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Abstract

We propose using real world mobility traces to identify tractable theoretical
models for the study of distributed algorithms in mobile networks. Specifi-
cally, we derive a vehicular ad hoc network model from a large corpus of po-
sition data generated by San Francisco-area taxicabs. Unlike previous work,
our model does not assume global connectivity or eventual stability. Instead,
we assume only that some subset of processes might be connected through
transient paths (e.g., paths that exist over time). We use this model to study
the problem of prioritized gossip, in which processes attempt to disseminate
messages of different priority. We present CABCHAT, a distributed priori-
tized gossip algorithm that leverages an interesting connection to the classic
Tower of Hanoi problem to schedule the broadcast of packets of different
priorities. Whereas previous studies of gossip leverage strong connectivity or
stabilization assumptions to prove the time complexity of global termination,
in our model, with its weak assumptions, we instead analyze CABCHAT with
respect to its ability to deliver a high proportion of high priority messages
over the transient paths that happen to exist in a given execution.
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1. Introduction

A difficulty in studying distributed algorithms for mobile networks is
defining realistic mobility. A common solution to this difficulty is to use
position traces from real mobile network deployments. For example, Liu
et al. [17] use traces of San Francisco-area taxicabs to study the performance
of their VMesh strategy for local information storage, and Sarafijanovic-
Djukic et al. [21] use traces from cabs in Warsaw to study an island hop-
ping strategy for routing. In these two papers, as in most other data-driven
analyses of mobile network algorithms, the position traces are used to sup-
port simulation studies. By contrast in this paper we propose using traces
to derive models suitable for generating theoretical results.

Restricted Dynamic Graphs. Specifically, we begin with the dynamic
graph model of [16], which describes the connectivity of processes in a mo-
bile network as a graph in which the edge set can change arbitrarily from
round to round. (An edge between two nodes in a given round indicates the
ability for the associated processes to communicate in that round.) We then
use position traces from real mobile networks to identify properties of these
graphs that arise in practice. These properties define a restricted dynamic
graph model. The goal is to identify properties that allow a theoretician to
generate better algorithms and bounds, while at the same time maintaining
the results’ applicability in practice.

For example: imagine that the study of buses traveling on a fixed bus
route reveals a small amount of connectivity at any one time step, but a high
probability that a particular pair of buses will eventually be connected (e.g.,
as they pass each other on the route). This might inspire the dynamic graph
property that a specific pair of nodes are expected to be connected in the
graph, for at least x rounds every 7' rounds, with high probability, where
x is a small constant and T is a large constant, both derived from the bus
traces. When analyzing a distributed algorithm to be deployed on buses,
this data-derived property can be used to tame the otherwise arbitrary edge
changes in the graph. A result proved in this model is likely to hold in the
real world network from which the property was derived.

Data-Derived Dynamic Graph Properties. To validate the useful-
ness of this modeling approach, we study vehicular ad hoc networks (VANETS)
comprised of taxicabs in an urban setting. The source of our experimental
observations is a large corpus of position traces gathered from GPS-equipped
embedded computers deployed in San Francisco-area taxicabs [1]. We study



networks of 100 and 200 vehicles. We next examine the properties of the con-
nectivity graphs induced by these networks, first showing that there is never
global connectivity. For example, in our 200 vehicle networks the largest con-
nected component observed in any round contained no more than 65 vehicles.
What we instead observe is a large amount of transient connectivity between
vehicles—e.g., paths over time—with half of the vehicles in our 200 vehicle
networks having transient connections to at least 150 other vehicles. We also
observe moderately stable pairwise links, with 25% of links lasting at least 10
seconds and 10% lasting at least 30. We combine these observations of tran-
sient connectivity and pairwise link stability into what we call the £-stable
transient path property, which describes a transient path between two vehi-
cles such that each hop in the path exists for at least ¢ consecutive rounds.
! In this paper, when we analyze the performance of distributed algorithms,
we do so in the dynamic graph model under the assumption that such paths
exist; e.g., given an £-stable path between nodes w and v in the dynamic graph,
starting at round r, we prove the following performance result...

The Prioritized Gossip Problem. With our data-driven model de-
fined, we turn our attention to solving a specific problem. A commonly-cited
use for vehicular networks is the dissemination of timely information between
vehicles [8, 27], for example: an observation about traffic, the location of a
road-side access point, or an accident alert. This problem can be cast as a
form of gossip, in which vehicles occasionally generate messages of different
priorities that need to be disseminated. Presumably, an accident alert would
have higher priority than an observation of a traffic jam. We refer to this
problem as prioritized gossip, and we study it in the context of the dynamic
graph model with ¢-stable transient paths.

A challenge for gossip in our setting is the lack of strong connectivity
assumptions. In contrast to previous work [16], we do not assume global
connectivity (or even that every pair has transient connectivity), and this
prevents us from proving the time complexity of global termination (e.g.,
the gossip problem terminates in O(n?) rounds). Instead, we can only ex-
pect that some pairs may be connected by an ¢-stable transient path, for
varying ¢ values. This leaves the designer of prioritized gossip algorithms

'Notice that capturing the stability of the hops is important as it bounds the total
amount of information that can flow through the path. Assuming a rate of one message
per round, an ¢-stable path between u and v allows u to transmit ¢ messages to v.



the task of proving their algorithms leverage such paths, when and if they
arise, to deliver as much high priority information as possible. Such results
are weaker than those guaranteeing global termination, but because they
make no connectivity assumptions they are applicable in a wider variety of
practical settings.

Another challenge of solving gossip in our model is the presence of prior-
ities. Without priorities, it is sufficient for processes to work through their
message queue in round robin order, broadcasting a new message in each
round: this behavior guarantees that over any ¢-stable transient path, ¢ dif-
ferent messages are delivered (given a sufficient number of messages existing
in the system). Priorities, however, complicate this approach, as we not only
desire to send unique messages, but we also want to send high priority mes-
sages. Imagine, for example, a process u with an /-stable transient path to v,
and a message queue of size much larger than /. The round robin approach
might lead u to deliver ¢ low priority messages during the ¢ rounds it partic-
ipates in the path. A good prioritized gossip algorithm, therefore, must be
careful in how it schedules its messages for broadcast.

