
Connectivity Service for Mobile Ad-Hoc Networks
Alejandro Cornejo and Nancy Lynch

MIT Computer Science and Artificial Intelligence Laboratory
{acornejo,lynch}@csail.mit.edu

Abstract—We present a distributed connectivity service that al-
lows agents in a mobile ad-hoc network to move while preserving
connectivity. This allows unmodified motion planning algorithms
to control the trajectories of each robot independently, these
trajectories are fed to the service which modifies them as little
as possible to ensuring global connectivity. Since we require only
short term targets the service can be used with online motion
planning where the complete trajectory is not known a priori.
For most motions the algorithm requires only local knowledge of
the graph, and therefore scales up with the number of agents.

I. INTRODUCTION

A collection of mobile agents are exploring a building in
a search and rescue mission, demining a field or collecting
samples of Martian soil. To exploit the distributed nature
of these problems each agent should perform some task as
independently from the other agents as possible. However the
success of the mission depends on the global behavior of
the system, so without global coordination the agents could
duplicate work or be unable to guarantee completion.

The problem is further complicated by the lack of a cen-
tralized communication infrastructure which forces the agents
to communicate using ad-hoc networks. In this setting the
movement of the agents translates to changes in the underlying
communication topology. As an algorithm designer for these
platforms we seek two contradicting properties, on one hand
we would like to coordinate the motion of the agents to
guarantee the connectivity of the communication network, and
on the other we would like each agent to perform its individual
task while interfering as little as possible with the other agents.

In this paper we propose the use of a connectivity ser-
vice which mediates between the individual tasks of each
agent while guaranteeing the connectivity of the underlying
communication graph. The use of this service allows more
flexibility in the design of controllers and algorithms for
mobile agents, since for the most part the agents can be
controlled independently and rely on the connectivity service
to modify the trajectories as needed to guarantee connectivity.

In the control theory community Schuresco et al. [1] present
an algorithm to transform the connection topology between
two trees. Zavlanos et al. [2] developed a centralized method
to preserve connectivity by solving a constrained optimization
problem. Sevla et al. [3] describe an algorithm to maintain
connectivity for second order agents which requires preserving
edges. Zavlanos et al. [4] propose using potential fields to
steer the agents and describe how to follow a leader using this
method. Similar but unrelated work has been done in the field
of topology control, for example in [5],[6].

In this paper we present a distributed connectivity service
that does not make assumptions over the current and target
configurations. In particular the target configuration might be
disconnected, and the service guarantees connectivity while
trying to get each agent as close as possible to their target.
Furthermore, the connectivity service does not require long
term knowledge of the target and is in fact memoryless. We
define robustness to velocity changes of each agent and prove
the proposed connectivity service is robust to any number
of these changes. To improve progress our framework allows
different filtering methods to be used and we propose filtering
methods which require only local information and perform as
well as global filtering in a lot of practical cases.

Section II introduces graph theory notation and define
trajectories and motion patterns along with some of their
properties. In section III we describe an abstract connectivity
service and state its properties. Section IV presents the in-
tersecting disks connectivity service, describes some variants
and proves their correctness. Section V proves progress of the
intersecting disks connectivity service for connected motions
with two agents and briefly discusses the connected motion
progress properties for an arbitrary number of agents. Sec-
tion VI contains simulation results with different parameters.
Section VII concludes the paper and describes future research
directions.

II. PRELIMINARIES

In this section we introduce the basic graph theory notation
and definitions used throughout the paper. We assume agents
have access to some positioning device such as GPS, but it
is enough to have the relative position of one hop neighbors.
Furthermore, we suppose the position of the agents is restricted
to a plane, but the results presented easily extend to general
three dimensional movement.

Let V = {1, . . . , n} be the set of agents, for i ∈ V , xi(t) ∈
R2 denotes the position of agent i at time t in 2-dimensional
space, which is considered an 2×1 column vector. We use bold
capital letters to refer the configuration of the whole system,
X(t) = [x1(t), . . . , xn(t)] is a 2 × n matrix which describes
the positions of the n agents at time t. Although we deal with
continuos motion, we omit t when discussing positions fixed
at one instant.

