
MIT/LCS/TM-266

A Simple and Efficient Randomized

Byzantine Agreement Algorithm*

Heniiy (hoe

Brian A. Coan

MIT

August 22, 1984

Abstract: A n ow rali i it’d By 7.7111 nO agrean out ;ilgori Ii rn i pree,ited - This ilgori Ii 2) oper

ates in a synchronous system of n processors, at most. t of which calL fail. The algori thai reaches

2greemont in O(±/ log n) “xpcctcd rounds ud 0 (n2 t/ cg n) expcctcd mess:ge bits ndcpondcnt of

the distr, b,i ti on of proc 5 or fai lures. TI, is Irforl an ce s furt Cr in p roved to a I, fl sLant exp { i tel

ni mb Cr of roitii s and (3 u
2)

message bits if the 1i t H butinn of processor faili ties i asn!i ci to

he mi form. In ci ri: cr vomit, the ni gorit I mu ili:p rovi,s on the ku owl lower Lou i on ro tmijd for

de’rmuimims tic algorithms - Some oth cr act vantages oi U cc algorith a’ ‘c that it fl Ii N’s mb cry!) to—

graphic techniques, that the amount of local conip H tatiori is small anti tI at the (Xp ected number

of random hits used per processor is only “tie. It is nrgml od that in 1 imany pr;c t kimi applications

of B yz anti lie agrecmcli tIc randoim i zed algorithi lit of ELIS paper at I jieves s112 crior p urfor uce.

Keywords: Byzantine agrcenii’nt. fault tolerance, and ranJnunized alori thins.

0 1084 Massacl mmmsetts his Lit i ite of Tec hj to Ic gy

A ,rIiflu7iary vrrsic,,i of t!ii pa1er wi]i allar ii lie Frocct!i,ga of the Furib IEEE Syipipsin,,, on RcIinIiHty

i DstrIr,t , Scitwa ;uuj D:z{1J:L%c Svdn. 1934 WCl.

TI,i_ r-’.Irrl &1p1’{’r_rc ‘v tI N-F’ PLII4CY { ()(‘u—,,mr2D1 up’ ii SIC’—I€JU$. 3 tIc’ tJ_ S. Ari:’y

lirarrh (JIir’ linGer (c’tr:cl DAAC2U—?—c:—fl ‘55 uI /2 liAA49_s4—K—ric. tic! i-y lic AIV;L{c-C(I Rcs’ar’I

1’r’.ccts A,’tzi’-y if tip l)ep;iriipr,pt of Dcfw.’ ‘pidcr (u1 ra&

‘/

NIXIUI4_83—K-U125.

--2-

1. Introduction

Byzantine agreement is the prolleni of reaching a consensus in a dis trihu ted system of n pro—

cessors, at most t of which may fail in arbitrary, even notliciolis, Ways. III a randomized Byzantine

agreement algorithm each processor can use the results of local random coin tosses in the course

of reaching agreement. In this paper we present a synchronous randomized Byzantine agreement

algorithm that terminates in an expected O(t/ log n) rounds and that works for any n 3t + 1. This

contrasts with the lower bound oft + I rounds for deternunistic algorithms that was shown by Lynch

and Fischer [LF]. Our algorithm is of significance because it is simple and efficient enough to be of

practical ‘iso, because it performs better than any possible deterministic algorithm, because it op

erates for practical values of n and t, and because it does not require any cryptographic techniques.

Ben-Or [BeJ, Bracha and Toueg [UT], and Rabin [Eta] each have investigated the randomized

Byzantine agreemneilt problem. Their primary interest was asynchronous algorithms. hut simple

variants of their algorithms operate in the synchronous case. Because the topic of this paper is

synchronous algorithms, we will discuss only the synchronous variants of their algorithms. A full

comparison of the algorithms appears in Section 11; however, we give some advantages of our

algorithm here. Our algorithm improves on Ben-Or’s in that it operates efficiently for practical

ratios of n and t, and it improves on Rabin’s in that it does not require initial distribution of coin

tosses by a trusted, failure-free dealer. In the synchronous case, the algorithm due to Bracha and

Toueg is similar to the one due to Bert—Or. For simplicity, we will only make comparisons with

Ben-Or’s algorithm.

Brad a [Bri has recently devised a new raridonuzed Byzami tine agreement algorithnt that ter—

n]inates in an exp cc ted () (log n) ron nds - His aI goi-i thin as sullies a model of computation in which

cry, ographic techniques may be used to conceal inforriiation from malicious faulty processors.

This is different froti the model that we SSIi Tile 1I this mp er.

3

In evaluating a B yzantiiie agrceulen t algoritli in, it is oft eu useful to COIl SI (Cr the total uT 11111) Cr of

processors that is required by the system in order to tolerate t processor failures. Tins motivates us

to define rite redundancy of a system of n processors as (n--i) /t. Laniport, Sliost ak and Pease [TSP]

have si lown tint no deterministic lion— an thei tic ated algorithm is possible u iii ess the redundancy is

at. least. 3. An easy extension of th jr proof shows that this sani a,noi nt of redUndancy is required

for min Ic in i zed algori hms - It is ‘is ally I ic’s i rab ic to nthimize the redi on la’icy 11 a sys tern in order

to reduce the cost of hardware. It is always j,c,sb1e to increase the rcdii:icla:,cy in a system mid

maintain correct operation of a Byzantine agreement algoritlun; however. sonic of the algorithms

that we will consider have lower bounds on redundancy that are higher than 3. The basic algorithm

that we will present operates for any rediiitilancy of 3 or more.

