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Introduction 

The concern of this paper is a set of potentially 
faulty processes that engage in a distributed com- 
putation to agree on some piece of information. 
Each process enters the computation with an ini- 
tial value. The computation returns a common 
result value to each correct process. If all correct 
processes begin the computation with identical 
initial values, then the result value equals the 
initial value. 

The computation is briefly characterized as fol- 
lows. The computation is fully distributed and 
symmetric. It includes several rounds of synchro- 
nous message exchange over a completely con- 
nected, totally reliable, communications network. 

* The first author eschews government funding. 
** The second author’s work was supported in part by the 

Office of Naval Research under Contract NOOO14-82-K- 
0154, the Office of Army Research under Contract 
DAAG29-79-C-0155, and the NSF under Grants MCS- 
8116678, MC%8302391 and MCS-8306854. 

The correct processes communicate only through 
messages. The communications network correctly 
identifies the sender of each message to the recipi- 
ent of the message. Processes are assumed to have 
no signature ability (authentication). That is, there 
is no immediate way of detecting whether a re- 
layed message has been altered. 

A process fails if it does not successfully per- 
form the actions prescribed by the agreement algo- 
rithm. No assumptions are made restricting the 
messages sent by faulty processes. One can imag- 
ine that all faulty processes act maliciously, in 
collusion, and with magical knowledge of the state 
of the distributed system. 

A computation that functions as described 
above solves the Byzantine generals problem 
without authentication [3]. (Authenticated proto- 
cols protect relayed messages from alteration.) Let 
P be the number of processes that engage in the 
agreement computation and let T be an upper 
bound on the number of processes that may fail 
during the agreement computation. Byzantine 
agreement without authentication requires P > 3T 
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[6], and cannot be achieved in fewer than T + 1 
rounds [4]. 

A less general formulation of the problem as- 
sumes that a distinguished process transmits initial 
values to the other processes. This paper makes no 
assumption about the source of the processes’ ini- 
tial values. 

This paper describes a method for extending a 
binary Byzantine agreement algorithm to reach 
agreement on values from an arbitrary domain V. 
Any binary algorithm that does not require a 
distinguished transmitter process may be used. 
Two rounds are prepended to the binary algo- 
rithm. In the first round, each process sends every 
other process its initial value. In the second round, 
each process broadcasts a single bit of information 
by sending or not sending null messages. The third 
and subsequent rounds follow the chosen binary 
algorithm. 

Previous algorithms for reaching Byzantine 
agreement on values from an arbitrary domain V 
require processes to send messages whose length 
depends on the size of V in each round of the 
computation. Using the extension described in this 
paper, messages whose length depends on the size 
of V are sent only in the first round. Since the time 
that must be allotted each round of the computa- 
tion depends in part on the length of messages 
sent in the round, the extension enables significant 
savings when the domain is large. 

The prepended rounds are an integral part of 
the extended computation. In particular, agree- 
ment can be guaranteed only if no more than T 
processes fail during the computation, including 
the first two rounds, where P > 3T. (The chosen 
binary algorithm may make additional assump- 
tions.) 

The body of this paper contains three sections: 
a description of the extension, a proof of its cor- 
rectness, and a discussion of implementation con- 
cerns and performance characteristics. 

2. Description of the extension 

In the first round, each process sends its initial 
value to every other process. A process is said to 
be perplexed if, in the first round, it receives at 
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least as many as i(P - T) initial values different 
from its own. Processes that are not perplexed are 
said to be content. In the second round, each 
perplexed process sends a message to every other 
process. The semantics of this message is just “I 
am perplexed”. 

Each process maintains three local variables: 
two arrays indexed by process number and a 
boolean. These variables are assigned values dur- 
ing the first two rounds. For process j, and i #j, 
these variables are defined as follows: 

vci) - the process’s initial value, 
v(i) - the initial value received from process i, 

PO’) - a boolean that is set true if and only if 
process j is perplexed, that is, v(j) # v(i) 
for at least as many as i(P - T) distinct 
values of i, 

p(i) - a boolean that is set true if and only if 
process i sent a message claiming it is 
perplexed, 

alert - a boolean that is set true if and only if 
at least as may as P - 2T elements of p 
are true. 

