20

25

30

35

40

45

Fault-Tolerance Through £-Connectivity

Alejandro Cornejo

acornejo@csail.mit.edu

MIT CSAIL

Abstract—We consider a system composed of autonomous
mobile robots that communicate by exchanging messages in a
wireless ad-hoc network. In this setting, the failure of a single
robot might result in the disconnection of the communication
network. We are concerned with the problem of maintaining
a fault-tolerant connected network while allowing robots to
perform other tasks.

Specifically we describe two local distributed algorithms to
determine if a graph is k-connected. We then describe how these
algorithms could be used to extend the connectivity maintenance
algorithm of [2, 3] to maintain a k-connected network while
allowing robots to perform other tasks.

I. INTRODUCTION

One of the main concerns in multi-robot systems is fault-
tolerance. The expected number of robot failures grows lin-
early with the population of a system. Moreover, multi-robot
systems typically lack a centralized communication infrastruc-
ture and rely on ad-hoc networks for communication. In this
setting, coordination is possible only if the communication
graph remains connected. Therefore, to design fault-tolerant
multi-robot systems, it is paramount that the failure of a
single robot does not compromise the correctness of the whole
system. These issues are only aggravated by the mobility of
the robots, since this means that the communication topology
is changing constantly.

The connectivity of a graph is a good estimate of the fault-
tolerance of the network, since higher connectivity means
more robots can fail without disrupting the communication
among the rest of the robots. More precisely, a graph with
n > k + 1 nodes is k-connected if any set of k — 1
vertices can be removed without disconnecting the graph. By
convention complete graph on n nodes is (n — 1)-connected.
The connectivity of a graph is the maximum k for which it is
k-connected.

Designing algorithms to efficiently perform tasks using
multi-robot systems is difficult even without the added burden
of explicitly dealing with problems such as graph connectivity
and fault-tolerance. To avoid this added complexity researchers
often ignore the aspect of graph connectivity. Instead they
design algorithms that control the motion of the robots but
that lack any mechanisms to prevent graph disconnection. This
includes work on flocking [10, 6], pattern formation [5], and
leader following [1], among others.

Our aim is to design a separate algorithm that explicitly
deals with the problem of maintaining k-connectivity, while

This work was supported in part by AFOSR (Award Number FA9550-08-
1-0159) and NSF (Award Numbers CNS-0715397 and CCF-0726514).

Nancy Lynch
lynch@csail.mit.edu
MIT CSAIL

allowing the robots to perform other tasks. For such an algo-
rithm to be useful in practice, it should not make any restrictive
assumptions on the tasks the robots are executing. Moreover,
to scale to systems with large populations of robots, the
algorithm should rely only on local knowledge. We envision
that roboticists, aided by such an algorithm, could design fault-
tolerant cooperative multi-robot systems for a variety of tasks
with little added effort.

In previous work [2, 3] we addressed the problem of
maintaining connectivity (k = 1) for robot swarms while per-
forming arbitrary tasks. Specifically, we described a distributed
algorithm that modifies an existing motion plan to ensure
connectivity. The algorithm uses only local information, is
stateless, does not require a fixed set of neighbors and does not
make any assumptions on the current or goal configurations.
Moreover, the algorithm is robust to the robots’ speed changes;
if robots travel any fraction of the trajectory (perhaps none)
at any speed, connectivity is preserved. The progress of the
algorithm is defined as the total distance traveled by all
robots (summing over all the robots) towards their intended
destination. Let d be the minimal distance each robot intends
to move and let » be the communication radius. Assuming
that the target configuration of the robots is connected and the
motion does not require breaking any cycles, we proved that
the algorithm guarantees the progress is at least min(d,).
Furthermore, we exhibited a class of configurations where
no local algorithm can do better than this bound, and hence
under these conditions the bound is tight and the algorithm is
asymptotically optimal. Finally we proved that all robots get -
close to their target within O(Dy/r +n?/¢) rounds where Dy
is the total initial distance to the targets and n is the number
of robots [3].

In this paper we describe two distributed algorithms that rely
only on local knowledge and can be used to determine if a
graph is k-connected. We describe how to use these algorithms
to extend our work in [2, 3] to maintain k-connectivity.

