
Aggregation in Dynamic Networks

Alejandro Cornejo
MIT CSAIL

acornejo@csail.mit.edu

Seth Gilbert
National University of Singapore
seth.gilbert@comp.nus.edu.sg

Calvin Newport
Georgetown University

cnewport@cs.georgetown.edu

Abstract

The aggregation problem assumes that every process starts an execution with a unique token
(an abstraction for data). The goal is to collect these tokens at a minimum number of processes
by the end of the execution. This problem is particularly relevant to mobile networks where
peer-to-peer communication is cheap (e.g., using 802.11 or Bluetooth), but uploading data to a
central server can be costly (e.g., using 3G/4G). With this in mind, we study this problem in a
dynamic network model, in which the communication graph can change arbitrarily from round
to round.

We start by exploring global bounds. First we prove a negative result that shows that in
general dynamic graphs no algorithm can achieve any measure of competitiveness against the
optimal offline algorithm. Guided by this impossibility result, we focus our attention to dynamic
graphs where every node interacts, at some point in the execution, with at least a p-fraction of the
total number of nodes in the graph. We call these graphs p-clusters. We describe a distributed
algorithm that in p-clusters aggregates the tokens to O(log n) processes with high probability.

We then turn our attention to local bounds. Specifically we ask whether its possible to
aggregate to O(log n) processes in parts of the graph that locally form a p-cluster. Here we prove
a negative result: this is only possible if the local p-clusters are sufficiently isolated from the rest
of the graph. We then match this result with an algorithm that achieves the desired aggregation
given (close to) the minimal required p-cluster isolation. Together, these results imply a “paradox
of connectivity”: in some graphs, increasing connectivity can lead to inherently worse aggregation
performance.

We conclude by considering what it seems to be a promising performance metric to circumvent
our lower bounds for local aggregation algorithms. However, perhaps surprisingly, we show that
no aggregation algorithm can perform well with respect to this metric, even in very well connected
and very well isolated clusters.

1 Introduction

In the aggregation problem every process starts the execution with a piece of information which is
abstractly represented as a unique token. At the end of the execution every token must be uploaded
to a central server. During the execution processes use peer-to-peer communication to consolidate the
tokens at a minimum number of processes. The performance of an aggregation algorithm is described
by the number of processes with tokens to upload at the end of the execution (the fewer the tokens
the better the performance). This problem is motivated by the following observation: in many
networks, local links between processes are far cheaper (in terms of expense, required infrastructure,
and energy) than the long distance links needed to communicate with a central server. By using local
links to aggregate tokens at a small number of processes, we reduce the total number of expensive
long distance links required at the end of the execution to upload all the tokens.1

One setting in which this problem is particularly relevant is mobile networks. To give a con-
crete example, consider a traffic reporting system, such as CarTel [HBZ+06], which uses drivers’
smartphones to upload traffic observations to a central traffic server. With major cellphone carriers
such as AT&T eliminating their unlimited data plans, uploading these observations might deplete
users’ limited minutes. In addition, cellular links drain device batteries (a 3G link, for example, can
use orders of magnitude more battery power than a local 802.11 or Bluetooth link [TRB+11]). A
good aggregation algorithm in this setting could leverage free, low-energy local links (i.e., 802.11 or
Bluetooth) to reduce the usage of expensive, high-energy long distance links (i.e., 3G).

Problem Setup. Aggregation is a problem of deep interest to practitioners. In this paper, however,
we show that it also produces a set of interesting problems for theoreticians to tackle. We study
both upper and lower bounds for randomized solutions to the aggregation problem in a synchronous
dynamic network model. We model the communication topology as a dynamic graph where the
edge set can change arbitrarily from round to round. We adopt this model for two reasons. First, it
matches the unpredictable topology observed in real mobile networks, a setting where the aggregation
problem is particularly relevant. Second, dynamic graphs generalize a diversity of different topology
assumptions and results in this model, therefore, are widely applicable (c.f., the discussion in [KO11]).

Global Results. We start by showing a negative result which proves that no aggregation algorithm
is competitive with the optimal offline algorithm in every dynamic graph (with respect to the number
of processes required to upload all the tokens). Specifically, we show there are dynamic graphs
where the optimal offline algorithm can aggregate to a single process, but with high probability any
randomized algorithm will aggregate to Ω(n) processes, where n is the network size. Chastened
by this impossibility result, we redirect our ambition to identifying natural structures that enable
aggregation algorithms to perform well and which arise in real-world dynamic graphs. This search
leads us to the notion of a p-cluster (where p ∈ (0, 1]). We say a dynamic graph is a p-cluster if by
the end of the execution every node has interacted with at least p-fraction of all nodes. We highlight
that we do not restrict when these connections occur or in what order. In particular we do not
assume these connections are random, which would imply a graph with expander-like properties and
would simplify significantly the task of aggregation. In contrast, we model these connections as being
picked by an adaptive online adversary. We describe a randomized algorithm ClusterAggregatep

1Implicit in this cost analysis is the assumption that, in practice, it consumes less bandwidth/energy to upload
a collection of x tokens from a single source than to have x distinct sources each upload one token. There are
many different rationales for this assumption. For example, each long distance connection induces a fixed overhead
independent of the size of the packet data payload. This comes from both the handshaking required to connect with
the central server, and the fixed size of the packet header. In addition, the data represented by abstract tokens in our
model is often, in reality, either compressible or summarizable (e.g., the server only needs an average, max, or min over
the values). This also leads to great bandwidth/energy reductions when we can collect the values at a small number
of sources before uploading.

1

that with high probability aggregates all tokens to O(log n) processes when executing on a p-cluster.