The closed disk of radius r centered at xi is defined as
Dr(xi) =

{
p ∈ R2 | ‖p− xi‖ ≤ r

}
. We concern ourselves

with networks where each agent has the same communication
radius r and there is a bidirectional link between i and j at

configuration X if ‖xi − xj‖ ≤ r. Therefore the communica-
tion graph between agents is the unit disk graph parametrized
with the configuration of the system.

Definition 1. The communication graph for configuration
X is defined as UDG(X) = 〈V,E(X)〉, where E(X) =
{(i, j) | ∀i 6= j s.t. ‖xi − xj‖ ≤ r} for some fixed communi-
cation radius r.

A configuration X is connected if UDG(X) is connected.
A path P from v1 to vn is a graph defined by a

vertex set V = {v1, . . . , vn}, with an edge set E =
{(vi, vi+1) | 1 ≤ i < n)}. The path P exists in a graph G if
P is a subgraph of G, written P ⊆ G.

Agents i and j are k-neighbors in X if there exists a path
P ⊆ UDG(X) from i to j where |P | ≤ k.

Definition 2. The k-neighborhood of i is denoted as Nk(i)
and is defined as the set of k-neighbors of j, that is
{j 6= i | j is k-neighbor of i}, the closed k-neighborhood is
denoted as Nk[i] = Nk(i) ∪ {i}.

An agent moves from position xi to position yi by following
a trajectory γi where γi : [0, 1] → Rm, γi(0) = xi and
γi(1) = yi. Similarly, a set of agents moves from one con-
figuration to another by following a collection of trajectories
γ = [γ1, . . . , γn], called a motion pattern.

Definition 3. A motion pattern between configuration X and
Y is γ : [0, 1]→ Rm×n, where γ(0) = X and γ(1) = Y.

Two motion patterns γ and δ can be composed as long
as γ(1) = δ(0), written γ ◦ δ. Furthermore we can consider
fragments of a motion pattern where δ is a fragment of γ if
there exists c ∈ [0, 1] and b ∈ [0, 1] such that δ(t) = γ(ct+ b)
for t ∈ [0, 1], written δ ⊆ γ.

Definition 4. A motion pattern γ is connected if UDG(γ(t))
is connected for t ∈ [0, 1].

In general motion patterns are used to get closer to some
final goal configuration, the following definition formalizes
this concept.

Definition 5. A motion pattern γ makes progress with
respect to Z if ∀i ‖γi(1)− zi‖ ≤ ‖γi(0)− zi‖. If
∃j s.t. ‖γj(1)− zj‖ < ‖γj(0)− zj‖ it makes strict progress.

If X and Y are two connected configurations it is easy to
verify there always exists a connected motion pattern γ from
X to Y.

Assuming the communication graph UDG(X(0)) is con-
nected, we are interested in producing connected motion
patterns which make progress with respect to the desired
configuration of the agents.

III. CONNECTIVITY SERVICE

We suppose a synchronous setting where the agents operate
in rounds, at the beginning of round k the system is in
configuration Xk and the agents have a target configuration
Yk for the next round. The communication between agents is

done using a reliable broadcast primitive that guarantees timely
delivery of the messages to all the agents in the neighborhood.
The connectivity service should produce a motion pattern γ
that starts at Xk and makes progress with respect to Yk.

Internally the connectivity service may need to exchange
messages with neighboring agents and perform some local
computation. Initially we assume the length of the time interval
between rounds is enough to allow the connectivity service
to produce the motion pattern and the agents to follow the
trajectories. In general we characterize the connectivity service
by the properties of the motion patterns it produces.

Definition 6. The connectivity service is safe if it produces
connected motion patterns.

While an agent is moving through a trajectory returned by
the connectivity service it may need to slow down or stop
unexpectedly, for example when encountering an obstacle,
taking a sample or deploying equipment. Therefore a desirable
property is to tolerate some number of these unpredictable
events.

