
Neighbor Discovery in Mobile Ad Hoc Networks

Using an Abstract MAC Layer

Alejandro Cornejo∗ Nancy Lynch† Saira Viqar‡ Jennifer L. Welch§

November 20, 2009

Abstract

We explore the problem of neighbor discovery in a mobile ad hoc network environment. We
describe a protocol for learning about neighboring nodes in such an environment. The protocol
is used for establishing and tearing down communication links with neighboring nodes as they
move from one region of the network to another. The protocol is implemented on top of the
abstract MAC layer service presented in [4], which provides reliable message delivery within the
local neighborhood and also provides the sender with an acknowledgment when all neighboring
nodes have received a message. There is an upper bound, guaranteed by the abstract MAC
layer service, on the worst case delay that a message can experience before it is received or
acknowledged. We determine the time complexity of the neighbor discovery protocol in terms
of the bounded delays provided by the underlying abstract MAC layer.

∗MIT CSAIL, acornejo@csail.mit.edu
†MIT CSAIL, lynch@csail.mit.edu
‡Texas A&M, viqar@cse.tamu.edu
§Texas A&M, welch@cse.tamu.edu



1 Introduction

Neighbor discovery is an important aspect of many algorithms in mobile wireless ad hoc networks
(cf. [9], [8], [1]). For example, knowledge about neighboring nodes can be used to route, cluster
and broadcast in an efficient manner.

Neighborhood knowledge is assumed in many routing protocols used in wireless sensor networks.
For example in [9] the authors assume that nodes know the location of one- and two-hop neighbors.
This information is used to implement a coordinate based routing algorithm. In [8] nodes are
assumed to maintain information about their one-hop neighbors in order to perform routing in
multi-hop wireless networks. In [1] the authors assume that each node knows its own location and
its neighbors’ locations, in order to develop a locality-aware location service.

We wish to take advantage of the reliability of the abstract MAC layer described in [4] to design
an efficient neighbor discovery protocol. The abstract MAC layer hides the lower level details of
collision detection and contention while providing bounds on the amount of delay incurred in the
reception of a message and the receipt of an acknowledgment.

We assume that the network is divided into static regions and this division is known to all the
nodes. If a node that enters a particular region of the network and remains there for sufficiently
long, it should learn about and establish communication links with nodes which are in regions up
to k-hops apart. If a node leaves a particular region, other nodes that no longer lie within its
neighborhood should be notified and should be able to take down their communication links with
the leaving node.

We also assume that each node can query its trajectory information for some constant time into
the future (i.e. it can predict where it will go in the immediate future). Based on this information,
and the bounds provided by the abstract MAC layer, we give a protocol in which nodes exchange
notification messages at appropriate times, before exiting a particular region or upon entering a
new region of the network. The protocol allows nodes to gain information about neighbors and
exchange application messages reliably with neighbors. We also give a proof of correctness for our
protocol.

2 Related Work

A deterministic distributed algorithm for neighbor discovery is suggested in [2] and uses TDMA
slots. It has a running time of MN/r +O(max(M,N) log r). It is assumed that there are n nodes
and each node is assigned a unique identifier from the range [1, N ]. M is the maximum number of
channels available for communication, or possible channels all the nodes are capable of operating
on, and r is the number of receivers at a node. It is suggested that the running time is so large
because of the oblivious nature of the algorithm (which means that a node transmits based solely
on its label and the time slot number). Our neighbor discovery protocol is different from the one
given above since it is built on top of an underlying reliable MAC layer.

A protocol for secure neighbor discovery in the presence of compromised nodes is given in
[5]. The protocol achieves secure discovery of the local neighborhood by taking advantage of
the sensor deployment phase. It is assumed that sensor nodes can be trusted for a short time
after deployment. This period of time is used to ensure that neighborhood information is not
compromised. The protocol also takes advantage of the fact that usually neighboring nodes have
a large number of common neighbors. Although the protocol tries to handle malicious nodes, it
assumes that nodes remain static and do not change their location after they have been deployed.
Our neighbor discovery protocol deals with mobile nodes which can move from region to region.

1



In [10] the authors give a neighbor discovery algorithm which is similar to ALOHA. The al-
gorithm works without a collision detection mechanism. An extension of the algorithm is given
which works in the absence of clock synchronization. Nodes are allowed to wake up at different
times. The authors show that each node is able to find out about all its neighbors in expected time
ne(log n+ c) where c is constant. However, it is assumed that all n nodes form a clique throughout
the execution of the algorithm, whereas in our algorithm the neighborhood topology need not be a
complete graph and in fact can change over time.