Local Results. In the second part of this paper, we turn our attention to proving performance
guarantees that depend not on the “global” structure of the dynamic graph but on its “local”
structure. For example, consider a dynamic graph that is not itself a p-cluster, but that includes
many subsets of nodes that locally form p-clusters. We would like our aggregation algorithms to
discover these hidden structures and locally aggregate well.

Consider, for example, a hypothetical aggregation algorithm which ensures that, for every subset
of nodes that form a 1-cluster (i.e., clique) in the dynamic graph, there is at most one process
that uploads tokens at the end of the execution (i.e., at most one “uploader”). Such an algorithm
(which is, in fact, easy to obtain) would guarantee the following property: given a dynamic graph
G, where η is the size of the minimum clique cover of G: for every execution of the algorithm, the
number of uploaders is at most η. Such results having the interesting property that they leverage the
existence of hidden structure, even while finding such structure may be NP-complete (as is finding
the minimum clique cover).

Here, we focus on leveraging the existence of local p-clusters in the graph. We first prove that
the ability to aggregate well in a local p-cluster depends on the isolation of this cluster with respect
to the rest of the graph. In more detail, a subset of nodes is a (p, r)-cluster if: (a) the nodes form
a p-cluster amongst themselves; and (b) a node in the cluster has at most r neighbors outside the
cluster. We prove that for any aggregation algorithm that guarantees at most k uploaders in each
(p, r)-cluster, r must be O(k2): in other words, more aggregation requires more isolation. Notice
that this result has interesting echoes of classical complexity theory, where good polynomial-time
approximations of the largest clique problem require sufficient isolation of the cliques in the graph.

On the positive side, we then extend our analysis of ClusterAggregatep showing that it
guarantees, with high probability, to aggregate all the data in every (p,O(log n))-cluster to O(log n)
nodes in that cluster. By the previous lower bound result, this performance is within a log factor
of the optimal, both in terms of the amount of isolation required and on the total number of
broadcasters.

Together, these results imply a “paradox of connectivity”: in some graphs, increasing connectivity
can lead to inherently worse aggregation performance. Intuitively we would expect the performance
of aggregation protocols to improve as the networks become more connected, allowing more sharing
of information. What we show, though, is that when clusters are relatively isolated, we can achieve
good performance, limiting the number of uploaders in each cluster. By contrast, as connectivity
increases, the performance worsens and it is impossible to achieve the same bounds on the number
of uploaders per cluster.

To conclude we turn our attention to an alternative local performance metric. The metric used
up to this point counts the number of processes in a cluster that upload. The alternative metric,
by contrast, counts the number of processes that upload a token on behalf of a process in a cluster.
Though the metric seems like a promising alternative to circumvent our previous lower bounds, we
prove, perhaps surprisingly, that it is impossible to satisfy. In more detail, we show no aggregation
algorithm can guarantee to perform well with respect to this metric, even if we require it to only
work in very isolated and very well connected clusters (i.e., (1, 1)-clusters).

Related Work. Dynamic networks have received a lot of attention in recent years. Though many
different dynamic network models have been proposed (see [KO11] for a good overview), the variant
most relevant to our work was introduced in [KLO10], where the authors studied gossip in the context
of a communication topology that could change arbitrarily from round to round. In subsequent work,
prioritized gossip [CN10], consensus [KMO11], and random linear network coding [Hae10] were also
studied in the same model. In [KLO10, KMO11, Hae10] the network was assumed to be connected
at every round: such a constraint is similar to our global p-clusters property. Our study of local

2

p-clusters, by contrast, has some echoes of the study of prioritized gossip in [CN10], which also
sidestepped global constraints and proved guarantees relative to local connectivity properties.

Our model differs from the existing models in [KLO10, CN10, KMO11, Hae10], however, in
one crucial respect. These previous studies assume broadcast communication: in each round, each
process can broadcast a message which is received by its arbitrary neighbor set. In this paper,
by contrast, we assume unicast communication: in each round, each process is arbitrarily paired
with at most one of other process with which it can interact. Such unicast communication has
been previously studied, among other dynamic settings, in the context of gossip–e.g., [CHS10]—
and population protocols (see, [AR07]). In the former, the choice of pair is typically random, not
arbitrary, while in the latter, the protocols are assumed to have limited memory.

Finally, there exists a sizable corpus of work on aggregation in networks, much of it centered
on the collection, combination, and uploading of data (or functions on the data, such as average
value) in resource-constrained sensor networks; c.f., [MFHH02, IEGH02, KEW02]. The topic has
proven applicable in other settings as well, such as gathering information from components in a
telecommunications system [PPC99].

2 Model

We consider a synchronous network with unpredictable connectivity topology. Namely, we model
communication using a dynamic graph D = (V, E), where V is a static set of nodes, and E :
{1, ..., t} → 2V×V is a function mapping each round number r ∈ {1, ..., t} to a set of undirected
edges E(r) that captures the connectivity in that round. The parameter t ≥ 1 is the duration of the
dynamic graph. Different dynamic graphs can have different durations.2 We constrain these graphs
to behave as interaction graphs: in each round r, each process u is included in at most one edge in
E(r), and there are no self-edges. Thus, for each round r, the static graph (V, E(r)) is a matching.
For each round r ∈ {1, ..., t} in the execution, the edge set E(r) defines which pairs of processes
interact by sending each other their state and performing some local computations.

