suppose s;p is a start state of Controlled-Vehicles(Init- Vehicles, Ay,
Cy), and (srp,ssp) € f. We have to prove that sgp is a valid start state of Safe-
Vehicles. By the definition of start states of Safe-Vehicles, it must satisfy the condi-
tions of Init- Vehicles, which follows from the fact that s;p is a start state of Controlled-

Vehicles and so it does satisfy all those conditions. Also, by Lemma 5.2, sgp satisfies

Safety.

Discrete Steps: The only discrete steps are collide, e and the internal steps of A;.
The latter two steps cannot change any of the quantities involved. Since the collide
step is the same for both automata, it respects the simulation relation. Also, the
effects of the collide step satisfy safety vacuously, thus the state reached after the

collide action is a valid state of Safe-Vehicles.

Trajectories: Suppose that wrp is an I-trajectory of Controlled-Vehicles and its
first state syp is reachable. Suppose that sgp is a reachable state of Safe- Vehicles such

that (syp, ssp) € f. Let the corresponding hybrid execution fragment of Safe- Vehicles
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consist of a single trajectory wgp, where wgp(t).2; = wyp(t).2;, wsp(t).x; = wrp(t).z;
for i € {1,2}, wgp(t).collided = wrp(t).collided and wgp(t).now = wrp(t).now. It is
obvious that the two trajectories have the same hybrid trace and that the final states
of both trajectories are f-related.

We need to show that wgp is in fact a trajectory of Safe- Vehicles. By the definition
of a trajectory we must show that it satisfies all the properties of a trajectory of Init-
Vehicles, but this is trivial, since it is a trajectory of Controlled-Vehicles which has
all the restrictions of Init-Vehicles. We must also show that it always satisfies the
safety condition, but this follows directly from Lemma 5.2. Therefore, f is also a

valid simulation relation for all the trajectories.

Theorem 5.4 C5 is correct for Init-Vehicles, where correctness is defined by Defini-

tion 2.

Proof: To prove correctness, we need to show that the Controlled-Vehicles(Init-
Vehicles, Ay, Cy) automaton, where A; is any implementation of Controller;, im-
plements Safe-Vehicles. Controlled-Vehicles(Init-Vehicles, Ay, Cy) and Safe-Vehicles
are comparable and by Lemma 5.3, there is a simulation relation f from Controlled-
Vehicles to Safe-Vehicles. Therefore, this composed system implements Safe- Vehicles.

This proves correctness of Cs. [

5.4 Optimality of C5

We devise a new controller, Necessary-Cs, which is slightly less restrictive than Cs
and prove that Necessary-C; gives necessary conditions for satisfying correctness.

Automaton 7(Necessary-C, ): This automaton is exactly like Cy, except that con-
dition (2.4) for trajectories is slightly modified. In particular, Necessary-Cy, commands
maximum deceleration when safe-measure < 0, while C5 does it when safe-measure <
0. The formal model is given in Figure 5-3; thus the only difference is the boundary in

condition (2.4). We claim that this condition is necessary to guarantee correctness.
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Variables:
Input, Output, Internal: same as in Controller
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. it satisfies condition 1 of Controller s, plus
2. foralltel,
2.1-2.3 of Controller» are satisfied

2.4. if collided = false and safe-measure < 0 then w(t).acco = Gmin

Figure 5-3: Necessary-Cy Hybrid Automaton

We define a notion of Bad controllers. Let By and Bs; be implementations of
Controller; and Controller,, respectively. Then B is Bad for B, if By makes By
violate Predicate S by going out of the safe-measure region. B, is Bad if there exists
some By which is Bad for it.

Definition 4(Bad Controller;): Let B; and By be implementations of Controller
and Controller,, respectively. Then Bj; is Bad for B, if and only if in the system
Controlled- Vehicles(Init- Vehicles, By, Bs) there exists a reachable state s that does
not satisfy Predicate S.

Definition 5(Bad Controller,): B, is Bad if and only if there exists some B; that
is Bad for this Bs.

The following lemma shows that if By is Bad, then we can construct a Bj that is
Bad for By and decelerates at the maximum rate once Predicate S is violated. This
Bj will later be used to show that By can violate Safety.

Definition 6(VeryBad): Let an implementation B] of Controller; be called Very-

Bad for an implementation By of Controller, if
1. B is Bad for Bs;

2. In any execution « of Controlled-Vehicles(Init-Vehicles, B}, Bs), any state s
that does not satisfy Predicate S, and any state s’ occurring strictly after s, it

is the case that s".acc; = amin.
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Lemma 5.5 If B, is Bad then there exists an implementation B of Controller,

such that B} is VeryBad for Bs.

Proof: Since Bs is Bad, there exists B; that is Bad for this By. Using B;, we construct
an implementation of Controller,, called B!, as follows. We add an extra internal

variable stop, initially stop = false. In any execution of the system Controlled-

Vehicles(Init- Vehicles, B}, Bs),
1. Bj behaves exactly like B; until Predicate S is violated.

2. Exactly when safe-measure < (0, an internal variable stop is set to true. Note
that B has enough information (positions and velocities of both vehicles, a,)

to detect when safe-measure < 0.
3. If stop = true, then acc; = amin.

Bj preserves the behavior of By up to the point when Predicate S is violated, so
Bj is also Bad for B,. The second condition of the VeryBad definition is satisfied by
construction. So B is VeryBad for Bs. [

Lemma 5.6 Let By be an implementation of Controller,. If there exists an im-
plementation By of Controller; such that Controlled-Vehicles (Init-Vehicles, By, Bs)
does not implement Controlled-Vehicles(Init-Vehicles, By, Necessary-Cy ) then By is
Bad.

Proof: We must show that there exists some implementation By of Controller;, such
that the system Controlled-Vehicles(Init-Vehicles, By, B,) has a reachable state s
that does not satisfy Predicate S.
Definition 7(Predicate T): If safe-measure < 0 then ay = apip.

The only restriction of Necessary-Cy (trajectory condition (2.4)) requires that if
collided = false then Predicate T is satisfied.

Claim 1. There exists By such that the system Controlled- Vehicles(Init-Vehicles,
By, Bs) has a reachable state s in which collided = false and Predicate T is not
satisfied.
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Proof of Claim 1. Proof by contradiction. Suppose such B; does not exist. Then,
for all implementations By of Controller,, all the reachable states of Controlled-
Vehicles(Init- Vehicles, By, By) in which collided = false satisfy Predicate T. But
then all the hybrid traces of Controlled-Vehicles(Init-Vehicles, By, Bs) are allowed
by Controlled-Vehicles(Init-Vehicles, By, Necessary-Cy). It follows that for all imple-
mentations By of Controller;, Controlled-Vehicles(Init-Vehicles, By, By) implements
Controlled-Vehicles(Init-Vehicles, By, Necessary-Csy). This contradicts the hypothesis
of the Lemma.

Claim 2. Predicate S is violated in state s of Controlled-Vehicles(Init-Vehicles,
By, By) in which Predicate T is not satisfied.

Proof of Claim 2. In state s, safe-measure < 0 and ay # i, since Predicate
T is not satisfied. But (because collided = false in s) this means that Predicate S is
also violated. This suffices.