The t-Latency Metric. To capture the effectiveness of a given gossip
algorithm’s priority scheduling scheme, we introduce the t-latency metric,
which upper bounds the number of rounds required for a process to broad-
cast its ¢t highest priority messages, over all rounds in which it has at least ¢
messages, over all executions. An algorithm that guarantees a small t-latency
with respect to ¢, for all ¢ values, will deliver a high proportion of high pri-
ority messages at each hop of an /-stable transient path. Our main perfor-
mance theorems, summarized below, will leverage t-latency results proved
with respect to our algorithm, CABCHAT, to lower bound the amount of
high priority information the algorithm guarantees to be sent over a given
(-stable transient path.

Our Results. In particular we consider the prioritized gossip problem
with exponentially distributed priorities (i.e., messages with priority 1 are
twice as important as messages with priority 2, which are twice as important
as messages with priority 3, and so on). We propose the distributed algorithm
CABCHAT that leverages properties of a slight variation of the binary carry
sequence [3], which also describes an optimal solution the classic Towers of
Hanoi problem [23, 15].2 To aid the proof of our main performance theorems,

2This versatile sequence has also been used to identify Hamiltonian paths in hypercube



we start by bounding the algorithm’s ¢-latency. In the general case, we show
that the CABCHAT algorithm guarantees a t-latency of %Qt. Moreover, for
the important case where the ¢ highest priority values span only k& < ¢ distinct
priorities, the CABCHAT algorithm guarantees a t-latency of (t — k + 2)2++1.
Using these results, we prove two main performance theorems:

(1) If at round r process u knows t messages of priority at most p (assume
smaller values have higher priority), and there is an ¢-stable transient path
from u to v starting at r and ending at 7/, then Q(min(log(¢),?)) messages
of priority at most p eventually reach v by r’. This result indicates that as
the bandwidth available on a path grows (i.e., as ¢ increases), so does the
total amount of high priority information guaranteed to be delivered over
this path (i.e., u’s log (¢) highest priority values).

(2) If in addition to the assumptions of (1) the ¢ highest priority messages
at process u span a constant number of priorities (for example, if u has a
collection of t accident alerts, all sharing the same priority), then Q(min(¢,t))
messages of this priority eventually reach v by r’. Notice, because ¢ messages
is the maximum number that can be communicated over an ¢-stable transient
path, this second result indicates that asymptotically CABCHAT behaves
optimally when delivering many messages from a small number of priorities.
This result is important as in practice we would like the very highest priority
messages to take precedence over other communication.

In some sense, these results can be seen in terms of throughput guaran-
tees. The first result guarantees that as the amount of available bandwidth
between two processes increases, so does the throughput of their communi-
cation. The throughput growth, however, lags behind bandwidth growth,
guaranteeing log ¢ messages are delivered given the potential to have deliv-
ered ¢. The advantage we gain from this slower growth is captured in the
second result, which guarantees that high priority messages take advantage
of a constant fraction of available bandwidth. We argue that these results
represent a reasonable trade-off between these two competing claims on avail-
able bandwidth: the need to increase overall throughput and the need to to
increase the speed at which high priority messages spread.

Related Work. Though the global properties of dynamic graphs—i.e., graphs
with edge sets that can change over time—have been studied from a com-
plexity perspective for many years (see [22] for a good overview), in the last

graphs and generate binary reflected codes, also known as Gray codes.)



decade, models based on such graphs have been increasingly used to study
the performance of distributed algorithms. This direction gained momen-
tum with the stabilizing dynamic graph model—c.f.,; [10, 24, 25, 18]—which
describes device connectivity as a dynamic graph with an edge set that can
change arbitrarily from round to round. Most results in this model assume
that changes to edge set eventually stop, and therefore prove properties with
respect to these stabilization points.

To avoid the assumption of stabilizing connectivity, the authors in [16]
introduce the non-stabilizing dynamic graph model (which we refer to in this
paper as simply the dynamic graph model). In this model, the edge set
never stops changing, but some properties on the graph are assumed to hold.
In [16], for example, the authors assume that a connected backbone exists in
every round. In our work, we use position traces from real mobile network
deployments to identify suitable connectivity properties which hold in prac-
tice. (As mentioned, for example, we found that in VANETSs comprised of
San Francisco-area taxicabs, the global connectivity assumption of [16] never
holds.)

The gossip problem, of course, has been studied in numerous models
(see [9] for a survey of classical results and [12, 11, 4] for a sampling of
more recent work). The results most relevant to ours come from the afore-
mentioned study by Kuhn et al. [16], which examines all-to-all gossip in a
dynamic graph under the assumption of global connectivity. This strong as-
sumption allows them to prove the time complexity of global termination.
As mentioned above, due to weak connectivity assumptions of our model,
we cannot prove results regarding global termination. Instead, we study the
amount of information, and its priority, that is delivered through transient
paths that happen to exist in an execution.

The notion of a transient path is not our own. In the theory context, Orda
and Rom [19], for example, studied time-dependent paths in graphs with edge
weights that change over time according to an arbitrary weight function.
This model generalized many previous models that placed constraints on the
weight function. More recently, Xuan et al. [26] studied related path problems
in this dynamic setting, such as finding paths with small hop counts, near-
future arrival dates, or small transit times.

Our notion of a transient path can be seen as a special case of these
existing definitions; i.e., in which the edge weights for a given time are either 1
(i.e., a link exists at this time) or co (i.e., no link exists). There are, however,
two differences between our study of such paths and these past theoretical
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studies. First, we introduce the property of path stability, which captures
the potential bandwidth of a transient path. In more detail, we measure
a transient path’s stability by the minimum existence duration over all its
links. To the best of our knowledge, this stability metric, which depends
on the duration of each link’s existence in the path, and not just their edge
weights, has not yet been studied in the context of dynamic graph models.

The second difference between our work and previous work is that previ-
ous work assumes full knowledge of the graph. That is, these papers study
centralized algorithms that are told how a graph will evolve in the future. A
major novelty of our work is that our solutions are distributed and assume
no future knowledge of the graphs evolution.

In a more practical context, identifying transient paths is a primary con-
cern in the study of delay tolerant networks. To name one example among
many, consider the UMASS DieselNet project [28], in which buses driving
routes on the UMASS Ambherst campus are equipped with local wireless net-
working equipment. In this setting, connectivity at any moment is limited
(restricted to the small number of buses that happen to be near each other
at the time), but transient connectivity is much higher. In [28], the au-
thors embarked on a project similar to ours. By studying trace data from
their network deployment they identified a generative model that captures
the inter-contact time behavior of buses sharing the same route. Using this
model they designed protocols that exploit transient paths more efficiently
than simple epidemic routing. Chaintreau et al. [5], to name another exam-
ple, performed a similar experiment in which they derived a power-law based
model of inter-contact times from the study of four different real world mo-
bile network traces. They also then used these models to generate protocols
that yielded better performance than simple solutions.