To simplify definitions and notation, we assume V is fixed and known for all dynamic graphs.
This allows us to define an algorithm A as a collection of |V | randomized processes, one for each
u ∈ V . It follows that processes have unique ids (as they can agree on a mapping from V to an id
space) and know n = |V |.
Aggregation Problem. At the beginning of every execution α, each process u is passed a unique
token α.σ[u]. Similarly, at the end of any execution α each process u produces an output (potentially
empty) α.γ[u]. We call α.σ the input assignment of α, and α.γ the output assignment of α.

An aggregation algorithm, must ensure that every token in the input assignment is subsequently
output exactly once in the output assignment. In other words, tokens are neither lost nor duplicated.
Formally:

Definition 1 (Aggregation Algorithm). An algorithm A is an aggregation algorithm if and only
if at the end of every execution α of A we have: • No Loss:

⋃
u∈V α.γ[u] =

⋃
u∈V α.σ[u]. • No

Duplication: ∀u, v ∈ V, u 6= v : α.γ[u] ∩ α.γ[v] = ∅.

Uploaders. A natural metric for the performance of an aggregation algorithm is the total number
of processes that end up broadcasting at least one token at the end of the execution. In the rest of

2 In this paper we study algorithms that run for a fixed duration and then terminate. This follows because in practice
aggregation is something that occurs over a fixed interval, as in “take a sensor reading, aggregate for t seconds, upload
the data, then start over with a new reading.” By giving durations to dynamic graphs, when we later say that an
algorithm must work with all dynamic graphs, it follows automatically that must work for all durations.

3

the paper we call any such process an uploader. The smaller the number of uploaders, the better
the performance of an aggregation algorithm. Formally, given an execution α, the set of uploaders
is the set of nodes which upload at the end of the execution {u | u ∈ V ∧ α.γ[u] 6= ∅}.
Token Ownership. We can leverage the conditions of Definition 1 to prove that every aggregation
algorithm must satisfy a property we call token ownership. In the paragraph below we define this
property informally. This should be sufficient for understanding the lower bound proofs that follow.
The formal definitions and proofs appear in the appendix.

At the end of every execution prefix of an aggregation algorithm, each process u owns a set of
tokens Tu such that the following two properties are true: (1) if we extend this execution prefix
such that process u interacts with no other processes for the remainder of the execution, then with
probability 1 it will output Tu at the end of this extension; and (2) for every token x ∈ Tu, either u
received x as its input, or there is some other process v that received x as its input and there is a
sequence of interactions in the prefix that starts with v and ends with u.

In other words, at the end of every round, every process has to commit to a set of tokens that
it will definitely output if it finishes the execution in isolation. Furthermore, these tokens have to
be tokens it actually heard about. To reiterate: these are not extra conditions that we impose on
aggregation algorithms. These are instead conditions that we can show are true for any aggregation
algorithm.

3 Global Bounds

3.1 The Impossibility of a Competitive Aggregation Algorithm

The amount of achievable aggregation in a given execution is affected by the dynamic graph for
which the execution is defined. For example, if the dynamic graph isolates all nodes we cannot
blame the algorithm for requiring n uploaders at the end of the execution. With this in mind, it
makes sense to judge an algorithm’s performance relative to the best achievable performance in the
graph.

We could hope to find an algorithm that guarantees (with high probability) at most k · f(n)
uploaders in any dynamic graph where the offline optimal algorithm (which knows G in advance)
guarantees at most k uploaders. Ideally we would like f(n) to a reasonably small function (i.e.
f(n) ∈ polylog(n)). Our first result, however, proves that no algorithm can provide these guarantees.

Theorem 1. For every aggregation algorithm A there is a dynamic graph G where the offline
optimal algorithm guarantees 1 uploader but w.h.p., the system (A, G) produces an execution with
Ω(n) uploaders.

Proof. We define dynamic graph G = (V, E) with a duration of two rounds, but it is straightforward
to extend it to an arbitrary duration. Parition V into pairs of nodes (omitting one node if |V | is
odd). Define E(1) to consist of one edge {u, v} for each pair {u, v} from our partition. Next, for
each pair, randomly select one node to be isolated and another to be social. In the next round we do
not include any isolated node in an edge. Also, we choose a single super-social node to visit every
other social node (and the node omitted in round 1 for the case where |V | is odd). The fact that
the offline optimal algorithm would guarantee 1 uploader follows from the possibility of aggregating
all information at the super-social node.

Here we deploy the concept of token ownership which tells us that at the end of every round,
every process must own a set of tokens (potentially empty) that it will output if it continues the
execution in isolation. Furthermore, this set can only contain tokens it could have heard about
at this point. It follows that after the first round of any execution in G, for each pair {u, v}, at

4

least one of these two processes owns at least one token. Call this the committed process (breaking
ties arbitrarily in the case where both would output a token). When constructing G we choose
the isolated node at random. For each pair, therefore, the probability that we isolate a committed
process is 1

2 . Notice, any isolated committed process outputs at least one token. We thus expect
Θ(n) committed processes that correspond to isolated nodes, and Chernoff tells us that with high
probability we are not more than a constant factor away from this expectation. It follows that,
w.h.p., A combined with G generates an execution where the number of uploaders is Ω(n).

3.2 Aggregating in Well-Connected Dynamic Graphs

The previous lower bound tells us that it is impossible for an aggregation algorithm to be competitive
with an optimal offline algorithm in all dynamic graphs. However this result relied on dynamic graphs
in which a large fraction of the nodes had a minimum of connection with the rest of the graph. We
should not be surprised that it is hard to aggregate well in the presence of such minimal and fleeting
connections. Here we present an aggregation algorithm that is competitive as long as the graph is
well-connected, which we formalize with the natural notion of a p-cluster:

Definition 2 (p-Cluster). A dynamic graph G is a p-cluster for some p ∈ (0, 1] iff every u ∈ V is
included in an edge in G with at least bp|V |c different nodes.