By is Bad for By by Claim 2. This proves that By is Bad. |

Let B, be Bad and B/ be VeryBad for By. Then Lemma 5.7, shows that in any
hybrid execution of Controlled-Vehicles(Init-Vehicles, B, Bsy), once Predicate S is
violated, it will continue to be violated throughout the hybrid execution. In Lemma
5.8 we show that violation of Predicate S always leads to violation of safety. Finally,
Theorem 5.9 proves that if for an implementation By there exists an implementa-
tion By of Controller; such that Controlled-Vehicles(Init-Vehicles, By, By) does not
implement Controlled-Vehicles(Init- Vehicles, By, Necessary-Csy) then this By is not a

correct controller.

Lemma 5.7 Let By be Bad, and By be VeryBad for By. Then, in any ezecution of
Controlled-Vehicles(Init-Vehicles, B}, Bs), Predicate S is violated in all the states

that occur strictly after a state s in which collided = false and Predicate S is violated.

Proof: By induction on the number of steps in a fixed hybrid execution h. Suppose
that there exists a state s in h in which collided = false and Predicate S is violated.

Initially, the claim is true vacuously.
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The only discrete steps are collide, e and the internal steps of Bj. The latter
two steps cannot change any of the quantities involved. The effect of the collide step
ensures that collided = true which makes the Lemma true vacuously.

Consider any trajectory w of h, whose domain is the interval [0,¢], that occurs
after Predicate S is violated and in which collided = false throughout the trajectory.
From the definition of B}, #; = acc; = @, throughout that trajectory.

Let’s apply Lemma 3.5 to our problem. This Lemma states that if both the right
and left derivatives of a function on an interval are non-positive, then the function is
non-increasing on that interval. Right and left derivatives of safe-measure are always
the right and left derivatives, respectively, of either f and g, as stated in Theorem
3.6. So we only have to prove that f < 0 and ¢ < 0 throughout the interval [0,#]. We

have:

f:.'L'l —.'L'2+ ($21‘2 —xlxl)
Gmin

By the definition of B}, we have that &y = au:,. Also, by restriction on Init-

Vehicles, &9 = accy > Qpin. Therefore,

f=a1—22+ (T2@9 — T1amin)
Amin
. ) ToTo .
=T — X9+ ( — ZL'1>
Amin

a2 )
Gmin
a .

S Ii‘g ( min 1)
Gmin

=0.

Similarly for ¢:
g =11 — Iy
= Qmin — «/i'2
S Qmin — Qmin
= 0.

Therefore, by Lemma 3.5, safe-measure is a non-increasing function. Since in

w(0), safe-measure < 0, safe-measure is negative throughout the trajectory, which
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means that the Controlled-Vehicles(Init-Vehicles, B}, Bs) system violates Predicate

S throughout the trajectory. |

Lemma 5.8 Let B be VeryBad for By. Then there exists a reachable state s' of
Controlled-Vehicles(Init-Vehicles, By, By) that does not satisfy safety.

Proof: By the fact that Bj is VeryBad, there must exist some reachable state s of this
Controlled- Vehicles system, in which Predicate S is violated. Then, if there exists a
state s’, reachable from s, in which the vehicles do collide, then by Lemma 5.7, in s,
safe-measure < (. But that means that in s', &9 > &1 + V0w, violating safety. All
we have to prove now is that there exists a reachable state s’ in which the vehicles
do, in fact, collide.

Suppose they don’t collide. Since the first vehicle eventually stops (it is deceler-
ating at its maximum rate), this means that the second one also has to stop. Let z;,
I; represent state components in state s, and x;’ represent the state components of

s’. Then,
) .2
7

and x5’ > 19 +

I
Tl = T +
—Z2Qmin _2amin

From our non-collision assumption we get,

x> wo' +
2 T2
xr1 + ! > T9 + 2 —+ lg
_2amin _2amin
(d2)° = (#1)°
_ )y > Y2/ V-7
o (‘TQ * 2) o 2amin
N2 N2 2
ry (e 1) > O Caen)
2amin

which means that safe-measure > 0 in state s. But then Predicate S is true in state
s, contrary to our assumption.
Therefore, the vehicles do collide in some reachable state s’, and s’ does not satisfy

safety. [ |

Theorem 5.4 shows that any controller of the trailing vehicle that does not im-
plement Necessary-Csy , and, therefore, violates Predicate S, violates safety for some

behavior of the leading vehicle.
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Theorem 5.9 Let By be an implementation of Controllery,. If there exists an im-
plementation By of Controller ;, such that Controlled-Vehicles(Init-Vehicles, By, Bs)
does not implement Controlled-Vehicles(Init-Vehicles, By, Necessary-Cy ), then By is

not a correct controller for Init- Vehicles.

Proof: B; must be Bad by Lemma 5.6. Then, by Lemma 5.5, there exists an im-
plementation B] of Controller; that is VeryBad for B,. Lemma 5.8 shows that the
system Controlled- Vehicles(Init- Vehicles, B, By) has a reachable state s’ that violates

safety, which means that By is not correct. |

5.5 Results

Theorem 5.4 shows that the controller C5 is sufficient for guaranteeing correctness,
and Theorem 5.9 proves that the controller Necessary-Cs is necessary to guarantee
correctness. Combining these two results, we can check correctness, in terms of safety,
of any implementation C' of Controller,. C' is correct if it implements Cs5, and is not
correct if Controlled-Vehicles(Init-Vehicles, By, C') does not implement Controlled-
Vehicles(Init- Vehicles, By, Necessary-Cy) for some implementation By of Controller;.
Since Cy and Necessary-Cy differ in behavior only in the boundary cases, they can be

used to check correctness of most controllers.
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Chapter 6

Delayed Response

In this chapter we consider the delay between the receipt of information by the con-
troller for vehicle 2 and its resulting action. There are two distinct types of delay
to consider — the inbound and the outbound delay; we model them separately. The
inbound delay is delay due to the controller’s sensors getting the information (about
the position and velocity of the leading vehicle). The outbound delay is the delay be-
tween the time the controller makes the decision and the time the decision is actually

implemented by the vehicle.

These delays are between the vehicle and its controller, and so only the delays in
the trailing vehicle are relevant to our analysis, as we only care about the external
behavior of the leading vehicle, and not about its controller. In particular, if we were
to extend our analysis to a multi-car case, each vehicle could have its own delay
characteristics; our analysis would still hold up, since we would look at the delays in

the trailing vehicle of each vehicle pair.

We use levels of abstractions to deal with the complexity of the delayed case.
First, we devise the “delayed” controller, and then we use simulation relations to the
controller of the first (ideal) case, to show that this controller is sufficient for the
delayed case. We also give a slightly less restrictive controller specification, and prove

that it is necessary to guarantee correctness.
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6.1 Delay Buffers

We model both the inbound and the outbound delays by special delay buffers. To
obtain the delayed system, we compose our new controller with the delay buffers.
First, we introduce a generic delay buffer D-Buffer, and then specify the inbound and

outbound delays as instances of the generic automaton.

Parameters:
n — number of input variables
Si, S, - two disjoint sets of variables with n members in each set
Let V(s), where s is a variable, be a valuation of the variable s;
V(S), where S is a set of variables, be a valuation of the entire set.
var : S; = S,, a 1-1 mapping from S; to S,
d — the delay of the buffer
Init : [0,d] = V(S,) — a function giving the output of the buffer for the initial d time period
Variables:
Input: S
Output: S,
Internal:  saved : [0,d] — V(S,), where saved acts as FIFO queue for outputs;
initially, saved = Init
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
for all t € I, t > 0, the following hold:
1. for all variables v; € S;,
w(t).V(var(v;)) = w(t).saved(d).v;
2. Vt' € 10,d],

w(0).saved(t' —t) if t' >t,
w(t).saved(t') =

w(t —1t").V(S;) otherwise.