II. RELATED WORK

Most of the previous work on k-connectivity is in the field
of topology control. Jorgic et al. [8] report the experimental
results of three different distributed algorithms to detect k-
connectivity on random geometric graphs, but lack any for-
mal guarantees. Czumaj and Zhao [4] presented a greedy
centralized algorithm to construct a k-connected t-spanner
with runtime O(nk). Thurimella [11] described a distributed
algorithm to identify sparse k-connected subgraphs. However,
their algorithms require global knowledge, and in fact run

50

55

60

65

70

75

80

85

90

20

25

30

35

40

45

50

in O(diam(G) + /n) time. Jia et al. [7] considered the
problem of minimizing the power assignment while preserving
k-connectivity. In particular they described a centralized algo-
rithm to approximate the minimum power assignment under
different assumptions on k. The work of Li and Hou [9] is
closest to the work described in this paper. They describe a
local distributed algorithm to construct a k-connected spanner.
However, their results depend on the assumption that the
original graph is k-connected and there is no mechanism to
detect when this is not the case.

III. MODEL AND DEFINITIONS

In this section we describe our communication model along
with our assumptions about the world and the capabilities of
the multi-robot system.

Each robot has a unique id and is capable of determining the
relative positions of neighboring robots. Except for the state
variable where the unique id is stored, the start state of each
robot is assumed to be identical. Furthermore all robots run
the same deterministic algorithm. We assume a synchronous
network model; the system progresses in synchronous lock-
step rounds. At every round each robot can send a message
to its neighbors, receive messages from its neighbors and
perform local computation. Under this model, after ¢ rounds
of communication a node v can learn about other nodes which
are ¢ hops away, but no more. An algorithm is local if it runs
for a constant (independent of n or the diameter) number of
rounds.

Let V represent a set of robots, where each robot v € V
is associated to a point in Euclidean space x, € R2. We
use ||a — b|| to denote the Euclidean distance between points
a and b. We model the topology of the communication
network as unit disk graph G = (V,FE). Concretely, G
is an undirected graph with an edge between two robots
if and only if their Euclidean distance is less than one (
E = {(u,v)| ||y — x| < 1}). We define the weight of an
edge (u,v) as the Euclidean distance between its endpoints,
w(u,v) = ||#, — x,]|. Unique ids can be used to consistently
break ties between edge weights, so without loss of gener-
ality we assume distinct edge weights. The unit disk graph
assumption on the communication graph is required not only
for some k-connectivity tests, but also by the algorithm to
preserve k-connectivity described in Section V.

We define N(u) = {v]| (u,v) € E} as the set of nodes
that are neighbors of « in G, and N[u] = N(u) U {u} as the
closed neighbors of u. For a positive integer ¢ we denote with
Nt[u] the closed t-neighbors of u, the set of nodes reachable
by paths starting at « and of length at most ¢. Let G(u) be
the graph induced by the closed neighbors of u, and G*(u) be
the graph induced by the closed ¢-neighbors of .

A vertex cut C of a connected graph G is a set of vertices
whose removal renders G disconnected. The size of a vertex
cut C is the number of vertices |C|. A vertex cut is said to be
a minimum vertex cut if it is a vertex cut of smallest size. The
connectivity of a graph G, denoted by x(G), is the size of a

smallest vertex cut of G. A complete graph on n vertices has
no cuts at all, but by convention its connectivity is n — 1.

We are interested in designing local algorithms to test
and preserve k-connectivity. Since connectivity, and more
generally k-connectivity, are global graph properties we first
define formally what we mean by locally testing a global
property.

A test is an algorithm A that produces an accept or
reject output. We use A, to denote the output of running
algorithm A at node v. Algorithm A is a safe test for a
global property P of a graph, if when algorithm A is run in a
graph and all nodes accept, the graph satisfies P. (Formally,
(Vv eV A,) accepts = P.) This allows for false negatives,
since even if some node rejects, the property may still hold, but
does not allow false positives. We say test A is more accurate
than test B if the graphs where A produces false negatives are
a strict subset of the graphs where B produces false negatives.
Test A is accurate if when run in a graph that satisfies P all
nodes accept. (Formally, (Vo € V' A, accepts) < P.)