We emphasize that we do not assume the connections of a node in a p-cluster to be random
(which would simplify the task of aggregation). In contrast, we consider thew worst possible set of
connections, modeling them as picked by an adaptive online adversary.

Below we present an algorithm tailored to aggregate well in p-clusters.

Algorithm. A process can be in one of two states, either active or inactive. At the end of the
execution (i.e. all time t) all active processes will upload their tokens. Initially every process is
active and therefore a potential uploader. When starting the algorithm each process u initializes
a tagcountu variable to zero, and selects an identifier idu of Θ(log n) bits at random. Consider
the interaction between processes u and v. If idu ≤ idv then process u does nothing. On the other
hand, if idu > idv then process u increases its tagcountu variable. If in addition process v is active
and tagcountu≥ cp log n then process u hands off all its tokens to process v and switches to the
inactive state. Here cp ∈ Θ(1/p) is a sufficiently large constant which depends on p which we will
determine later.

Algorithm 1 ClusterAggregationp at process u
1: activeu←true

2: idu← random string of Θ(log n) bits
3: tagcountu← 0
4: for each interaction with process v do
5: if idu>idv then
6: if activev and tagcountu≥ cp log n then
7: hand off tokens to process v
8: activeu← false

9: tagcountu←tagcountu+1

10: if activeuthen upload tokens

We reiterate that all active process broadcast data at the end of the execution, and a process
only hands off its tokens and becomes inactive when encountering an active process. Therefore the
ClusterAggregation algorithm satisfies the no loss and integrity conditions by construction, it

5

remains only to show that when the algorithm is executed in p-cluster with high probability the
number of active nodes is at most O(log n).

Moreover, also by construction it follows that the cp log n processes with the smallest random
identifier in the graph cannot get tagged cp log n times, and therefore they cannot become inactive.

Fact 1. The processes with the smallest cp log n identifiers remain active throughout the execution.

The following theorem captures the main result of this section.

Theorem 2. Fix a constant p ∈ (0, 1]. For every dynamic graph G which forms a p-cluster the
system (ClusterAggregationp, G) produces w.h.p., an execution with O(log n) uploaders.

Proof Outline of Theorem 2.
Since the node identifiers are chosen uniformly at random from a space of Θ(log n) bits, the

probability that they are not unique can be made less than n−c for any constant c. Hence, we can
use a union bound to show that w.h.p., the random identifiers are unique. Thus for simplicity and
without loss of generality, in the rest of the proof we assume that the random identifiers generated
are unique.

Let S be the set of O(log n) processes with the smallest random identifiers. To prove theorem 2
it suffices to show that with high probability at the end of the execution only the processes in S will
remain active. Since by assumption the graph is a p-cluster, it follows that any process will have
met with at least p|V | different processes. Specifically, we divide the interactions of every process
in V \ S into two groups of size p|V |/2. We will then show that with high probability a process is
tagged cp log n times in the first group of the interactions by a subset of the processes in S, and is
subsequently deactivated in the second group of the interactions by a process in S (with which it
had not interacted).

To prove theorem 2 we need two technical lemmas. The first lemma shows that, given a set
Q ⊆ V of processes selected according to some property of their random identifier (i.e., smallest,
largest, etc.), during the first half of the interactions a fixed process u ∈ V \Q interacts with no more
(and no less) than a constant fraction of the processes in Q. The proof (which appears in appendix B)
follows from a generalization of the Chernoff bound to Hypergeometric random variables.

Lemma 3. Let Xu be a random variable that counts the number of processes in Q a process u ∈ V \Q
meets in the first p|V |/2 interactions. Pr

[
Xu ≤ p

4 |Q|
]
≤ e−

p
16
|Q| and Pr

[
Xu ≥ 3p

4 |Q|
]
≤ e−

p
24
|Q|

Therefore, assuming |Q| is “large”, with high probability a process u ∈ V \ Q will see no more
and no less than a constant fraction of the process in Q during the first half of the interactions.

Our second technical lemma shows that w.h.p., a process u ∈ V \Q will encounter in the second
half of the interactions a process with which it hadn’t interacted before. To prove this (the proof
appears in appendix B) we leverage lemma 3, and observe that at every interaction a process u has
a probability of meeting a process in Q which is O(|Q|/|V |).

Lemma 4. Assume |Q| ≥ 48/p. The probability that a process u ∈ V \ Q does not interact with a
new process of Q in the last p|V |/2 interactions is less than e−

p
48
|Q|.

With these technical lemmas in place we are ready to prove theorem 2.

Proof of theorem 2. Let S be the set of 5cp log n processes with smallest identifier, and let A be the
set of cp log n processes with smallest identifier, clearly A ⊂ S. Define B = S \ A as the remaining
4cp log n = |B| processes in S. By Fact 1 the processes in A remain active throughout the execution.

6

To prove the theorem it suffices to show that w.h.p., all processes in V \ S become inactive. In
particular we will show that the probability that a fixed process in V \ S remains active is at most
1/n2, and then union bound over all processes.

Fix a process u ∈ V \ S. If process u meets |B|/4 processes of B in the first p|V |/2 interactions
it will get tagged at least cp log n times, and if in the remaining interactions it meets a process of A
it will become inactive.

