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Abstract We consider the problem of computing a

maximal independent set (MIS) in an extremely harsh

broadcast model that relies only on carrier sensing. The

model consists of an anonymous broadcast network in

which nodes have no knowledge about the topology of

the network or even an upper bound on its size. Fur-

thermore, it is assumed that an adversary chooses at

which time slot each node wakes up. At each time slot

a node can either beep, that is, emit a signal, or be

silent. At a particular time slot, beeping nodes receive

no feedback, while silent nodes can only differentiate

between none of its neighbors beeping, or at least one

of its neighbors beeping.

We start by proving a lower bound that shows that

in this model, it is not possible to locally converge to

an MIS in sub-polynomial time. We then study four

different relaxations of the model which allow us to cir-

cumvent the lower bound and find an MIS in polyloga-

rithmic time. First, we show that if a polynomial upper

bound on the network size is known, it is possible to find

an MIS in O(log3 n) time. Second, if we assume sleep-
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ing nodes are awoken by neighboring beeps, then we can

also find an MIS in O(log3 n) time. Third, if in addition

to this wakeup assumption we allow sender-side colli-

sion detection, that is, beeping nodes can distinguish

whether at least one neighboring node is beeping con-

currently or not, we can find an MIS in O(log2 n) time.

Finally, if instead we endow nodes with synchronous

clocks, it is also possible to find an MIS in O(log2 n)

time.

Keywords Maximal Independent Set · Distributed ·
Beeps · Radio Networks · Asynchronous Wakeup

1 Introduction

An MIS is a maximal set of nodes in network such that

no two nodes in the set are neighbors. Since the set

is maximal every node in the network is either in the

MIS or has a neighbor in the MIS. The problem of dis-

tributively finding an MIS has been extensively studied

in various models [2, 5, 19, 11, 12, 10, 13, 16, 14, 23]

and has many applications in networking, and in par-

ticular in radio sensor networks. Some of the practical

applications include the construction of a backbone for

wireless networks, as a foundation for routing and for

clustering, and for generating spanning trees to reduce

communication costs [19, 23].

This paper studies the problem of finding an MIS in

the discrete beeping wireless network model introduced

in [6]. The network is modeled as an undirected graph

and time progresses in discrete and synchronous time

slots. In each time slot a node can either transmit a

“jamming” signal (called a beep) or detect whether at

least one of its neighbors beeps. We believe that such

a model is minimalistic enough to be implementable

in many real world scenarios. For example, it can eas-

ily be implemented using carrier sensing alone, where
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nodes only differentiate between silence and the pres-

ence of a signal on the wireless channel. Further, it has

been shown that such a minimal communication model

is strong enough to efficiently solve non-trivial tasks

[1, 6, 17, 22]. The model is interesting from a practical

point of view since carrier sensing typically uses less en-

ergy to communicate and reaches larger distances when

compared with sending regular messages.

While this model is clearly useful for computer net-

works, it is also useful to model biological processes. In

biological systems, cells communicate by secreting cer-

tain proteins that are sensed (“heard”) by neighboring

cells [5]. This is similar to a node in a radio network

transmitting a carrier signal which is sensed (“heard”)

by its neighbors. Such physical message passing allows

for an upper bound on message delay. Thus, for a com-

putational model based on these biological systems, we

can assume a set of synchronous and anonymous pro-

cesses communicating using beeps [6] in an arbitrary

topology. We have recently shown that a variant of MIS

is solved by a biological process, sensory organ precur-

sor (SOP) selection in flies, and that the fly’s solution

provides a novel algorithm for solving MIS [1]. Here

we extend algorithms for this model in several ways as

discussed below.

The paper has two parts. First we prove a lower

bound that shows that in a beeping model with adver-

sarial wake-up it is not possible to locally converge to

an MIS in sub-polynomial time. Next we present several

relaxations of this model under which polylogarithmic

MIS constructions are possible.

The lower bound shows that if nodes are not en-

dowed with any information about the underlying com-

munication graph, and their wake-up time is under the

control of the adversary, any (randomized) distributed

algorithm to find an MIS requires at least Ω(
√
n/ log n)

rounds. We remark that this lower bound holds much

more generally. We prove the lower bound for the sig-

nificantly more powerful radio network model with col-

lision detection and arbitrary message sizes. The lower

bound is therefore not an artifact of the amount of in-

formation which can be communicated in the beeping

model.

Following the lower bound, in the second part of the

paper four weaker models are considered and a poly-

logarithmic time algorithm for an MIS construction is

presented for each of these models. First, we present an

algorithm that uses a polynomial upper bound on the

size of the network, to compute an MIS in O(log3 n)

rounds with high probability. Our next two algorithms

assume that nodes are awakened by incoming beeps

(wake-on-beep). First, we present an O(log2 n) rounds

algorithm in the wake-on-beep model with sender col-

Table 1 Model restrictions and algorithmic running times

Section Assumptions Running Time

4 None (lower bound) Ω(
√
n/ logn)

5 Upper bound on n O(log3 n)
6 Wake-on-Beep + Sender

Collision Detection
O(log2 n)

7 Wake-on-Beep O(log3 n)
8 Synchronous Clocks O(log2 n)

lision detection. Next, we present a O(log3 n) time al-

gorithm that works without sender collision detection

in the same wake-on-beep model. Finally, we show that

even if nodes are only by an adversary (and not by in-

coming beeps) it is possible to use synchronous clocks

to compute an MIS in O(log2 n) time without any infor-

mation about the network. The results are summarized

in Table 1. We highlight that all the upper bounds pre-

sented in this paper compute a stable MIS eventually

and almost surely. That is, once an MIS is computed it

is stable and the probability that no MIS is computed

until time t is exponentially small in t. Thus only the

running times of our algorithms are randomized.

2 Related Work

The problem of finding an MIS has been recognized

and studied as a fundamental distributed computing

problem for a long time (e.g., [2, 3, 13, 18]). Perhaps

the single most influential MIS algorithm is the elegant

randomized algorithm of [2, 13], generally known as

Luby’s algorithm, which has a running time of O(log n).

This algorithm works in a standard message passing

model, where nodes can concurrently and reliably send

and receive messages over all point-to-point links to

their neighbors. Métivier et al. [14] showed how to im-

prove the bit complexity of Luby’s algorithm to use only

O(log n) bits per channel (O(1) bits per round). For

the case where the size of the largest independent set

in the 2-neighborhood of each node is restricted to be a

constant (known as bounded independence or growth-

bounded graphs), Schneider and Wattenhofer [21] pre-

sented an algorithm that computes an MIS in O(log∗ n)

rounds. This class of graphs includes unit disk graphs

and other geometric graphs that have been studied in

the context of wireless networks.

While several methods were suggested for comput-

ing an MIS in a distributed setting, most previous al-

gorithms are designed for a classical message passing

model without message interference and collisions and

they are based on the assumption that nodes know

something about the local or global topology of the net-

work. The first effort to design a distributed MIS algo-

rithm for a wireless communication model in which the

number of neighbors is not known is by Moscibroda and



Beeping a Maximal Independent Set 3

Wattenhofer [15]. They provide an algorithm for the

radio network model with a O(log9 n/ log log n) run-

ning time. This was later improved [16] to O(log2 n).

Both algorithms assume that the underlying graph is

a unit disk graph (the algorithms also work for some-

what more general class of geometric graphs). In ad-

dition, while the algorithms solve the MIS problem in

multi-hop networks with adversarial wake up, they as-

sume that an upper bound on the number of nodes in

the network is known. In addition to the upper bound

assumption their model allows for (and their algorithm

uses) messages whose size is a function of the number

of nodes in the network.