Figure 6-1: D-Buffer(n, S;, S,, var, d, Init) Hybrid Automaton

Automaton 8(D-Buffer(n, S;, S,, var, d, Init)): The buffer outputs its inputs
(the connection between inputs and outputs given by the var function) exactly in the

same order as received, and exactly time d later. Initially, it outputs values given by

52



the Init function. The automaton is described formally in Figure 6-1.

Parameters
e 1 is the number of (input, output) variable pairs;
e S;, S, are two disjoint sets of input and output variables names, respectively:;

e var : S; — S, is a 1-1 mapping from input to output variables. Each pair
corresponds to a variable the buffer is “delaying.” For convenience, we also

define valuations of single variable names and their sets, by the function V.

e d is the maximum absolute delay. It is the same for all variables delayed by this

buffer.

e [nit is a function that sets up the initial “contents” of the buffer — it tells the
buffer what to output for the initial d time period, when no inputs have reached

the output yet.

Variables

e S; is a set of input variables, and S, is a set of output variables. Both sets are

given by the parameters of the automaton.

e saved is an internal variable that stores the input variables for the delay duration
d. Initially, it is prefed with information using the function Init. saved acts as
a First-In-First-Out continuous queue of the buffers inputs. saved(0) = V(.5;)
and represents the most recent input; saved(d) represents the least recent input,

the one that is just about to be output.

Trajectories Condition (1) sets up the output variables to take their values from
the internal variable saved, exactly time d ago. Condition (2) updates the saved

variable with new information.
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HA Trajectories are not restricted in duration, so axiom T2 is satisfied; also, tra-
jectories are never required to stop, so axiom T'3 is also satisfied. Thus, by discussion

in Section 2.6, D-Buffer is a HA.

Properties From the automaton definition, it follows that

1. For the initial d time period, output w(t).V(S,) = Init(t) (from the initializa-

tion of internal variable saved, and trajectory condition (1)).

2. Afterwards, for all ¢, w(t).V(S,) = w(t — d).V(S;) (from trajectory conditions

(1) and (2)).

6.2 The System with Inbound and Outbound De-
lays

We compose the delayed controller using two instances of the delay buffer D-Buffer,
and a modified controller.

First, we define two instances of the D-Buffer automaton, the inbound and out-
bound delay buffers.
Automaton 9(D;, the inbound delay buffer): D, = D-Buffer(3, {z1,%1,%},
{xq1, a1, Zq1}, var, d;, Init), where var(z,) = xq1, var(iy) = 41, and var(Z;) = Zq1;
d; € R?°, the inbound delay, is the “information” delay — the time it takes the
controller to get the information from the sensors. The inbound delay automaton
delays the position, velocity and acceleration data of the first vehicle, with delay d;.

Given arbitrary initial values for input values for xy, 1, &1, Init is set up so that
the Init(0) matches up with these values. The least restrictive conditions on the
behavior of the second controller are obtained if we assume that the leading vehi-
cle was decelerating at the maximum possible rate throughout the d; time period.
Then the second controller does not have to push the brakes thinking that there is a

“dangerous” situation during the initial d; time period. Safety is preserved as long
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as Init(0) matches up with the actual data at time 0. So, Init assumes vehicle 1 was
decelerating at a,,;, and fills the position and velocity values accordingly.
Formally, Init is set up as follows. For any start values aq,as,as of xy, 21, %y,

respectively, construct a trajectory w of D;, of length d; such that

Vt € [0,d;), w(t).%1 = amin, and w(d;).Z1 = as,
Vt € [0, dz], w(t).:bl = a9 + (t - di)amm,

Amin (t - dz)2

VtE [O,dz],w(t)xl :a1+a2(t—dz~)+ 5

Then, w(d;).{z1,%1,3%1} = {a1,as,a3}, so that it matches up with real data at time
0. Let Init(t) = w(d; —t).(x1, &1, %1), then Init(0) matches up with the actual values
at time 0.
Automaton 10(D,, the outbound delay buffer): D, = D-Buffer(1, {accs},
{accy}, var, d,, Init), where var(accg) = accy; d, € RZ°, the outbound delay, is the
“action delay” — the time that it can take for a vehicle to react to the controller’s
directives; Vt € [0, d;], Init(t) = amin. Setting Init so conservatively makes the vehicles
safe in the initial d, time interval even if the first vehicle starts decelerating at the
maximum rate. This is the best we can do without any further knowledge. This
automaton delays the acceleration commands by d,.

Finally, we modify the controller specification so that it communicates with the
buffers correctly.
Automaton 11(Spec-D;): The controller Spec-D, (see Figure 6-2), composed with
delay buffers D; and D,, implements Controller,. It is an HA since the changes to
trajectory definitions do not violate axioms T'2—3. It is similar to Controller, , except

that the input and output variables are changed, and the restriction on trajectories

is modified.

Variables The new controller gets its data about the first vehicle from the inbound
delay buffer D; , and the “self” data (data about the second vehicle) directly from
the Init-Vehicles automaton. This models the situation in which there is delay in

getting the information via the sensors about the other vehicle, but there is perfect
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Variables:
Input: Tq1,Lq1 € RZO, Zm €R

To,To € RZO, Zs €R

Output: accys, initially arbitrary, where accga > amin
Internal:  internal variables of Controllers (Zinte and ine),
Trajectories:

an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. w' is a trajectory of Controllersz,
where w' is a trajectory constructed from w such that in all states of w’,
w'(t).xy = w(t).zq1, w(t).21 = w(t).Zar, W (t).81 = w(t).Za1,

w'(t).accy = w(t).accqs, and all other state components are the same as in Spec-D,

Figure 6-2: Spec-D, Hybrid Automaton

self information. The output variable goes into the outbound delay buffer D,.

Trajectories Condition (1) makes sure that the trajectories of Spec-Dy are allowed
by Controller,, after the variable change. It is needed to ensure that Spec-Dy com-
posed with the delay buffers implements Controller,.

Finally, we compose this new controller with the delay buffers, to get an automaton
that implements Controller,.
Automaton 12(Delayed-Controllery(D)): Delayed-Controller, (D) =

VarHide({z a1, Za1, £a1, accar}, D; || D || D, ), where D is an implementation of
Spec-Dy(see Figure 6-3). The variables that communicate between the sensors and
the controller are hidden so that Delayed-Controller, (D) is comparable to Cs.

The following two theorems state relationships between the variables of Spec-D,

at different points in time.

Theorem 6.1 Let Ay be any implementation of Controller;, s" be a reachable state
of the Controlled-Vehicles(Vehicles, Ay, Delayed-Controllers(Spec-Dy)) system, and
s' be a state reachable from s" such that s'.now = s".now + d; and collided = false in

s'. Then,

I " [ "o [ "o
S.Tg1 =S X1, .Zg1 = S .0y, and s Xgpr = S .Tq1.
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\ Delayed-Controller,(D,) /

Figure 6-3: Delayed-Controller, (D) hybrid automaton

Proof: The theorem states the relationships between a state s”, and a s’ that occurred
time d; after s” (see Figure 6-5). It states that the data received through the input
buffer D; is exactly the same as the actual data time d; ago. This follows from
Property 2 of D-Buffer (outputs of a buffer in state s equal the buffer’s inputs in

state s’ that occurred time d ago). |

Theorem 6.2 Let Ay be any implementation of Controller;, s be a reachable state
of the Controlled-Vehicles(Vehicles, Ay, Delayed-Controllers (Spec-Dy)) system, and s
be a state reachable from s' such that s.now = s'.now + d,, collided = false in s, and

s is reachable from s'. Then,

1. 5.1 > §'.Tq1 + amint’, where t' = min (%’M, d; + d,).

mau

: 1 2 N
2. 5.0 > 8'.wqr + 5" Tt + 5amint’”, where t' = min (ﬁ, d; + d,).