3 System Model

The timed I/O automata modeling framework [11] is used in order to model the mobile ad hoc
network. There are six components in the system: the network layer automaton, the abstract MAC
layer automaton, the queue layer automaton, the neighbor discovery layer automaton, the point-
to-point layer automaton, and the user automaton (see Figure 3.3). We give a description here of
these components.

3.1 The Network Layer Automaton

The network layer automaton models the real world in terms of time, location, physical layer
behavior and it also encapsulates mobility of nodes. It is assumed that location and time are
accurately provided by the network layer.

For every network automaton there is a function fG that maps from states to directed node
interaction graphs. Fix an execution α of the MANET system. Suppose s gives the state of the
network at some point in α. Gcomm = fG(s) is the dynamic directed communication graph which
captures nodes in communication range in network state s. Assume that the position of node i in
state s is given by pos(i). Then there is an edge (i, j) between nodes i and j in Gcomm if and only
if the Euclidean distance between pos(i) and pos(j) in state s is less than or equal to the broadcast
radius of node i. At any point in α, E is the edge set corresponding to Gcomm = fG(s) where s
is the network state at that point. Note that two nodes may have different broadcast ranges. Let
rmin be the minimum broadcast range among all the nodes.

Fix R to be a closed, bounded and connected subset of R2. R models the physical space in
which the nodes reside; we call it the deployment space. Let U be the index set for regions in R
used by the participating agents. We now define a region partitioning scheme.

Definition 1. A region partitioning scheme divides R into a set of regions {Ru}u∈U such that: (i)
each u ∈ U , Ru is a connected subset of R, (ii) for any u, v ∈ U , Ru and Rv are disjoint, (iii) the
deployment space is equal to the union of all regions, R =

⋃
u∈U Ru.

For any u, v ∈ U , Ru and Rv are neighboring regions if there exists a closed linear trajectory
that starts at Ru and ends in Rv and does not pass through any other regions.

We refer to the graph induced by the neighborhood relation of the region partition scheme as
the region graph. We say region X and region Y (or node a in region X and node b in region Y ) are
k-hops apart if the shortest path between X and Y in the region graph is of length k. Throughout
we assume the maximum distance between two points which are in regions k-hops apart is bounded
by rmin. Finally each node has access to the function getregion : R2 → U which maps any point
in the plane to a region.

2



3.2 The Abstract MAC Layer Automaton

The MAC layer automaton provides reliable message delivery to all recipients as well as feedback to
the sender in the form of an acknowledgment which indicates that the message has been delivered
to all intended receivers. It provides guaranteed time bounds on message delivery as well as the
receipt of acknowledgments. These time bounds are functions of the current level of contention.
The cost of implementing this abstract MAC layer exactly as described might be prohibitively large.
However, it is possible to provide similar guarantees with a high probability.

The MAC layer provides the following interface actions bcast(m)i, abort(m)i, rcv(m)i, ack(m)i.
The first two are input actions and the other two are output actions. In addition it imposes upper
bounds on the time elapsing between bcast(m)i and corresponding ack(m)i and rcv(m)j . These
bounds depend on the contention involving the sending node, denoted above by i, and the receiver
node, denoted above by j, during the broadcast interval. These time bounds can be summarized
as follows:

• F+
rcv : upper bound on a specific message being delivered.

• F+
ack : upper bound on an acknowledgment being received.

These functions are monotonically non-decreasing with the level of contention present at the receiver
or both the sender and receivers (for F+

ack).
We assume that the values of the time bounds F+

rcv and F+
ack (described in [4]) are constant and

available to algorithms implemented on top of the abstract MAC layer. Thus a node can use these
bounds to determine when to transmit notification messages when entering or leaving a geographic
region. Note that this implies that the dynamic communication graph (Gcomm) induced by the
motion of the nodes has a constant upper bound on the maximum degree.

The MAC layer assumes some well-formedness conditions for upper layers. In particular, it
assumes that a user process does not submit a bcast until after its previous bcast has had a
matching ack returned. There are constraints on message behavior. In particular, if a bcast(m)i

event causes a rcv(m)j event, then at some point between these events nodes i and j have to be
within interference range. If a bcast(m)i event causes an ack(m)i event and for every point in
between these two event nodes i and j are in communication range, then a rcv(m)j caused by the
bcast is guaranteed to precede the ack.