The use of carrier sensing and collision detection

in wireless networks has been studied in [4, 9, 22]. As

shown in [22], collision detection can be powerful and

can be used to improve the complexity of algorithms for

various basic problems. Scheideler et al. [20] show how

to approximate a minimum dominating set in a physical

interference (SINR) model where in addition to sending

messages, nodes can perform carrier sensing. In [8], it is

demonstrated how to use carrier sensing as an elegant

and efficient way for coordination in practice.

The present paper is not the first one that uses car-

rier sensing alone for distributed wireless network al-

gorithms. A similar model to the beeping model con-

sidered here was first studied in [7, 17]. As used here,

the model has been introduced in [6], where it is shown

how to efficiently obtain a variant of graph coloring that

can be used to schedule non-overlapping message trans-

missions. In [1] a variant of the beeping model, there

called the fly model, was considered. The fly model

makes three additional assumptions: that all the pro-

cesses wake up at the same round, that a bound on

the network size is known to the processes, and that

senders can detect collisions. That is, processes can

listen on the medium while broadcasting (as in some

radio and local area networks). Apart from [1], the

most closely related work to this paper are results from

[22]. In [22], it is shown that in growth-bounded graphs

(a.k.a. bounded independence graphs) an MIS can be

computed in O(log n) time using only carrier sensing.

Specifically, they assume nodes have receiver-side colli-

sion detection, they know the polynomial growth func-

tion of the graph, they known an upper bound on the

size of the network and they have unique identifiers.

The present paper studies the MIS problem in general

graphs under the beeping model.

3 Model

Following [6], we consider a synchronous communica-

tion network modeled by an arbitrary graph G = (V,E)

where the vertices V represent processes and the edges

represent pairs of processes that can hear each other.

We denote the set of neighbors of node u in G by

NG(u) = {v | {u, v} ∈ E}. For a node u ∈ V we use

dG(u) = |NG(u)| to denote its degree (number of neigh-

bors) and we use dmax = maxu∈V dG(u) to denote the

maximum degree of G.

Initially all processes are asleep, and a process starts

participating in the round after it is woken up by an

adversary. We denote by Gt ⊆ G the subgraph induced

by the processes which are participating in round t.

Instead of communicating by exchanging messages,

we consider a more primitive communication model that

relies entirely on carrier sensing. Specifically, in every

round a participating process can choose to either beep

or listen. If a process v listens in round t it can only

distinguish between silence (i.e., no process u ∈ NGt
(v)

beeps in round t) or the presence of one or more beeps

(i.e., there exists at least one process u ∈ NGt(v) that

beeps in round t). Observe that a beep conveys less in-

formation than a conventional 1-bit message, for which

it is possible to distinguish between no message, a mes-

sage with a one, and a message with a zero.

Given an undirected graph H, a set of vertices I ⊆
V (H) is an independent set of H if every edge e ∈
E(H) has at most one endpoint in I. An independent

set I ⊆ V (H) is a maximal independent set of H, if for

all v ∈ V (H) \ I the set I ∪ {v} is not independent.

An event is said to occur with high probability, if it

occurs with probability at least 1−n−c for any constant

c ≥ 1, where n = |V | is the number of nodes in the

underlying communication graph. For a positive integer

k ∈ N we use [k] as short hand notation for {1, . . . , k}.
In a slight abuse of this notation we use [0] to denote

the empty set ∅ and for a, b ∈ N and a < b we use [a, b]

to denote the set {a, . . . , b}.
During the execution of an algorithm each node may

go through several different states. Of particular inter-

est are the inactive-state and the MIS-state, which are

present in all the algorithms described in this paper. A

node is defined as stable if it is in the MIS-state and

all its neighbors are in the inactive-state, or if it has a

stable neighbor in the MIS-state. Observe that by def-

inition, if all nodes are stable then all nodes are either

in the MIS-state or in the inactive-state. In all our al-

gorithms, once a node becomes stable it remains stable

thereafter, and moreover eventually all nodes become

stable with probability one. We will prove that the algo-

rithms we propose guarantee that with high probability

nodes becomes stable quickly and the nodes which are

in the MIS-state describe a maximal independent set.

Specifically we say that a (randomized) distributed

algorithm the MIS problem in T rounds if, when no

additional nodes are woken up for T rounds, the nodes
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which are in the MIS-state describe a stable MIS (with

high probability). Furthermore, we require that even-

tually the nodes which are in the MIS-state describe a

stable MIS with probability one. Additionally, we say

an algorithm locally converges to an MIS in T rounds,

if any node (with high probability) irrevocably decides

T rounds (regardless of wakeups) whether to be in the

MIS-state or not.

4 Lower Bound for Uniform Algorithms

In this section we show that without any additional

power or a priori information about the network, e.g.,

an upper bound on its size or maximum degree, any ran-

domized distributed algorithm that locally converges to

an MIS needs at least polynomial time.

We stress that this lower bound is not an artifact of

the beeping model, but a limitation that stems from

having message transmission with collisions and the

fact that nodes are required to decide (but not nec-

essarily terminate) without waiting until all nodes have

woken up (i.e., locally converge). Although we prove

the lower bound for the problem of finding an MIS,

the bound can be generalized to other problems (e.g.,

minimal dominating set, coloring, etc.).

Specifically, we prove the lower bound for the much

stronger communication model of local message broad-

cast with collision detection. In this model a process

can choose in every round either to listen or to broad-

cast a message (no restrictions are made on the size of

the message). When listening a process receives silence

if no message is broadcast by its neighbors, it receives

a collision if a message is broadcast by two or more

neighbors, and it receives a message if it is broadcast by

exactly one of its neighbors. The beep communication

model can be easily simulated by this model (instead

of beeping send a 1 bit message, and when listening

translate a collision or the reception of a message to

hearing a beep) and hence the lower bound applies to

the beeping model.

At its core, our lower bound argument relies on the

observation that a node can learn essentially no infor-

mation about the graph G if after waking up, it always

hears collisions or silence. It thus has to decide whether

it remains silent or beeps within a constant number of

rounds. More formally:

Proposition 4.1 Let A be an algorithm run by all nodes,

and consider a fixed pattern H ∈ {silent, collision}∗. If

after waking up a node u hears H(r) whenever it lis-

tens in round r, then there are two constants ` ≥ 1 and

p ∈ (0, 1] that depend on only A and H such that either

a) u remains listening indefinitely, or b) u listens for

`− 1 rounds and broadcasts in round ` with probability

p.

Proof. We fix a node u and let p(r) be the probability

with which node u beeps in round r. Observe that p(r)

can only depend on r, what node u heard up to round r,

that is, H[1 . . . r] and its random coin flips. Therefore,

given any algorithm, either p(r) = 0 for all r (and node

u remains silent forever), or p(r) > 0 for some r, in

which case we let p = p(r) and ` = r. ut

We now prove the main result of this section:

Theorem 4.1 If nodes have no a priori information

about the graph G then any distributed algorithm in the

local message broadcast model with collision detection

that locally converges to an MIS requires with constant

probability at least Ω(
√
n/ log n) rounds.

Proof. We fix any algorithm A and use Proposition 4.1

to split the analysis into three cases. In all cases we

show that there is a family of graphs on which, with

probability 1− o(1), algorithm A does not locally con-

verge to an MIS if it is run for o(
√
n/ log n) rounds.

We first ask what happens with nodes running algo-

rithmA that hear only silence after waking up. Proposi-

tion 4.1 implies that either nodes remain silent forever,

or there are constants ` and p such that nodes broad-

cast after ` rounds with probability p. In the first case,

suppose nodes are in a clique, and observe that no node

will ever broadcast anything. In this case nodes cannot

learn anything about the underlying graph and in par-

ticular cannot break symmetry between them. Thus,

either no node joins the MIS, or all nodes join the MIS

independently with constant probability, in which case

their success probability is exponentially small in n.