Road Map. In Section 2 we analyze the connectivity of real vehicular net-
works. We use these observations to help define our formal model in Sec-
tion 3. Then, in Section 4 we define the prioritized gossip problem, present
CABCHAT, our distributed prioritized gossip algorithm, and prove a pair of
performance theorems. In Section 5 we perform an experimental evaluation
of the protocol to confirm idea that our theoretical results translate well to
real deployments. Section 6 concludes with a discussion of future work.



2. Behavior of Real World Vehicular Networks

We begin by studying the connectivity properties of vehicular networks
comprised of taxicabs in San Francisco. Our conclusions are summarized in
three informal observations. In Section 3, we will use these observations to
both justify and formalize our mobile network model.

Connectivity Traces. The source of our network mobility data is the Cab-
spotting project, which publishes GPS movement traces of cabs in San Fran-
cisco [1]. The specific Cabspotting data set we used for our experiments was
retrieved from the CRAWDAD wireless network data archive, and included
positions from approximately 500 cabs sampled over a 30 day period [20].

From this data set we extracted 100 mobility traces each containing 100
cabs, and 100 mobility traces each containing 200 cabs. The traces were
all 15 minutes in length. We then converted these traces into the waypoint
format used by the ns-2 [2] network simulator. This format models each cab
moving at uniform speed in a straight line between each successive pair of
locations.

To calculate the connectivity properties of these networks we implemented
a simple beaconing protocol in which each cab broadcasts a message with its
id once every 5 seconds. We simulated this protocol using ns-2 (v.2.3.4),
with the Ext variants of the physical and MAC layer, which are improved
versions of these modules optimized to more accurately describe wireless com-
munication in a vehicular setting (see [7] for more details). We configured
the simulator to describe 802.11a, broadcasting messages at its most reliable
bitrate and encoding (6 Mbps and BPSK), with the parameters of the phys-
ical model configured to match an urban setting (i.e., as described in [13]).?
Experiments indicate an effective communication range for these settings of
approximately 150m (though the fate of a specific packet also depends on
both interference and the random fading effects introduced by the physical
layer model).

Using the received message logs we then determined the changing connec-
tivity of the network in each simulation. In more detail, for each simulation
we split time into 5 second rounds. For each round, we used the received
message logs to determine which vehicles were connected during this inter-

3For the reader interested in replicating our results, we used the 802.11a configuration
script included with this release of ns-2.



val, adding a directed edge between vehicles ¢ and j if and only if j received
a beacon from ¢ during the round. The result is a dynamic communication
graph with a structure that changes from round to round, where each round
represents the connectivity of a 5 second interval of the corresponding sim-
ulation. We analyzed these communication graphs to produce the results
described below.
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Figure 1: Cumulative distribution function plot of maximum component size
(for both 100 vehicle and 200 vehicle communication graphs.).

Global Connectivity. A common assumption in the study of mobile networks
is that the communication graph is connected; e.g., [16]. To test this hy-
pothesis we calculated for every communication graph of each network size,
and for each round communication round, the largest connected component
in the communication graph at that round. In Figure 1 we plot the cumu-
lative distribution function (CDF) of these maximum component sizes, split
by network size. (In this CDF, a point f(z) describes the fraction of rounds
with a maximum component size less than or equal to x.) Notice, in the
200 vehicle graphs the maximum component is always of size less than 65,
and in the 100 vehicle graphs, the maximum component is always of size
less than 25. On the other hand, in both the 100 and 200 vehicle networks,
roughly half of the vehicles are in a component that involves at least 10% of
the network. Put another way, the network is never connected, though small
connected components are common, this is summarized below.

Observation #1: The networks are never connected but usually do contain
connected components of non-trivial size.
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Figure 2: Cumulative distribution function plot of the number of vehicles
reached (for both 100 vehicle and 200 vehicle communication graphs.).

Transient Connectivity. The lack of global connectivity does not rule out the
existence of transient connectivity; that is, paths that exist over time. For
example, imagine a dynamic graph defined over two rounds with three nodes
a, b and ¢, and the following time varying edge set: In the first round, a is
connected to b, and in the second round b is connected c. In this example,
a is transiently connected to ¢, even though there is no path from a and ¢
present in either of the two rounds for which the graph is defined.

To measure transient connectivity we use the reach metric. The reach of a
vehicle a in a given graph is the total number of vehicles that are transiently
connected to a in the length of the experiment. By definition, it follows
that the reach of any given vehicle can only increase when considering a
larger time window. As with the rest of our experiments, we considered the
time window to be 15 minutes. For each communication graph we calculated
the reach of each vehicle. In Figure 2 we plot the cumulative distribution
function of these reach values, split by network size. (In this CDF, a point
f(z) describes the fraction of vehicles with a reach value less than or equal
to z.) The plot reveals significant transient connectivity, for example in the
200 vehicle experiments the median reach was 150 vehicles, while in the 100
vehicle experiments, it was around 50 vehicles. We summarize these results
as follows:

Observation #2: Most vehicles are transiently connected to a constant
fraction of the network.
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Figure 3: Cumulative distribution function plot of link duration over all links
observed in the communication graphs.

Link Stability. We conclude our analysis by looking at the duration (or sta-
bility) of pairwise links. In contrast with the previous reach metric, as long
as the time window considered is not too small, we do not expect the aver-
age duration of a link to change significantly when varying the length of the
experiments. Figure 3 shows the cumulative distribution function of the link
durations of all links observed in the 200 vehicle networks. (In this CDF, a
point f(z) describes the fraction of links with a duration less than or equal
to x.) Notice, because we determine whether a given pair of cars is connected
only once for every 5 second round, the link durations for which we have data
points in our plot are all multiples of 5.

This plot indicates that short links are relatively common—around half
of the links lasted for no more than a single 5 second round—but longer
lasting links are hardly rare—around 25% of the links last at least 10 sec-
onds, and around 10% lasted for at least 30 seconds. We should note that
although contention is minimal in our simulations (due to the low density
and broadcast rate), a single missed beacon due to a collision would termi-
nate the corresponding link in our analysis. Therefore, this plot is likely a
somewhat pessimistic estimation of link stability in practice. We summarize
these results as follows:

Observation #3: Stable links are common.
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3. System Model

We consider a synchronous radio broadcast network model where the
connectivity between nodes can change, perhaps significantly, from round to
round. Specifically, following [16], we assume the communication is described
by a dynamic graph G = (V, E), where V is a static set of nodes, and E :
N — {{u,v}u,v € V} is a function mapping each round number r € N to
a set of undirected edges F(r), describing the connectivity at round r. (In
this paper we assume the natural numbers N start from 1).