Instantiating lemma 3 with Q = B, the probability that process u does not interact with at
least |B|/4 processes within the first p|V |/2 interactions is at most e−p|B|/16. Similarly, instantiating
lemma 4 with Q = A, the probability that in the remaining interactions process u does not meet
a process of A is at most e−p|A|/48. Therefore, the probability that process u remains active is at
most e−p|B|/16 + e−p|A|/48. Finally, by letting cp ≥ 3 · 48/p we have that the probability that node u
remains active is at most 1/n2 which concludes the theorem.

We remark that by tweaking the constants, the same proof can be used to show the same
statement holds with probability at least 1− 1/nc for any constant c. This fact will be useful later.

4 Local Bounds

In practice, a lot of the networks where aggregation is interesting are large. For example, consider a
network of thousands of taxicabs spanning a large metropolitan city. In this setting, it is unlikely that
the global network of taxicabs, spanning the whole city, form a p-cluster (some cabs will inevitably
be stuck in the boondocks). At the same time, however, there are likely plenty of clusters of cabs
within the network that locally form p-clusters (e.g., at areas of high density like downtown or at the
airport). The question we pursue in this section is whether we can find algorithms that successfully
find and leverage these local structures that are hidden within the larger global topology.

In doing so, we discover the following interesting paradox of connectivity. Intuitively it might
seem that aggregation protocols perform only better on better connected networks: at worst, a
protocol could ignore the extraneous communication links. In fact, however, we observe the following:
when the local clusters are relatively isolated, we can develop aggregation protocols that work well,
minimizing the number of uploaders in each cluster; by contrast, when the clusters have more
communication with the rest of the network, it becomes impossible to achieve efficient aggregation.

We must begin, however, by generalizing our definitions of a cluster to describe a well-connected
sub-graph within a larger graph.

Definition 3 ((p, r)-Cluster). Fix some p ∈ (0, 1] and r ∈ {0, ..., n}. We say a subset of S ⊆ V
forms a (p, r)-cluster in dynamic graph G, iff: 1) every u ∈ S has a link in G to at least bp|S|c
different nodes in S; and 2) no node u ∈ S has a link to more than r nodes in V \ S.

Observe that if r = 0 then we require clusters to be completely isolated from the rest of the
graph, whereas, letting r = n imposes no isolation requirements.

4.1 The Necessity of Cluster Isolation

Intuition. In this subsection we show that if an aggregation algorithm guarantees no more than k
nodes in every (p, r)-cluster then r cannot be much bigger than k2. In other words, more aggregation
requires more isolation.

At a high-level, our lower bound works by construction a pair of dynamic graphs and arguing
that any aggregation algorithm will fail (with constant probability) to guarantee k uploaders in every
(p, r)-cluster in one of the two dynamic graphs if r is larger than O(k2).

7

To simplify the theorem statement and the proof we introduce the following definition.

Definition 4. Fix p ∈ (0, 1] and r, k ∈ {1, ..., n}. Then A is a (p, r, k)-cluster-aggregation
algorithm if in every dynamic graph G w.h.p., (G,A) generates an execution where every (p, r)-
cluster in G has at most k uploaders.

Theorem 5. Fix some p ∈ (1/2, 3/4) and k ≤
√
n/40. For any r > 30k2 there does not exist a

(p, r, k)-cluster-aggregation algorithm.

Proof. Assume for contradiction that A is a (p, r, k)-cluster-aggregation algorithm for r > 40k2.
We will construct a pair of dynamic graphs and we will argue that when A is executed on one

of these two graphs, with constant probability there will exist a (p, r)-cluster with more than k
uploaders, reaching a contradiction.

We begin by defining some constants q = 5k, m = 2k, and ` = m
(

p
1−p

)
. A few observations

regarding these constants: (1) m < ` < 3m; (2) `/(m+ `) ≥ p; and (3) q` < r.
We partition the first q`+ qm nodes into sets X1, . . . , Xq and Y1, . . . , Yq, where for i ∈ {1, . . . , q}

we have |Xi| = ` and |Yi| = m, and X =
⋃q

i=1Xi. Notice that since k ≤
√
n/40 then q(` + m) ≤

(5k)(8k) ≤ n, and hence this partitioning is possible. In the following we only deal with the q`+ qm
nodes partitioned and assume the other nodes are isolated in both graphs we construct.

In both graphs, the first set of rounds consist of nodes in X interacting with each other, while
the remaining nodes are isolated. That is, the nodes X form a clique in the dynamic graph. It is at
this point, after all nodes in X have interacted with each other, that we differentiate the graphs G1

and G2.

Constructing G1. For each i ∈ {1, . . . , q} we schedule each of the m nodes of Yi to interact
with each of the ` nodes of Xi. We schedules these interactions in m passes, each consisting of `
interactions. In each pass, for each i, one node from Yi interacts with every node in Xi in some
arbitrary order. During the pass, there are no other interactions.

Thus, at the end of the duration G1, the nodes in X have interacted in a clique, and for each i,
the nodes (Xi, Yi) interact in a complete bipartite graph. Notice that the nodes in Yi have no direct
interactions with each other.

Observe that the nodes in Xi and Yi together form a (p, r)-cluster: (i) since `/(m+ `) ≥ p, every
process in Xi and Yi has interacted with at least a p fraction of the other nodes in Xi and Yi; and
(ii) each node in Yi only interacted with nodes in Xi while each node has interacted with at most
q` nodes outside Yi. Since q` < (4k + 4)(6k) < 48k2 < r (by assumption on r), it follows that the
nodes in Xi ∪ Yi form a (p, r)-cluster.

In addition, observe that the nodes in X form a (p, r)-cluster: (i) every node in X interacts with
every other node in X, and (ii) each node in X interacts with at most m = 2k < r nodes not in X.