Proof: The theorem states the relationships between a state s’, and a state s that
occurs time d, after s’ (see Figure 6-5). By Theorem 6.1, the position, velocity and
acceleration data in state s’ equal the “delayed” values in state s. By Properties 1

(Z; > amin) and 2 (the fact that position and velocity are integrals of acceleration)
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of Vehicles (see chapter 4), the position and velocity bounds can be obtained by
integrating the maximum deceleration.

In particular, the first clause states that the actual velocity of vehicle 1 in state s
is at least as great as its velocity in state s” that occurred time d; + d, in the past,
plus the maximum possible decrease in velocity during that time. The second clause
states that the actual position of vehicle 1 in state s is at least as great as its position
in state s” that occurred time d; + d, ago, adjusted by the velocity time d; + d, ago

and the maximum allowed deceleration. [ |

6.3 Correctness of Delayed-Controller,

We give an implementation of Spec-D, that is sufficient to guarantee correctness.

Automaton 13(D5): The controller D, (see Figure 6-4) is a sufficient controller to
guarantee correctness of Delayed-Controllery(Ds). It is an HA since the changes from
Spec-Dsy do not violate axioms T2 — 3. It is similar to C5 in that it also tries to keep
the second vehicle within the bounds set by safe-measurey, which is safe-measure

redefined for the delayed case.

Definition safe-measurey is exactly like safe-measure, modified by replacing the
position, velocity and acceleration data of vehicles by their delayed values. For vehicle
2, the delayed values are the values resulting from executing the controller’s commands
for the outbound delay time d,, as given by x;,;o and Z;,;2; for vehicle 1, the “worst
possible” delayed values are generated by decelerating at the maximum possible rate
for the last d; + d, time units, since the controller’s information is d; 4+ d, time units
“old.” In particular, using Theorems 6.2 and 6.3,

12
amint
2

replace x; by zq1 + zgt' +
replace x5 by T
replace &1 by Zg1 + Gmint’

replace 2o by Tjpnm
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Definition:

+ (Gine2)® = (G F Omint’)* = (Vattow)®

safe-measurey = max((zq; + Zqrt' + Tinte + l2) a ,

am,gt’z) —(

(i'dl + amintl) - i‘intZ + Uallow)a

where t' = min(d; + d,, —-24-)

Amin

Variables:
Input: same as Spec-Ds
Output: accgs, initially if safe-measurey; < 0, then accgs = amin,

else arbitrary, where accgs > amin
Internal:  internal variables of Spec-D-, plus
as - maps from an interval [0,d,] to R,
initially, Vt € [0, d,], as(t) = amin
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. w is a trajectory of Spec-Dy
2. if collided = false in w(0) then for all t € I, ¢ > 0:
2.1. if in state w(t) safe-measurey < 0 then accgs = amin €lse accgz > 0
2.2. Vt' €10,d,],
w(®).as(t)) = w(0).ax(t' —t) it >t
w(t —t').accgs  otherwise
2.3. w(t)diner = w(t).do + [, w(t).as(u)du
2.4. w(t).Ting2 = w(t).ve + fod"w(t).j:intgdu

Figure 6-4: Dy Hybrid Automaton

Variables External variables are the same as in Spec-Ds. X9, Tins2, represent the
position and velocity of the second vehicle after time d, passes, provided collided
still equals false. They are used for safe-measure, calculations. In order to calculate
the values of these variables, we add a special buffer, as, that stores the controller’s
acceleration commands that have not been executed yet (due to the outbound delay).
Initially, Vt € [0,d,], az(t) = Gmin, so that it matches the initial information in the
outbound buffer.
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Trajectories Condition (1) restricts each trajectory to satisfy Spec-D, require-
ments. Condition (2.1) is the same as for Cy, substituting the new safe-measure,
definition. Clause (2.2) sets up ay to save acceleration commands output by the con-
troller in the last d, time units. a2(0) represents the most recent command issued,
and ay(d,) represents the command that is going to be executed next. Finally, clauses
(2.3) and (2.4) set up Tjue and e to be the integrals of the commanded accelera-
tion. Since there is no uncertainty, these variables represent the actual values of the
corresponding variables in Init- Vehicles, but at time d, in the future (see Theorem

6.3).

Theorem 6.3 Let Ay be any implementation of Controller;, s' be reachable states of
Controlled-Vehicles(Vehicles, Ay, Delayed-Controllery(Spec-Ds)), and s be reachable

from s', such that s.now = s'.now + d,, collided = false in s. Then,
. b
1. §$.XTo = S .Tint2,
2. 5.x9 = 8" . Tino.

Proof: The theorem states that the actual position and velocity of vehicle 2 in state
s" are equal to the “predicted” values (given by the internal variables) in state s that
occurred time d, earlier. This follows from Property 2 of D-Buffer (buffer outputs in
state s equal buffer inputs in state s’ that happened time d before s), Property 2 of
Vehicles (position and velocity are integrals of acceleration), and Conditions (2.3-4)

of D, trajectories. |

We prove that D, is sufficient to guarantee correctness. Throughout the rest of
this section we will use the following notation:

For any implementation A; of Controller;, let

CVi(Ay) = Controlled-Vehicles(Init- Vehicles, Ay, Delayed-Controllers(Dy)), and

CVp(Ay) = Controlled-Vehicles(Init- Vehicles, Ay, Cs).

We show that C'Vp(A;) implements CV;(A,).

The key result, proven in Lemma 6.4 proves that if the old safe-measure (the

one used in the ideal case) is non-positive in some state of a trajectory of Delayed-
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Figure 6-5: The timing diagram of the in- and outbound controller

Controllers(Ds), then Delayed-Controllers(Ds) will also output maximum decelera-

tion, just as the old (ideal) controller Cy would. Formally,

Lemma 6.4 Let Ay be any implementation of Controller,, and let s be a reachable
state of the CVp(Ay) system, such that s.collided = false and safe-measure < 0.

Then s.acce = Qpmin -

Proof: By induction on the number of discrete and continuous steps in the hybrid
execution. Initially, the lemma is true by restriction on the start states of Dy. The
discrete steps e and the internal steps of A; do not change any of the quantities
involved; the collide step makes the Lemma true vacuously.