An algorithm A is a collection of |V| processes, one for each node in the
graph. In a slight abuse of notation, we use process u to refer to the process
associated with some node u € V. An execution of an algorithm in a dynamic
graph proceeds as follows. At every round r each process chooses a message
to broadcast (if any). Then every process receives a set (potentially empty)
of the messages sent during that round from each neighbor in E(r). That
is, communication is reliable, and each process can only broadcast a single
message per round. We assume each process has a unique identifier but no
advance knowledge of the size of the network or their neighbors in a given
round.

The model, as so far described, allows every node to be in isolation
throughout the execution. Therefore before proving any useful results in
this model it is necessary to impose some additional properties on the graph.
In [16], for example, the authors assume the graph is connected in every
round. In this paper, we instead use the observations made in Section 2
to identify a property geared specifically for our vehicular network setting.
Specifically, from Observation 1 we know that the graph is not globally con-
nected at any round (or even transiently through time). However, from Ob-
servation 2 we know that many nodes do have transient paths between them,
and Observation 3 tells us that the individual hops of these transient paths
are likely to be relatively stable (e.g., persist for more than a just a second or
two). Motivated by these observations we define the concept of an ¢-stable
transient path, which is a path that exists over time (but not necessarily all
at once) and where each hop is stable for ¢ consecutive rounds.

Notice, however, that in this definition we are making a jump from what
we directly observed—transient connectivity and stable links—to a property
that we did not directly observe—stable transient paths. It would strengthen
our case if in the previous section we had shown that this style of paths is
common in our real world traces. We omit such an analysis not because

12



we could not find these paths, but instead because we could not identify
a computationally feasible way of searching for them in our data. Finding
an efficient algorithm for this search is the focus ongoing work. However, we
note that others have shown that temporal structures with a flavor similar to
stable transient paths exist in various mobile and social networks datasets [6,
14]. In the meantime, the remainder of this paper rests on the stipulation
that the observations of the previous section imply the existence of stable
transient paths.
We continue now with our formal definitions:

Definition 1 (Transient Path). Given a dynamic graph, a transient path in
the graph at round r from node u to v is defined by a sequence of rounds
o= Tye.y...,Tm = r + d and a sequence of edges e; = (u,u1),es =
(ur,u2)y ... em = (Up—1,v) such that: i) Vi € [I,m — 1], r; < ri11, and
ii) Vi € [1,m], edge e; exists in the graph at round r;. Here m is the length
of the path and d is its duration.

Notice that the duration of a path can be greater than its length (but not
the other way around), as arbitrarily long intervals of time can exist between
hops. We now define what it means for a transient path to be (-stable:

Definition 2 (¢-Stable Transient Path). Given a transient path described
by the round sequence rq,...,7, and the edge sequence eq,...,e,,, we say
it is (-stable if i) Vi € [1,m], the edge e; exists in the graph throughout the
interval [r;,r; + ¢ — 1], and ii) Vi € [1,m — 1], 741 > 1 + L.

In other words, a transient path is f-stable if each hop exists for ¢ con-
secutive rounds, and no two hops’ round intervals overlap. Naturally, we
expect that with larger values of ¢, /-stable transient paths become more
uncommon. We direct the interested reader to the related work discussion of
Section 1 for a comparison of our path definitions and those that have been
previously studied.

4. Prioritized Gossip

The prioritized gossip problem requires processes to disseminate messages
of various priorities while giving precedence to messages of higher priority.
Without making any strong assumptions on the connectivity between ve-
hicles, the traditional notion of solving the prioritized gossip problem by
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completing all-to-all message exchange does not apply. Therefore, we in-
stead turn our attention to how well an algorithm takes advantage of the
connectivity that happens to exist in an execution to deliver the messages
according to their priority.

In more detail, our aim is to prove a lower bound on the number of
messages, and their priority, which are guaranteed to be delivered over the
(-stable transient paths that exist in a given execution. To aid the proof
of these results, we introduce the t-latency metric (formally defined later in
this section). This metric upper bounds the time required for a process to
broadcast its ¢ highest priority messages. A core difficulty of prioritized gos-
sip in our model is the need to maximize both the total number of unique
messages and their priority, sent over an f(-stable path. The t-latency metric
captures an algorithm’s performance in terms of this goal. Ideally, an al-
gorithm would that guarantees a t-latency of ¢ for all ¢. This would ensure
that given an f-stable path between some u and v, starting at round r, v
would be guaranteed to learn the ¢-highest priority values known to w at r
(or ¢ values of higher priority). * Unfortunately, it is not hard to see that
it is impossible for an algorithm to achieve such a t-latency. To see why,
notice that to satisfy the property for ¢ = 1, processes must always send
their single highest priority message, but this generates an infinite ¢-latency
for all t > 1. A straightforward extension of this argument demonstrates the
impossibility of guaranteeing for all ¢ a t-latency linear in ¢ (i.e. of ¢ - ¢ for
any positive constant ¢). In this work we consider exponentially distributed
priorities, where messages with priority 1 are disseminated twice as much as
messages with priority 2, which are disseminated twice as much as messages
with priority 3, and so on.

The CABCHAT algorithm presented in this paper guarantees a t-latency of
%Qt, for all t. For a constant ¢, the latency is also constant, which ensures that
high priority messages are disseminated on /-stable paths without requiring
¢ to be large. For large t, this value is large but bounded, ensuring that as
bandwidth increases on a path (i.e., ¢ gets larger), so does the amount of
unique messages that will be delivered. We also show that in the special and
relevant case where the t highest priority values span a constant number of

4This follows from a simple induction and the observation that at each hop (w,w’)
along the transient path, w has sufficient time to send its ¢ highest priority messages to

w’.
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priorities (e.g., if a process has learned a large number of high priority alerts)
the algorithm approximates the optimal throughput by achieving a t-latency
of O(t).

From these two t-latency results we then derive our two main performance
theorems. From the former result, we can prove that given an ¢-stable path
between u and v, u will deliver its Q(min(log(¢),t)) highest priority messages
to v in time proportional to the duration of the path (Theorem 4.5). Using
the latter ¢-latency result, we improve this bound to Q(min(¢,¢)), under the
assumption that the t highest priority messages at v span no more than a
constant number of priorities (Theorem 4.6).