We can thus apply Proposition 4.1 and assume for

the rest of the argument that nodes runningA that hear

only silence after waking up broadcast after ` rounds

with probability p. Now we consider what happens with

nodes running A that hear only collisions after waking

up. Again, by Proposition 4.1 we know that either they

remain silent forever, or there are constants m and p′

such that nodes broadcast after m rounds with proba-

bility p′. In the rest of the proof we describe a different

execution for each of these cases.

CASE 1: (a node that hears only collisions re-

mains silent forever)

We consider a network topology consisting of several

interconnected node-disjoint cliques. For some k � ` to

be fixed later, we take a set of k−1 cliques C1, . . . , Ck−1
and a set of k cliques U1, . . . , Uk, where each clique

Ci has Θ(k log n/p) vertices, and each clique Uj has

Θ(log n) vertices. We consider a partition of each clique

Ci into k sub-cliques Ci(1), . . . , Ci(k) where each sub-

clique has Θ(log n/p) vertices. For simplicity we say two
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C1(1) C1(2) . . . C1(k) C2(1) C2(2) . . . C2(k) . . . Ck−1(1) Ck−1(2) . . . Ck−1(k)

U1 U2 . . . . . . Uk

C1 C2 Ck−1

wake @t = 1, beep @t = ` + 1 wake @t = 2, beep @t = ` + 2 wake @t = k − 1, beep @t = ` + k − 1

Ui
wake @t = ` and

listens beeps for k rounds

Fig. 1 Execution for Case 1

cliques are connected if they form a complete bipartite

graph.

For every j ∈ [k] clique Uj is connected to sub-clique

Ci(j) for each i ∈ [k − 1]. We consider the execution

where in round i ∈ [k − 1] clique Ci wakes up, and in

round ` the cliques U1, . . . , Uk wake up simultaneously.

Hence, when clique Uj wakes up, it is connected to sub-

clique Ci(j) for each i < `. Similarly for i ≥ `, when

clique Ci wakes up, for all j ∈ [k], sub-clique Ci(j) is

connected to clique Uj .

Because the first nodes wake up in round 1, no node

participates in round 1. During the rounds 2, . . . , `, only

the nodes in C-cliques are participating and they all

remain silent and hear silence. In round ` + 1 every

node in C1 broadcasts with probability p. Thus with

high probability for all j ∈ [k] at least two nodes in sub-

clique C1(j) broadcast in round `. This guarantees that

all the nodes in the U -cliques hear a collision during the

first round they are awake, and hence they also listen for

the second round. In turn, this implies that the nodes

in C2 hear silence during the first ` − 1 rounds they

participate, and again for j ∈ [k], with high probability,

there are at least two nodes in C2(j) that broadcast in

round `+ 2.

We can extend this argument inductively to show

that, with high probability. For each i ∈ [k − 1] and

for every j ∈ [k] at least two nodes in sub-clique Ci(j)

broadcast in round `+ i. Therefore, with high probabil-

ity, all nodes in cliques U1, . . . , Uk hear collisions during

the first k − 1 rounds after waking up.

Observe that at most one node in each Ci clique can

join the MIS, that is, only one of the sub-cliques of Ci
has a node in the MIS. Since there are more U -cliques

than there are C-cliques the pigeon hole principle im-

plies that there exists at least one clique Uj that is

connected to only non-MIS nodes. However, since the

nodes in Uj are connected in a clique, exactly one node

of Uj must decide to join the MIS. Note that all nodes

in Uj have the same state during the first k− 1 rounds.

Therefore, if nodes decide after participating for at most

k− 1 rounds, with constant probability, either no node

in Uj joins the MIS, or more than two nodes join the

MIS.

Finally since the number of nodes n is Θ(k2 log n+

k log n), we can let k ∈ Θ(
√
n/ log n) and the claim

follows.

C1 C2 C3 . . . Cm−1

U1 U2 U3 . . . Uk

Ci
wake @t = i

beep @t = ` + i

Uj
wake @t = ` + j

beep @t = `+m+ j− 1

to Uj for

j ∈ [k − q, k − 1]

Fig. 2 Execution for Case 2

CASE 2: (after hearing only collisions, a node

beeps with probability p′ after m rounds)

For some k � m to be fixed later let q =
⌊
k
4

⌋
and

consider a set of k cliques U1, . . . , Uk and a set of m−1

cliques C1, . . . , Cm−1, where each clique Ui is of size

Θ(log n/p′), and each clique Ci is of size Θ(log n/p). As

before, we say two cliques are connected if they form a

complete bipartite graph.

If j > 1 then Uj is connected to every Ui for i ∈
{max(1, j − q), . . . , j − 1} and if j < m then Uj is con-

nected to every clique Ch for h ∈ {j, . . . ,m}. We con-

sider the execution where in round i ∈ [m − 1] clique

Ci wakes up, and in round ` + j for j ∈ [k] clique Uj
wakes up.

During the rounds 2, . . . , `− 1, the nodes in C1 are

participating without hearing anything else, and hence

every node in C1 broadcasts in round `+ 1 with prob-

ability p. Therefore, with high probability, at least two

nodes in C1 broadcast in round `+ 1. This guarantees

the nodes in U1 hear a collision after waking up at round

`+ 1, and therefore they listen in round `+ 2. In turn

this implies the nodes in C2 will also hear silence during

the first `− 1 rounds they participate, and hence, with

high probability, at least two nodes in C2 broadcast in

round `+ 2.

As before, we can extend this execution inductively

to show that for i ∈ [m−1] the nodes in Ci hear silence

for the first ` − 1 rounds they participate, and, with
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high probability, at least two nodes in Ci broadcast in

round `+ i. Moreover, for j ∈ [k] the nodes in Uj hear

collisions for the first m − 1 rounds they participate,

and hence with high probability there are at least two

nodes in Uj who broadcast in round `+m+ j−1. This

implies that with high probability for j ∈ [k − q] the

nodes in Uj hear collisions for the first q rounds they

participate.

We show that if nodes choose whether or not to

join the MIS q rounds after participating, then they fail

with high probability. In particular consider the nodes

in clique Uj for j ∈ {q, . . . , k − 2q}. These nodes will

hear collisions for the first q rounds they participate,

and they are connected only to other nodes which also

hear collisions for the first q rounds they participate.

Therefore, if nodes decide after participating for at most

q rounds, with constant probability either a node and

all its neighbors will not be in the MIS, or two or more

neighboring nodes join the MIS.

Finally since we have n ∈ Θ(m log n+k log n) nodes,

we can let k ∈ Θ(n/ log n) and hence q ∈ Θ(n/ log n)

and the theorem follows. ut

4.1 Termination Lower Bound

In this section we provide a basic observation about

symmetry breaking in beep networks. We conclude that

no MIS algorithm for this model can safely terminate

at any time. This justifies why all our algorithms guar-

antee safety by running indefinitely.

We note that for the same reasons as before, the

results in this subsection hold even for local message

broadcast with collision detection. Moreover they hold

under the assumptions that nodes wake up at the same

time and know the size of the network. This includes

the knowledge of an upper bound on the size of the

network assumed in Section 5, the wake-on-beep model

in Section 7 and the assumption of synchronized clocks

in Section 8. It applies thus to all our algorithms, except

the one in Section 6.

Lemma 4.1 It is impossible for a node to distinguish

at time t with probability more then 1− 2−t+1 between

an execution in which it is in isolation and an execution

in which it has exactly one neighbor.

