
Information Processing Letters 18 (1984) 73-76

North-Holland

28 February 1984

I

EXTENDING BINARY BYZANTINE AGREEMENT TO MULTIVALUED BYZANTINE
AGREEMENT

Russell TURPIN *

Information Research Associates, 911 West 29th Street, Austin, TX 78705, U.S.A.

Brian A. COAN **

MIT Laborntory for Computer Science, Cambridge, MA 02139, U.S.A.

Communicated by David Gries
Received 20 December 1982

Revised 27 September 1983

A binary Byzantine agreement algorithm can be extended to produce a multivalued Byzantine agreement algorithm. The
resulting multivalued algorithm is cheaper than previously published algorithms when the cost of transmitting values from the
multivalued domain is significant.

Keywords: Byzantine generals, Byzantine agreement, fault tolerance in distributed systems

Introduction

The concern of this paper is a set of potentially
faulty processes that engage in a distributed com-
putation to agree on some piece of information.
Each process enters the computation with an ini-
tial value. The computation returns a common
result value to each correct process. If all correct
processes begin the computation with identical
initial values, then the result value equals the
initial value.

The computation is briefly characterized as fol-
lows. The computation is fully distributed and
symmetric. It includes several rounds of synchro-
nous message exchange over a completely con-
nected, totally reliable, communications network.

* The first author eschews government funding.
** The second author’s work was supported in part by the

Office of Naval Research under Contract NOOO14-82-K-
0154, the Office of Army Research under Contract
DAAG29-79-C-0155, and the NSF under Grants MCS-
8116678, MC%8302391 and MCS-8306854.

The correct processes communicate only through
messages. The communications network correctly
identifies the sender of each message to the recipi-
ent of the message. Processes are assumed to have
no signature ability (authentication). That is, there
is no immediate way of detecting whether a re-
layed message has been altered.

A process fails if it does not successfully per-
form the actions prescribed by the agreement algo-
rithm. No assumptions are made restricting the
messages sent by faulty processes. One can imag-
ine that all faulty processes act maliciously, in
collusion, and with magical knowledge of the state
of the distributed system.

A computation that functions as described
above solves the Byzantine generals problem
without authentication [3]. (Authenticated proto-
cols protect relayed messages from alteration.) Let
P be the number of processes that engage in the
agreement computation and let T be an upper
bound on the number of processes that may fail
during the agreement computation. Byzantine
agreement without authentication requires P > 3T

0020-0190/84/$3.00 0 1984, Elsevier Science Publishers B.V. (North-Holland) 73

Volume 18, Number 2 INFORMATION PROCESSING LETTERS 28 February 1984

[6], and cannot be achieved in fewer than T + 1
rounds [4].

A less general formulation of the problem as-
sumes that a distinguished process transmits initial
values to the other processes. This paper makes no
assumption about the source of the processes’ ini-
tial values.

This paper describes a method for extending a
binary Byzantine agreement algorithm to reach
agreement on values from an arbitrary domain V.
Any binary algorithm that does not require a
distinguished transmitter process may be used.
Two rounds are prepended to the binary algo-
rithm. In the first round, each process sends every
other process its initial value. In the second round,
each process broadcasts a single bit of information
by sending or not sending null messages. The third
and subsequent rounds follow the chosen binary
algorithm.

Previous algorithms for reaching Byzantine
agreement on values from an arbitrary domain V
require processes to send messages whose length
depends on the size of V in each round of the
computation. Using the extension described in this
paper, messages whose length depends on the size
of V are sent only in the first round. Since the time
that must be allotted each round of the computa-
tion depends in part on the length of messages
sent in the round, the extension enables significant
savings when the domain is large.

The prepended rounds are an integral part of
the extended computation. In particular, agree-
ment can be guaranteed only if no more than T
processes fail during the computation, including
the first two rounds, where P > 3T. (The chosen
binary algorithm may make additional assump-
tions.)

The body of this paper contains three sections:
a description of the extension, a proof of its cor-
rectness, and a discussion of implementation con-
cerns and performance characteristics.

2. Description of the extension

In the first round, each process sends its initial
value to every other process. A process is said to
be perplexed if, in the first round, it receives at

74

least as many as i(P - T) initial values different
from its own. Processes that are not perplexed are
said to be content. In the second round, each
perplexed process sends a message to every other
process. The semantics of this message is just “I
am perplexed”.

Each process maintains three local variables:
two arrays indexed by process number and a
boolean. These variables are assigned values dur-
ing the first two rounds. For process j, and i #j,
these variables are defined as follows:

vci) - the process’s initial value,
v(i) - the initial value received from process i,

PO’) - a boolean that is set true if and only if
process j is perplexed, that is, v(j) # v(i)
for at least as many as i(P - T) distinct
values of i,

p(i) - a boolean that is set true if and only if
process i sent a message claiming it is
perplexed,

alert - a boolean that is set true if and only if
at least as may as P - 2T elements of p
are true.

The binary computation is used to reach agree-
ment on alert. If the binary computation agrees
alert = true, there are correct processes with differ-
ent initial values from V. In this case, all correct
processes use a predefined default value from V as
the result of the extended computation. If agree-
ment is alert = false, then all correct, content
processes have the same initial value from V. This
value is the result of the extended computation.
Perplexed processes deduce this result by using the
initial value that is common to a majority of the
content processes. That is, each perplexed process
tabulates as votes the values v(j) for which p(j) is
false. The majority vote is for the value favored by
the correct, content processes.