3.3 The Queue Layer Automaton

The queue layer automaton has inputs bcast msg ndp(m)i, bcast msg app(m)i, ack(m)i, and out-
put bcast(m)i.

The queue layer automaton provides a message queue at each node which ensures that a node
does not submit a bcast request to the abstract MAC layer until after its previous bcast has ended
with a matching ack being returned. This is part of the well-formedness constraints placed on the
upper layers using the abstract MAC layer service. The queue layer automaton actually provides
two queues for each node. The application queue buffers messages from applications and the NDP
queue buffers messages from the neighbor discovery layer. Preference is given to messages received
from the neighbor discovery layer, which are broadcast first, even if there are pending application
messages. The maximum size of the queues is fixed (given by k). It is assumed that messages
are received from the application layer at a rate such that the queues do not overflow. Both the
neighbor discovery layer and the user layer should be such that the number of messages they send
does not overflow the queue, which is emptied at a rate of one element per F+

ack time units.

3



Figure 1: The MANET system.

3.4 The Neighbor Discovery Layer Automaton

The neighbor discovery layer automaton for node i defines three output actions, bcast(m)i, link up(j)i

and link down(j)i where j 6= i; in the following discussion we ignore bcast(m)i and focus on
link up(j)i and link down(j)i. The link up(j)i action signals that a reliable communication
link has been established between node i and j from the perspective of node i. Similarly the
link down(j)i action signals that a previously established communication link between node i and
j is no longer available from the perspective of node i.

Consider any execution α, and let αi be the projection of α onto the actions of node i, we
impose the following restrictions on the executions.

Well-Formedness:

• For all i and j the link up(j)i and link down(j)i actions alternate in αi.

The link up and link down events induce a directed neighbor graph Gneigh with vertex set equal
to the node set. For any two nodes i and j, the directed edge (i, j) is in Gneigh if and only if the
most recent link event at node i for node j is a link up. If directed edge (i, j) is present in Gneigh we
say its in the Up state, otherwise we say it is in the Dn state. We now define some synchronization
conditions.

Synchronization:

1. While edge (i, j) is Up the edge (j, i) cannot go through the states Up→ Dn→ Up.

2. While edge (i, j) is Dn the edge (j, i) cannot go through the states Dn→ Up→ Dn.

To avoid the trivial solution where all edges remain Dn independent of the environment we
define a progress condition.

4



Progress:

• There exist constants a, b ∈ R+, such that for all times times t1 and t2 where t2 ≥ t1 + a+ b,
and for any nodes i and j: if i is in region X and j is in region Y throughout [t1, t2], where
X and Y are k-hops apart, the directed edges (i, j) and (j, i) are in Gneigh (that is they are
in state Up) during the time interval [t1 + a, t2 − b].

Similarly we now need a validity condition to avoid solutions where all edges are kept in the Up
state independent of the environment.

Validity:

• If (i, j) is present in Gneigh (that is it is in state Up) then nodes i and j are in regions which
are k-hops apart (and thus they are within distance rmin).

3.5 The Point-to-Point Layer Automaton

The point-to-point layer automaton has interface actions send(j,m)i, and deliver(j,m)i, which
allow higher layers to send and receive point-to-point messages. It connects to the underlying
neighbor discovery layer by receiving the neighbor discovery layer’s link up(j)i and link down(j)i

outputs as inputs.
Thus we have the following output action:

• deliver(j,m)i (node i receives message m from node j), for all i and j, i 6= j.

We have one input action:

• send(j,m)i (node i sends message m to node j), for all i and j, i 6= j.

Fix an execution α of the MANET system. We assume the existence of a caused-by function
mapping every deliver(i,m)j event to a preceding send(j,m)i event, i 6= j. Below are additional
constraints on the nature of the caused-by function.

Constraints on Message Behavior:

1. No duplicate receives: The caused-by function is one-to-one. That is, each send event causes
at most one deliver event.

2. Termination: The caused-by function is onto. That is, each send event causes at least one
deliver event.

3.6 The User Automaton

The user automaton is a composition of separate (and non-interacting) automata for the users
{1, . . . , n}. User i connects to the underlying neighbor discovery layer using the given interface.

Fix an execution α of a MANET system. The following properties define well-formedness:

1. α contains at most one send event for each message m.

2. If send(j,m)i occurs then (i, j) ∈ Gneigh (and the link (i, j) is Up).

5



Figure 2: The maximum time required for setting up a link.