Proof. Initially nodes start in identical states and the

probability of distinguishing between being isolated (1-

node graph) or having one neighbor (2-node graph)

is at most 1/2. In each round the symmetry between

two neighboring nodes is broken only if one node beeps

while the other node listens. Since the nodes are as-

sumed to be in identical states they both have the same

probability p to beep. Therefore the probability that

symmetry is broken for the first time in any particular

round is maxp 2(1 − p)p ≤ 1/2. Hence the probability

that after t rounds the nodes remain in identical states

is at least 2−t. Finally this implies that the probability

that after t rounds a node cannot distinguish between

an execution in which it is isolated and an execution

where it has exactly one neighbor is at most 1− 2−t+1.

ut

Lemma 4.2 An algorithm that solves the MIS prob-

lem cannot terminate with a correct solution in every

execution.

Proof. In a 1-node graph a node must join the MIS

while in a connected 2-node graph exactly one node

must join the MIS and the other must not. Therefore, a

node cannot terminate if it cannot distinguish between

these two cases. Finally, by Lemma 4.1 at any time t

there is a non-zero probability for any algorithm to not

being able to distinguish between these two cases. ut

Lemma 4.3 There are graphs where the expected time

for any algorithm to converge to a stable MIS is at least
logn
e .

Proof. Consider a graph of n/2 disjoint pairs of neigh-

boring nodes. A MIS algorithm can only terminate if

it has broken the symmetry in each component where

breaking the symmetry is independent between compo-

nents. By Lemma 4.1 for any t the probability for this to

happen is at most (1−2−t)n/2. Using Markov’s inequal-

ity the expected time until all pairs break symmetry is

at least k(1−2−k)n/2 for any k. Setting k = log n shows

that the expected time to compute an MIS is at least

log n(1− 1
n )n/2 and for n ≥ 2 this implies the expected

time to compute an MIS is at least log n/e. ut

All our algorithms will always (eventually) converge

to a stable MIS, and with high probability they con-

verge to an MIS in polylogarithmic time. Lemma 4.2

and Lemma 4.3 imply that both properties are best

possible. A Las Vegas algorithm is one which always

produces the correct output but whose running time is

probabilistic. Conversely, a Monte Carlo algorithm is

one whose running time is deterministic but only pro-

duces the correct output with high probability. As we

pointed out, all the algorithms presented in this paper

are Las Vegas. However by assuming an upper bound

on n it is possible to turn any of these algorithms into

a Monte Carlo algorithm. Specifically, it suffices to add

an early-stopping criteria (using the upper bound on

n) once the output is correct with high probability. An-

other alternative to convert these Las Vegas algorithms

to Monte Carlo is to endow nodes with unique identi-

fiers. Specifically, using these identifiers it is possible to

augment the algorithms to detect the case where two
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neighboring nodes are in the MIS state with certainty

in asymptotically the same round complexity as the bit

length of the identifiers. Yet another alternative to cir-

cumvent Lemma 4.1 is to assume sender-side collision

detection, an assumption which we consider detail in

Section 6. This allows two nodes to detect in a single

round whether they are beeping alone, or if there is

another neighbor beeping. Our algorithm in Section 6

leverages this assumption to terminate after O(log2 n)

rounds.

5 Using an Upper Bound on n

In this section we give an example demonstrating that

knowing a priori information about the network can

drastically change the complexity of the problem. More

precisely we show that by giving all nodes a (crude)

upper bound N > n on the total number of nodes par-

ticipating in the system, it is possible to circumvent the

polynomial lower bound for Section 4 and design an

algorithm that locally converges to an MIS in polylog

time. It is not required that all nodes are given the same

upper bound. We will describe an algorithm that guar-

antees that O(log2N log n) rounds after a node wakes

up, it knows whether it belongs to the MIS or if it has

a neighbor in the MIS. This implies that if the known

upper bound is polynomial in n its possible to design an

algorithm that locally converges to an MIS in O(log3 n)

rounds.

Algorithm.

If at any point during the execution a node hears a beep

while listening it restarts the algorithm. When a node

wakes up (or it restarts), it stays in an inactive state

where it listens for c log2N consecutive rounds. After

this inactivity period, nodes enter a competing state

where rounds are grouped into logN phases of c logN

consecutive rounds. Observe that due to the adversarial

wake up and the restarts, the phases of different nodes

may not be synchronized. In each round of phase i, a

node beeps with probability 2i/8N , and otherwise it

listens. Therefore by phase logN a node beeps with

constant probability in every round. After successfully

going through the logN competing phases (recall that

when a beep is heard during any phase, the algorithm

restarts) a node assumes it has joined the MIS and goes

into an infinite loop where it beeps half of the time to

claim its MIS status while listening the rest of the time

to detect if a neighboring node is also in the MIS.

Theorem 5.1 If N is an upper bound on n known to

the nodes, Algorithm 1 locally converges to an MIS in

O(log2N log n) rounds.

We remark that Algorithm 1 is very robust. It is not

hard to show that it is self-stabilizing, that is, nodes

Algorithm 1 Upper bound on the size of the network.
1: Restart here whenever receiving a beep.
2: for c log2N rounds do listen . Inactive
3: for i ∈ {1, . . . , logN} do . Competing
4: for c logN rounds do

5: with probability 2i/(8N) beep, otherwise listen

6: forever at each round
7: with probability 1

2
beep then listen

8: else listen then beep . MIS

can be initialized in any state and with any setting

of internal variables without affecting the guarantees.

It also works as-is under adversarial crashes, that is,

if we give the adversary the power to crash any set

of nodes in every round. However, in the presence of

crashes, no algorithm can locally converge to an MIS,

since an inactive node with a single neighboring MIS

node cannot always immediately join the MIS when its

MIS neighbor crashes. Nevertheless, Algorithm 1 com-

putes an MIS in O(log2N log n) rounds. We also refer

to the discussion in Section 4.1 which shows that with-

out additional assumptions this Las Vegas algorithm

can be turned into a Monte Carlo algorithm that with

high probability gives a correct answer and always ter-

minates in O(log3N) steps.

Safety.

We first prove the safety property of Algorithm 1 in the

following lemma:

Lemma 5.1 Two neighboring nodes do not join the

MIS with high probability. Moreover, in the low prob-

ability event that two neighboring nodes join the MIS,

then almost surely eventually one of them becomes in-

active.

Proof. Observe that a node must go through an interval

of at least c logN rounds in which it is both listening

and beeping with constant probability in every round.

If a node is competing while another node is in the

MIS or if two nodes are competing for the MIS in their

last phase both nodes need to choose the same action

(beep or listen) for c logN rounds in order for both

nodes to be in the MIS state simultaneously. Therefore,

for a sufficiently large constant c this event will not

happen with high probability. On the other hand, even

if two neighboring nodes join the MIS, the probability

that they both remain in the MIS after k rounds is

exponentially small in k, so it follows that eventually

almost surely one of the nodes will leave the MIS. ut

We note that by construction nodes which are in

the MIS beep at least every three rounds. Hence, if a

node is in the MIS and all its neighbors are inactive, it

follows that the MIS node and its neighbors will remain

stable indefinitely (or until a neighbor crashes).
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Termination.

Given Lemma 5.1 it remains to show the following lemma

to finish the proof of Theorem 5.1:

Lemma 5.2 With high probability after O(log2N log n)

rounds a node is either in the MIS or has a neighbor in

the MIS.

We prove this in three steps. First we show that for

any node, the sum of the beep probabilities of its neigh-

bors cannot increase “quickly” after c logN rounds. We

then use this to to show that when a node u is com-

peting, then with constant probability the sum of the

beep probabilities of the neighbors of u are less than

a constant. Finally, we show that a node u hears a

beep or produces a beep every O(log2N) rounds. Ev-

ery time this happens there is a constant probability

that either a neighbor of u joins the MIS or that u joins

the MIS. Therefore, with high probability the algorithm

produces an MIS after O(log2N log n) rounds.