If we postulate the existence of a global reliable random coin i coss. Byzantine agreement can

be reached in a constant expected number of rouuud using techniques deveIord by Ben-Ui and by

Rabin. Unfortunately, such a source of random coin tosses is unlikely to be available in a distributed

system subject to Byzantine faults. A central component of the known rairdonnzed Byzamtine

agreement algorithms is the simulation of a global reliable coin toss using other uiethiods. Ben-Or

and Ihihin each have techniques for producing global random coin tosses. Ben-Or uses a technique

which works well when the redundancy is high hut. which has a low probability of producing a good

toss when the redundancy is low In his technique, each processor tosses a coin indeperldentiy and

broadcats the result, If 0110 result predominates by a sufficient margin dicti a coin toss has been

produced; otherwise, no usable coil! toss has bn produced. A spread of sufficient size is likely only

wHet, the total niunher of processors is large rela[ive to the number of faulLs. As a conseqilence, his

Mgi)r: t I! n either reqI:ire a large (exponential) nber of rounds or a high anin’ nit of redundancy

(eq I ;tl to t) Rabin orod ices g!oim: oiii t 55 5 4 ..itlv however, he as in, CS 1 different. i ‘lore

powerful to ci of co itipu tat ion his coin tosses ace p recolup ii tccl i y a t mis ccl dealer w ii, splits

tic res I U ts of each coil! 055 Sc) t ‘in t t * 1 pron ssors can deteriii it ic the r’S ‘LIt, 1)1 ft processors

—4—

have 110 inftwnlatiolt. The di stri l,u ted, split coin tosses are an CX PCI! siVe resource that is partially

consumed at cact, execution of the algorithm. lu sonic applications, it may be unrealistic to assume

that a trusted dealer exists. Rabin’s algorithm i a good chc,ice in those applications where his

model seems realistic. The algorithni which we wiH describe will generate global coin tosses more

efficiently than Ben-Or’s algorithm but uses none of the extra mnachiriery of Rabin’s algorithm.

In particular, no reliable, trusted dealer is required. One way in which Our tecliIliqtIe is inferior

to theirs is that ours works only ! a synchronous system while theirs work in both synchronous

and asynchronous systems. There is sornetlitmig inherent in our technique that does not seem to

generalize to the asynchronous case.

A contribution of this paper is our new technique for generatiTig random Loin tosses that (whflo

they are not perfect) are of sufficiest quality to permit our algorithm to make rapid progress. We

now outline our technique for tossing coins. At each round, a snal1 rohlp of g prflrUOrS is assigned

the task of coin tossing. Each processor in this group tosses it ow!! coin mi] broadcasts the result.

The coin toss geierated by this group is the majority of individual outcomes. If more than half

the processors are faulty. they can bias the coin toss any way they waffi or cause some processors

to see heads and others to see tails. But, if fewer than half are faulty, there is a sufficier:tly large

prohabiJity that all correct coin tossers will have the same outcome (provided g is not too big).

If they all happen to have the same outcome, the majority is deterrnine! regardless of what the

faulty processors do. V.9th no more than I faulty processors, there can not be more than 2t/g

disjoint voups with a majority of faiLPy processors. After at most that many rounds, a grout) of

coin rosers with a majority of correct processors will be reached. We will show chat this leads to

fait rer]m!inarion of the algorithm.

We flow give a brief outline of I L, remamler of time pap. Tim Section 2 we define rite syn

chronous randomized By z-aut [ELC agreC :‘ieI :t proElei a. Tm Sc. tiom 3 we present the lists ir al gor it Ii ‘it. In

Section 1 we ana!y ze the ji erfor [i!ai Lee of the basic al g’ in t I! I !. 5cc ion 5 we present an alt eniati ye

algorit hni that doubles the ‘peed of rite basic algorithm at the cost of mcciii ring twice he amount of

redundancy. In Section 6 we eXplain how the performance of our a]goritlnn improves if the actual

number of faults is smaller thait tle bound on the niirnhier of fanits. t. fri Section 7 we thow that

it is possible to achieve coordinated rcr,iiiiiation (all processors (linde in the same round) with

high probability. In Section we present an alternative a[laiysis of the basic algorithm for the case

where processor failures are assumed to be umnifornflv randomly distributed. hi Section Owe discuss

the problem of reintegrating repaired processors into the algoritlin:. In Section 10 we explore an

application of our algorithm—speeding up the distributed lottery agreement protocol of Broder and

foley np:. In Section 11 we evaluate the basic a]gorithm by comparing it with the alternatives.

2. The Problem

A synchronous randomized Byzantine tgreeumemlt algorithn, is mmmi by a distributed system of n

processors at niosi i of which may fail. Time computation proceeds i,y the sending and receiving of

Jilesmge. Message exchange takes place in a srie of rounds over a network that is fully connected

and reliable. At each round a processor cam, toss coins as part of its computation. These coin

tosses affect me5sage generation and processor state. Correct proresso toss fair coins and send

messages according to their programs. Failed processors can scud arbitrary messages.

Each processor starts the algorithm with an input value, v, from a fixed set of legal inputs, V.