4.1. Problem Description

We assume that at the beginning of each round, each process produces
a set of messages (perhaps empty) which it wishes to disseminate. Each
message is labeled with a priority value from N. We use p(m) to denote the
priority of message m. The lower the priority value, the higher the message’s
priority, where 1 is the highest possible priority. Without loss of generality,
we assume all messages are unique.® In each round, each process u can choose
a single message, from among those it knows (which were either generated by
process u, or were received in an earlier round), to broadcast to its neighbors.

The t-Latency Metric. To characterize the scheduling behavior of a
prioritized gossip algorithm, we introduce the t-latency metric. Informally
speaking, the t-latency captures the maximum delay incurred by a process
when sending its ¢ highest priority messages. Formally:

Definition 3 (t-latency). Fix an execution of an algorithm A in some dy-
namic graph. We say A has t-latency T for process u at round r (where
t,r,T € N) if it holds that:

If process u knows at least t messages at round r, and the t
messages of smallest priority value have priority at most p, then
by round r+T process u broadcasts at least ¢t messages of priority
at most p.

For simplicity, when we omit u and r, the property is assumed to hold for all
processes and rounds over all executions and over all dynamic graphs.

5This can be accomplished, for example, by having each process append its id and the
current round number to each message it generates. In the case of more than one message
is generated in the same round, processes can also append a sequence number.
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4.2. CABCHAT Algorithm

In this section we describe CABCHAT, a deterministic distributed priori-
tized gossip algorithm. At its core, the CABCHAT algorithm uses a priority
scheduling function based on the binary carry sequence [3]. We will describe
many useful properties of this sequence, one of them being that every posi-
tive integer 7 appears in every interval of length 2°. It also guarantees that
whenever integer ¢ appears, the vicinity of size 2¢=2 on either side contains all
positive integers j < i. These two properties will turn out to be useful when
proving our performance results. Before continuing with the description of
CABCHAT, we describe formally this sequence and its properties.

Binary Carry Sequence. We define the priority scheduling function, schedule,
used by CABCHAT to be exactly the binary carry sequence plus 1. Formally,
for every round r € N:

schedule(r) = max{i € N:r mod 2'! = 0}.

The following is a well known fact regarding the binary carry sequence
that carries over to our scheduling function.

Fact 1. The function schedule returns each value i € N every 2° rounds.

This sequence also has an interesting connection to the Tower of Hanoi
problem [15, 23]. Specifically, given three rods and n disks labeled in de-
scending size from 1 to n, the sequence S,, (defined below) gives an optimal
solution to the three rod Tower of Hanoi problem. The following is a well
known recursive definition of \S,,.

S =1
Sn - Sn—la n, Sn—l

A well known folklore result is that the first 2” — 1 numbers of the binary
carry sequence plus one (i.e. the first 2"~! numbers output by the schedule
function) are equal to S,,. The following fact of the schedule function follows
as a direct consequence of the recursive definition of .S,,.

Fact 2. If i = schedule(r) then it holds that:
i) Vj < i 3’ € [r— 22, r) such that j = schedule(r’), and
i) Vj <@ 3’ € (r,r + 2°7%] such that j = schedule(r’).
With our scheduling function and its properties defined, we now describe
the CABCHAT algorithm.
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Algorithm Description. The detail pseudo-code for the CABCHAT algorithm
appears in Algorithm 1, here we give a high-level overview of its operation.
Each process maintains an initially empty linked list where each element in
the list has a non-empty message queue. Let (); denote the i** queue in the
list. Queues are only manipulated using the SAMPLE and PUSH operations.
Specifically, executing SAMPLE(Q) returns the element at the front of queue
(), while at the same time popping the element and pushing it at the back
of the queue. Executing PUSH(Q, m) pushes message m into the front of
queue . Informally speaking, a queue acts as a ring buffer which samples
most recently added messages, hence implementing a round robin schedule of
sorts. At the beginning of round r, let ¢ = schedule(r), if the list has at least
1 queues, a process retrieves queue (; and broadcasts the message returned
by the operation SAMPLE(Q;). If the list does not contain an i** queue, the
process broadcasts nothing. After broadcasting a message, a process gets a
set (possibly empty) of incoming messages which were either received from
neighboring processes or generated by the process itself. For each message
m € incoming, if there exists a queue ) such that p(Q) = p(m), the process
executes PUSH(Q m). Otherwise a new queue is created with message m,
and this queue is subsequently inserted in the correct place in the list as to
maintain the priority ordering. Notice, that at round r = schedule(i) this
algorithm does not necessarily broadcast a message with priority i. Instead it
broadcasts a message with the i™* highest priority from among the messages a
process knows, but the actually priority value can be arbitrarily large. This
is an important distinction, as our results are stated in terms of the highest
priorities a process knows, not specific priority values.

4.8. Proof Outline

At the conclusion of this section we prove two main performance theo-
rems. The first, Theorem 4.5, says that if a process u knows ¢ messages,
and an f-stable transient path exists from u to v, then v will receive u’s
Q(min(log(¢),t)) highest priority messages (or a collection of messages of the
same or better priority) in time proportional to the duration of the path. The
second result, Theorem 4.6, says that in the special case when the number
of priorities spanned by the ¢ messages with best priority at u is a constant,
the bound improves to Q(min(¢,t)).

To prove these results, we first establish some useful invariants that hold
as a result of how the queues are manipulated by the algorithm. Aided
by these invariants we then prove that regardless of the number of arriving
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Algorithm 1 CABCHAT

1: list + @
2: forr=1,2,...do
3: i < schedule(r)

4 if |list| > i then

5: broadcast SAMPLE(Q);)

6: end if

7 incoming <— messages received and generated at round r
8 for m € incoming do

9

if 3Q € list such that p(Q) = p(m) then

10: PUSH(Q, m)

11: else

12: insert new queue with message m in list respecting the order-
ing

13: end if

14: end for

15: end for

messages at every round, and the priority distribution of these messages,
CABCHAT has a t-latency of %2t for every t. We also show that if the ¢ mes-
sages with smallest priority value span k distinct priorities, then CABCHAT
has a t-latency of (¢t — k + 2)2%"L. Finally, these t-latency results to derive
the main performance theorems summarized above.

Proof Details. To simplify notation, we assume that the lemmas, corollaries,
and theorems that follow are all proved with respect to a fixed execution of
CABCHAT on a fixed dynamic graph.

We say a value v is sampled from queue ) during an interval, if during
that interval the SAMPLE(Q) operation returned v. The following lemma
essentially shows that regardless of the interleaving of the SAMPLE and PUSH
operation, during any interval a queue always maintains “unsampled” mes-
sages at the top of the queue.