Definition 7. Let γ = [γ1, . . . , γn] be a motion pattern, let
Q be a subset of V and H = [h1, . . . , hn] be a set of
functions where hi : [0, 1] → [0, 1]. We define the motion
pattern δ(γ,Q,H) where ∀i 6∈ Q : δi(t) = γi(t) and
∀i ∈ Q : δi(t) = γi(hi(t)).

The motion pattern γ tolerates f changes in velocity if for
any set Q ⊆ V such that |Q| ≤ f and any set of H of functions
the motion pattern δ(γ,Q,H) is connected.

A connectivity service is robust to changes in velocity if the
motion patterns produced by the service tolerate n changes in
velocity.

We cannot require a connectivity service to make strict
progress without making assumptions about the target con-
figuration, since in some cases no connected strict progress is
possible.

Definition 8. Let the system be at round k and suppose that for
all rounds k′ ≥ k the agents request the target configuration Y,
where Y is connected. A connectivity service makes progress
if after a finite number of rounds r it holds that Xk+r = Y.

IV. INTERSECTING DISKS CONNECTIVITY SERVICE

The service has three phases, a collection phase, a proposal
phase and an adjustment phase. The first two phases involve
exchanging messages with its neighbors while the third phase
requires no communication.

In the collection phase the connectivity service queries the
location service to obtain its current position xi. Each agent
broadcasts its position to its neighbors and simultaneously
learns the positions of its neighborhood Ni.

The proposal phase assumes access to a filtering function
FILTER which receives the current neighborhood Ni and
returns a subset N ′i ⊆ Ni. Each agent calculates the region
Ri defined by the intersection of a set of disks of radius r
centered at the position of each agent in N ′i . The point pi

inside Ri which is closest to the target yi is broadcast as a
proposal, and the proposed neighborhood pNi is received.

The adjustment phase uses a safety function SAFE which
receives the current filtered neighborhood N ′i and the proposed
neighborhood pNi and returns a boolean. If SAFE returns
true the service returns a linear trajectory from xi to the
proposed target pi, otherwise it returns a linear trajectory that
goes half way between the current position and the proposed
target.

1: Collection phase:
2: yi ← agent’s i target
3: xi ← query positioning device()
4: broadcast xi to all neighbors
5: Ni ← {xj | for each xj received} ∪ {xi}

6: Proposal Phase:
7: N ′i ← FILTER(Ni)
8: Ri ←

⋂
xj∈N ′

i−xi

Dr(xj)

9: pi ← point inside Ri closest to yi

10: broadcast pi to all neighbors
11: pNi ← {pj | for each pj received} ∪ {pi}

12: Adjustment Phase:
13: if not SAFE(N ′i , pNi) then
14: p′i ← xi + 1

2 (pi − xi)
15: return trajectory from xi to p′i
16: else return trajectory from xi to pi

Fig. 1. Intersecting disks connectivity service run by agent i

The correctness proof of the algorithm is subtle, but the
intuition is straightforward. First, notice region Ri is non-
empty, and in particular since it is the intersection of a set
of disks, all of which contain xi, it holds that xi ∈ Ri.

Furthermore, Ri is the result of the intersection of convex
shapes and it is therefore also convex. Since xi ∈ Ri and
pi ∈ Ri from the definition of convexity any point between xi

and pi is also in Ri, so in particular the adjusted target must
be in Ri.

To understand why the adjustment phase helps preserve
connectivity it is useful to study the worst case. First we define
some terms, agents i and j are filtered neighbors if xi ∈ N ′j
and xj ∈ N ′i . Suppose agents i and j are filtered neighbors and
therefore ‖xi − xj‖ ≤ r, ‖pi − xj‖ ≤ r and ‖pj − xi‖ ≤ r.
The distance between their proposed positions is:

‖pi − pj‖ = ‖(pi − pj) + (xi − xj) + (xj − xi))‖
= ‖(pi − xj) + (xi − pj) + (xj − xi)‖
≤ ‖pi − xj‖+ ‖pj − xi‖+ ‖xi − xj‖

Where the last inequality holds with equality when all three
vectors are parallel and pi − xj and pj − xi point in opposite
directions. In the worst case ‖pi − pj‖ = 3r which results in
disconnection.