The goal is that after sending sonic rr1ess:Lge each processor wilL produce an answer. There are

two requirements on the answer. The agreement condition is that all correct processors produce

the same answer. The va/itity condition is that if all correct processors start the algorithm with

the same value, then this value will be the answer produced by the correct processors.

3. The Basic Algorithm

For simplicity of presentation, the algorit 1mm given here is binary (reaches agreement on one

bit). It can easily be extended to be lmImL]tivaltmed (reach agreement on arbitrary values) using the

6

cclii iq Ic of D 1rpm and Coan TC -

First, we give an informal description of the algorithm, tile!] we give tim code. Tue algorithm

is organized as a series of epochs of message exchange. Each epoch consists of two rounds. The

round structure is provided autoniatically by the synchronous communications network. In the

presentation of the algorithm, epoch and round numbers are shown as the first two components

of each Triessage. These should he viewed as implicit. They are shown only to make it easier to

,Iiscu ss he algorit] no.

The algorithm is pararrieterizcd by g, the group size; n, tim number of processors; and t, the

number of faults tolerated. It is assumed that n > 3t + 1. The parameter g is used to determine

the number of processors in each group of coin tossrs. The processers are divided into a ;naxiinal

number of disjoint groups of g processors each. Any processors that are left over belong to no

grouo. The rouos are numbered from I to n/g.

In each epoch, the processors cooperate to perform a distributed coin toss. In epoch e, the

group whose index is congruent to e rnodulo u/gj activdy performs the coin toss. All processors

attempt to observe the result. Each processor iii the active group tosses a coin arid broadcasts the

result. A processor calculates the coin toss of the group as the majority of the coin tosses it receives

from processors in tiae group. The value that processor P obstrves for a coin toss is defined to be

this majority value seen by P. If a group contains a large number of faulty processors, theja they

can control the outcome of the toss or cause correct processors to observe inconsistent values. We

will, however, show that for suitably selected group size, g, a largt enough number of groups will

toss sujikient ly ranilc,ni coins for o1r purposes.

We closcribc the algorithm for the processor P. (All processors run the same cole.) The

vanab] e CURRENT lioli is h, value Ii ‘at processor 1’ i rrently favors as the as’ Sw ti of the By an in e

agreement algorithm. At the start of the algorithm CURRENT is set to processor P’s input value.

In the first rom d of ,‘acli epoch, prom ssor P hiroadcas CU RI Ni’ Ii ased on the ro iml 1 messages

—7—

received, processor P cliaiiges CURRENT. if it sees at least n — t round i niessages for sonic j,articiilar

vajue, tlicii it assigns that value to c URRE Nil otherwise, it assigns the aistinguislicd value “1” to

CURRENT. In the second round of each epoch, processor P broadcasts CURI1BNF and (if required)

the result of a coin toss. Based Oil the round 2 messages received, processor P ealicr c-flanges

(UR[tNT or decides on an answer and exits the algorithm. Let ASS he the most fretji;ciit value

(other than “?“) in round 2 messages received by P. Let NUM be the number of such messages.

There are three c&es depending on the value of SUM. 1! SUM fl — t then processor P decides

on the value ANS and exits the algorithm. If n — t > NUM t 1 then processor 1’ assigns the

value ANS to the variable CURRENT and continues the algorithm, If t + 1 > NUM then processor P

assigns the coin toss it received in the curretit round to the variable CURRENT. The selected coin

toss is the one broadcast by the processor grouD whose index number is congruent to the cnrrent

ej)och number modulo [n/qJ the number of processor groups.

Code for processor P with parameters g, ri and t:

1. procedure E3YZANTINE_ ACREEMENT(INPUT):

2. CURRENT — INPUT

S. fore — 1 to Co do

4. broadcast (e, 1, CURRENT)

5. receive (e, 1, s) messages
6. if for some v there arc ji — t messages Ce, 1, u)

7. then CURRENT — V

8. else CURRENT .—

9. if ooup(P) e (mod [n/gj)
10. then TOSS — TOSS_COmN()

11. else TOSS 40

12. broadc&€t (e. 2. GUIIftENT. TOSS)

13. reccve (e, 2, ., *) messages

14. ASS — the value v such that (c, 2. v. mnessagcs are most frequent

15. NUM — nuniber of occurrences of (e, 2, ANS, *) Iiu:SSagCS

16. if NUM n — t then decide ANS

17. - elseif NUM t + 1 then CUIiTtINT 4— ANS

18. else CURRENT — majority toss fromii procestr group z where x e (mod {n,/gj)

We make several remarks about the ;lguritlun. GROUI’ is a procedure that takes as iri1nit a

processor identity and returns the processor’s group number. TOSS_COIN S a procedire that takes

no argil unit alt (I ret ti no s U ie res itt of a random co: Li tt,s (C) or 1) In s ciessage dcsc ript ions •“ is

a w id— Ca (I c IN LILC t Cr that nra tel es at iy fiing. Iii oroer to allow correct j cessors to stop Sen lhug

afler riley decide, we adopt the convenriohi that a processor that sends no niessage is airncd to

vote for the value in the last message that it sent. Therefore. a processor that has decided may

stop sending nwsages after the first round in which it broadcasts it decided value. Tins will either

be the round in which it decides or the next following round. Other invalid or missing messages

present no difficulty. A processor that sends such a message is faulty and therefore could have sent

anything. The recipient of such a message may correctly replace it by any valid message.

Define value as a legal input to the algorithm, either 0 or 1. Specifically “7” is not a value.