First we introduce some additional definitions. We

use bu(t) to denote the beep probability of node u in

round t. The beep potential of a set of nodes S ⊆ V

in round t is defined as the sum of the beep probabili-

ties of nodes in S in round t, and denoted by ES(t) =∑
u∈S bu(t). Of particular interest is the beep potential

of the neighborhood of a node, we will use Ev(t) as a

shorthand notation for EN(v)(t).

The next lemma shows that if the beep potential of

a particular set of nodes is larger than a (sufficiently

large) constant in a particular round, then it was larger

than a constant in the preceeding c logN rounds. Infor-

mally, this is true because the beep probability of every

node increases slowly.

Lemma 5.3 Fix a set S ⊆ V . If ES(t) ≥ λ in round

t, then ES(t′) ≥ 1
2λ−

1
8 for all t′ ∈ [t− c logN, t].

Proof. First we define a partition of the nodes in S. Let

P ⊆ S be the nodes in S that are in phase 1 at round

t, let Q be the set of nodes which are in phase i > 1 at

round t, and let R be the remaining nodes (i.e., the ones

which are not competing). By definition the nodes in R

do not contribute to the beep potential of the nodes in

S, we have:

ES(t) =
∑
u∈P

bu(t)︸ ︷︷ ︸
EP (t)

+
∑
u∈Q

bu(t)︸ ︷︷ ︸
EQ(t)

Fix t′ to be any round in the range [t − c logN, t].

Since nodes in P are in phase 1 in round t, in round

t′ they are either in the inactive state or in phase 1.

Thus for u ∈ P we have bu(t′) ≤ bu(t) = 1/(4N), and

since there are at most |P | ≤ |S| ≤ N nodes, we have

EP (t′) ≤ EP (t) = (N/4)N = 1/4.

Similarly nodes in Q are in phase i > 1 in round

t and in phase i or i − 1 ≥ 1 in round t′. Thus for

u ∈ Q we have bu(t′) ≥ 1
2bu(t) and hence EQ(t′) ≥

1
2EQ(t) = 1

2 (ES(t) − EP (t)) ≥ 1
2λ −

1
8 . Finally since

ES(t′) ≥ EQ(t′), we get ES(t′) ≥ 1
2λ−

1
8 . ut

Using the previous lemma, we show that with high

probability nodes that are competing have neighbor-

hoods with a “low” beep potential. Informally this is

because if a node had a neighborhood with a “high”

beep potential, the previous result implies it would have

had a high beep potential during the previous c logN

rounds, and therefore with high probability it would

have been kicked out of the competition in a previous

round.

Lemma 5.4 With high probability, if node v is com-

peting in round t then Ev(t) <
1
2 .

Proof. Fix a node v and a time t, we will show that

if Ev(t) ≥ 1
2 then with high probability node v is not

competing at time t.

Let Lv(τ) be the event that node v listens in round

τ and there is a neighbor u ∈ N(v) that beeps in round

τ . First we estimate the probability of the event Lv(τ).

Pr [Lv(τ)] = (1− bv(τ)) ·

1−
∏

u∈N(v)

(1− bu(τ))


≥ (1− bv(τ)) ·

1− exp

− ∑
u∈N(v)

bu(τ)


= (1− bv(τ)) ·

(
1− e−Ev(τ)

)
.

From Lemma 5.3 we have that if Ev(t) ≥ 1
2 then

Ev(τ) ≥ 1
8 for τ ∈ [t− c logN, t], together with the fact

that bv(τ) ≤ 1
2 this implies that

Pr [Lv(τ)] ≥ 1

2

(
1− e−1/8

)
> 0.058

for τ ∈ [t− c logN, t].

Let Cv(t) be the event that node v is competing

in round t. Observe that if Lv(τ) occurs for τ ∈ [t −
c logN, t] then node v stops competing for at least c logN

rounds and hence Cv(t) cannot occur. Therefore, the

probability that node v does not beep in round t is at

least:
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Pr [¬Cv(t)] ≥ Pr [∃τ ∈ [t− c logN, t] s.t. Lv(τ) occurs]

≥ 1−
t∏

τ=t−c logN

(1− Pr [Lv(τ)])

≥ 1− exp

− t∑
τ=t−c logN

Pr [Lv(τ)]

 .

Finally since for τ ∈ [t − c logN, t], it holds that

Pr [Lv(τ)] > 0.058, then for a sufficiently large c we

have that node v is not competing in round t with high

probability. ut

Next, we show that if a node hears a beep or pro-

duces a beep in a round when its neighborhood (and its

neighbor’s neighborhoods) has a “low” beep potential,

then with constant probability either it joins the MIS,

or one of its neighbors joins the MIS. In the following

lemma we say a node beeps alone at time t, if that node

beeped at time t and all of its neighbors listened at time

t.

Lemma 5.5 Assume that node v beeps or hears a beep

in round t and that Eu(t) ≤ 1
2 for every u ∈ N(v)∪{v}.

Then with probability at least 1
e either v beeps alone, or

one of its neighbors beeps alone in round t.

Proof. For simplicity we rename the set N(v) ∪ {v} to

the set {1, . . . , k} where k = |N(v)|+ 1. For i ∈ [k] we

consider three events.

Ai : Node i beeps in round t.

Bi : Node i beeps alone in round t.

S :
⋃
i∈[k]

Bi

Our aim is to show that the event S happens with con-

stant probability. Fix i ∈ [k], as a first step we show

that Pr [Bi|Ai] is constant.

Pr [Bi|Ai] = Pr

 ⋃
w∈N(i)

Aw

 = Pr

 ⋂
w∈N(i)

Aw


=

∏
w∈N(i)

(1− bw(t))

≥ exp

−2
∑

w∈N(i)

bw(t)

 = e−2Ei(t)

Moreover, since by assumption Ei(t) ≤ 1
2 , it follows

that Pr [Bi|Ai] ≥ 1
e .

We define the following finite partition of the prob-

ability space:

ξ1 = A1,

ξ2 = A2 ∩ ¬A1,

ξ3 = A3 ∩ ¬A2 ∩ ¬A1,

. . .

ξk = Ak ∩
k−1⋂
i=1

¬Ai.

Recall that by assumption our probability space is con-

ditioned on the event that “node v beeps or hears a beep

in round t”, or in other words ∃i ∈ [k] such that Ai has

occurred. Moreover, observe that
⋃k
i=1 ξi =

⋃k
i=1Ai,

and thus Pr
[⋃k

i=1 ξi

]
= 1.

Since the events ξ1, . . . , ξk are pairwise disjoint, by

the law of total probability we have:

Pr [S] =

k∑
i=1

Pr [S|ξi] Pr [ξi]

Finally since Pr [S|ξi] ≥ Pr [Bi|ξi] ≥ Pr [Bi|Ai] ≥ 1
e

then Pr [S] ≥ 1
e

∑k
i=1 Pr [ξi] = 1

e . ut

The three previous lemmas give us the ingredients

necessary to prove Lemma 5.2 and thus complete the

proof of Theorem 5.1:

Proof of Lemma 5.2 We say a node has an event in

round t, if it beeps or hears a beep in round t. First

we claim that a node has an event every O(log2N)

rounds. Consider a node that does not hear a beep

within O(log2N) rounds (if it does hear a beep, the

claim clearly holds). Then after O(log2N) it will join

the MIS and beep and the claim follows.

From Lemma 5.4 we know that when a node decides

to beep, with high probability the beep potential of its

neighborhood is less than 1
2 . We can use a union bound

to say that when a node hears a beep, with high proba-

bility the beep was produced by a node with a beep po-

tential less than 1
2 . Therefore, we can apply Lemma 5.5

to say that with constant probability every time a node

has an event, either the node joins the MIS (if it was

not in the MIS already) or it becomes covered by an

MIS node.