IV. TESTING k-CONNECTIVITY

We start by showing that we cannot achieve simultaneously
safety and accuracy when considering local tests for connec-
tivity.

G, ———eo—0o—0o—0o—o

1 5] L5kt n
Gy ——eo—o—0o—0o—o
[5+1 noo1]
Gy o&——eo—— — o
1 2] 1 n

Fig. 1. Vertices are numbered from left to right. The label of each vertex is
displayed directly below it.

Theorem 1. There does not exist an accurate safe local test
for graph connectivity.

Proof: Consider the graphs G1, G2 and G3 over the vertex
set V= {1,...,n}. Every graph G; has a labeling function
l;: V. — N, where N = {1,...,n} is the space of unique
ids.

Graphs G; and G are line graphs, where for every vertex

i € [1,...,n — 1] there exists an edge (i,% + 1). Graph G3

is identical to Gy but without the edge (|Z|,|%]| + 1), and

therefore it is disconnected. Both G; and (3 are labeled with

the identity function, ¢ (i) = ¢3(i) = i. For G2 we define the
labeling function #5(i) = Z_+ 2] i<n N 2]

— %] otherwise.

Fix any local test A that runs for ¢ rounds. By the definition
of local we can assume ¢ < L%J Each node u observes as
G'(u) a line graph with at most 2¢ + 1 vertices. We refer
to this line graph with the associated labels as a t-labeled-
neighborhood, which can be represented by an ordered list of

ids.

55

60

65

70

75

80

85

90

95

20

25

30

35

40

We proceed to describe the t-labeled-neighborhood ob-
served by a node with unique id ¢ in Gf.

1) If i € [1,[2]] its t-labeled-neighborhood is:
[max(1,2—t),...,4,...,5+t].
[| %] + 1, |%]] its t-labeled-neighborhood is:
vty ..o,min(i + ¢, [2])).
3) Ifi € [L”J +1, L%ﬂ its t-labeled-neighborhood is:

[max(Lg +1,0—1),... 0., i+t
4) If i € [3] 4+ 1,n] its t-labeled-neighborhood is:
[i—t,...,0...,min(i + t,n)].

In cases 1 and 3 a node with unique id ¢ observes the same
t-labeled-neighborhood in G3 as it would on G;. Similarly
in cases 2 and 4 a node with unique id ¢ observes the same
t-labeled-neighborhood in G5 as it would on Gs.

If A is accurate then all nodes must accept when running
in G1 or G5. However, if A is safe at least one node must
reject when running in Gi3. Since two nodes with the same
unique id that see the same ¢-labeled-neighborhood must have
the same output, it follows that it is impossible for A to be
both accurate and safe. [|

Since we can’t expect a local algorithm to be both accurate
and safe, we focus on safety at the expense of accuracy.
Specifically, under the assumption that the graphs are con-
nected, we describe two safe local tests for k-connectivity for
k > 2. In subsection A we describe a very natural test for k-
connectivity, and in subsection B we describe a local test with
lower accuracy but better suited to preserving connectivity.

A. A Natural Local Test for k-Connectivity

Perhaps the most natural algorithm is for each node to test
whether its local neighborhood is k-connected. Consider the
local test K(k,t) that runs for ¢ communication rounds and
collects its ¢ hop neighborhood information. When run at node
u it accepts if the subgraph G*(u) is k-connected and rejects
otherwise.

Algorithm 1 /C(k, ¢) running at node u

Run for ¢ rounds and construct G*(u)
if ©(G'(u)) > k then
accept
else
reject
end if

AN A

The next theorem proves that /C(k,t) is indeed a safe test
for k-connectivity.

Theorem 2. When running in connected graphs, K(k,t) is a
safe local test for k-connectivity.

Proof: Suppose by contradiction that /C(k,t) accepts at
every node but G is not k-connected. For /C(k,) to accept at
node u, then G*(u) must have at least k + 1 vertices, hence
|[V| > k + 1. Therefore there exists a vertex cut, of size at
least 1 (since GG is connected) and at most & — 1 (since G is

not k-connected), such that removing the vertices of the vertex
cut disconnects G.