Lemma 1; During each epoch. at most one value is sent in round 2 (step 12) messages by correct

processors.

Proof: Assume at least one value is sent in round 2 of epoch e. Say processor P sends value v.

P has seen at least n — t messages (e, I v). At least 71 — 2t of them are from correct processors

and are therefore reliably sent to all proresors n the system. All processors have at least n — 2t

messages {e. 1, v) in a total of n messages. Tiis leaves at most 2t < it — I messages for some other

value. This is not enough to cause a correct proceor to stmd a round 2 message for a value other

than v. C

In Theorem 2 we jirove that our algorithm never produces a wrong answer and we prove that

in each epoch there is at [east one coin-toss value that will terminate the algorithm. The analysis

of the expected runnilig time of the algorithm follows in Section 4.

Theorem 2: The algorithm has the following three propcrties.

Validity: If value v is distributed as input to all correct processors, then all correct processors

decide v in round 2 of epoch I

Agreement: Let e be time first epoch in which a correct processor decides. If correct processor P

decides v in epoch e thexi by round 2 of c’;,nch e + 1 all correct proccssors decide v.

-9-

Teyminatlo n: In any epoch, e. there fr at least one value wIiidj (ifi is ado ted by all processors

executing the assignment in sej, 18) will cause sill correct processors to decide by round 2 of epoch

e+1.

Proof: We show that the algorithm satisfies the three conditions.

Validity: Asso me that Va lie v is (I!s tributed as input to all correct pro cessors Al (at least

n — t) correct processors broadcast v in rounds 1 and 2 of epoch 1. All correct processors assigul v

to ANS, set NUM to a value at least n — t, and therefore decide v in round 2 of epoch 1.

Agreement: For processor P to decide v in epoch e. it must he the case that P has see,, at

least n — t messages (e, 2. vt). At least n — 2t t + 1 of the messages are from correct processors

and are therefore reliably sent to all processors in the system. No correct processor sends round 2

messages for any value other than v (by Lerunia 1). Only failed processors send such messages.

Because there are at most t failed processors, there are at most I. round 2 n,essat’es for any value

ii v. All correct processors assign v to ANS. set NUM to a value at least t 1, and either decide

v in the current epoch or begin the following epoch with the variable CURHtNP equal to V. All

correct processors will therefore decide v by round 2 of epoch e + 1.

Termination: By Lemma 1, there is at most one value, say v, that is broadcast by correct

processors in round 1 of epoch e.Any correct processor that does not execute the assignment in

step 15 must have ANS = v because i is not poss,l’le to get more than t votes for a,iy other value.

The value v (if adopted by all processors executing the assignment in step 18 of epoch e) will cause

all correct processors to decide v by ronnd 2 of epoc]1 e + 1. This is because all correct processors

will start epoch e + 1 with the value v assigncd to the variable CURRENT. U

Based on the tcrmnation properly show,, in Theorem 2. we tutake the following defmition:

Define a good value in epoch e as one which (if it is adopted by all processors executing tIme

assign ii, cut in step 18) will cause all corric t processors to dcci di, by rorn) d 2 of ep oth e + 1. Define

— 10 —

a good coil’ toss in epoch c as one which distributes in epoch e a good value to all correct processors.

Define a bad value or coin toss as one which is not good.

We are 110w in a position to explain why randomization is necessary for the correct operation

of our algonthm. The termination part of Theorem 2 guarantees that in any epoch, say e, there

will he at least one good value. Tins value can, however, be determined by the failed processors

in round 1 of epoch e. if the coin toss were replaced with some predetermined value, then the

faulty processors could always cause the good value to differ from this predetermined value. In our

scheme, this strategy is unavailable to the faulty processors because the coin toss is not performed

until round 2 of epoch c—after the good value has already been fixed.

4. Analysis of the Algorithm

In this section we analyze the computational resources used by the basic algorithm. At the

yeLit ievei, we calculate hc expected number of rounds needed to reach agreement and the

expected number of message bits sent. At the processor level, we calculate the amount of internal

memory, the number of coniputation steps, and the expected number of random bits used by

each processor. In particular, we show that the expected number of rounds to reach agreement is

O(t/logn) and the expected number of random bits used by each processor is bounded above by 1.

The analysis is worst case in the sense that it allows faulty processors to behave maliciously and

holds for asiy distribution of them, as long as the redundancy is at least 3.

We define some terminology and notation. Let g = 2m + 1 denote the number of processors

in each group. (This relation between g and in holds for the rest of the paper.) Let c be the

coin toss generated at epoch e. We say that c, is fair if each correct processor observes the same

coiji toss and this coin toss is unbiased asd independent of previous coin tosses. Denote by Pc the

probability that the coin toss c is good (will cause termination), and let, q 1
—

-. 11 -

If there are at most in faulty processors among the coin tossers of epoch e (a majority of the

coin toer are correct), then

Pr(ç fair).

By Theori’n, 2 and the deEnition of good coin toss.

Prfr., good Ce fair) =

So, the conditional probability that e is good given that at most rn coin tossers are faulty, is at

least l/9m-rt

Theorem 3: For group size g = logn, the expected ziumber of rou,,th to reach agrernnent, r, is

bounded by

logn \logn

Proof: By tile definition o a good coin toss. agreement is reached by au correct processors at

most one epoch after a good coin toss is achieved. Every epoch consists of two rounds. Therefore,

if Exp denotes the expected nwnber of epochs until a good coin toss is acineved, then

r = 2 Ezp + 2.