Lemma 1 (Adjustment). If two filtered neighbors i and j
adjust their proposals, the resulting proposals are connected.

This follows from applying the triangle inequality, we omit
the proof for lack of space. However, even if two agents are
connected and propose connected targets, they could discon-
nect while following their trajectory to the target. Below we
prove that under some set of assumptions, any linear trajectory
between a pair of agents is robust.

Lemma 2 (Robustness). The linear trajectories of any two
filtered neighbors i and j whose endpoints are connected
tolerate velocity changes of i and j.

Proof: Let γi and γj be the linear trajectories followed
by agents i and j respectively.

Let Ij = Dr(γj(0))∩Dr(γj(1)) be the intersection of two
disks of radius r centered at γj(0) and γi(1). Since i and j
are filtered neighbors γi(0) ∈ Ij , and since by assumption
the endpoints of γi and γj are connected then γi(1) ∈ Ij .
Moreover, since Ij is convex and γi is linear any point in γi

is in Ij .
Similarly for agent j it holds that any point in the trajectory

γj is in Ii = Dr(γi(0)) ∩ Dr(γi(1)). Therefore for any t ∈
[0, 1] and τ ∈ [0, 1] it holds that ‖γi(t)− γj(t)‖ ≤ r.

These two lemmas are enough to prove the following
corollary.

Corollary 1. The trivial connectivity service where FILTER is
the identity function and SAFE always returns false is safe
and robust to velocity changes.

Proof: Let (i, j) be an edge in the graph UDG(X). Since
FILTER returns the same set it received agents i and j are
filtered neighbors, and since SAFE returns false both agents
adjust their proposals. Therefore by the adjustment lemma the
resulting proposals p′i and p′j are connected.

Finally by robustness lemma the linear trajectories for
agents i and j towards p′i and p′j tolerate velocity changes
of i and j. Since this holds for all edges resulting motion
pattern is safe and robust to velocity changes.

However this choice of functions is the worst in terms
of progress and requires preserving all edges. In the next
sections we study some natural choices for the FILTER and
SAFE functions that lead to different algorithms with better
properties, in all cases we prove the resulting service is indeed
safe and robust to velocity changes.

A. No neighbor filtering

Without filtering the motion of the agents is very constrained
since Ri depends on all the neighbors. However, even without
filtering the connectivity service can allow edges to be re-
moved if the predicted neighborhood is safe. Here we define
a SAFE function that guarantees connectivity while allowing
some edges to be lost.

Definition 9. A path Pj ⊆ UDG(pNi ∪ {pi}) from pi to
pj is safe if for every edge (pl, pm) ∈ E(Pj) it holds that
(xl, xm) ∈ UDG(Ni ∪ {x− i}).

In other words a path from i to j in the proposed neigh-
borhood of i is safe if the same path existed in the original
neighborhood.

Definition 10. Let SAFE return true if ∀xj ∈ Ni there exists
a safe path Pj ⊆ UDG(pNi∪{pi}) from pi to pj , and false
otherwise.

This is clearly stronger than connectivity of UDG(pNi ∪
{pi}) since not only there needs to exist a path from every
pair of vertices in the proposed neighborhood but the paths
have to be safe.

Lemma 3. The intersecting disks connectivity service with no
neighbor filtering and the described SAFE function is safe and
robust.

Proof: Let i and j be any two neighboring agents. We
divide the analysis in cases depending on the existence of a
safe path from i to j.

IF THERE IS NO SAFE PATH. Then both agents adjust
their proposal and by the adjustment lemma their adjusted
proposals are connected. Since they are “filtered” neighbors
and execute a linear trajectory towards connected proposals
by the robustness lemma their trajectories tolerate velocity
changes of either agent.

THERE IS A SAFE PATH. Let (pl, pm) be an edge in the
safe path. Suppose that neither agent adjusts their proposals,
by the robustness lemma their trajectories tolerate velocity
changes of either agent and remain connected. However if l or
m decide to adjust, their resulting trajectories are fragments of
the previous ones, and therefore also tolerate velocity changes.