Hence, with high probability after O(log n) events, a

node is either part of the MIS or it becomes covered by

an MIS node. Since there is an event every O(log2N)

rounds, this implies that with high probability a node

is either inside the MIS or has a neighbor in the MIS

after O(log2N log n) rounds. ut

This completes the proof for Theorem 5.1.
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Algorithm 2 Wake-on-beep and sender-side collision

detection
1: upon waking up (by adversary or beep)
2: do beep to wake up neighbors
3: wait for 1 round; x← 0 . while neighbors wake up
4: repeat

5: x← x+ 1 . 2x is current size estimate
6: for i ∈ {0, . . . , x} do . log 2x phases
7: ** exchange 1 ** with 3 rounds

8: listen for 1 round; v ← 0 . round 1
9: w/probability 1/2i, beep and set v ← 1 . round 2

10: listen for 1 round . round 3
11: if received beep in exchange 1 then v ← 0
12: ** exchange 2 ** with 3 rounds

13: listen for 1 round . round 1
14: if v = 1 then beep and join MIS . round 2
15: listen for 1 round . round 3
16: until in MIS or received beep in exchange 2
17: terminate

6 Wake-on-Beep and Sender-Side
Collision Detection

This section considers a different relaxation of the beep-

ing model. Specifically, while still allowing the adver-

sary to wake up nodes arbitrarily, in this and the next

section we assume that sleeping nodes also wake up

upon receiving a beep. We call this the wake-on-beep

assumption. Moreover, in this section we also assume

that when a node beeps, it receives some feedback from

which it can infer if it beeped alone, or if one of its

neighbors beeped concurrently. We call this sender-side

collision detection. We will show that in the wake-on-

beep model with sender-side collision detection it is pos-

sible to locally converge to an MIS in O(log2 n) time,

even if nodes have no knowledge about the network

topology, including its size.

This algorithm is an improvement of the algorithm

presented in [1], which used an upper bound on the

size of the network. In this algorithm nodes go through

several iterations in which they gradually decrease the

probability of being selected. The running time of the

algorithm is still O(log2 n) as we show below. Compared

to the algorithm in [1], in addition to eliminating the

dependence on any topological information, the current

algorithm tolerates adversarial wake ups if we assume

wake-on-beep.

Algorithm.

The algorithm proceeds in phases each consisting of x

steps where x is the total number of phases performed

so far (the phase counter). Step i of each phase consists

of two exchanges. In the first exchange nodes beep with

probability pi (the value of pi is given by the algorithm),

and in the second exchange a node that beeped in the

first exchange and did not hear a beep from any of its

neighbors, beeps again, signaling its neighbors it has

joined the MIS and they should become inactive and

exit the algorithm.

Nodes that are woken up by the adversary propa-

gate a wave of wake-up beeps throughout the network.

Upon hearing the first beep, which must be the wake

up beep, a node broadcasts the wake up beep in the

next round, and then waits one round to ensure none

of its neighbors are still asleep. This ensures that all

neighbors of a node wake up either in the same round

as that node or one round before or after that node.

Due to these possible differences in wakeup time, we

divide each exchange into 3 rounds. During the second

round of the first exchange each active node beeps with

probability pi (the value of pi is given in the algorithm).

The second exchange also takes three rounds. A node

that beeps in the first exchange joins the MIS if none of

its neighbors beeped in any of the three rounds of the

first exchange. Such a node again beeps in the second

round of the second exchange signaling its neighbors to

terminate the algorithm. The algorithm is detailed in

Algorithm 2.

Safety.

While the algorithm in [1] uses a different set of coin

flip probabilities, it relies on a similar two exchanges

structure to guarantee the safety properties of the al-

gorithm. In [1], each exchange is only one round (since

synchronous wakeup is assumed). We thus need to show

that replacing each one round exchange with a three

round exchange does not affect the MIS safety prop-

erties of [1]. We start by proving that the termination

lemma from [1], which relies on the fact that all neigh-

bors are using the same probability distribution in each

exchange, still holds.

Lemma 6.1 All messages received by node j in the

first exchange of step i were sent by processes using the

same probability as j in that step.

Proof. Let k be a neighbor of j. If k started in the same

round as j (both woke up at the same round) then they

are fully synchronized and we are done. If k started be-

fore j then the first message k sent has awakened j.

Thus, they are only one round apart in terms of ex-

ecution. Any message sent by k in the second round

of the first exchange of step i would be received by j

in the first round of that exchange. Similarly, if k was

awakened after j it must have been a 1 round difference

and j would receive k’s message of the first exchange of

step i (if k decided to beep) in the third round of that

exchange. Thus, all messages received by j are from

processes that are also in step i and so all processes

from which j receives messages in that exchange are

using the same probability distribution. ut
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A similar argument would show that all messages

received in the second exchange of step i are from pro-

cesses that are in the second exchange of that step.

Since our safety proof [1] only relies on the coherence

of the exchange it still holds for this algorithm.

Termination.

After establishing the safety guarantees, we next prove

that with high probability all nodes terminate the algo-

rithm in O(log2 n) time where n is the number of nodes

that participate in the algorithm. Let dv be the number

of active neighbors of node v. We start with the follow-

ing definition of [2]. A node v is good if it has at least

dv/3 active neighbors u, such that, du ≤ dv. An edge is

good if at least one of its endpoints is a good node.

Lemma 6.2 (Lemma 4.4 from [2]) In every graph G

at least half of the edges are good. Thus,
∑
v∈good dv ≥

|E|/2.

Note that we need less than O(log2 n) steps to reach

x ≥ log n, since each phase x ≤ log n has less than log n

steps. When x ≥ log n, the first log n steps in each phase

are using the probabilities: 1, 1/2, 1/4, ..., 2/n, 1/n. Be-

low we show that from round x = log n, we need at

most O(log n) more phases to guarantee that all pro-

cesses terminate with high probability. We say an edge

is deleted if one of its endpoints joins the MIS.

Lemma 6.3 In a phase (with more than log n steps) in

expectation a constant fraction of the edges are deleted.

Proof. Fix a phase j, and fix a good node v. We claim

that the expected number of edges incident to v that are

deleted in phase j is Ω(dv). To prove the claim assume

that at the beginning of phase j, 2k ≤ dv ≤ 2k+1 for

some 0 < k < log n. If when we reach step i = k in

phase j at least dv/20 edges incident to v were already

removed we are done. Otherwise, at step i there are

still at least dv/3 − dv/20 > dv/4 ≥ 2k−2 neighbors u

of v with du ≤ dv. Let A be the event that node v or

a neighbor u with du < dv beeps. Node v and all its

neighbors u are flipping coins with probability 1
2k

at

this step and thus the probability of A occurring is:

Pr(A) ≥ 1−
(

1− 1

2k

)2k−2

≥ 1− e−1/4.

On the other hand, all such nodes u, and v, have less

than 2k+1 neighbors. Thus, the probability that a node

from this set that beeps does not collide with any other

node is:

Pr(no collisions) ≥ (1− 1

2k
)2

k+1

≥ 1/e4.

Thus, in phase j a node v has probability of at least (1−
1

e1/4
) 1
e4 ≥

1
28 to be removed. Thus, the probability that

v is removed in phase j is Ω(1) and hence the expected

number of edges incident with v removed during this

phase is Ω(dv), which completes our claim.

Combining the previous claim with Lemma 6.2, then

we can use linearity of expectation to show that the

expected number of edges deleted in each phase is at

least Ω(
∑
v∈good dv) = Ω(|E|). ut

With this lemma in place, we are ready to prove the

main theorem of this section.