The expected number ot epochs to get a good coin toss is

Ezp
=

e Pr(c is the first good coin toss)

Since fair coin tosses arc independent, we get

Pr(c is the first good coin toss) = qiq -1(1 —

12 -

so

Exp=c.qjq2’.q_j(1 —q€)

(1— qt) + (e-qjq3’.’q_I —eqjq,’qt)

l+qlq2-’’qe.

For any specffic e. an adversary can block 11w coin toss generated at epoch e by a2signing Tm + 1

faulty coin tossers. titus making qe 1. However, with a limited supply of faulty processors. s-uch

blockiiig can not be repeated indefinitely.

We start by analyzing the first In/gI coin tosses which are performed by disjoint groups of

processors. To do this we calculate an upper hound on qiq q. If qi < q—i for some

then the sum can be strictly increased by exchanging qj and Q11’ Therefore, we assume that the

sequence of is non-increasing. There can be at most t/(m + 1) groups with a majority of

faulty processors. These groups are hincked (the probahflity of getting a bad coin toes is 1). After

the blocked groups, afl groflps must have at least vu + I good processors and therefore at most

— 1/2” ‘ probability of producing a bad toss. Wt permit the adversary an infinite number of

such groups and calculate
n/q j

qlq2-q

After n/gj groups, we cycle back through the cciii tossers, and so

[n/qj

qlq2 ‘q (qlq2 ...q) (i +qzq2 ‘‘q[n/qj + (qiq2 ‘ ‘‘q[/J)2

+ r) (i + (qtq2
‘‘ QLnkJr)

With I faulty processors, at nust [t/ (m + I)j grol ps of coin tossers can be blocked. Therefore

- 1 n/gJ — Lt/(nt }-1)J

I[ri/qj
— 2 HI)

(n—2t)/g

< (i
2mf1)

-- 13 —

Using the bound t < nj3. we have

/ 1
\n/Sg

q1q2q’n:g’ < l\
— 2m—i)

Because q = log n and in < og n, we get (e = 2.718* in the next two equations)

/ j
\fl/39 /

\l fl\
;Si/aIojn

2m41)

The last bound implies
00 4i.31ogn

Z (qiq3 q9’ < 2 ()
and therefore

(m 1
2w._t)

(qIq2 o(1).

Combining all these bounds together, we get

Ezp < + ‘ji — o(i) = 0 (—P.—).
ogTZ logn

The expected number of rounds is therefore bounded ai,ove by 4t/log ii + 2/ -f o(1). C

We remark that by setting m = (1 — t) log it we have -

- p —
I

rn—I (I—t)fogn

so the constant 1 in the O(t/ log n) expression for the expected number of epochs cmi be achieved

asynipt.otic&Jy. Our aialysis is somewhat ioose in that the adversary can I-ru Se faulty j,rocesors.

For explicit va1ne of n t, and g the exact value of Ezp can be found by direct coniputnton. In

Table 1 we list some values of Er.p for small, practical systems.

i7bTe calculate the expected number of iiiessage bits sent by the basic algori tlu ri. Individual

messages have a constant size. In each roirid there are 0(n2) messages sent. By Theorem 3, the

expected niriiher of rounds is 0(t/ log n). Therefore, over the courc of the algorithm, all expected

o (n2 t/ log n) niessage bits are sent.

14 —

Expected Number of ‘&ies to Produce a Good Coin Toss

Processors Faults Group Size E(Tosses) PTOCCSSOFS Faults Group Size E(Tcss)

4 1 1 3.2 55 18 5 8.4

7 2 3 4.0 58 19 5 8.8

10 3 3 4.4 61 20 5 9.0

13 — 4 3 4.7 64 21 5 9.4

16 5 — 3 5.1 67 22 7 8.9
10 6 5 BA) 70 23 7 8.6

22 7 5 6.2 73 24 7 9.0

25 8 5 5.7 76 25 7 9.5

28 9 5 OS 79 26 7 9.3
31 10 5 6.3 82 27 7 9.7

34 11 5 7.1 85 28 7 0.7

37 12 5 6.8 88 79 7 10.0

40 13 5 6.9 01 30 7 10.0
43 14 5 7.5 94 31 7 10.4

46 15 5 7.5 97 32 7 10.7

49 16 5 8.0 100 33 7 10.8

52 17 5 8.1 — 103 34 7 11.1

Table 1 Cohi Tosiing Efficiency

In raniornized algorithms, the number of random bit3 used by each procesor is important.

Current physical dc-’vices for producing random hir are rather slow. If a large number of random

bits are required. then pseudo-raidorn ni:mbcr generators are often used. Flumsttad [P] showed

that the fast. ibjear congruence generators are not secure. Alter seeing a few outcomes, an adversary

can predict the remainI1g tosses (thus allowing rhe faulty processors to block all future coin tosses).

Secure pseudo-random number generators, based on cryptographic techniques are known to exist

under certain intractability assumptions (see {BM] and [ACGSfl. However, they require a lot, of

coinpua1;oi, so we are better off if we can avoid using thrift altogether A surprising result is the

number of random bits used by our algorithm. Tl;e exported number of times we cycle through

aJI groups of coin tossers is bounded above by 1. At each rycie One random bit is used by each

processor. Therefore. the expected ijiuniher of coins tossed by earli processor is bounded above by 1.