Without loss of generality, consider hybrid executions where all trajectories have
duration less than d,. Let s be any reachable state such that s.collided = false
and safe-measure < 0 in s. If s.now < d, (we are still in the initial period when
the controller’s commands do not reach the vehicle, and D, just outputs maximum
deceleration), then by definition of the outbound buffer D,(from the Init function),

aCCy = A, and we are done. Otherwise, at s we have

(f2)2 - (3'51)2 - (Uazzow)2

1 — (xo 4+ 1p) < —
! (2 2) 2amin

(6.1)

and
1:2 2 1"1 + Vallow- (62)

Let’s look at any reachable state s’ of this system such that s'.now = s.now — d,

(see Figure 6-5), and from which s is reachable in time d, (s" is the state in which the
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controller D, decided what acceleration the vehicle should have in state s). This states
s’ cannot be in the same trajectory because of our restriction on hybrid executions,
so we can use the inductive hypothesis on s’. For such a state, by Theorem 6.3,

S XTinto = 8.x9 and §'.Z;p0 = S.19. Also, by Theorem 6.2,

. ] . !
8.1 2> 8 .Tg1 + Qmint,

12
amint

2

sy > s og + 5 agat +

where ¢ = mln(dz + dm _aj::iln )
We take inequality 6.1, and substitute the delayed values for the actual ones (using

the statements above), still keeping the correctness of the inequality.

(-1:2)2 - (-'»t'l)2 - (Uallow)2

1 — (22 + 1) < — (at s)
2amin
. o 12 iV (i a0 — (u 2
Tar + -'L'dltl + min N (xintQ + 12) S _( zntZ) ( dl min ) ( allow) :
2amin
(at s')
where ¢ = min(d; + d,, —a—‘vdl—)
But this is exactly equivalent to the first part of safe-measureq at s'!
We do the same with inequality 6.2.
1:2 Z 1.'1 + Vallow (at S)
i'int2 Z i'dl + amintl + Vallow, (at SI)

where ¢ = min(d; + do, —32-).

But this is exactly equivalent to the second part of safe-measurey at s'!

We proved that in s’, both parts of safe-measure; will be non-positive and, so,
safe-measurey; < (. Then the definition of D, guarantees that s.accgs = amin.

And by the definition of D,, s.accy = s'.accgy. Thus, in Delayed-Controllersy (D),

5.4CCo = Qpin as needed. |
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Lemma 6.5 Let A; be any implementation of Controller,, and let f be the identity
relation on all the components of the CVi(Ay) system, except that CVi(A1).Tinwe =
CVp(A1).z2, and CVi(A1).Zime = CVp(Ar).2o. Then f is a forward simulation from
the composed system C'Vp(Ay) to CVi(Ay).

Proof: By induction on the number of steps in the hybrid execution.

Start States: Trivial, since all the restrictions on start states of Cy are also restric-

tions on start states of Delayed-Controllers(Ds).

Discrete Steps: The only discrete steps are collide, e and the internal steps of A;.
The latter two steps cannot change any of the quantities involved. Since the collide
step is the same for both automata, it respects the simulation relation. Also, the
effects of the collide step satisfy Predicate S vacuously, thus the state reached after
the collide action is a valid state of C'V7(A;).

Trajectories: Suppose that wp is an I-trajectory of the delayed controller system
CVp(A;) and its first state sp is reachable. Suppose that sc is a reachable state
of CVi(A;) such that (sp,sc) € f. Then let the corresponding hybrid execution
fragment of C'V;(A;) consist of a single trajectory we, where we(t) = wp(t) (all
variables have the same values). It is obvious that the two trajectories have the same
hybrid trace and that the final states of both trajectories are f-related.

The only remaining thing to show is that w¢ is in fact a trajectory allowed by Cs.

By the definition of a trajectory of C5 we must show that

1. we is a trajectory of Controller,. This is trivial, since it is also a restriction on

the trajectories of Dy, and the buffers do not change any of the values involved.

2. If collided = false in we(0) then in all reachable states s of trajectory we, if

safe-measure < 0, then s.accy = ap;,. This follows directly from Lemma 6.4.
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Theorem 6.6 Delayed-Controllers(Ds) is a correct controller for Init-Vehicles.

Proof: We need to prove that for any implementation A; of Controller;, CVp(A;)
implements the safety specification automaton Safe-Vehicles. CVp(A;) is comparable
to CVi(Ay), and, by Lemma 6.5, there exists a simulation relation from C'Vp(A;) to
CVi(A1). So CVp(A;) implements C'V(Ay).

CVr(A;) implements Safe- Vehicles by Theorem 5.4. Thus, CVp(A;) also imple-
ments Safe-Vehicles , which means that Delayed-Controllery(D,) is, in fact, correct,

by definition 2. [

6.4 Optimality of D,

We give and prove necessary conditions for an implementation of Spec-D, to be correct.
We base the proofs on the fact that if an implementation B, of Controller, is correct,
then for any implementation By of Controller,, Controlled- Vehicles(Init-Vehicles, By,
Bs) must implement Controlled- Vehicles(Init- Vehicles, By, Necessary-Cy ) (see sec-
tion 5.4). First, we define a new automaton, Necessary-Ds, which gives necessary
conditions for safety. Then, we show that if for some implementation D of Spec-D,
there exists an implementation By of Controller; such that Controlled-Vehicles(Init-
Vehicles, By, Delayed-Controllery(D)) does not implement Controlled-Vehicles(Init-
Vehicles, By, Delayed-Controllery(Necessary-Dy)), then the Delayed-Controllery(D)
system will not be correct. This should be intuitively clear, since we only changed
safe-measure to account for the “worst-case” (but possible) behavior of the vehicles
during the last d; +d, time period of the delays. Relying on the fact that Necessary-C,
is necessary simplifies the proofs: we only need to show that a controller that would
let safe-measurey get negative, will eventually lead to a state in which safe-measure
itself is negative. Then we can use necessity of Necessary-Cs to show that any such
controller would not be correct.

Automaton 14(Necessary-D, ): This automaton is exactly like Do, except that
condition (2.1) for trajectories is slightly modified. In particular, Necessary-Ds com-

mands maximum deceleration when safe-measure;, < 0, while Dy does it when
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Variables:
Input, Output, Internal: same as in Dy
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
it satisfies condition 1 of D, plus
2. forallt e,
2.1. if collided = false and safe-measurey < 0 then w(t).acce = amin

conditions 2.2-2.4 of Dy are satisfied

Figure 6-6: Necessary-Dy Hybrid Automaton

safe-measure < (. The formal model is given in Figure 6-6; thus the only differ-
ence is the boundary in condition (2.1). We claim that this condition is necessary to
guarantee correctness.
Definition 8(Predicate S;): If collided = false then safe-measurey > 0.

We now define Bad, controllers, similar to the Bad controllers in the ideal case
in the last chapter.
Definition 9(Bady): Let By and By, be implementations of Controller; and Spec-
Dy, respectively. Then B; is Bad, for By if and only if in the system Controlled-
Vehicles(Init- Vehicles, By, Delayed-Controllers(Bgz)) there exists a reachable state s
that violates Predicate S;. Bgs is Bady if and only if there exists some B; that is
Bad, for this Bys.
Definition 10(VeryBad,): Let an implementation B} of Controller; be called

VeryBad, for an implementation D of Controller, if
1. B is Bad, for Bys;

2. In any execution of Controlled-Vehicles(Init-Vehicles, B}, By), for any state s

that does not satisfy Predicate S, strictly after the occurrence of s, acc; = amin.

Based on the above definitions, we state an existence lemma, very similar to

Lemma 5.5.
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Lemma 6.7 If By, is Bad, then there exists an implementation By of Controller,

such that B} is VeryBad for Bgs.

Proof: The proof is identical to proof of a similar Lemma 5.5 in the previous Chapter.

Next, we prove that if an implementation of Spec-D, does not implement Dy then

it must be Bad,.