Theorem 6.1 Using sender-side collision detection and

wake-on-beep, Algorithm 2 locally converges to an MIS

in O(log2 n) rounds.

Proof. Note that since the number of edges removed in

a phase in a graph (V,E) is clearly always at most |E|,
the last lemma implies that for any given history, with

probability at least Ω(1), the number of edges removed

in a phase is at least a constant fraction of the number

of edges that have not been deleted yet. Therefore there

are two positive constants p and c, so that the probabil-

ity that in a phase at least a fraction c of the number of

remaining edges are deleted is at least p. Call a phase

successful if at least a fraction c of the remaining edges

are deleted during the phase.

By the above reasoning, the probability of having

at least z successful phases among m phases is at least

the probability that a binomial random variable with

parameters m and p is at least z. By the standard es-

timates for binomial distributions, and by the obvious

fact that O(log |E|/c) = O(log n), starting from x =

log n we need an additional O(log n) phases to finish

the algorithm. Since each of these additional O(log n)

phases consists of O(log n) steps, and since as discussed

above until x = log n we have less than O(log2 n) steps,

the total running time of the algorithm is O(log2 n). ut

7 Wake-on-Beep Without Sender-Side
Collision Detection

In the previous section we assumed that nodes are en-

dowed with sender-side collision detection and can thus

tell whether one of their neighbors beeped even in rounds

in which they beep. In this section we remove this as-

sumption and present an algorithm for the wake-on-

beep model that locally converges to an MIS without

using sender-side collision detection.

Algorithm.

To extend Algorithm 2 to a model with no collision de-

tection we increase the number of exchanges in each

step from 2 to cx where c is a constant derived below

and x is the same as in Algorithm 2 and represents

the current estimate of the network size. Each series of
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Algorithm 3 Wake-on-beep without sender-side colli-

sion detection
1: upon waking up (by adversary or beep)
2: do beep to wake up neighbors
3: wait for 1 round; . while neighbors wake up
4: x← 0; v ← 0; z ← 0
5: repeat forever
6: x← x+ 1
7: for i ∈ {0, . . . , x} do

8: if v = 0 ∧ z = 0 then v ← 1 w/probability 1/2i

9: X ← random 0/1-vector of length cx

10: z ← 0
11: ** cx competition exchanges **

12: for k ∈ {1, . . . , cx} do

13: listen for 1 round
14: if beep received then v ← 0; z ← 1
15: if v = 0 ∨X[k] = 0 then

16: listen for 1 round;
17: if beep received then v ← 0; z ← 1
18: else

19: beep for 1 round

20: listen for 1 round
21: if beep received then v ← 0

cx rounds simulates with high probability an exchange

with sender-side collision detection. Prior to starting

the exchanges in each step each active process flips a

coin with the same probability as in Algorithm 2. If

the flip outcome is 0 (tails) the process only listens in

the next cx exchanges (for a constant c discussed be-

low). If the flip outcome is 1 the process sets v = 1 and

picks each entry in the vector X of length cx to be 1

or 0 independently and uniformly at random. Follow-

ing this, the process picks one entry in the vector X

independently and uniformly at random and sets it to

1 (this is only to guarantee that at least one entry in X

is equal to one). In exchange j of every phase, a process

beeps if X(j) = 1 and listens if X(j) = 0. If at any of

the exchanges it listens and hears a beep it sets v = 0

and stops beeping (even in the selected exchanges). If

a node hears a beep during these exchanges it does not

exit the algorithm. Instead, it denotes the fact that one

of its neighbors beeped and sets itself to be inactive.

If it does not hear a beep in any of the exchanges of

the following phase it becomes active and continues as

described above. Similarly, a node that beeped and did

not hear any beep in a specific step (indicating that it

can join the MIS) continues to beep indefinitely (by se-

lecting half the exchanges in all future steps to beep in

them).

We say a process u is in conflict with a neighbor v

if both have v = 1. We say a process u is in conflict if

it is in conflict with respect to any of its neighbors.

The main difference between this algorithm and Al-

gorithm 2 is the addition of a set of competition ex-

changes at the end of each coin flip. The number of

competition exchanges is proportional to the current

phase counter (which serves as the current estimate of

the network size). Initially the competition rounds are

short and so they would not necessarily remove all con-

flicts. We require that nodes that attempt to join con-

tinue to participate in all future competition rounds

(when v = 1). Processes that detect a MIS member

as a neighbor set z to 1 and do not beep until they

go through one complete set of competition exchanges

in which they do not hear any beep. If and when this

happens they set z = 0 and become potential MIS can-

didates again.

While not all conflicts will be resolved at the early

phases, when x ≥ log n each set of competition ex-

changes is very likely to remove all conflicts. We prove

below that once we arrive at such x values, all conflicts

are resolved with very high probability such that only

one process in a set of conflicting processes remains

with v = 1 at the end of these competition exchanges.

From there, it takes another O(log n) phases to select

all members of the MIS as we have shown for Algorithm

1. Since each such phase takes O(log n) steps with each

step taking O(log n) rounds for the competition, the

total running time of the algorithm is O(log3 n).

Lemma 7.1 Assume process y is in conflict at step i

of phase x ≥ log n. The probability that y remains in

conflict at the end of the cx competition exchanges for

step i is at most 1
nc/3 .

Proof. If at any of the exchanges in this step all neigh-

bors of y have v = 0 we are done. Otherwise in each

exchange, with probability at least 1/4, y decided not

to beep whereas one of its conflicting neighbors decided

to beep. Thus, the probability that y remains in con-

flict in a specific exchange is at most 3/4. Since there

are (c log n) exchanges in this step, the probability that

y is in conflict at the end of these exchanges is at most

( 3
4 )c logn ≤ 1

nc/3 . ut

Note that if two nodes remain in conflict after an

exchange, they continue to beep in the following phase.

As we proved in the previous section, if all conflicts are

resolved in the O(log n) phases that follow the phase

x = log n the algorithm will result in a MIS set with

very high probability. Since we only need O(log2 n) < n

steps for this, and we have n nodes, the probability

that there exists a step and a node in phase x ≥ log n

such that a node that conflicted during this step with

a neighbor does not resolve this conflict in that step

is smaller than 1
nc/3−2 . Thus, with probability at least

1− 1
nc/3−2 all conflicts are resolved and the MIS safety

condition holds.

We note that the fact that the vector X always con-

tains at least one 1 guarantees that once an MIS is com-
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puted it remains stable forever. We also remark that in

contrast to the algorithm in Section 6, it is not possible

for the algorithm in this section to terminate safely at

any point of time (see Section 4.1 for details). This dis-

cussion completes the main proof of our main theorem

for this section:

Theorem 7.1 In the wake-on-beep model, Algorithm 3

locally converges to an MIS in O(log3 n) rounds.

8 Synchronized Clocks

For this section the only assumption we make on top of

the beeping model is that that nodes have synchronized

clocks, that is, know the current round number t.

The idea of the algorithm is to simulate Luby’s per-

mutation algorithm [13]. In Luby’s permutation algo-

rithm a node picks a randomO(log n)-size priority which

it shares with its neighbors. A node then joins the MIS

if it has the highest priority among its neighbors, and

all neighbors of an MIS node become inactive. Despite

the fact that we describe the algorithm for the message

passing model, it is straightforward to adapt the prior-

ity comparisons to the beeping model. For this, a node

sends its priority bit by bit, starting with the highest-

order bit and using a beep for a 1. The only further

modification is that a node stops sending its priority

as soon as it hears a beep on a higher order bit during

which it remained silent because it had a zero in the cor-

responding bit. Using this simple procedure, a node can

easily realize when a neighboring node has a higher pri-

ority. Furthermore, nodes which do not hear any beep

correspond to the nodes which have the highest-priority

in its neighborhood (strictly speaking, this correspon-

dence is not exact, since the algorithm described allows

even more nodes to join the MIS that one step of Luby,

but without violating any safety guarantees).