Constructing G2. Graph G2 is almost identical to G1 with the following exception: for each
i ∈ {1, . . . , q} we pick a random number ni uniformly from the set {1, . . . ,m}. After the nthi pass
in the interaction between Xi and Yi we then isolate all nodes in Xi and Yi for the remainder of
the graph. In other words, G2 is defined like G1 with the exception that, for each i, it aborts the
interactions between Xi and Yi at a random point. We refer to this as the “abort point”. As before,
observe that X is a (p, r)-cluster.

Indistinguishability: We now analyze the behavior of A when executed on these two dynamic
graphs. Consider an execution in G1. Let Ai be the nodes in Xi ∪ Yi whose processes upload tokens
at the end of their interactions. Observe that if ∃i such that Ai ∩ Yi > k then the (p, r)-cluster
formed by Xi ∪ Yi has more than k uploaders. Let p′ be the probability that that an execution of A
in G1 leads to this case. Since, with high probability, the number of uploaders is ≤ k, we conclude
that p′ ≤ 1/n.

8

Consider now the case that occurs with probability at least (1−1/n) where Ai∩Yi ≤ k, in which
case the tokens of at least m− k = k nodes in Yi are at some point transferred to a node in Xi.

We now we turn our attention, to G2. For the purpose of this discussion, fix some i. Notice that
for processes in Yi that interact with Xi before the “abort point,” the executions G1 and G2 are
indistinguishable. Recall that in G1, for each Yi, there are at least k processes that rely on some
other process to upload their token. Thus, for each of these processes, if the abort point in G2 occurs
after their interaction with Xi, they will continue to rely on other processes to upload their token,
as they cannot distinguish G1 and G2.

For a given execution on graph G2, let v ∈ Yi be the node that interacts with Xi in the last pass
before the abort point. If v chooses not to upload its token (i.e., if it is one of those ≥ k processes
in Yi that rely on some other process to upload its token), then some process in Xi must upload the
token of v since there are no further interactions after the abort point at which its token might be
aggregated. (This follows from the the no-loss property and the notion of token ownership defined
in Section 2).

We thus conclude with the following analysis. With probability at least (1 − 1/n) ≥ 1/2, for
every Yi there are at least k nodes that rely on a process in Xi to upload their token. Moreover,
with probability at least k/m = 1/2 the abort point occurs immediately after one of these ≥ k nodes
interacts with Xi. Thus, with probability ≥ 1/4, at least one node in Xi needs to upload tokens. In
total, then, the expected number of nodes in X that upload tokens is at least q/4 > k. We conclude
that with constant probability, the number of nodes in X that upload tokens is greater than k, which
contradicts our assumption that A is a (p, k, r)-cluster-aggregation algorithm.

4.2 An Upper Bound for Isolated Cliques

Here we show that for any r ∈ O(log n) the ClusterAggregationp algorithm aggregates the
tokens down to O(log n) uploaders in every subset S ⊆ V which forms a (p, r)-cluster. This comes
within a O(log n) factor of the minimal amount of isolation established by theorem 5.

Theorem 6. Fix a constant p ∈ (0, 1], r ∈ O(log n). For every dynamic graph G the system
(ClusterAggregationp, G) produces w.h.p., an execution where every (p, r)-cluster has O(log n)
uploaders.

The proof of this theorem follows the same spirit as theorem 2. The key difference is that, in
the context of a (p, r)-cluster, Fact 1 is no longer true. Specifically, consider any set S ⊂ V which
forms a (p, r)-cluster. It still holds that the cp log n processes with the smallest random identifier in
a set S cannot be tagged cp log n times by other processes inside S. However, the nodes in S can be
tagged cp log n times (or more) by processes which are outside S.

Nevertheless, observe that since r = r0 log n for some sufficiently large constant r0, then by letting
cp ≥ 2r0 we can guarantee cp log n ≥ 2r, which implies that cp log n− r ≥ 1

2cp log n. Therefore, if we
consider the cp log n processes with the smallest identifiers in S, only half of them can get tagged by
processes outside S, and therefore we have the following fact (in the same spirit as Fact 1).

Fact 2. Assume cp ≥ 2r0. In every subset S ⊆ V which forms a (p, r)-cluster, the processes with
the smallest 1

2cp log n identifiers remain active throughout the execution.

With this fact in place, we can essentially reuse the proof of theorem 2 to show that if we fix
a (p, r)-cluster, then with high probability we aggregate to O(log n) nodes in that cluster. Since
trivially there are never more than O(n) (p, r)-clusters, we can union bound over all clusters and
show that with high probability ClusterAggregationp aggregates to O(log n) processes in all
(p, r)-clusters of a dynamic graph.

9

4.3 The Impossibility of Cover Aggregation in Cliques

Motivated by considering clusters embedded within a larger dynamic graph, here we consider an
alternative natural measure for the performance of an aggregation algorithm (rather than the number
of uploaders in every local cluster).

Specifically we propose considering for every local cluster, the number of nodes that upload a
token on behalf of a node in the cluster. We call such nodes, the cover-uploaders of a cluster. Observe
that the number of cover-uploaders of a cluster is a trivial upper bound on the number of uploaders
for the same cluster, but the reverse is not true.

It is possible, for example, that no process in a local custer uploads a token, but that many
processes outside the culster upload tokens on their behalf (i.e., no uploaders in the cluster but
plenty of cover-uploaders outside the cluster).