Lemma 6.8 Let By be an implementation of Spec-Dy. If there exists an implemen-
tation By of Controller; such that Controlled-Vehicles(Init-Vehicles, By, Delayed-
Controllery (Bgz)) does not implement Controlled-Vehicles(Init- Vehicles, By, Delayed-
Controllery (Necessary-Dy )) then Bgy is Bady.

Proof: Identical to that of Lemma 5.6. [ |

Lemma 6.9 relates the Bad; and Bad terms.

Lemma 6.9 Let By be an implementation Bgs of Spec-Dy. If By is Bady, then
Delayed-Controllery (Byz) is Bad.

Proof: Let By be a Bady implementation of Spec-Dy. Then, by Lemma 6.7, there
must exist an implementation B] of Controller; that is VeryBad for Bg. We need
to prove that Bj is Bad for Delayed-Controllers(Bgs), and not only Bad, for Bygs.
In particular, we need to show that there exists a reachable state of Controlled-
Vehicles(Init- Vehicles, B, Delayed-Controllers(Byz)) that violates Predicate S, and
not only Predicate Sy (violation of Predicate Sy follows from the definition of Bady).

Let’s look at a reachable state s of this Controlled-Vehicles system that violates
Predicate Sy; existence of this state follows from the fact that By, is Bady. For such
s, collided = false and safe-measure; < (0, meaning that

Amin 2 (i'int2)2 - (i'dl + amintl)Z - (vallow)2

Td1 + l"dltl +
2amin

— (T2 + 12) < —

(6.3)
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and

«/L.'dl + amintl < i'int2 — Vallow> (64)

where ¢ = min (-4, d; + d,,).

Qmin,

By the definition of Bj, it always decelerates at the maximum allowable rate, a;,.
Let’s look at a state s’ reachable from s in time d,, such that s’.now = s.now + d,.
Then in s,

s'. &1 = 8.2q1 + Amint’,

! . ! ]- 12
§.T1 = S.Tq1 + s.xq1t + §ammt ,

5" Xy = 8. i and s'.19 = 5.Tinso,

where ¢’ = min (—fj;,di +d,). The first 2 equations follow from the fact that po-
sition and velocity are integrals of acceleration (Property 2 of Vehicles); the last 2
follow from Theorem 6.3. Note that these equalities also hold in the initial d; time
interval, because our data in the inbound delay buffer assumes that the first controller
is decelerating at the maximum rate.

Substituting these equations into the above inequalities will yield the two parts of
safe-measure in state s'; moreover, both parts turn out to be negative, which means

that in state s', safe-measure < (0. But safe-measure < () means that Predicate S is

violated, and, therefore, Delayed-Controllers(Bgs) is Bad. [

Since we have just shown that the delayed controller (composed with delay buffers)
implements the non-delayed one, we can use the necessity property of the ideal case

controller, to easily prove the necessity of the delayed controller:

Theorem 6.10 Let By be an implementation of Spec-Do. If there exists an imple-
mentation By of Controller; such that Controlled-Vehicles(Init-Vehicles, By, Delayed-
Controllery (Bgz)) does not implement Controlled-Vehicles(Init- Vehicles, By, Delayed-

Controllery (Necessary-Dy ) then Delayed-Controllers(Bgs) is not correct.

Proof: By must be Bad,, by Lemma 6.8. By Lemma 6.9, Delayed-Controllers(Bys)

is Bad. But then, by Theorem 5.9, there exists an implementation B; of Controller,
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such that a system Controlled-Vehicles(Init-Vehicles, By, Delayed-Controllery(Bygs))
has a reachable state that violates safety. Since this Controlled-Vehicles system
violates safety, it does not implement Safe-Vehicles, which means that Delayed-

Controllery(Bgs) is not correct, by Definition 2. |

Theorem 6.6 proves that Delayed-Controllery(D,) is sufficient, and Theorem 6.10
proves that Delayed-Controllery( Necessary-Ds) is necessary to guarantee correctness.
Since the distinction between Dy and Necessary-D, is very small, they can serve as

the correctness specification.
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Chapter 7

Uncertainty

Our model already includes both the inbound and the outbound delays in sending and
receiving information between the controller and Init- Vehicles. We introduce extra
complexity which makes the model even more realistic: the inbound and outbound
uncertainty (inexactness) in information. The inbound uncertainty is the maximum
absolute difference between the actual position and velocity data of the vehicle and
the data reported by the sensors to the controller; it arises from inexact sensors that
communicate data to the controllers. The outbound uncertainty is the maximum
absolute difference between the acceleration commanded by the controller and the
acceleration actually implemented by the vehicle; it is due to the inherent inexactness

in the performance of the brakes and accelerators.

We use similar methods to the ones used in the delay case. A special “uncertainty
buffer” automaton is defined, similar to the previous D-Buffer automaton. We use two
instances of this parameterized buffer to get the inbound and outbound uncertainty.
Then, we compose these two buffers with the modified controller that accounts for
uncertainties, and prove that this new composed controller is sufficient to guarantee
safety. The proof uses the fact that the Delayed-Controllery(Ds) is sufficient. This
use of levels of abstraction makes the proofs for this complicated case, involving both

delays and uncertainties, easier to write and understand.
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7.1 The Uncertainty Buffer

We introduce a parameterized uncertainty buffer, similar in function to the delay

buffer.

Parameters:
n - the number of input variables
Si, S, - two disjoint sets of variables with n members in each set
Let V be a valuation function, same as in D-Buffer
var : S; = S, x Rt with selectors v, and Au
Variables:
Input: S;
Output: S,
Trajectories:
an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. for all v, € S,, v,(t) is an integrable function
2. for all t € I, t > 0 the following holds for all v; € S;:
V(var(v;).v,) € [V (vi) — var(v;).Au, V(v;) + var(v;).Au)
Figure 7-1: U-Buffer (n, S;, Sy, var) Hybrid I/O Automaton

Automaton 15(U-Buffer(n, S;, S,, var)): The U-Buffer automaton nondetermin-

istically perturbs all input variables within given bounds to produce output variables.
Parameters
e n is the number of input variables;

e 5;, 5, are two disjoint sets of input and output variables, respectively;

e var: S; — S, x R" is a 1-1 mapping from input to pairs consisting of an output
variable and an uncertainty bound. So, the input variable v; becomes output
variable var(v;).v,, with maximum uncertainty var(v;).Au, where v; € S;, v, €

Sy, Au € RT.

Variables The input and output variables are parameterized by the S; and S, sets.

It does not matter for the generalized automaton which variables it perturbs.
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Trajectories The first restriction guarantees that all the data is still integrable
after the uncertainty buffer. This is important, because both the controllers and
the Init- Vehicles automata integrate the data from the buffers to obtain position and
velocity data. Condition (2) lets outputs vary within given bounds of the inputs. The
bounds are given by the var(v;).Au function and represent the maximum absolute

value of uncertainty in the data for variable v;.

Theorem 7.1 In all reachable states s of U-Buffer, for all v; € 5;,
1. s.V(var(v;).ve) > s.V(v;) — var(v;).Au,

2. s.V(var(v;).v,) < 8.V (v;) + var(v;).Au.

Proof: By restriction (2) on trajectories of U-Buffer. |

7.2 The System

The controller D5 is implemented by a composition of three hybrid automata: another
controller Us and two instances of the uncertainty buffer — the inbound and outbound
uncertainty buffers.The composed system is called Uncertain-Controller, (see Figure
7-2).