Lemma 4.1. Fiz a queue QQ and a time interval [t1,t5]. The queue can be
expressed as the concatenation of queues F' and T (QQ = F -T), such that
every element in F was not sampled during the interval [ti,t3] and every
element in T was sampled during the interval [t,ts].
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Proof. Let S be the set of operations performed on ) during the interval
[t1,t2]. We proceed by induction on the number of such operations |S].
Base Case: If |S| = 0 then no operations were performed during the
interval, and the statement holds with the partition ' = @ and T' = @.
Inductive Step: Let S = S'U{op} where op € {PUSH, SAMPLE}. By our
inductive hypothesis, after applying the operations in S’ the statement holds
for some partition F” and 7”. If op = PUSH(Q, m) then after applying op the
statement holds for ' = F' U {m} and T'=T". If op = SAMPLE(Q) then we
consider two cases depending on F”. If |F’| = 0 then the after applying op
the statement holds for F' = F" and T' = T". Otherwise, we let F' = {m}UF,
and after applying op the statement holds with F' and T'=T"U m. O]

As a straightforward corollary we can show that if during an interval we
sample the value of a queue twice, then we have sampled all its values.

Corollary 1. Fiz a queue Q and a round interval [r,7’']. If by the end of
the interval the message at the front of () has been sampled previously in the
interval, then all messages in the queue QQ were sampled in the interval [r,r'].

Define an execution as stable for process u at a round r, if at and after
round 7 the incoming set at u is empty (i.e. starting at r the process at
u does not receive or generate any new messages). It is not hard to show
that if an execution is stable for process u at round r then CABCHAT has
a t-latency of 2. This follows from the fact that fact 1 guarantees that the
i** queue is sampled every 2! rounds, and Corollary 1 implies that no message
is sampled unnecessarily. Unfortunately, this is not the case for general (i.e.
non-stable) executions. To see why, consider an interval of the schedule of
length 2 where element ¢ is scheduled at the end of the interval (the fact
that such intervals exist also follows from fact 1). Assume process u starts
at round r with ¢ (or more) messages, each with different priority, where the
smallest ¢ messages have priority at most p. To satisfy a t-latency of f(t)
process u needs to send t messages of priority at most p by round r + f(t).
Let the algorithm run for 2= rounds without receiving or generating any
new messages. At the end of round 2!~! process u has sent ¢ — 1 messages
with priority p or less. Now at round 2° — 1 generate an incoming message
whose priority is such that it is inserted at position ¢ — 1, thereby displacing
the queue which was at position ¢ — 1 (and had already been sampled) to
position ¢. At round 2! the algorithm will sample the queue at position ¢ and
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instead of sending a new message, it will resend and old message. In fact,
it will take an addition 272 rounds (see Fact 2) to sample a new element,
which already shows that f(t) > 2f 4 272 = 22", This “bad” execution can
be extended inductively, by forcing resampling of old queues by inserting new
messages before each queue is sampled, see Figure 3.

1 2 3 e t—=1 ¢ 1 2 3 e t—=1 t t+1
(@[@][@] ~ Eaf | | [@ff@]es] - Qe e ]
(a) By the end of round 2!=! the ¢t — 1 (b) At round 2! — 1 a new queue displaces
highest priority messages have been sent the ¢t queue

Figure 4: Execution fragment which shows latency of is greater than 2¢.

The question remains of exactly how much incoming messages can hurt
the t-latency of our algorithm. In the rest of this section we answer this
question by showing that CABCHAT has a t-latency of at most %Qt. In other
words, the impact of instability in the queues is a factor of 1.5 in the ¢t-latency.
Before proving this we need some intermediate results.

Above we argued how to increase the t-latency of an execution by having
a queue with new messages () be displaced by an queue with old messages
Q' right before we sample (). The next lemma shows that if a queue @ is
scheduled to be sampled in the future, either () is sampled or some queue
with “better” messages is sampled “soon” instead.

Lemma 4.2. Fiz the rounds r and v’ where v’ > r and i = schedule(r"). Let
Q be the queue that occupies the i™ position at round r. Then either at round
r queue @Q is sampled, or a queue Q' of higher priority (i.e. p(Q') < p(Q))
which did not exist at round r, is sampled in the interval [r',r" + 2071,

Proof. We proceed by induction on .

Base case: If i = 1 then at round 7’ the first queue is sampled, and it
will contain either the same queue that existed at round r (queue @) or a
newly inserted queue with better priority.

Inductive step: If all queues which were inserted between round r and
round 7’ (possibly none) where inserted at some position j > 4, then the
statement trivially holds. Hence suppose a new queue )" was inserted at the
J™ position, where j < i (and hence p(Q') < p(Q)). Fact 2 implies there
exists some round r” where j = schedule(r”) and v’ < 7" <1/ + 272,
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Finally the inductive hypothesis implies queue @', or a newly inserted
queue, is sampled by round r” + 2971 < ¢/ 4 2072 < 42072 4 272 <
r 4207 m

Equipped with the previous lemma, we are now ready to bound the t-
latency of CABCHAT.

Theorem 4.3. For everyt € N, CABCHAT has a t-latency of %Qt.

Proof. Assume process u knows ¢ messages at round r, and the smallest ¢

messages have priority at most p. We proceed by induction on ¢.

Base case: If t = 0 then at round r process u has no messages and the
statement is vacuously true.

Inductive step: Assume by inductive hypothesis that by round r+ %Qt_l
process u has sent ¢t — 1 messages with priority at most p. After these t — 1
messages have been sent, let @Q); be the first queue such that p(Q;) < p and
there is an unsampled message at the front of queue );. We proceed by cases
depending on @);.

— If @; is undefined, then all queues with priority at most p have an element
at the front of the queue which has already been sampled by u. Corollary 1
implies that all messages with priority at most p have already been sent by
u, and since by assumption there are at least ¢ such messages the theorem
holds.

— If i > t then at least 1 — 1 > ¢ messages of priority at most p have already
been sent by u, and the theorem holds.

— If 4 < t then by round r+%2t_1+2i < r+%2t_1+2t_1 = r+§2t the queue at
position i will get sampled (by fact 1). Moreover, Lemma 4.2 guarantees
that either queue (); gets sampled at round r + 22"/ <r+ %Qt and the
theorem holds, or a queue with better priority (and which had not been
sampled before) will be sampled by time 7+ 22f + 271 < p 4 320 42072 =
r+ 32" and the theorem holds.

— If ¢ =t we argue that without loss of generality we can assume the fol-
lowing two claims to hold (we prove them afterwards).