For a (p, 0)-cluster the cover-uploaders are equivalent to the uploaders, so we turn our attention to
larger values of r. Our main results below shows that even for r = 1 (i.e., almost completely isolated
clusters), there are no aggregation algorithms that can guarantee less than n1/3 cover-uploaders in
every (p, r)-cluster. This is a strong separation with the number of uploaders, where we just proved
that for polylog r we can guarantee polylog uploaders in every (p, r)-cluster.

Theorem 7. For every aggregation algorithm A there exists a dynamic graph G where the system
(A, G) produces with constant probabilty an execution where one (1, 1)-cluster has Ω(n1/3) cover-
uploaders.

Proof. Fix any aggregation algorithm A that guarantees at most k cover-uploaders in every (1, 1)-
cluster. To show that k ≥ n1/3, we will construct a dynamic graph G which contains a (1, 1)-cluster
where with constant probability the number of cover-uploaders is at least n1/3.

To simplify notation, in the following assume that k + 1 divides n (for the case where this does
not hold, our bound on k differs only by a constant factor). To define G we first partition the
nodes into n/(k+ 1) clusters C1, . . . , Cn/(k+1) where each cluster has exactly k+ 1 nodes. We define
the random set U of size n/(k + 1) which contains for each Ci a single node ui which was selected
uniformly at random. In the first half of the execution we let all nodes in each Ci interact with
each other (i.e., each Ci is a complete graph), and in the remainder of the execution, the nodes in
U remain isolated, while all nodes in V \ U interact with each other (thus V \ U is a (1, 1)-cluster).

With G defined, we can examine the execution of A in this graph. Observe that if we were to stop
the execution after all the interactions in each Ci cluster, then every Ci is a (1, 0)-cluster. Moreover
since |Ci| > k, we can assume that with constant probability some aggregation must have occurred
in every cluster (otherwise if we extend the execution with all nodes being isolated we would have
proved the theorem). It follows that every cluster Ci has at least one responsible process vi that
owns at least two tokens, in the sense that it will output these two tokens if isolated from this point
forward (as established by the notion of token ownership from Section 2).

Since in the rest of the execution the nodes in U are isolated, each of the responsible processes
in U will broadcast a token on behalf of a unique process from V \ U (and recall that the processes
in V \ U form a (1, 1)-cluster). Because the nodes nodes in U are picked uniformly at random, we
expect |U |/(k + 1) = n/(k + 1)2 processes in U to upload at the end of the execution. Therefore
with constant probability the number of cover-uploaders (nodes which upload tokens on behalf) of
the (1, 1)-cluster defined by V \ U is at least n/(k + 1)2. Finally, this implies that with constant
probability k ≥ n1/3, since if k ≤ n1/3−1 then the number of (cover-)uploaders in U is at least k+ 1
(which would be a contradiction).

10

References

[AR07] J. Aspnes and E. Ruppert. An Introduction to Population Protocols. Bulletin of the
European Association for Theoretical Computer Science, 93:98–117, 2007.

[CHS10] K. Censor Hillel and H. Shachnai. Partial Information Spreading with Application to
Distributed Maximum Coverage. In Proceedings of the International Symposium on
Principles of Distributed Computing, 2010.

[CN10] A. Cornejo and C. Newport. Prioritized Gossip in Vehicular Networks. In Proceedings of
the International Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications, 2010.

[Hae10] B. Haeupler. Analyzing Network Coding Gossip Made Easy. Arxiv preprint
arXiv:1010.0558, 2010.

[HBZ+06] Bret Hull, Vladimir Bychkovsky, Yang Zhang, Kevin Chen, Michel Goraczko, Allen Miu,
Eugene Shih, Hari Balakrishnan, and Samuel Madden. CarTel: a Distributed Mobile
Sensor Computing System. In Proceedings of the Conference on Embedded Networked
Sensor System, 2006.

[IEGH02] C. Intanagonwiwat, D. Estrin, R. Govindan, and J. Heidemann. Impact of Network Den-
sity on Data Aggregation in Wireless Sensor Networks. In Proceedings of the Conference
on Distributed Computing Systems, 2002.

[JLR00] S. Janson, T. Luczak, and A. Rucinski. Random Graphs. John Wiley & Sons Inc., 2000.

[KEW02] L. Krishnamachari, D. Estrin, and S. Wicker. The Impact of Data Aggregation in
Wireless Sensor Networks. In Proceedings of the Conference of Distributed Computing
Systems, 2002.

[KLO10] Fabian Kuhn, Nancy Lynch, and Rotem Oshman. Distributed Computation in Dynamic
Networks. In Proceedings of the Symposium on Theory of Computing, 2010.

[KMO11] Fabian Kuhn, Yoram Moses, and Rotem Oshman. Coordinated Consensus in Dynamic
Networks. In Proceedings of the International Symposium on Principles of Distributed
Computing, 2011.

[KO11] F. Kuhn and R. Oshman. Dynamic networks: models and algorithms. ACM SIGACT
News, 42(1):82–96, 2011.

[MFHH02] S. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. Tag: a Tiny Aggregation Ser-
vice for Ad-Hoc Sensor Networks. ACM SIGOPS Operating Systems Review, 36(SI):131–
146, 2002.

[PPC99] Robert Pinheiro, Alex Poylisher, and Hamish Caldwell. Mobile Agents for Aggregation
of Network Management Data. In Proceedings of the International Symposium on Mobile
Agents, 1999.

[TRB+11] A. Thiagarajan, L. Ravindranath, H. Balakrishnan, S. Madden, and L. Girod. Accurate,
Low-Energy Trajectory Mapping for Mobile Devices. In Proceedings of the Symposium
on Networked Systems Design and Implementation, 2011.