The binary computation is used to reach agree- 
ment on alert. If the binary computation agrees 
alert = true, there are correct processes with differ- 
ent initial values from V. In this case, all correct 
processes use a predefined default value from V as 
the result of the extended computation. If agree- 
ment is alert = false, then all correct, content 
processes have the same initial value from V. This 
value is the result of the extended computation. 
Perplexed processes deduce this result by using the 
initial value that is common to a majority of the 
content processes. That is, each perplexed process 
tabulates as votes the values v(j) for which p(j) is 
false. The majority vote is for the value favored by 
the correct, content processes. 

3. Proof of correctness 

The extended computation is correct if (1) all 
correct processes obtain the same result value, and 
(2) the result value equals to common initial value 
whenever all correct processes begin with the same 
initial value. 
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The second claim is easily proved. If all correct 
processes have the same initial value from the 
domain V, then no correct process is perplexed 

*and all correct processes have alert = false. The 
binary computation agrees alert = false and all 
correct processes, which are content, use their ini- 
tial value as the result. 

The first claim has two cases: the binary com- 
putation agrees alert = true or alert = false. In the 
former case, all correct processes select the default 
value as the result of the extended computation. In 
the latter case, it is necessary to show that all 
content processes have the same initial value and 
that this value is deduced by all the perplexed 
processes. This will now be demonstrated. 

Any subset of more than i(P + T) processes 
contains a majority of the correct processes. From 
this basic fact, it follows that each content process 
has the same initial value as a majority of the 
correct processes. (Observe that $(P + T) and 

i(P - T) sum to P.) Since there cannot be two 
distinct majorities, all content processes have the 
same initial value. 

Since the result of the binary computation is 
alert = false, there are at least T + 1 correct con- 
tent processes, for otherwise there would be at 
least P - 2T correct perplexed processes and all 
correct processes would be alert and the result of 
the binary computation would be alert = true. Each 
perplexed process has p(j) false for all content 
processes and possibly for some incorrect 
processes. Since there are at most T incorrect 
processes, the content processes are a majority of 
those for which p(j) is false. Taking a majority vote 
of the v(j) for which p(j) is false produces the value 
shared by the content processes. 

4. Implementation and performance analysis 

Many binary algorithms favor one of the two 
values in the binary domain. The binary algo- 
rithms (without authentication) described in 
[1,2,3,5] all reach agreement for the favored value 
whenever more than T correct processes begin 
with that value. (Assume that the threshold LOW 

equals T + 1 in [1,2,5].) 
In the extended algorithm, the second round 

together with the binary computation can be inter- 
preted as reaching binary agreement on which 
processes are perplexed, providing agreement is 
reached for perplexed whenever f(P - T) or more 
correct processes are initially perplexed. If the 
chosen binary algorithm exhibits the bias de- 
scribed above, the second round of the extended 
algorithm can be omitted. (The chosen binary 

algorithm must require that each process sends all 
other processes initial binary values so that the 
values in the array p can be set.) 

A good multivalued Byzantine agreement algo- 
rithm is presented in [5]. Agreement is reached in 
2T + 4 rounds and requires 0(P3) messages each 
comprising O(log P log]V]) bits. The extension de- 
scribed in this paper using the algorithm in [5] to 
reach binary agreement reaches multivalued agree- 
ment in 2T + 5 rounds (the second round of the 
extension is not needed) and requires 0(P3) mes- 

sages having O(log P) bits and O(P*) messages 
having O(log(V() bits. The latter messages are sent 
only in the first round. 

The above analysis shows that the extension of 
the binary algorithm in [5] yields a multivalued 
algorithm that is cheaper in message bits than the 
multivalued algorithm described in [5]. The exten- 
sion enables this savings because only in the first 
round does it send messages whose length depends 
on the size of the value domain. The actual time 
savings possible depends on a variety of factors, 
including the cost of an additional communication 
round relative to the cost of sending large mes- 
sages, the size of the value domain, and the band- 
width of the communications network. 
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