Claim 1. The first t—1 queues contain exactly one message per queue, and

every queue after (); of priority at most p has only unsampled messages.

Claim 2. The t** queue is not sampled before the t — 1 messages are sent.

From these two claims, it follows that after the first ¢ — 1 messages are

sent, and at some round v’ < r+2 (by fact 1), the queue at the ¢** position

will be scheduled. Finally, Lemma 4.2 implies that either queue ); gets
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sampled at round 7’ or a queue with better priority (and which had not
been sampled before) will get sampled by 1’4271 < r42042071 = p 4321,
and the theorem follows.

O

Proof of Claim 1. First observe that by assumption the message at the front
of each of the first ¢ — 1 queues is already sampled, and Corollary 1 implies
that all the messages in these queues are sampled.

Therefore if a single of the first ¢ — 1 queues contained more than one
message, it would imply that ¢ messages of priority at at most p have already
been sent. Similarly, if a queue after (); contained a sample message of
priority at most p, then ¢ messages of priority at most p would have already
been sent. O]

Proof of Claim 2. If the queue at position t is sampled before the first ¢t — 1
messages are sent, there are two possibilities.

1) The t element of the list either has no queue or it has a queue of priority
greater than p. However, this implies that when the queue at position ¢ was
sampled the first t — 1 queues had at least ¢ messages of priority at most p.
Therefore there is at least one queue of priority at most p with at two or
more messages. But this would contradict Claim 1.

2) The t element of the list has a queue of priority at most p, let that be
queue Q. If Q = Q; then it contradicts that (); has no sampled elements. If
@ # Q; then it has moved to a position after ¢, but that would contradict
Claim 1 (i.e. there is a queue after (); with priority at most p and with a
sampled message). O

Notice that the t-latency result shown by Theorem 4.3 considers the worst
case where the ¢ messages of lowest priority value span ¢ distinct priorities.
However, one would expect that if the ¢ best messages span a small number
of priorities (say a constant), the time required to disseminate them should
be linear in the number of messages. This intuition is captured formally by
the next theorem.

Theorem 4.4. Fiz positive integers t, k, r and process u If at every round
in the interval [r,r + (t — k + 2)28*1] the t messages with smallest priority
value known by process u span at most k distinct priorities, then CABCHAT
has t-latency of (t — k + 2)28*L for process u at round r.
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Proof. Fix positive integers ¢, k, r and process u, and assume at every round
in the interval [r, r+ (¢t —k+2)25+1] the ¢ smallest messages known by process
u span at most k distinct priorities. We proceed by induction on k.

Base case: If k& = 0 then it must be that t = 0, and the t-latency
statement is vacuously true.

Inductive step: Let ¢’ < ¢ be the largest integer such that: 1. Node u
knows at least ¢’ messages of priority at most p at the beginning of round
r. 2. Throughout the interval [r,r + (# — k + 3)2*] the ¢ smallest messages
known by process u span at most k£ — 1 distinct priorities.

If # = t then by inductive hypothesis by round r + (t — k + 3)2F <
r+ (t — k + 2)2F process u sends at least t messages with priority at most
p, and the theorem holds. If ' < ¢, then by inductive hypothesis by round
" < r+ (t—k+3)2* process u sends ¢ messages with priority at most p. By
assumption, the remaining ¢t — ¢’ unsent messages will remain in the first k
queues of the list until round r + (¢ — k + 2)281. Moreover, from Lemma 4.1
all the unsent messages are always at the top of the queues.

Therefore, by Fact 1 after an additional (¢t — ¢/)2* rounds, the t — ¢
missing messages would have been sent. Also observe that ¢ > k — 1, and
hence t —t' <t —k+ 1. Therefore, by round v/ + (t —k+1)28 =r+ (t —k +
3)2F + (t — k + 1)28 = r + (t — k + 2)2%"! the missing messages have been
sent and the theorem holds. O]

When the number of priorities spanned by the ¢ best messages is less than
t—1 Theorem 4.4 gives tighter results than Theorem 4.3. For example, for the
important case where a process has t messages of the highest possible priority
(say, accident alerts), Theorem 4.4 guarantees CABCHAT will broadcast all
of them in only 4(¢ + 1) rounds.

Main Performance Theorems. We now state our main results, which bound
the number of messages, and their priority, disseminated along ¢-stable tran-
sient paths. Informally, if there exists an (-stable transient path from wu to
v, and / is large enough (say ¢ > %Qt), then, assuming that v has ¢t messages
of priority at most p, Theorem 4.3 can be applied inductively along the path
to show that v eventually receives ¢ messages of priority at most p. On the
other hand, if ¢ is not large enough, the largest number of messages that can
be successfully delivered to v is logarithmic in /. In more detail: log¢ — 1, is
the largest value of ¢ for which ¢ > %2'5, as required by Theorem 4.3. This is
captured by the following theorem statement:

23



Theorem 4.5. Suppose at round r there exists an (-stable transient path
from u to v of duration d. Fix positive integers t and p and assume that at
round r process u knows t messages with priority at most p. Then at least
min(log(¢) — 1,t) messages of priority at most p reach v by round r + d.

For the special case when the ¢ highest priority messages span only a
constant number of priorities, this result can be improved to Q(min(¢,t)) by
using Theorem 4.4 instead of Theorem 4.3. The intuition is similar to the
previous case: consider an /-stable transient path from w to v, where every
node in this path has its ¢t best messages (with priority at most p) span no
more than k distinct priorities. If £ is large enough (say £ > (t — k + 2)2~*1)
and u has t messages of priority at most p, then Theorem 4.4 can be applied
inductively along the path to show that v eventually receives ¢ messages of
priority at most p. On the other hand, if ¢ is not large enough, we can leverage
the assumption that & is constant to show that the number of messages of
priority at most p delivered to v is linear in /.

Theorem 4.6. Suppose at round r there exists an (-stable transient path
from u to v of duration d. Fix positive integers t and p and assume that at
round r process u knows t messages with priority at most p. Furthermore,
assume that throughout the interval [r,r + d] no process in the path has its t
smallest messages of priority at most p span more than k distinct priorities
for some constant k. Then at least Q(min(¢,t)) messages of priority at most
p reach v by round r + d.

It is possible to state a stronger version of Theorem 4.6 (at the expense
of a more longer theorem statement) that applies the restriction on priorities
at each hop only to the rounds where that hop is involved in the transient
path. We omit this extension for the sake of clarity.