Slow ilysira! generarors are good enough then and it is not necessary to resort to pnudo-random

ntimbcr generators.

—. 15 —

The compiexi tv of t he i nt ‘ma! conIjnItatio] I is that of col, ntin g sin all numbers. fl IC dl non ut

of internal space requ red by our algorithm is small, Only log ii memory bits for counting NUM are

required. Reintegration of faulty processors is easy because no long histories need be stored (see

Section 9).

5. An Alternative Algorithm

Our basic algorithm is resilient to t < n/3 faults and uses two rounds per epoch. If the number

of fau]ty processors, t, is bound by t < n/C, then one round per epoch suffices. Thus the expected

number of rou,id is cut by a factor of 2. The code for this cac uses two thresholds to which NUM.

the number of sapporters for the current majority value. are compared. This two-tl,re]io!d scheme

is an adaptation of one by Rabin [Ral. If NUM falls between the two thresholds, the coin toss is

used to determine the value of the variable CURRENT in the next round. With the two thresholds

iurthe than I apart. one of the two possible outcomes of the coin toss is good. The generation

of coin tosses is done in the same way as in our basic algorithu. This makes the analysis of the

expected number of coin tos.,es needed to get a good one identical to the analysis in Section 4.

Code for processor P with parameters g, n, and t:

1. procedure BYZANTIIcE_ACRBEMEN’r({NPUT):

2. CURRENT — INPUT

3. for e 1 to -_ do
4. if GItOUP(P) c(niod [n/g)
S. then TOSS TOSS_GOING

6. else TOSS — C
7. broadcast (e, CUItREN’r, ross)
S. receive (e, *, *) messages
9. ANS — the value v such that (e, v, .) messages are most frequent

10. NUM — number of occurrences of (e. ANS. t) nkC’SSageS

11. if NUM n — t then decide ANS

12. elseif NUP it — 2t then C[;IiRENT 4— ANS

13. elseif NUM — 3t then CURRENT .— 0

14. else
15. COIN — majority toss from processor group x where x c (niod[n/gj)

16. if COIN = 0 then CURRENT —0

17. etseif COIN = 1 then CIJRRHNT — ANS

— 16 —

6. Early Stopping

Our algorithm is resilient to t faults, but the actual number of faulty processors, f, might be

smaller than the upper hound t. A desirable property of any Byzantine agreement algorithm is that

agreement be reached early in this case. Dolev, R.ioschuck, and Strong [DRS] have studied early

termination for deterministic Byzantine agreement algorithms. From the analysis in Section 4, it

follows that the expected number of rounds to reach agreement in the presence off faults is bounded

above by 4f/ log n + 2s/ ÷ o(1). Thus early stopping is automatically achieved. Furthermore, for

the range /ilogn 1< n/3, agreement is reached in O(f/logn) rounds.

7. Coordinated Termination

One disadvantage of our algorithm is that even though all processors start the algorithm in

exactly the same round, they might he off by one epoch when they terminate. In this section we

iiow UjaL a minor modification of the algorithm yields an almost certain coordinated termination,

namely all correct processors halt at exactly the same round with overwhelming probability. This

is done without violating the agreement, validity, and termination requirements, which will still be

achieved with probability 1. The expected running time is changed only by a small multiplicative

constant.

The modification is quite simple. We know that the expected number of epochs to roach

agreement in the basic algorithm is at most 2t/ logn + ‘+o(1) and that the tail probability for the

number of epochs converges rapidly. For example, the probability that more than St/log n epochs

will be needed is no greater than (j/)//3Iofl In the modified algorithm, each correct processor

will just delay the transition to a “halt” state until epoch 3t/ log n (in case it made its decision

before that epoch) and behave as before otherwise. l’lus guarantees coordinated termination by

/3lognepoch 3t/ log n with probability at least I — (1/c) . Greater confidence of coordinated

termination can be achieved at the cost of more rounds.

— 17 —

It remains to be seen whether Byz;uil.ine agreenieHt in 0 (t/ log ii) expected time and proba

bility 1 of coordinated ter:ijinatjon can be achieved. The deteri niiiit ic lower bound implies only

+ 1 worst case lower bound for any such algorithm.

8. Uniformly Distributed Processor Failures

In the previous analysis we have assumed that an adversary controls both the selection of

which processors fail and the behavior of the failed processors. It does this in the way which will

cause our algorithm the most difficulty. An alternative assumption is that the faufty processors are

randomly distributed.

In the analysis in this section we assume that the distribution of processor faults is uniform.

That is each of the () ways of distributing t faults among the ii processors is equally likely. We

retain the assumption that failed processors are under the control of the adversary and therefore

we ii a way w lui cii w Il cause ot r aigori hi i [he i riost diflic ul ty. In Thc,orein 4 we show that

for g = 1 and uniform processor faults our algorithm terminates in a constant expected number of

rounds. Because g = 1, each group of coin tossers consists of a single processor.

Theorem 4: lEg = 1 and processor faults are uniformly distributed, then the expected number of

rounds until the last correct processor decides is at most 8.