We define two instances of the U-Buffer automaton — the inbound and outbound

uncertainty buffers. These buffers use the following constants:
e 0 - the maximum absolute uncertainty in position data;
e § - the maximum absolute uncertainty in velocity data;
e § - the maximum absolute uncertainty in acceleration.

Automaton 16(U; ): U; = U-Buffer(3, {za1, Za1, Za1}, {Tu1, Tu1, w1}, var), where
var(zq)) = (241,0), var(iq) = (iy1,9), and var(iq) = (#41,0). This automaton
inputs the delayed position, velocity and acceleration data from the inbound delay

buffer D;, and outputs them with “uncertainty” to the controller Us.
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Figure 7-2: Sensor-Uncertainty Vehicles Model

Automaton 17(U, ): U, = U-Buffer(1, {acc,1}, {acca }, var), where var(ace,,) =
(accq1,0). The outbound uncertainty buffer automaton inputs the acceleration com-
mands from the controller U, and outputs the perturbed values to the outbound
delay buffer D,.

In the uncertainty case we give a specific controller U, that accounts for uncer-
tainties, and prove that it is sufficient to guarantee correctness. No specification
controller, or parameterized composition automaton is given in this case — optimal-
ity results are not presented, and only sufficiency of a specific controller is proved.
This controller is presented below.

Automaton 18(U, ): The controller U, (shown in figure 7-3) is the same as Dy
except that:

1. Input and output variables communicate through uncertainty buffers; the as

buffers remembers the new output variable acc,s.

2. Zino is redefined to account for the “worst” possible uncertainty in the brake

performance, i.e., it assumes that the vehicle accelerates at acc,o + 5.

3. safe-measure, is defined to account for the uncertainties.
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Definition:

. "2 $ 72
safe-measure, = max(((zy; — 0) + (Ty; — )t + —“7""”; ) — (Tinte + Tintedo + % +1p)

n (Zint2+3do)> —(du1 =8+ amint’ )’ —(Vattow)®
2Qmin ’

(i'ul - 5) + amint” - (j:int2 + Sdo) + Uallow)a

where ¢ = min(d; + d,, — a'vu1+£5)

Amin
Variables:
Input: Tul, Bu1 € RZY, #4 €R
xo, @9 € RZ0, &y € R
Output: accys, initially if safe-measure, < 0, then accys = amin — 3,
else arbitrary, where accys > Gmin
Internal:  as - maps from an interval [0,d,] to R,
initially, Vt € [0, d,], a2(t) = amin — )
Tint2, Tint2 - the position and velocity of the second vehicle after time d, passes,
provided collided = false;
initially, Zinss = T2 + Gmint, Tintz = T2 + @t + amé"t2, where ¢ = min(d,, — afjn )-
Trajectories:

an I-trajectory w is included among the set of nontrivial trajectories exactly if
1. w is a trajectory of Controller,
2. if collided = false in w(0) then for all t € I, ¢ > 0:
2.1. if in w(t), safe-measure, < 0 then accys = amin — § else accys > amin

2.2. Vt' €10,d,],

w(0).ax(t' —t) ift' >t
w(t)an(t) = (0).ax (" — 1)

w(t —t').accgs  otherwise
2.3. w(t).dingr = w(t).d2 + [, (w(t).as(u) + §)du

2.4. w(t).Ting2 = w(t).ve + fod"w(t).j:intgdu

Figure 7-3: Uy Hybrid I/O Automaton
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The only changes from safe-measure, are that the first vehicle’s data is adjusted
to the “worst possible” uncertainty in the behavior of the first vehicle. This “worst
possible” behavior is defined by the following inequalities:

L. 2y > 241 — 05

2. dar > da — 0;

. U: bd2

3. ity < Tinky + Fiad, + R

4. @2, < @l

Tint2 = Ting2 + 6d0;

These inequalities are used in changing safe-measurey to safe-measure, . The
proof of these relationships is given below, in Theorem 7.2.
Automaton 19(Uncertain-Controller,): Uncertain-Controller, = VarHide({x,;,
Tuty Tuty accur}, Us || Us || Uy), is the composition of the uncertainty buffers with
the new controller. We show that it implements D,in the context of the Controlled-
Vehicles system. This automaton is not parameterized by the choice of the controller,
unlike the previous composed controllers. No parameterization is necessary because

only sufficiency of the specific controller U, is proven.

Theorem 7.2 Let A; be any implementation of Controller;. Then, in any reach-
able state s of the Controlled- Vehicles(Vehicles, Ay, Delayed-Controllery(Uncertain-
Controllers)) system such that s.collided = false, the following hold:

1. accygy < accys + 5,

2. Tqr > Ty — 0

3. G > dur — 0;

4o Fay > Fu — 05

5. ity < Tiko 4 Giinde + &_;3;
6. i, < iV, +éd,.
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Proof: Claim (1) follows from Property 2 of U-Buffer; claims (2)-(4) follow from
Property 1 of U-Buffer. Finally, claims (5) and (6) follow from claim (1) of this the-

orem and Property 2 of Vehicles (position and velocity are integrals of acceleration).

Note that the symmetric properties also hold, but these are the relationships that

are used later on in the proofs.

7.3 Correctness of U,

As in the delayed case, we want to simulate the previous delayed system using the
new uncertain system, and thus show that the new controller is sufficient.

Throughout this section we will use the following notation: for any implementation
Ay of Controllery, let

CVy (A1) = Controlled-Vehicles(Init- Vehicles, Ay, Delayed-Controllery(Uncertain-
Controllery)), and

and CVp(Ay) = Controlled-Vehicles(Init- Vehicles, Ay, Delayed-Controllers(Ds)).

First we show that if the old safe-measurey (the one used in the delayed case) is
non-positive in some state of Uncertain-Controllers, then the new controller Us (the
one that has inbound and outbound uncertainty), also outputs maximum deceleration.

Formally,

Lemma 7.3 Let Ay be any implementation of Controller;, and let s be a reachable
state of the CVy(Ay) system, such that s.collided = false and safe-measureg < 0.

Then, safe-measure, < 0 and s.acCys = Upmin — 0.

Proof: Initially, the lemma is true by restriction on initial conditions of Uncertain-

Controllery. Consider any reachable state s of C'Vi7(Ay), such that s.collided = false

and safe-measure; < 0. At s we have
2

amint )

2

. Do \2 .
(xgbzﬂ) - (-'L'dl + amint,)Z - (Uallow)2

— (P2 4
(xzntZ + 2) + 2amin

(«le + l"dltl +

(7.1)
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and

i'dl + amintl + Ugllow — leZLQtQ S 0 (72)

where t' = min(d; + d,, —-24-).

my”
Let t" = min(d; + d,, —W). Then, by Theorem 7.2, in s,

L. 2y > 241 — 05

2. G > du1 — 0

D> Us . Us 0d2
3. Tint2 S Tint2 + xintZdo + 207

. D> Us .
4. Tinto < Tint2 + 6do

Using the above inequalities, we replace each delayed variable (41, @1, 753,
#D2,) in inequalities 7.1 and 7.2 with an expression that is smaller than the delayed
variable, and using only the “uncertain” values, which are the ones known to Us,.
Then, we get exactly the two parts of safe-measure,; moreover, since we used only

smaller values, the resulting expressions are still non-positive. So,
safe-measure, < 0

Then, by the definition of Us, accyo = apmin — 5, as needed. [ |

Lemma 7.4 Let Ay be any implementation of Controller, and let f be an identity

relation on all state components of CVp(A,), except that accsy® = max(accSy? , min)-

Then f is a simulation from CVy(A;) to CVp(Ay).