In particular let C' denote a minimum vertex cut, and let P
and @ be two connected components produced by removing all
vertices in C. Fix any vertex u € C, it follows that: (i) N*[u]
contains at least k+1 vertices. Otherwise the induced subgraph
G*(u) would not be k-connected and K(k,t), would reject.
(ii) There exists a pair of vertices v, w € N (u) such thatv € P
and w € . Otherwise u doesn’t bridge these two components,
and the set ¢’ = C'\ {u} would describe a vertex cut of smaller
size which separates P and Q).

Therefore the set U = N'[u] \ {v,w} is at least of size
|U| > k — 1 and (since G*(u) is k-connected) removing any
subset of U of size at most £ — 1 leaves a path from v to w
in G*(u).

However by assumption removing the set C' C V' of size at
most k£ — 1 disconnects v from w in G. Thus, removing the
subset of U defined as UNC C U disconnects v from w in the
graph G*(u). Moreover since |C| < k—1 then [UNC| < k—1
— a contradiction. []

It’s not immediate how to improve the accuracy of IC(k,).
Fix a k-connected graph G = (V,E) and a node u € V
such that K(k, t),, rejects, and hence G*(u) is not k-connected.
Observe that regardless of the algorithm, after £ rounds node
u cannot distinguish between G and G*(u), where G is k-
connected and G*(u) is not k-connected.

It is tempting to go further and argue that since safe local
tests cannot have false positives, then if IC(k,t), rejects, it
must be that any other safe local test that runs for ¢ rounds
must also reject at u; which would imply KC(k, t) is the optimal
local test in terms of accuracy. However, this is not the case,
since a safe test requires only that some node rejects. Next
subsection describes a safe local tester that is less accurate,
but that can be used directly to preserve k-connectivity using
the techniques presented in [3].

B. k-Connectivity With Small Edges

Intuitively, one expects that if all the robots move closer
to each other (hence decreasing the weight of the edges) the
connectivity of the graph should increase. This is exploited
by the local tester UDG(k, t), which relies heavily on the unit
disk graph assumption. Informally speaking, this tester will
accept if the graph observed after ¢ rounds has a connected
spanning subgraph using only “small” weights.

Specifically, when run at node u the tester UDG(k,) runs
for ¢ communication rounds and constructs G*(u). The tester
then prepares the graph G’(u) by removing all edges of
G*'(u) of weight larger than % Finally, the tester accepts if
G*(u) contains at least k+ 1 vertices and G’(u) is connected,
rejecting otherwise.

Theorem 3. When running in connected graphs, G(k,t) is a
safe local test for k-connectivity.

Proof: By Theorem 2 it suffices to show that for every
vertex u € V if UDG(k,t),, accepts then K(k,t),, accepts.

45

50

55

60

65

70

75

80

85

90

95

20

25

30

35

40

Algorithm 2 UDG(k,t) running at node u

1: Run for ¢ rounds and construct G*(u) = (N*[u], E[u]).

2 Let G'(u) = (N*[u], E'[u])

s where E'fu] = {(u,v) | (u,0) € Elu] A llra — a0 < 1}
4: if |[N'[u)| > k + 1 and /{(G’()) > 1 then

5. accept

6: else

7: reject

8: end if

Fix a node u where UDG (k, t) accepts. If G*(u) is a clique
then KC(k,t) accepts and we are done, so suppose otherwise.
Let C denote a minimum vertex cut of G*(u), and let P and
@ be two connected components produced by the cut C.

Since UDG(k,t), accepted, then for any pair of vertices
p € P and q € @ there exists a path p ~» ¢ from p to g in
G’ (u). We use the vertices of C' to define a gap in p ~ ¢,
as a maximal set of contiguous vertices in p ~» ¢ that belong
to C. For each gap g let g.first and g.last be the vertices in
the path immediately before and after the gap.