Proofi The expected number of rounds is 2c + 2 where c is the expected number of coin tosses to

get a good toss. We show that the expected jinritber of coin tises is at mOst 3. The probability

tint the coin toss of a correct processor is good is at least (by Theorem 2 and the fairness of the

coin toss). The probability that processor P is correct is at least. because n 3t + 1. Therefore,

the probability that the coin toss of processor P is good is at least . The conditional probability

that the coin toss of proccsor P is good given tint previous coin tosses have beni had is at least

as great as the unconditional probability (at least because the previous bad coin tosses increase

— 18

the conditional :ike]il1ood that processor P U a correct processor. Thervfore, the expected ninuher

of coin tosses is at most the mean of a geometric random variable with paranieter . This is 3. Th

We calculate the expected number of message bits sent by the algorithm. Individual messages

have a constant size. On each round. there are O(ri2) messages sent. By Theorem 4, rho expect-ed

number of rounds is 8. Therefore, over the course ,f the algorithm, a]] expected 0(n2) message

bits are sent.

Termination in a constant expected number of rounds is an attractive feature of the algorithm;

however, this feature is not unique to randomized algorithms. Under the same assumption of

uniform randomly distributed processor failures, a deterministic algorithm clue to Reisclrnk fRe]

also ternxinate in a constant expected number of rounds.

9. Reintegration of Failed Processors

It is possible br a processor [hat fails and is subsequently repaired to rejoin our Byzarnine

agreement algorithm. We assume that such a processor loses its local memory and that it runs

special recovery code after it is repaired. In order to rejoin the algorithm a processor needs to

replace its lost state information. This is easy with our algorithm because the amount of state

information is small. It, is also important that correct processors do not record the identities of

known faulty processors. Reintegrating failed processors permits the algorithm to tolerate a larger

number of failures as long as at most t occur simultaneously. In this section we describe how a

repaired processor rejoins the algorithm.

During an epoch, there are several times at which a ropaircd processor can rejoin the algorithm.

We describe one. The repaired processor simply begins the epoch with step 13, receiving round 2

messages. A processor that fails and is subsequently repaired is counted as a £üled processor only

from the epoch iii which it fails uut.il two epochs after it recovers. After that it is co,midered to be

a correct processor. The constraint is that at any time there are no more than failed processors.

— 19—

A processor that attempts to rejoin the algorithm after the correct processors have decided

or a.s they are deciding may not see enough messages in order to decide. To solve this problem,

we adopt the rule that a processor that sees t ± 1 or more silent processors in the epodi afler it

attempts to rejoin the algorithm will conclude that a decision has been reached It then broadcasts

a qurrv and decides on any value that it receives from at]east t 1 processors it is easy to see

that a processor that rejoins the algorithm as a decision is being reached can not be tricked into

making a wrong decision. There will not be enough votes for any incorrect value because only

faulty processors will cast such votes after a correct processor has decided.

10. Distributed Lottery Agreement

The goal of a distributed lottery agreement protocol is to produce an unbiased coin toss on

which all correct processors agree. The a priori probabilities of both outcomes should he equal,

rcgiLruwss oi ihe behavior of the fauisy processors. Broder and Doiev BD present a cryptographic

dist ribjited lottery agreement protocol which is resilient to t < n/2 faults and tak 3t + 3 rounds.

They also show a t + 1 worst case lower bound for any distributed lottery agreement algorithm.

In this section we show that for t < n/3. our Byzantine agreement algorithm can be used to speed

up the Broder and foley distributed lottery agreement protocol, resulting in O(t/ log n) expected

time for agreeing on the value of the coin toss.

The protocol of Broder and foley is se,ni-deter,ni,tiste in the sense that there is only an initial

raidojnizerl stage (in wInch each proessor tosses its own local coin, and picks a key for a public-

key crypt.osystem). After this inibal stage, there are three phases. In each phase, every processor

sends one value, and ri deterministic flyzatine agreements on each of these values are processed

ccinrurrcntly. At the end of rhw third phase, the value of the coin toss is known to all processors.

A cdt ical requirement is that the second (resp. third) phase not start before the results of all ii

Byzantine agreements from the first (resp. second) phase are determined. Both encryption (in a

— 20 —

way which is crucial to the algorithm) and auuIcT[ticahon are used. Authentication is needed only

for reaching Byzantine agreement in the c&so that n/3 t. if t < y/3. t]ien authentication is not

necessary.

Replacing deterministic Byzantine agreement by our probabilistic algorithm, we get a faster

method for distributed lottery agreement. A property of our algorithm is that if any correct

processor has decided on some value, this value is determined and will he agreed upon by all

correct processors no later then the next epoch. To use our algorithm in the distributed lottery

agreement, the following rule is imposed: After a processor decides on all ni values of the current

phase, it waits one epoch and only then sends its value for the next phase. By waiting one epoch,

it is guaranteed that when one correct processor tries to start the new phase, all correct processors

have already decided on alt values of the last phase. If a processor does not receive any value

from some sender one round after the processor has sent its own value, the processor assumes that

sender is faulty, and uses some default value as its initial value in the agreement on that sender’s

value. The epoch countiug is continued from the first epoch, so that au processor refer to the same

group of coin tossers throughout the three phases. We have shown that our Byzantine aeernent

algorithm can be used as a subroutine in the Broder and foley protocol. To see that we really

speed things up. use the rapid convergence of the tail probabilities. One can show that the expected

time for finishing n concurrent Byzantine agreements is no greater than twice the expected time

for ojie Byzantthe agreement. Hence we get

Theorem 5, Distrthutcd lottery agreement can be done in expected time U (t/ Jogn) for t < n/3.