5. Experimental Evaluation

In this section we perform a preliminary experimental evaluation of the
CABCHAT protocol. Our goal is not to exhaustively explore the protocol’s
performance, but to instead provide support for the idea that our theoretical
results will yield desirable results in real deployment.

Simulation Setup. The protocols were evaluated in the Ford Motor Com-
pany’s research and development lab, using their internal simulator (which
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is based on ns-2). The physical and MAC layer parameters were set to
simulate 802.11a with link bandwidth of 11Mbps. The propagation model
used is two-ray ground configured for a transmission range of roughly 200m.
These settings are slightly different than the ones which were used at MIT
to perform the connectivity analysis of Section 2.

Experiment Setup. The mobility traces for our simulation experiments were
derived from the same San Francisco cab position logs used in Section 2.
In more detail, we extracted 20 mobility traces, each 1100 seconds long and
containing 250 cabs. FEach experiment was repeated on the 20 mobility traces.
To evaluate prioritized gossip protocols, we used messages of three priorities
in our experiments namely priority 1 (highest priority), priority 2 and priority
3 (lowest priority). In each experiment, all 250 cars start with one message
of each priority. We examined different durations for the protocol round
length (i.e., time between broadcasts). We settled on a round duration of 10
seconds, which is long enough to minimize congestion, yet short enough to
still allow a significant amount of propagation.

We implemented three prioritized gossip protocols to compare in our sim-
ulations. The first was the CABCHAT protocol, which we implemented with
the following optimization: whenever the binary carry sequence returned a
value larger than the current number of queues, the protocol sampled the
highest priority queue. As a point of comparison, we also implemented the
round robin-variant of the protocol, which behaves like CABCHAT except
that it samples its queues in round robin order (e.g., instead of using the
binary carry sequence). We also implemented a single queue-variant that
disregards priorities, and keeps all messages in a single LIFO queue.

To evaluate the performance of these protocols, for each simulation, we
calculated the reach of each message m to be the number of cars that have
m in their message queues at the end of the simulation. We then examined
the distribution of reach values for each of the three different priorities in the
system, over all 20 simulations, for all three protocols.

Our goal was to show that CABCHAT spreads the highest priority mes-
sages farther than either the round robin or single queue protocols. This
behavior is the expected result of Theorem 4.6 of Section 2, which estab-
lishes that CABCHAT takes advantage of a constant fraction of the available
bandwidth when propagating high priority messages. At the same time,
however, we also want to show that the lower priorities are not neglected,
with their reach diminishing gracefully as the priority lowers. This behavior
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is the expected result of Theorem 4.5, which establishes that for messages
of lower priorities, throughput still increases along with available available
bandwidth, albeit at a rate that decreases along with priority.

5.1. Results

In this section, we present the results obtained from the simulation ex-
periments on real-life mobility traces as described earlier. The round length
used for these experiments was 10s. Figure 5 shows the distribution of the
reach value of messages when LIFO protocol is used for gossiping. In this
case, a single LIFO queue is used to store messages. This leads to cars broad-
casting the most recently received message during each round. The following
observations can be made from the results. First, 20% of the messages have
a reach value of zero. Second, the maximum number of cars that is reached
by a message is about 90 (about 36% of cars). A majority of messages reach
at most 40 cars (about 16%).

CDF

0 I I I I I
20 40 60 80 100 120

Reach (# of cars)

Figure 5: Reach metric for messages in LIFO protocol

The above experiment was repeated for round robin version of the protocol
and the reach distribution obtained is shown in Figure 6. The reach curves
of different priorities overlap with each other implying that round robin ef-
fectively treats all priorities alike. It can also be observed that the maximum
reach of any message is same as LIFO (about 90 cars or 36%). However,
the median reach value of messages is slightly higher compared with LIFO.
This difference can be attributed to the maintenance of a separate queue per
priority.
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Figure 6: Reach metric for messages in Round-Robin protocol

Figure 7 shows the reach of messages when CABCHAT is used for gos-
siping. Clearly, with CABCHAT higher priority messages have greater reach
compared to lower priority messages. The results also show that the fraction
of messages that have a reach value of zero decreases with increasing mes-
sage priority. It is also easy to observe that the reach of priority 1 messages
is higher with CABCHAT than round robin or LIFO. Thus, the results vali-
date that CABCHAT is able to allocate bandwidth to the priorities in such a
way that the higher priorities enjoy better reach without starving the lower
priority queues.
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0.6 [~ |
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20 40 60 80 100 120
Reach (# of cars)

Figure 7: Reach metric for messages in CABCHAT protocol

To gain insight into the underlying reasons for the observed behavior of
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Figure 8: Reach metric for messages in CABCHAT protocol

the protocols under investigation, we measured the percentage of duplicate
messages received by cars and studied their distribution across priorities.
Recall that when cars receive messages from their neighbors, they store mes-
sages that do not exist in their queues and discard the duplicates. We found
that for each of the protocols, around 73% of messages on average were
duplicates. Since LIFO does not distinguish between priorities, we plot the
priority-wise distribution of duplicates for round robin and CABCHAT in Fig-
ure 8 across the 20 runs with a confidence interval of 95%. The measured
values do not vary much across simulations, and in fact the error bars were
omitted since they were to small to be discernible. Round robin incurs ap-
proximately the same level of duplication for each of the priorities. However,
CABCHAT has significantly higher level (50%) of duplication for the highest
priority in comparison. Duplication gradually decreases with decreasing pri-
ority. This indicates that higher duplication (or frequent broadcast) of the
higher priority messages results in better reach values as seen in Figure 7.

6. Conclusions

In this paper, we advocate the use of real world mobility traces to identify
properties for the dynamic graph model. We validate this approach by iden-
tifying the f-stable transient path property from the study of real vehicular
traces. We then presented CABCHAT, a prioritized gossip algorithm with
strong performance guarantees in the dynamic graph model when the iden-
tified property holds. Finally, we validated our theoretical results through
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an experimental evaluation. Much interesting work remains in this vehicu-
lar model. For example, to study upper and lower bounds for the t-latency
metric for different restrictions on the priorities (in this work we consid-
ered only exponential priorities). Beyond the study of prioritized gossip,
other problems are interesting in this setting. For example, disseminating
information to a small number of highly connected processes (representing,
perhaps, vehicles with Internet access), or learning information about nearby
geographic locations. Beyond vehicular networks, our general approach to
connecting theory and practice is applicable to any mobile network setting
in which real mobility traces are available. As mobile computing becomes
more prevalent—e.g., with the growth in smart phone usage—such data sets
will become increasingly common.
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