4 The Neighbor Discovery Protocol

The neighbor discovery protocol is based on nodes sending notification messages tagged with their
UID and their current region whenever they enter or leave a region. In particular, there are three
types of messages:

• leave

• join

• join reply.

When a node is about to move into a new region, it broadcasts a leave message some time before
leaving. This message indicates to its neighboring nodes that they should begin tearing down the
corresponding link if appropriate. When a node enters a new region and determines that it is going
to remain there for sufficiently long, it broadcasts a join message. This message indicates to the
neighbors that they should start setting up the corresponding link if they don’t have one already.
It also serves as a request to learn the ids of neighbors. Nodes that receive a join message send a
join reply message in response so that the original node can learn their ids. The timing of these
messages ensures that the proper semantics of the corresponding links are maintained. This means
that the overhead for setting up and tearing down links is taken into account, and reliable message
delivery is guaranteed when a link is in the Up state.

Suppose that the time overhead for setting up a link between two neighbors is given by δLU , and
the time overhead for tearing down a link is given by δLD. A node broadcasts a join message upon
entering a new region only if it is going to remain there for at least the amount of time required to
set up a link and to tear it down. Thus a node broadcasts a join message if it is going to remain in
its new region for at least δLU + δLD +L time in the future where L ≥ 0 is an application provided
parameter.

The exact time overhead for setting up a link (δLU ) can be determined in terms of the delays
provided by the underlying MAC layer. This is the overhead incurred in sending the join message
and getting back the corresponding join reply. After this the link has been set up and application
messages can be sent over it. Thus δLU = 2F+

rcv + F+
ack (see Figure 2).

• The first F+
rcv time units are to allow the join message to get from the sender to the receiver.

When the receiver gets the join message it will perform a link up with the sender.

• It takes another F+
ack time units for the receiver to process the join message. This is be-

cause when a node receives a join message it waits before broadcasting the corresponding

6



join reply. It does so in order to process multiple join messages in batches. This prevents the
receiver from being swamped with pending join messages. Consider the following scenario.
Suppose that node i is present in region X of the network. Now suppose that n − 1 nodes
move into region X and send join messages. Node i will then have to send n−1 join replies.
This will result in overflow in the NDP message queue in the Queue layer. Thus i waits for
F+

rcv time and collects the join messages and responds with one join reply. An interval of
F+

ack is used to also guarantee wellformedness (no more than one message every F+
ack units of

time is sent by the NDP layer).

• The last F+
rcv units of time ensure that the join reply gets back to the original node which

sent the join message. After getting this join reply the original node performs a link up
with the sender of the join reply.

Figure 3: The maximum time required for taking down a link.

The overhead for tearing down a link (δLD) can similarly be determined in terms of the delays
provided by the MAC layer and the size of the application message queue. This time bound
guarantees that all neighbors get the leave message sent by a node before it leaves so that the
neighbors have accurate information at all times about who their own neighbors are. The delay
of δLD also ensures that the leaving node receives messages that were in transit when it sent the
notification. The sender of a leave message performs a link down with all its neighbors as soon as
it send the leave message. Specifically δLD = 2F+

rcv + kF+
ack (see Figure 3).

• The first F+
rcv time units allow the leave message to get to the receiver. At this point the

receiver performs a link down with the sending node. After this the receiver will not send
any more messages. However, it will still receive messages that are already in the queue at
the sender.

• The next kF+
ack time units allow the receiver to empty out application messages in the queue.

Note that the maximum queue size is given by k and each message can incur a maximum
delay of F+

ack before it is sent.

• The remaining F+
rcv time units allows the last message in he queue to reach the sender.

When a node i receives a join message it checks if it is going to remain in its current region
long enough to send a join reply back and then tear down its link with the initiator of the join

7



message. Thus i checks if it is going to remain in its current region for at least the next δLU + δLD

time units.
In the neighbor discovery protocol, nodes include their ids and their current region in notification

messages. For ease of exposition we assume the existence of a function hops : {Ru}u∈U×{Ru}u∈U →
N which receives two regions and returns the number of hops between them, if one of the regions
is null it returns ∞.

5 TIOA Code

We describe the algorithms using the TIOA formalism [11]. In the neighbor discovery protocol we
assume TIOA trajectory that stops time whenever a precondition is enabled.