Theorem 5 shows that the worst case lower bound of Broder and Doley can not be extended

to the average case.

11. Evaluation

In this section we evaluate the extent to which our aigorithni is of practical importance. We

—21—

do this by comparing our algorithm with three alternatives: Ben—Or’s randomized synchronous

algorithm. Rabin’s randomized synchronous aLgorithm, and a good deterministic algorithm.

When the rediuiclancy. i, of a system of processors is 0(t) - Dcii- Or’s aigorit hzri terminates in

a constant expected number of rounds. For practical systems. however, it is dcsirabe to operate

at a lower redundaflcy in order to minimize the cost of computer hardware. The ideal value is

— 3. Unfortunately, for ally 7 that is 0(1), Ben-Or’s algorithm requires an exponential number

of rounds. Compared to Ben-Or’s algorithm, ours is ‘Here efficient for practical amounts of system

redundancy.

Rabin’s algorithm terminates in a constant expected number of rounds; however, it requires

more resources than our algorithm. In particular, it requires a trusted dealer that distributes

random coin tosses before the start of the algorithm. The underlying mechanism is authentication

arid Shamir’s Si shared secret, if this cost seems small, then Rabin’s algorithm would he the choice.

On the other hand, if the cost seems high, then our algorithm would be the choice. We believe that

in practical systems, it is often unrealistic to assume the existence of a trusted dealer.

The most practical deterministic algorithm is due to Lynch, Fischer, and Fowler LFF!. There

arc trade-offs between their algorithm and ours. The principal advantages of the deterministic

algorithm are that it uses a fixed number of rounds and that all processors decide at the same

round. The principal advantages of our algorithm are that the expected number of rounds is

rnnaJl. that the expected number of message bits is small, and that only two rounds are required

if the input to all processors is the same. Our algorithm can not ensure synchronous termination;

lic,wever. using the techniques of Section 7. tlus property can be achieved with high probability.

We conclude that for a practical algorithm, one would choose either the deterministic algorithm

of Lynch, Fischer, and Fower or our randomized algorithm. The deterministic algorithm would be

chosen if the extra syiichronization that it provides were important, to the particular application.

O tI rwise, our rail do ‘III zed algon thin would he chosen If it seems realistic to assum ne ti ia t processor

—22—

faults are uniformly distributed, then the randomized algorithm is especially attractive because its

expected numing time is constant.

Acknowledgment

We would like to thank Noga Mon Jim Burns, Oded Coidreich, Leonid Levin, Bruce Lindsay,

Nancy Lynch, and William Weihi for many helpfu’ discussions.

References

[ACOS] W. Alexi, B. Char, 0. Goldreich, and C. Schnorr, “RHA/Rabin Bits Are + poly(Iog N)

Secure,” Proc. 25th Annual Symposium on Foundations of Computer Science (1984),

to appear.

[BU] A. Broder and D. Dolev, ‘Flipping Coins in Many Pockets (Byzantine Agreement on

Uniformly Random Values),” Proc. 25th Annual Symposium on Foundations of Computer

Science (1984), to appear.

[Be] M. Ben-Or, “Another Advantage of Free Choice: Completely Asynchronous Agreement

Protocols,” Proc. 2” Annual ACM Symposium on Principles of Distributed Computing

(1983)

[BM] M. ilium and S. Micali, “How to Generate Cryptographically Strong Sequences of I’seudo

Random Bits,” SIAM Journal on Computing, to appear.

[Br G. Bracha, “A Randomized Byzantine Agreement Algorithm with an O(log n) Expected

Rounds,” manuscript (1984).

BTJ C. Bracha and S. Toueg, “Resilient Consensus Protocols,” Proc. 2nd Annual ACM Sym

posium on Principles of Distributed Computing (1983).

[CC] B. Chor and B. Coan, “A Simple and Efficient Randomized Byzantine Agreement Algo

rithm,” Proc. 4th Symposium on Reliability in Distributed Software and Database Systems

(1984), to appear.

— 23 —

DRS D. Doicy, R. Reisebuk, and H. R. Strong. “Eventual is Earlier than ljn,ncdate.” Proc.

23td Annual Symposium on Foundations of Computer Science (1982).

[LF] N. Lynch and M. Fischer, “A Lower Bound for the Time to Assure Interactive Consis

tency,” Information Processing Letters 14(4) (1982).

!LFFI N. Lynch, M. Fischer. and R. Fowler, A Simple and Efficient Byzantine Geucmls Algo

ritlim,” Proc. 2’ Symposium on Reliability in Distributed Software and Database Systems

(1982).

[LSPJ L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem” ACM flan

actions on Programming Languages and Systems 4(3) (1982).

[P] 1 Plumstead, “Inferring a Sequence Generated by a Linear Congruence,” Proc. 23’

Annual Symposium on Foundations of Computer Science (1982).

IRa] M. Rabin. “Randomized Byzantine Generals,” Proc. 24th Annual Symposium on Foun

dations of Compiter Science (1983).

[Rej ft. Reisehuk, “A New Solution for the Byzantine Generals Problem,” IBM-R.J-3673

(1982).

5] A. Shamir, “How to Share a Secret,” Commtnications of the ACM 22(11) (1979).

[TC] R. Turpin and B. Coan, “Exte,ding Binary Byzantine Agreement to Multivalued Byt

anhine Agreement.” Information Processing Letten 18(2) (1984).