11

A Token Ownership

Fix some execution prefix β of an aggregation algorithm, and a process u ∈ V . We use i(β, u) to
describe every extension of β in which process u has no further communication with other nodes
(that is, u is isolated in the extension of β). The following lemma formalizes property (1) of token
ownership:

Lemma 8. Fix some execution prefix β of an aggregation algorithm, and a node u ∈ V . For every
α, α′ ∈ i(β, u), α.γ[u] = α′.γ[u]. That is, in all isolated extensions of β, u outputs the same tokens.

Proof. The lemma follows from the no loss and no duplication conditions of Definition 1. If there
existed a pair α, α′ ∈ i(β, u) such that α.γ[u] 6= α′.γ[u], then there would be a probability greater
than 0 that one of these two properties would be violated in some execution.

We say (u, r) G (v, r′), for u, v ∈ V , rounds r′ ≥ r ≥ 1, and dynamic graph G = (V, E), if and
only if: (a) u = v; or (b) there is a sequence of edges, er = {u, ur}, er+1 = {ur, ur+1}, ..., er′ = {ur′ , v},
such that for every i ∈ {r, ..., r′}: ei ∈ E(i), (Informally, (u, r) G (v, r′) indicates that there exists
a sequence of edges by which u can pass information it knows at the beginning of r to v by r′ in G.)
The following lemma formalizes property (2) of token ownership:

Lemma 9. Let α be an execution of an aggregation algorithm with dynamic graph G of duration t.
For every u ∈ V and token x ∈ α.γ[u]: there exists v ∈ V such that x = α.σ[v] and (v, 1) G (u, t).
That is, if u outputs a token x then there is a path from the process that started with x to u in G.

Proof. If this lemma did not hold then some process v might output a token x even though there is
no path from a process that started with x to process v. We consider two cases: First, if there is a
path from every process to v in this execution, then the execution violates the no loss property of
Definition 1. Second, if there are instead some processes that do not have paths to v, it is possible
that one of these processes started with x, in which case process v may have made a lucky guess by
outputting x. However, because there is no interaction with these processes and v, this execution is
indistinguishable with respect to v from one in which none of these processes started with x: and in
this execution the no loss property is once again violated.

Notice that as a result of these lemmas, there is no benefit to copying tokens: each must be owned
by a single process at any given time.

12

B Proofs for Section 3

Before we can prove lemma 3 we need to state a slight generalization of the traditional Chernoff
bound.

Generalized Chernoff Bounds. Let Z be a random variable with Binomial or Hypergeometric

distribution, and let µ = E [Z]. Then Pr [Z ≥ (1 + δ)µ] ≤ e−
δ2µ
3 and Pr [Z ≤ (1− δ)µ] ≤ e−

δ2µ
2 .

The Binomial distribution describes the number of successes in a sequence of draws with replace-
ment, and can be expressed as a sum of independent random variables representing each draw. On
the other hand, the Hypergeometric distribution describes the number of successes in a sequence of
draws without replacement, and hence the draws are not independent.

Typically, the Chernoff bound applies to random variables with a binomial distribution. However,
as noted by [JLR00], it seems reasonable to expect that drawing samples without replacement would
produce smaller random fluctuations than sampling with replacement, so the fact that the Chernoff
bound also holds for the Hypergeometric distribution is not entirely surprising. We omit the proof
of this generalized bound since it can be found in Theorem 2.1 and 2.10 in [JLR00].

Now lemma 3 follows by a trivial application of this generalized Chernoff bound.

Proof of lemma 3. We have a total of |V | processes, we are interacting with p|V |/2 of them (without
replacement), and we want to count how many times we meet a process in Q ⊆ V . Observe that
Xu has a Hypergeometric distribution, and hence E [Xu] = p

2 |Q|. The theorem follows from the
generalized Chernoff bounds (with δ = 1

2).

Proof of lemma 4. Fix u ∈ V \Q and let I1 and I2 correspond to the first p|V |/2 interactions, and
the remaining interactions (at least p|V |/2) respectively.

Define X as the event that process u does not meet a single process of Q in the interactions of
I2. We want to show that the probability that X occurs is exponentially small (on |Q|). Define Y
as the event that process u meets with more than 3p

4 |Q| fraction of the processes in Q during the

interactions I1. By lemma 3 Pr [Y] ≤ e−
p
24
|Q|.

Now consider Pr [X|¬Y], that is the event that process u does not meet a single process in Q
during the interactions of I2, conditioned on the fact that there are at least 1

4 |Q| processes with which
it didn’t interact in I1. Observe that until process u meets one of those 1

4 |Q| remaining processes
in Q, then at every interaction of I2 it will meet a process in Q with probability at least 1

4 |Q|/|V |.
Therefore:

Pr [X|¬Y] ≤
(

1− 1

4

|Q|
|V |

) p
2
|V |
≤ e−

p
8
|Q|

Finally, by the law of total probability we have Pr [X] = Pr [X|Y] Pr [Y] + Pr [X|¬Y] Pr [¬Y] ≤
Pr [Y]+Pr [X|¬Y] ≤ e−

p
8
|Q|+e−

p
24
|Q| ≤ 2e−

p
24
|Q| ≤ e−

p
24
|Q|+1, and since |Q| ≥ 48/p then Pr [X] ≤−

p
48
|Q|

13

	Introduction
	Model
	Global Bounds
	The Impossibility of a Competitive Aggregation Algorithm
	Aggregating in Well-Connected Dynamic Graphs

	Local Bounds
	The Necessity of Cluster Isolation
	An Upper Bound for Isolated Cliques
	The Impossibility of Cover Aggregation in Cliques

	Token Ownership
	Proofs for Section [section][3][]3