Therefore every pair of neighboring agents in the current
round are connected by a path in the next round. Moreover,
the trajectories followed by each agent in the path tolerate the
velocity changes of any agent in the path, hence the motion
pattern is safe and robust.

B. Local filtering

Ideally each agent has access to some oracle that provides
a subset of neighbors to maximize Ri and allow a proposed
target closer to the real target, while guaranteeing that if the
agent stays connected to this subset of neighbors, the graph
remains connected.

To implement such an oracle would require using global
information about the graph, but this demands more commu-
nication and does not scale well with network size. Here we
attempt to approximate such an oracle using local information.

One approach to reduce the number of neighbors and
hopefully have more slack when proposing a target is to
use a connected spanning subgraph of G(X). Examples of
such graphs are the Gabriel graph (GG) [7], the relative
neighbor graph (RNG) [8], and the local minimum spanning
tree (LMST) [9]. These structures are all connected and can
be computed using local algorithms.

Here we focus on LMST, however the results presented
for the connectivity service apply for any other connected
sparse structure. The LMST− is defined as the intersection

of the minimum spanning trees of the closed neighborhood
of each agent, that is LMST− =

⋂
v∈V MST (N [v]). Sim-

ilarly the LMST+ is defined as the union of the minimum
spanning trees of the closed neighborhood of each agent, so
LMST+ =

⋃
v∈V MSG(N [v]). Since we are interested in

sparse structures we focus use LMST−.
The LMST algorithm can be generalized using k-hop

information where LMST−k =
⋂

v∈V MST (Nk[v]), and
LMSTk ⊆ LMSTk+1, in the limit LMSTn = MST .

1) Using LMST for filtering.: To use LMST for filtering
each agent constructs its local minimum spanning tree with
the information gathered in the collection phase and returns
the positions of all agents which are its neighbors in the local
minimum spanning tree.

Definition 11. Suppose LMSTi = MST (Ni) is the local
minimum spanning tree of agent i, then FILTER returns the
set {xj | (j, i) ∈ E(LMSTi)}.

If in the proposed neighborhood the filtered neighbors are
still connected, the proposed neighborhood is safe, otherwise
it is unsafe.

Definition 12. SAFE returns true if ∀j ∈ N ′i it holds that
‖pj − pi‖ ≤ r.

To prove this FILTER and SAFE functions lead to a safe and
robust connectivity service we use a similar argument to the
one presented in lemma 3.

Lemma 4. The connectivity service with LMST filtering is safe
and robust

Proof: Since the LMST− is connected, it is enough to
prove that every edge of LMST− is preserved from one round
to the next using trajectories robust to velocity changes. Let
(i, j) be any edge of LMST−, therefore xj ∈ N ′i and xi ∈ N ′j
so the agents are filitered neighbors.
‖pi − pj‖ > r Therefore Safe returns false and both

agents adjust their proposal to p′i and p′j , which by the adjust-
ment lemma are connected. Since i and j are filtered neighbors
and they propose trajectories to connected endpoints by the
robustness lemma these trajectories are robust to changes in
velocity of either agent.
‖pi − pj‖ ≤ r Regardless of what i and j decide on the

adjustment phase the endpoints of their trajectories will be
connected. Finally by the robustness lemma these trajectories
are robust to changes in velocity of either agent.

C. Progress of n agents.

When dealing with more than 2 agents the filtering method
needs to be considered to prove progress. The problem is
further complicated since not only edges are lost (which
potentially could lead to more progress), but in a lot of cases
edges are added.

Moreover, some motions might require loosing edges which
cannot be removed by local methods, this can be handled
by global cycle breaking algorithms that could be started
by the service (and run in parallel) whenever no progress is

being made. We will describe how to incorporate global cycle
breaking routines with the algorithm in a future paper.

Even ignoring filtering issues, the greedy nature of the
service means it will always try to make positive progress
towards a target. However some combinations of initial and
target configurations require the agents to make negative
progress (move further away from its target) on the short term
so that on the long term they can reach its target. Its clear the
service does would never produce such motions.