By construction all edges weights in p ~~ ¢ are less than %
hence for any gap g, the Euclidean distance between g¢. first
and g.last is bounded by (|g| +1)/k. For every gap g it holds
that |g| < |C|. Hence if |C| < k — 1, the distance between
the g.first and g.last is less than k/k = 1, and by the unit
disk graph assumption there exists an edge (g. first, g.last) in
G*(u) which bridges the gap. Therefore, for C' to be a cut, it
must be of size at least k, which implies G*(u) is k-connected.

|

In the process of proving Theorem 3 we showed that
the graphs which are detected as k-connected by UDG(k, 1)
are a subset of those detected by K(k,t). It is not difficult
to construct graphs where C(k,t) detects the graph as k-
connected while UDG (k, t) fails (i.e. a clique with k+1 nodes
using only “large” edges). Therefore K(k,t) is more accurate
than UDG(k,t). However, as described in the next section,
UDG(k,t) can be used directly to preserve k-connectivity.

V. PRESERVING k-CONNECTIVITY

Starting with a connected graph that is detected as k-
connected by UDG(k, t) this section describes how the proof
of Theorem 3 can be used to design an algorithm that preserves
global k-connectivity of a graph, while allowing robots to
perform other tasks.

The connectivity maintenance algorithm described in [3]
preserves simple connectivity while allowing the robots to
perform other tasks. It has three phases: a collection phase,
a proposal phase and an adjustment phase. In the collection
phase, each robot learns its set of neighbors and their relative
positions. In the proposal phase, the neighbors are filtered and
a local optimization problem is solved to find a new trajectory.
Finally in the adjustment phase, the proposed trajectory is
broadcast and adjusted to guarantee connectivity. For more
details we refer the reader to [3].

If the communication radius of the robots is r, let ' = r/k.
Suppose we run the connectivity service with this smaller
communication radius, dropping all messages from nodes
which farther than /. The guarantees of the service will ensure
that the agents make progress towards their target, while at the
same time maintaining a connected communication graph with
respect to the communication radius 7.

Due to lack of space, we omit the details, but using the
same arguments of Theorem 3 it is possible to show that the
resulting graph is indeed k-connected.

VI. FUTURE WORK

In future work we will consider different local tests, and
examine the trade off between safety and accuracy in more
detail. We also plan to address the problem of controlling the
motion of the robots to repair k-connectivity due to failures.

REFERENCES

[1] S. Carpin and L. E. Parker. Cooperative Leader Follow-
ing in a Distributed Multi-Robot System. /CRA, 2002.

[2] A. Cornejo and N. Lynch. Connectivity Service for
Mobile Ad-Hoc Networks. Spatial Computing Workshop,
2008.

[3] A. Cornejo, F. Kuhn, R. Ley-Wild, and N. Lynch. Keep-
ing mobile robot swarms connected. September 23-25
20009.

[4] A. Czumaj and H. Zhao. Fault-tolerant geometric span-
ners. Discrete and Computational Geometry, 32(2):207-
230, 2004.

[5] R. Fierro and A.K. Das. A modular architecture for
formation control. Robot Motion and Control, 2002.

[6] A.T. Hayes and P. Dormiani-Tabatabaei. Self-organized
flocking with agent failure: Off-line optimization and
demonstration with real robots. In ICRA, 2002.

[7] X. Jia, D. Kim, S. Makki, PJ. Wan, and C.W. Yi.
Power assignment for k-connectivity in wireless ad hoc
networks. Journal of Combinatorial Optimization, 9(2):
213-222, 2005.

[8] M. Jorgic, N. Goel, K. Kalaichevan, A. Nayak, and
I. Stojmenovic. Localized detection of k-connectivity in
wireless ad hoc, actuator and sensor networks. Proc. 16th
ICCCN, 2007.

[9] N. Li and J.C. Hou. FLSS: a fault-tolerant topology

control algorithm for wireless networks. In Proceedings

of the 10th annual international conference on Mobile
computing and networking, pages 275-286. ACM New

York, NY, USA, 2004.

A. Regmi, R. Sandoval, R. Byrne, H. Tanner, and CT Ab-

dallah. Experimental Implementation of Flocking Algo-

rithms in Wheeled Mobile Robots. In American Control

Conference, 2005. Proceedings of the 2005, pages 4917—

4922, 2005.

R. Thurimella. Sub-linear distributed algorithms for

sparse certificates and biconnected components. In

PODC, pages 28-37. ACM New York, NY, USA, 1995.

(10]

(11]

45

50

55

60

65

70

75

80

85

90