3. Proof of correctness

The extended computation is correct if (1) all
correct processes obtain the same result value, and
(2) the result value equals to common initial value
whenever all correct processes begin with the same
initial value.

Volume 18, Number 2 INFORMATION PROCESSING LE’ITERS 28 February 1984

The second claim is easily proved. If all correct
processes have the same initial value from the
domain V, then no correct process is perplexed

*and all correct processes have alert = false. The
binary computation agrees alert = false and all
correct processes, which are content, use their ini-
tial value as the result.

The first claim has two cases: the binary com-
putation agrees alert = true or alert = false. In the
former case, all correct processes select the default
value as the result of the extended computation. In
the latter case, it is necessary to show that all
content processes have the same initial value and
that this value is deduced by all the perplexed
processes. This will now be demonstrated.

Any subset of more than i(P + T) processes
contains a majority of the correct processes. From
this basic fact, it follows that each content process
has the same initial value as a majority of the
correct processes. (Observe that $(P + T) and

i(P - T) sum to P.) Since there cannot be two
distinct majorities, all content processes have the
same initial value.

Since the result of the binary computation is
alert = false, there are at least T + 1 correct con-
tent processes, for otherwise there would be at
least P - 2T correct perplexed processes and all
correct processes would be alert and the result of
the binary computation would be alert = true. Each
perplexed process has p(j) false for all content
processes and possibly for some incorrect
processes. Since there are at most T incorrect
processes, the content processes are a majority of
those for which p(j) is false. Taking a majority vote
of the v(j) for which p(j) is false produces the value
shared by the content processes.

4. Implementation and performance analysis

Many binary algorithms favor one of the two
values in the binary domain. The binary algo-
rithms (without authentication) described in
[1,2,3,5] all reach agreement for the favored value
whenever more than T correct processes begin
with that value. (Assume that the threshold LOW

equals T + 1 in [1,2,5].)
In the extended algorithm, the second round

together with the binary computation can be inter-
preted as reaching binary agreement on which
processes are perplexed, providing agreement is
reached for perplexed whenever f(P - T) or more
correct processes are initially perplexed. If the
chosen binary algorithm exhibits the bias de-
scribed above, the second round of the extended
algorithm can be omitted. (The chosen binary

algorithm must require that each process sends all
other processes initial binary values so that the
values in the array p can be set.)

A good multivalued Byzantine agreement algo-
rithm is presented in [5]. Agreement is reached in
2T + 4 rounds and requires 0(P3) messages each
comprising O(log P log]V]) bits. The extension de-
scribed in this paper using the algorithm in [5] to
reach binary agreement reaches multivalued agree-
ment in 2T + 5 rounds (the second round of the
extension is not needed) and requires 0(P3) mes-

sages having O(log P) bits and O(P*) messages
having O(log(V() bits. The latter messages are sent
only in the first round.

The above analysis shows that the extension of
the binary algorithm in [5] yields a multivalued
algorithm that is cheaper in message bits than the
multivalued algorithm described in [5]. The exten-
sion enables this savings because only in the first
round does it send messages whose length depends
on the size of the value domain. The actual time
savings possible depends on a variety of factors,
including the cost of an additional communication
round relative to the cost of sending large mes-
sages, the size of the value domain, and the band-
width of the communications network.

Acknowledgment

Mani Chandy, while teaching a distributed al-
gorithms class, first posed the Byzantine generals
problem to Russell Turpin, who also would like to
thank Jay Misra and Doug Neuse for their criti-
cism and advice, and J.C. Browne and the em-
ployees of Information Research Associates for
their support. Brian Coan thanks Nancy Lynch,
Jennifer Lundelius and Eugene Stark for helpful
discussions and suggestions. Both authors are in-
debted to David Gries for editorial advice.

Volume 18, Number 2 INFORMATION PROCESSING LETTERS 28 February 1984

References

[l] D. Dolev, M. Fischer, R. Fowler, N. Lynch and H.R.

Strong, An efficient Byzantine agreement without authenti-

cation, IBM Res. Rept. RJ3428, Th.J. Watson Research

Center, Yorktown Heights, NY, 1982.

[2] D. Dolev and H.R. Strong, Polynomial algorithms for

multiple processor agreement, Proc. 14th ACM Symp. on

Theory of Computing (1982) pp. 40-407.

[3] L. Lamport, R. Shostak and M. Pease, The Byzantine

generals problem, ACM Trans. Programming Languages

and Systems 4 (3) (1982) 382-401.
[4] N. Lynch and M. Fischer, A lower bound for the time to

assure interactive consistency, Inform. Process. Lett. 14 (4)

(1982) 183-186.

[5] N. Lynch, M. Fischer and R. Fowler, A simple and efficient

Byzantine generals algorithm, 2nd Symp. on Reliability in

Distributed Software and Database Systems ,(1982) pp.

46-52.

[6] M. Pease, R. Shostak and L. Lamport, Reaching agreement

in the presence of faults, J. ACM 27 (2) (1980) 228-234.