V. SIMULATION RESULTS

To evaluate the performance of the intersecting disks con-
nectivity service we implemented a simulation framework with
the different filtering routines. As the communication graph
becomes dense the differences between the filtering routines
become more apparent. We tested the three filtering methods
described in a random connected graph where each agent has
a random target 6r away from its initial position.

Fig. 2. Random graph with 80 agents

Figure 3 shows an arrow from the initial position of each
agent to its target, dotted lines are draw between targets
that are within communication range. Clearly the resulting
graph is disconnected and therefore unreachable by any safe
connectivity service.

Fig. 3. The desired motion vector of each agent.

25

50

75

0 10 20 30 40 50

C
(X

k
,Y

)

Rounds

Trivial filtering
No filtering

LMST filtering

Fig. 4. Agents in a random initial position trying to reach a fixed random
disconnected target using the connectivity service with three different filtering
methods.

We define C(X,Y) =
∑n

i=1 ‖xi − yi‖2 as the distance
between two configurations. In this example Y is fixed and
Xk+1 is determined by the connectivity service while trying to
advance towards Y from Xk. On figure 4 we present a plot of
C(Xk,Y) against k for the three different filtering methods.

A. Considering physical limitations of the agents.

So far we assumed the length of the rounds is large enough
to allow the agents to move the full trajectory returned by the
connectivity service. Suppose the length of the round is fixed
to 1 second and assume the time required by the connectivity
service to return the trajectory is negligible. Given the agent’s
acceleration and velocity limitations we can compute the
maximum distance each agent can travel during one round,
suppose all agents can travel dmax in one round.

Each agent has a long term target yi, and a short
term target y′i, where where y′i ‖ yi and ‖xi − y′i‖ =
min(dmax, ‖xi − yi‖). Therefore when dmax = ∞ we get
the same trajectories produced when ignoring the physical
limitations of the agents.

1) Column of agents moving forward.: Consider a set of
agents arranged in a vertical line where ‖xi − xi+1‖ = r for
0 ≤ i < n. Furthermore suppose the agents want to translate
forward some fixed distance. For all agents except agents 0
and n− 1 the intersection region Ri = xi, and therefore they
can only propose pi = xi which means they make no progress.

However agent 0 and n− 1 can move closer to their target
by getting closer to agents 1 and n−2 respectively. Therefore
by the next round R1 and Rn−2 are no longer a point, and
agents 1 and n − 2 have some slack to make progress. This
effects trickles down the line from the two extremes and after
n/2 rounds all agents have made progress.

Figure 5 shows the trajectories traced by each agent as
they move forward using the connectivity service with three
different values of dmax, a dot is drawn when the agent called
the connectivity service.

dmax = r/10 dmax = r/2

dmax = 3r/4 dmax =∞

Fig. 5. Nine agents in a line configuration barely connected moving forward.

As the speed of the agents increases they cluster more
while moving forward. However, the clustering could result
in smaller and smaller intersecting regions Ri, since more
neighbors are added. However, the LMST strategy is enough
to eliminate this effect and ignores most of the newly created
edges.

0

15

30

0 20 40 60 80 100 120

C
(X

k
,Y

)

Rounds

r/10
r/2

3r/4
∞

Fig. 6. Distance from target of line configuration at different speeds.

Figure 6 plots the distance from the agents to their target
for the three different values of dmax used. We observe
that although increasing the agents speed results in faster
convergence the difference in the convergence speed of using
r/2 and ∞ is only a few rounds.

2) Ring of agents rotating.: Consider a set of agents
arranged in a ring, where agent i is connected to agent
i − 1 and agent i + 1, for 1 ≤ i < n − 1, agent 0 and
n − 1 are neighbors, and have as neighbors agent 1 and
n − 2 respectively. Moreover, assume the agents are barely

connected so ‖xi − xj‖ = r if agent i and j are neighbors.
Notice that unless n = ∞, then ∀i there is some slack in

Ri to allow agent i to move, but they none of them can move
outward. In fact for a single agent to break the ring would
require global knowledge unless n is small enough for a local
algorithm to detect the cycle.

dmax = r/10 dmax = r/2

dmax = 3r/4 dmax =∞

Fig. 7. Ten agents in a ring configuration barely connected rotating 3π/5
counter-clockwise.