Algorithm 1 Neighbor Discovery Protocol

automaton NDP(i:N, traj:Traj, F+
ack:R, L:R, k:N, δLU :R, δLD:R)

states
active:Bool := false;
sendbuffer:Seq[M] := ∅;
recvbuffer:Seq[M] := ∅;
eventqueue:Seq[Ev] := ∅;
S:Set[N] := ∅;
regs:Map[N, Region] := empty;
curreg:Null[Region] := nil;
newreg:Null[Region] := nil;
jointrigger:R := −1;
now:R := 0;

transitions
output bcast(m, i)

pre m = head(sendbuffer)
eff

sendbuffer := tail(sendbuffer);

input rcv(m, i)
eff

recvbuffer := recvbuffer ` m;

internal enter region(i)
pre eventqueue = ∅ ∧ getregion(trajnow) 6= val(curreg)
eff

curreg := embed(getregion(trajnow));
if ∀t : R(t ≥ now ∧ t ≤ now + δLU + L+ δLD ⇒ getregion(trajt) = val(curreg)) then

sendbuffer := sendbuffer ` [[join, val(curreg), nil], i];
active := true;

internal leave region(i)
pre eventqueue = ∅ ∧ active ∧ getregion(trajnow+δLD ) 6= val(curreg)
eff

newreg := embed(getregion(trajnow+δLD ));
active := false;
if ∃t : R(t ≥ now + δLD ∧ t ≤ now + δLD + δLU + L+ δLD ⇒ getregion(trajt) 6= val(newreg)) then

newreg := nil;
sendbuffer := sendbuffer ` [[leave, val(curreg), newreg], i];
for j in S

if hops(regsj , val(newreg)) > k then
eventqueue := eventqueue ` [down, j, regsj ];

8



internal process message(m, i)
pre eventqueue = ∅ ∧m = head(recvbuffer) ∧ getregion(trajnow) = val(curreg)
eff

recvbuffer := tail(recvbuffer);
if m.sender ∈ S then

regs := update(regs,m.sender,m.msg.reg);
if hops(m.msg.reg, val(curreg)) ≤ k then

if m.msg.type = join ∧m.sender /∈ S ∧ ∀t : R(t ≥ now ∧ t ≤ now + δLU + δLD ⇒
getregion(trajt) = val(curreg)) then
if jointrigger = −1 then

jointrigger := now + F+
ack;

eventqueue := eventqueue ` [up,m.sender,m.msg.reg];
if m.msg.type = leave ∧m.sender ∈ S ∧ hops(val(m.msg.dest), val(curreg)) > k then

eventqueue := eventqueue ` [down,m.sender, regsm.sender];
if m.msg.type = join reply ∧m.sender /∈ S ∧ active then

eventqueue := eventqueue ` [up,m.sender,m.msg.reg];

internal send join reply(i)
pre eventqueue = ∅ ∧ jointrigger = now
eff

jointrigger := −1;
sendbuffer := sendbuffer ` [[join reply, val(curreg), nil], i];

output link down(j, i)
pre ∃reg : Region(head(eventqueue) = [down, j, reg])
eff

S := S − {j};
regs := remove(regs, j);
eventqueue := tail(eventqueue);

output link up(j, i)
pre ∃reg : Region(head(eventqueue) = [up, j, reg])
eff

S := S ∪ {j};
regs := update(regs, j, head(eventqueue).reg);
eventqueue := tail(eventqueue);

Algorithm 2 Queue

automaton Queue(i:N, k:N, M:Type)
states

ptp queue:Seq[M] := ∅;
ndp queue:Seq[M] := ∅;
cts:Bool := true;

transitions
input bcast msg ptp(m, i)

eff
if len(ptp queue) < k then

ptp queue := ptp queue ` m;

input bcast msg ndp(m, i)
eff

if len(ndp queue) < k then
ndp queue := ndp queue ` m;

9



output bcast(m, i)
pre cts = true ∧m = head(ndp queue) ∨m = head(ptp queue) ∧ ndp queue 6= ∅
eff

cts := false;

if len(ndp queue) > 0 then
ndp queue := tail(ndp queue);

else
ptp queue := tail(ptp queue);

input ack(m, i)
eff

cts := true;

Algorithm 3 Point to Point Algorithm

automaton PTP(i:N, P:Type)
states

sendbuffer:Seq[M] := ∅;
recvbuffer:Seq[M] := ∅;
S:Set[N] := ∅;

transitions
input link down(j, i)

eff
S := S − {j};

input link up(j, i)
eff

S := S ∪ {j};

input send(j, p, i)
eff

if j ∈ S then
sendbuffer := sendbuffer ` [p, i];

output deliver(j, p, i)
pre [p, j] = head(recvbuffer)
eff

recvbuffer := tail(recvbuffer);

input rcv(m, i)
eff

recvbuffer := recvbuffer ` m;

output bcast msg app(m, i)
pre m = head(sendbuffer)
eff

sendbuffer := tail(sendbuffer);

10



Technical Considerations

Since regions were defined as disjoint, technically there might not exist a ”first” time when a node
enters or leaves a region due to possible left-open intervals.