Therefore, as long as nodes have a synchronous start

and know n (or an upper bound on n) it is straightfor-

ward to get Luby’s permutation algorithm working in

the beeping model in O(log2 n) rounds.

In the rest of this section we show how to remove

the need for an upper bound on n and a synchronous

start. We leverage synchronized clocks to synchronize

the exchanges of priorities amongst neighboring nodes.

Our algorithm keeps an estimate k for the required

priority-size O(log n). Whenever two nodes tie for the

highest priority the algorithm concludes that k is not

large enough and doubles its estimate. The algorithm

uses a Restart-Bit to ensure that nodes locally work

with the same estimate k and run in a synchronized

manner in which priority comparisons start at the same

time (namely every t ≡ 0 (mod k)). It is not obvious

that either a similar k or a synchronized priority com-

parison is necessary but it turns out that algorithms

without them can stall for a long time. In the first case

this is because nodes with a too small k repeatedly en-

ter the MIS state simultaneously, while in the second

case many asynchronously competing nodes (even with

the same, large enough k) keep eliminating each other

without one becoming dominant and transitioning into

the MIS state.

Algorithm:

Nodes have three different internal states: inactive, com-

peting, and MIS. Each node has an estimate k on the

priority-size that is monotone increasing during the ex-

ecution of the algorithm. Initially all nodes are in the

inactive state with k = 6.

Nodes communicate in beep-triplets, and synchro-

nize by starting a triplet only when t ≡ 0 (mod 3).

The first bit of the triplet is the Restart-Bit. A beep

is sent in the Restart-Bit if and only if t 6≡ 0 (mod k),

otherwise a node listens in the Restart-Bit. If a node

hears a beep in its Restart-Bit it doubles its estimate

for k and it becomes inactive. The second bit sent in

the triplet is the MIS-Bit. A beep is sent for the MIS-

Bit if and only if a node is in the MIS state. If a node

hears a beep on the MIS-bit it becomes inactive. The

last bit sent in the triplet is the Competing-Bit. If in-

active, a node listens in the Competing-Bit. If a node

is competing it sends a beep with probability 1/2 in

the Competing-Bit. If a node is in the MIS state and it

listened in the previous Competing-Bit then it beeps in

the current Competing-Bit. On the other hand if node

in the MIS state beeped in the previous Competing-Bit,

then it flips a coin to decide weather to beep or listen

in the current Competing-Bit. This ensures a node in

the MIS state beeps every 2 round. If a node hears a

beep on the Competing-Bit it becomes inactive, and if

the node was in the MIS-state it also doubles its es-

timate for k. Lastly, a node transitions from inactive

to competing (or from competing to MIS) between any

time t and t+ 1 for t ≡ 0 (mod k). The pseudo code is

described in more detail in Algorithm 4.

Analysis:

The main result of this section is the following theorem.

Theorem 8.1 If nodes have synchronous clocks then

Algorithm 4 solves the MIS problem in O(log2 n) rounds.

First, we show that with high probability k cannot

become super-logarithmic.

Lemma 8.1 With high probability k ∈ O(log n) for all

nodes during the execution of the algorithm.

Proof. We start by showing that two neighboring nodes

in the MIS state must have the same estimate k and
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Algorithm 4 Synchronous Clocks.
1: Initially state← inactive, next← random 0/1
2: if t ≡ 0 mod 3 then . Restart-Bit
3: if t 6≡ 0 mod k then beep
4: else listen
5: if heard beep then state← inactive, k ← 2 · k
6: else advance state
7: (inactive→ competing or competing →MIS)

8: if t ≡ 1 mod 3 then . MIS-Bit
9: if state = MIS then beep

10: else listen
11: if heard beep then state← inactive

12: if t ≡ 2 mod 3 then . Competing-Bit
13: if state = inactve then
14: listen
15: else if state = competing then

16: with probability 1/2 beep, otherwise listen
17: if heard beep then state← inactive

18: else if state = MIS then

19: if v = 1 then beep, next← random 0/1
20: else listen, next← 1
21: if heard beep then state← inactive, k ← 2 · k

must have transitioned to the MIS state at the same

time. We prove both parts of this statement by contra-

diction.

First, suppose by contradiction that two neighbor-

ing nodes u and v are in the MIS state but u transi-

tioned to this state (the last time) before v. In this case

v would have received the MIS-bit from u and become

inactive instead of joining the MIS – a contradiction.

Similarly, for sake of contradiction, now assume that

the neighboring nodes u and v are in the MIS state and

ku < kv. In this case, during the active phase of u before

it transitioned to the MIS at time t it would have hear

a beep in its Restart-Bit (produced by v) and would

have switched to the inactive state, which contradicts

that u is in the MIS state.

We now use this to show that for a specific node u

it is unlikely to become the first node with a too large

k. For this we note that ku is doubled because of a

Restart-Bit only if a beep from a node with a larger k

is received. This node can therefore not be responsible

for u becoming the first node getting a too large k. The

second way k can increase is if a node transitions out

of the MIS state because it receives a Competing-Bit

from a neighbor v. In this case, we know that u com-

peted against at least one such neighbor for k/6 phases

without loosing in any of these phases. The probabil-

ity that this happens is 2−k/6. Hence, if k ∈ Θ(log n),

then with high probability it does not happen. A union

bound over all nodes and the polynomial number of

rounds in which nodes are not yet stable finishes the

proof. ut

Lemma 8.2 If during an execution the O(log n) neigh-

borhood of node u has not changed for Ω(log2 n) rounds

then node u is stable with high probability, i.e., u is ei-

ther in the MIS state with all its neighbors being in-

active or it has at least one neighbor in the MIS state

whose neighbors are all inactive.

Proof. First observe that if the whole graph has the

same value of k and no two neighboring nodes transition

to the MIS state at the same time, then our algorithm

behaves exactly as Luby’s original permutation algo-

rithm, and therefore terminates after O(k log n) rounds

with high probability. From a standard locality argu-

ment, it follows that a node u also becomes stable if

the above assumptions only hold for a O(k log n) neigh-

borhood around u. Moreover, since Luby’s algorithm

performs only O(log n) rounds in the message passing

model, we can improve our locality argument to show

that in if a O(log n) neighborhood around u is well-

behaved, then u behaves as in Luby’s algorithm.

Since the values for k are monotone increasing and

propagate between two neighboring nodes u and v with

different k (i.e., ku > kv) in at most 2ku steps, it fol-

lows that for a node u it takes at most O(ku log n)

rounds until either ku increases or all nodes v in the

O(log n) neighborhood of u have kv = ku = k for at

least O(k log n) rounds. We can furthermore assume

that these O(k log n) rounds are collision free (i.e, no

two neighboring nodes go into the MIS), since any colli-

sion leads with high probability within O(log n) rounds

to an increased k value for one of the nodes.

For any value of k, within O(k log n) rounds a node

thus either performs Luby’s algorithm for O(log n) pri-

ority exchanges, or it increases its k. Since k increases

in powers of two and, according to Lemma 8.1, with

high probability it does not exceed O(log n), after at

most
∑O(log logn)
i 2i · 3 · O(log n) ∈ O(log2 n) rounds

the status labeling around a O(log n) neighborhood of

u is a proper MIS. This means that u is stable at some

point, and the MIS-bit guarantees that no competing

neighbor of u will join the MIS and therefore stability

is preserved for the rest of the execution. ut

We remark that as the algorithm of Section 5, this

algorithm is also robust enough to work as-is with an

adversary capable of crashing nodes (with the same

caveats on the guarantees mentioned in Section 5).
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