Proof: By induction on the number of steps in the hybrid execution.

Start States: The restrictions on start states of C'Vp(A;) and C'Vyy(A4;) are iden-

tical.
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Discrete Steps: The only discrete steps are collide, e and the internal steps of A;.
The latter two steps cannot change any of the quantities involved. Since the collide
step is the same for both automata, it respects the simulation relation. Also, the
effects of the collide step satisty Predicate S; vacuously, thus the state reached after
the collide action is a valid state of CVp(A;).

Trajectories: Suppose that wy is an I-trajectory of the uncertainty-buffered sys-
tem CVy(Ay) and its first state sy is reachable. Suppose that sp is a reachable state
of CVp(Ay) such that (sy,sp) € f. Then let the corresponding hybrid execution
fragment of C'Vp(A;) consist of a single trajectory wp, where all the state compo-
nents in all the states of wp are equal to corresponding components in wy, except
that wp.accgy = max(wy.accqs, Amin)- It is clear that the two trajectories have the
same hybrid trace and that the final states of both trajectories are f-related.

The only remaining thing to show is that wp is in fact a trajectory of CVp(A;). In
particluar, we must show that the projections of wp on the components of CVp(A;)
are allowed by these components.

First, we show that wp is allowed by the Delayed-Controllery(Ds) controller. By

the definition of a trajectory we must show that

1. wp is allowed by Controller,.

This is trivial, since it is also a restriction on the trajectories of Us, and the

buffers preserve these conditions by preserving integrability.

2. If collided = false in wp(0) then V¢ € I such that safe-measure; < 0 we have
wp(t).accqs = Amin-
Consider the trajectory wy of C'Vir(A1). Since safe-measure, uses the same
variables with the same values in both the C'Vp(A;) and the C'Vy;(A4;) systems,
we can apply Lemma 7.3, so that wy(t).accys = amin — 5. By Theorem 7.2, in
all reachable states s of C'Vi7(Ay), s.accqs < s.accys + 5, 50 wy (t).accsm < Amin.

Then, using the definition of trajectory wp,
wp(t).accgy = max(wy(t).accia, min) = Qmin,
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as needed.

We also show that the projection of wp on Init- Vehicles is allowed by Init- Vehicles,
and has the same hybrid trace as wy.

We know that wy is allowed by Init-Vehicles. But wp is exactly the same as
wy, except for the input variable acco. Also, since all the variables are the same,
the hybrid trace of wp and wy is the same. Thus, we only need to show that the
condition (3) of Init-Vehicles trajectories, namely, that wp.iy = max(wp.acca, Gmin),
is preserved.

By the definition of wp, wp(t).iy = wy(t).Zy for all ¢ throughout the trajectory.
By restriction (3) on trajectories of Init-Vehicles, wy(t).Zo = max(wy(t).accs, Gmin)-
Also, by the definition of wp, wp(t).acc; = max(wy(t).acce, Amin). Putting these

equations together we get

wp(t).Ze = wy(t).Fo = max(wy (t).accy, Gmin) = wp(t).accas = max(wp(t).accy, Amin)-

Therefore, wp is a valid trajectory of Init- Vehicles.

Theorem 7.5 Delayed-Controllery (Uncertain-Controllers) is a correct controller for

Init-Vehicles.

Proof: We need to prove that for any implementation A; of Controller;, CVy(A;),
implements Safe-Vehicles. By Lemma 7.4, there is a simulation relation f from
CViy (A1) to CVp(Ay). Since CVir(A;) and C'Vp(A;) are comparable, CVi(A;) im-
plements C'Vp(A;).

By Theorem 6.6, Delayed-Controllery(Ds) is correct, which means that CVp(A;)
implements Safe- Vehicles. Then, since CVyy(A;) implements CVp(A;), CViyr(A4;) also
implements Safe- Vehicles. 1t follows that Delayed-Controllery( Uncertain-Controllers)

is correct. [ |
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7.4 Optimality

We do not present a necessary controller here, as opposed to the controllers consid-
ered in the previous chapters. Before, we always made safe-measure to account for
the “worst-case”, but possible, conditions. Then, we were able to prove necessity by
making the first vehicle have its worst possible behavior. However, with the uncer-
tainty involved, we did not make safe-measure as tight as possible. The problem is
that in our analysis, the position and velocity data are used independently. However,
the position and velocity data are dependent upon each other, and thus we could use
the relationship between the two values to get tighter approximations to their real
values, resulting in a more optimal controller. We did not model it this way because it
is not realistic: in most situations it is impractical to deduce the tighter bounds, since
just calculating these bounds takes too much time, eliminating any benefits obtained
from using tighter bounds. This would ultimately decrease the performance, instead

of improving it.
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Chapter 8

Conclusion and Future Work

The system consisting of two vehicles moving on a single track has been modeled
using hybrid automata, including all the components (physical vehicles, controllers,
delay and uncertainty buffers), and the interactions among them. Safety conditions
were formulated using invariant assertions. Correctness and optimality of controllers
were proved using composition, simulation mappings and invariants, and the meth-
ods of mathematical analysis. Complexity (delays and uncertainty) was introduced

gradually, using levels of abstraction, significantly simplifying the proofs.

The case study formally describes a general controller that is necessary and suf-
ficient to guarantee the safety requirement regardless of the behavior of the leading
vehicle. Such a controller can be later reused to prove correctness of complicated

maneuvers, such as merging and splitting, where the setup is similar.

There are two important results of this research. Generally, it demonstrates the
power of the hybrid automata model, the associated proof methods in reasoning about
interesting hybrid systems, and the use of abstraction levels as a way of handling
complexity. More specifically, we give a reusable model of the automated vehicles,
including their controllers and sensors, which incorporates delays and uncertainties
directly, and we derive and prove necessary and sufficient conditions for satisfying the

safety requirement of the vehicles.

Future work will address the following problems:
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1. In reality, the controllers can only control the jerk, and not the acceleration of
the vehicles. Without further complicating the models, we can still model the
controllers as controlling the acceleration, but the outbound delay (and, possi-
bly, uncertainty) have to be increased to account for the fact that it takes some
time for the controller to reach desired acceleration. Using this approach, the
outbound delay and/or uncertainty might become functions of current acceler-

ation, and not constants.

2. We have developed necessary and sufficient conditions for a controller to guar-
antee safety in the presence of delays and uncertainties. This controller can
now serve as a correctness specification. We could prove correctness of “real”

algorithms, for merging or splitting, by testing them with our controller.

3. In this thesis we only handled the first collision, when in fact, even in the case
of two vehicles, multiple collisions can occur. Although all of the models do not
have to be changed, most of the proofs would have to be reworked to handle
this case. This would be similar to Lygeros and Lynch’s work in [10], but would

have more detailed vehicle models, including delays and uncertainties.

4. Finally, it would be interesting to extend the models and the proofs to the mul-
tiple vehicle case. If we limit the analysis to only pairwise collisions (excluding
simultaneous collisions of three or more vehicles), then the models and some
of the analysis from this thesis can be reused, but many new problems would
arise. In order to remove the pairwise-only collisions restriction, some of the
models would have to be reworked to model these collisions. The results would
be more general than in [10], since delays and uncertainties would be included

in the model.
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