Concretely, the enter region action requires a trajectory that stops time when a node first
changes regions. To side step this problem we allow some slack in the stopping conditions; un-
fortunately this requires changing the definitions of the partitioning scheme to allow neighboring
regions to overlap at their boundaries. We define an overlapping partition as follows:

Definition 2. Fix R to be a closed, bounded and connected subset of R2. R models the physical
space in which the nodes reside; we call it the deployment space. Let U be the index set for regions
in R used by the participating agents. A region partitioning scheme divides R into a set of regions
{Ru}u∈U such that: (i) each u ∈ U , Ru is a closed and connected subset of R, (ii) for any u, v ∈ U ,
Ru and Rv may overlap only at their boundaries.

For any u, v ∈ U , Ru and Rv are neighboring regions if they intersect at their boundaries
(Ru ∩ Rv 6= ∅). Let the region graph be the graph induced by the neighborhood relation on the set
of regions.

Observe that the getregion function would now a set of regions instead of a single region. In
particular, when queried in a region boundary it returns the set of regions that share the boundary,
otherwise it returns a singleton set with the current region. The algorithm itself would remain
unchanged modulo some simple changes to handle the fact that getregion returns a set and not
a single element which we omitted for readability. However the stopping condition in the TIOA
trajectory for the enter region action would become:

∃u : Region (u 6= val(region))∧
curreg /∈ getregion(trajnow) ∧ u ∈ getregion(trajnow)∧

curreg ∈ getregion(trajnow−ε) ∧ u ∈ getregion(trajnow−ε)

Here ε > 0 is a small constant describing the slack, and it depends on the motion of the agents
with respect to the size of the regions. Observe that the same discussion applies for the leave region
action, and a similar predicate can be used for its TIOA stopping condition.

6 Proof of Correctness

Lemma 1. The neighbor discovery algorithm satisfies the well-formedness condition.

Proof. We have to show that for all i and j, link up(j)i and link down(j)i alternate.
Consider nodes i and j. Suppose that at time t node i performs a link up(j)i. This means

that node j is now in it’s neighbor set. Node i can now perform another link up(j)i before a
link down(j)i only if it receives a join or a join reply message. In both cases it first checks if j is
already in the neighbor set, and does not carry out a link up(j)i if it is.

Now suppose that node i performs a link down(j)i at time t′. This means that j is removed
from the neighbor set. It can only perform another link down(j)i if it performs a leave region
action or it gets a leave message. For both cases it checks its neighbor set to see if j is present in
it before doing a link down(j)i.

11



Proposition 1. A join message is always received before its corresponding leave message. The
same holds for join and join reply messages.

Proof. If a join message is sent at time t the corresponding leave message will be sent at time
t+ δLU at the earliest. The MAC layer guarantees message delivery after F+

rcv, an since δLU > F+
rcv

the leave message will be sent (and thus delivered) after the join message is delivered.
Similarly after a join message is sent, a joint reply message cannot be sent before waiting F+

ack

in the send trigger, and thus by the time the join reply message is sent the join message would
have been delivered.

This property is assumed throughout the rest of the proofs.

Lemma 2. While (i, j) is Up, (j, i) cannot go through the states Up→ Dn→ Up.

Proof. Fix nodes i and j where the directed edges (i, j) and (j, i) are both in the Up state. Suppose
the edge (j, i) switches to the Dn state at time t while the edge (i, j) remains Up. The state change
Up → Dn of edge (j, i) was caused when node j executed a leave region action or processed a
leave message sent by i.

It suffices to show that in either case the edge (j, i) can’t switch back to Up before the edge
(i, j) switches to the Dn state.