Figure 7 shows the agents around the ring rotating in place.
Notice tat since the configuration is symmetrical, at each
round all agents make exactly the same amount of progress.
Also note that for various settings of dmax the agents cluster
together effectively creating new edges. This is an example
where filtering was necessary to guarantee progress.

0

1

2

0 5 10 15 20 25 30

C
(X

k
,Y

)

Rounds

r/10
r/2

3r/4
∞

Fig. 8. Distance from target of circular configuration at different speeds.

Figure 8 plots the distance from the agents to their target
and presents results that resemble those shown in figure 6.

3) Grid-like and random configurations.: More elaborate
and interesting behaviors emerge in denser graphs, unfortu-
nately it is very difficult to convey the motion of more denser
configurations in a static plot, since the trajectories intersect
quite frequently.

We invite the interested reader to visit
http://people.csail.mit.edu/acornejo/research to find videos
of the connectivity service being used when using more
elaborate initial and target configurations. In general the
service works as expected, and the relationship between dmax

and the clustering of agents and their speed of convergence
seems to hold in all cases.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a distributed connectivity service that
allows decoupling the task of motion planning and ensuring
connectivity. However it’s clear that in some cases such
decoupling is not possible or may have an adverse effect on
performance.

Future directions of research include designing new filtering
methods for the connectivity service and developing efficient
techniques for global cycle breaking. In section V we proved
progress for 2 agents and we hope to close the gap by proving
progress in the general setting in a future paper.

Finally the results obtained through simulation seem to point
to a strong relationship between the communication speed and
the speed of the agents, but this has yet to be studied formally.

REFERENCES

[1] M. Schuresko and J. Cortes, “Safe graph rearrangements for distributed
connectivity of robotic networks,” Decision and Control, 2007 46th IEEE
Conference on, pp. 4602–4607, 2007.

[2] M. M. Zavlanos and G. J. Pappas, “Controlling Connectivity of Dynamic
Graphs,” Decision and Control, 2005 and 2005 European Control Con-
ference. CDC-ECC’05. 44th IEEE Conference on, pp. 6388–6393, 2005.

[3] K. Savla, G. Notarstefano, and F. Bullo, “Maintaining limited-range
connectivity among second-order agents,” SIAM Journal on Control and
Optimization, 2007.

[4] M. M. Zavlanos and G. J. Pappas, “Potential Fields for Maintaining
Connectivity of Mobile Networks,” Robotics, IEEE Transactions on [see
also Robotics and Automation, IEEE Transactions on], vol. 23, no. 4, pp.
812–816, 2007.

[5] P. Bahl, J. Y. Halpern, L. L., Y.-M. Wang, and R. Wattenhofer, “Analysis
of a Cone-Based Distributed Topology Control Algorithm for Wireless
Multi-hop Networks,” Principles of Distributed Computing, pp. 264–273,
2001.

[6] X.-Y. Li, Y. Wang, P.-J. Wan, W.-Z. Song, and O. Frieder, “Localized
low weight graph and its applications in wireless ad hoc networks,” IEEE
INFOCOM, vol. 4, 2004.

[7] K. Gabriel and R. Sokal, “A new statistical approach to geographic
variation analysis,” Systematic Zoology, vol. 18, no. 3, pp. 259–278, 1969.

[8] G. T. Toussaint, “The relative neighbourhood graph of a finite planar set,”
Pattern Recognition, vol. 12, no. 4, pp. 261–268, 1980.

[9] N. Li, J. C. Hou, and L. Sha, “Design and analysis of an MST-based
topology control algorithm,” INFOCOM, vol. 3, pp. 1702–1712, 2003.

http://people.csail.mit.edu/acornejo/research

	Introduction
	Preliminaries
	Connectivity Service
	Intersecting Disks Connectivity Service
	No neighbor filtering
	Local filtering
	Using LMST for filtering.

	Progress of n agents.

	Simulation Results
	Considering physical limitations of the agents.
	Column of agents moving forward.
	Ring of agents rotating.
	Grid-like and random configurations.

	Conclusions and Future Work
	References