• If node j executed leave region at time t it also sent a leave message at time t, and moreover
when it compared its new region to the current region of node i it determined they were more
than k hops apart. Node i receives this message at time t ≤ t′ ≤ t + F+

rcv, and since it will
perform the same comparison it will change the state of edge (i, j) to Dn. Moreover the edge
(j, i) cannot switch back to Up before t′′ = t + δLD, and since δLD > F+

rcv then t′′ > t′ and
the statement follows.

• Suppose node j processed a leave message at time t and changed the edge to Dn, therefore
when it compared the new region of node i to its current region it determined they were more
than k hops apart. This message was sent by node i at time t − F+

rcv ≤ t′ ≤ t, and since it
made the same comparison then at time t′ the edge (i, j) was Dn. Moreover the edge (i, j)
cannot switch back to the Up state before time t′+ δLD and since δLD > F+

rcv this contradicts
the assumption that edge (i, j) was up at time t.

The proof of the second synchronization condition follows the same vein, but with some subtle
differences.

Lemma 3. While (i, j) is Dn (j, i) cannot go through the states Dn→ Up→ Dn.

Proof. Fix nodes i and j where the directed edges (i, j) and (j, i) are both in the Dn state. Suppose
the edge (j, i) switches to the Up state at time t while the edge (i, j) remains Dn. The state change
Dn → Up of edge (j, i) was triggered when node j received a join or a join reply message from
node i. It suffices to show that in either case the edge (j, i) can’t switch back to Dn before the
edge (i, j) switches to the Up state.

• If node j processed a join message at time t, then node i will receive the corresponding
join reply message at time t ≤ t′ ≤ t + F+

rcv + F+
ack and will switch edge (i, j) to the Up

state. Moreover the edge (j, i) cannot switch back to a Dn state before t+ δLU > t′ and the
statement follows.

12



• Suppose node j processed a join reply message at time t sent by node i at time t − F+
rcv ≤

t′ ≤ t. Let τi, τj ≤ t be the times at which nodes i and j executed the enter region action,
observe that by construction we know that node i will not execute the leave region action
until t+ δLU − F+

ack − F
+
rcv = t+ F+

rcv as the earliest.

– If τj ≤ τi then the join message of node i would reach j before the join reply message
and while it is active, switching the edge (j, i) to the Up state. However this contradicts
the assumption that the reception of a join reply triggered the Dn→ Up state change
of edge (j, i).

– If τi < τj then the join message of node j would reach i before τj +F+
rcv and while node

i is active, switching the edge (i, j) to the Up state, moreover recall that node i won’t
switch edge (j, i) to Dn until t+F+

rcv as the earliest. On the other hand, node j switched
the edge (i, j) to Up at time t and won’t switch edge (i, j) to Dn until τj + δLU at the
earliest. Since τj + δLU < τj + F+

rcv and t < t+ F+
rcv the statement follows.

From the previous two lemmas, the following is a corollary.

Theorem 1. The neighbor discovery algorithm satisfies the synchronization conditions.

W now prove the neighbor discovery protocol satisfies the progress condition of the neighbor
discovery specification with a = δLU and b = δLD + L for any L ≥ 0.

Theorem 2. The neighbor discovery algorithm satisfies the progress condition.

Proof. Suppose that a = 2F+
rcv + F+

ack = δLU , b = 2F+
rcv + kF+

ack + L = δLD + L. Consider any
two times t1 and t2, with t2 ≥ t1 + a + b, such that i and j are in region X and Y respectively
throughout [t1, t2], moreover the hop distance between region X and Y is less than or equal to k.
Let t be the earliest time equal to or before t1, such that i and j are in regions X and Y throughout
[t, t2].

Without loss of generality, suppose i enters region X at time t. Then i and j participate in the
link establishment, which takes at most a = δLU time, at the end of which (i, j) and (j, i) are both
Up. So starting at time t1 + a, or earlier, the links are Up.

The link teardown is not initiated by either endpoint until δLD time before leaving their re-
spective regions, which by assumption, is no earlier than t2 − b (since b = δLD). So (i, j) and (j, i)
remain up until at least t2 − b.

Lemma 4. The neighbor discovery protocol satisfies the proximity condition.

Proof. Consider nodes i and j. If (i, j) is in state Up then i and j are k-hops apart. By definition
the maximum distance between any two points in the regions which are k-hops apart is at most
rmin. Hence there is a communication channel between node i and j.

Lemma 5. The point to point algorithm satisfies the condition for no duplicate receives.

Proof. The abstract MAC layer satisfies the no duplicate receives property. The point to point
algorithm only invokes one bcast on behalf of any given user-level message. Hence each send event
will cause at most one deliver event.

Theorem 3. The point to point algorithm satisfies the termination condition.

13



Proof. We have to show that if a message is sent from i to j and (i, j) is in state Up, then the
message is delivered.

Suppose that (i, j) is Up at time t. This means i and j are in regions X and Y (where X and
Y are at most k-hops apart), and they remain there throughout [t, t+ δLD]. Hence, by definition of
rmin, i and j are within each other’s transmission radius throughout [t, t+ δLD]. Observe that the
underlying MAC Layer guarantees that any message broadcast by node i at time t will be delivered
before time t + F+

rcv to any node that remains within the communication radius during this time.
The maximum overhead incurred at the queue layer is kF+

ack. Since δLD = 2F+
rcv + kF+

ack, it is
guaranteed that any message sent when (i, j) is in state Up will be delivered.

7 Conclusions

We have shown how a reactive neighbor discovery protocol can be implemented over a reliable
MAC layer. Many algorithms, such as the token circulation algorithms given in [6], can use this
protocol to keep track of neighborhood information.

It is of interest to explore the following areas of future work:

• Lower bounds or impossibility results related to the neighbor discovery problem in mobile ad
hoc network (based on abstract MAC layer, or a reasonable physical network layer model).

• Determining the lower bounds or impossibility results for the neighbor discovery problem over
probabilistic MAC layer variants.

• A different protocol with a leader based approach, where each region has a leader node
associated with it, which transmits information on behalf of other nodes.

• Making the service fault-tolerant to message losses in the MAC layer, and exploring self-
stabilization.

8 Acknowledgements

This work was supported in part by Texas Higher Education Coordinating Board grant NHARP-
00512-0130-2007, AFOSR Award Number FA9550-08-1-0159, and NSF Award Numbers CCF-
0726514 and CNS-0715397.

14



References

[1] Abraham, I., Dolev, D., Malkhi, D.: LLS: A Locality Aware Location Service for Mobile ad
Hoc Networks. In: DIALM-POMC Joint Workshop on Foundations of Mobile Computing, pp.
75-84, (2004)

[2] Krishnamurthy, S., Chandrasekaran, R., Mittal, N., Venkatesan, S.: Brief Announcement:
Synchronous Distributed Algorithms for Node Discovery and Configuration in Multi-channel
Cognitive Radio Networks. In: The Symposium on Distributed Computing (DISC), (2006)

[3] Krishnamurthy, S., Thoppian, M.R., Kuppa, S., Chandrasekaran, R., Mittal, N.,Venkatesan,
S., Prakash, R.: Time-efficient distributed layer-2 auto-configuration for cognitive radio net-
works. Computer Networks: The International Journal of Computer and Telecommunications
Networking, 52(4), 831-849, (2008)

[4] Kuhn, F., Lynch, N., Newport, C.: The Abstract MAC Layer. In DISC 2009: 23rd International
Symposium on Distributed Computing, (2009)

[5] Liu, D.: Protecting Neighbor Discovery Against Node Compromises in Sensor Networks. In
ICDCS: IEEE International Conference on Distributed Computing Systems, (2009)

[6] Malpani, N., Chen, Y., Vaidya, N., Welch, J.: Distributed token circulation in mobile ad hoc
networks. IEEE Transactions on Mobile Computing, 4(2), 154-165, (2005)

[7] Mittal N., Krishnamurthy S., Chandrasekaran R., Venkatesan, S.: A Fast Deterministic Algo-
rithm for Neighbor Discovery in Multi-Channel Cognitive Radio Networks. Technical Report
UTDCS-14-07,Department of Computer Science, The University of Texas at Dallas, (2007)

[8] Park, V., Corson, M.: A Highly Adaptive Distributed Routing Algorithm for Mobile Ad Hoc
Networks. In IEEE INFOCOM, pp. 1405-1413, (1997)

[9] Rao, A., Ratnasamy, S., Papadimitriou, C., Shenker, S., Stoica, I.: Geographic Routing without
Location Information. In Mobicom: The Ninth Annual International Conference on Mobile
Computing and Networking, pp. 96-108, (2003)

[10] Vasudevan, S., Towsley, D., Goeckel, D.: Neighbor Discovery in Wireless Networks and the
Coupon Collectors Problem. In Mobicom, (2009)

[11] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The Theory of Timed
I/O Automata.Synthesis Lectures on Computer Science, Morgan Claypool Publishers, 2006.

15


