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A b s t r a c t :  Many fault-tolerant distributed protocols are 
known. Some of these require a large (exponential) amount 
of communication. We present a general simulation of 
any synchronous fault-tolerant consensus protocol by a 
communication-efficient protocol. An important corol- 
lary of the simulation technique is a new communication- 
efficient Byzantine agreement protocol that uses about half 
the number of rounds required by the best previously- 
known communication-efficient Byzantine agreement pro- 
tocol. Our new protocol approaches the known lower 
bound for rounds to within a small factor arbitrarily close 
to 1. The only known protocols which achieve the lower 
bound for rounds use an exponential amount of communi- 
cation. 

1. I n t r o d u c t i o n  

For almost the past ten years, the task of achiev- 
ing consensus in a fault-tolerant distributed computer sys- 
tem has been recognized as a fundamental problem in 
distributed computing. Protocols have been designed to 
solve many consensus problems including the agrebment 
problem (see [13] and [15]), the approximate agreement 
problem (see [7] and [9]), the crusader agreement problem 
(see 'th]), the firing squad problem (see [2] and [4]), and the 
weak agreement problem (see [12[). These protocols oper- 
ate in a variety of fault models including Byzantine, au- 
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thenticated Byzantine, failure-by-omission, and fail-stop. 
Some protocols for the Byzantine fault model require a 
large (exponential) amount of communication, for exam- 
ple, the agreement protocol of Lamport et al. [13] and the 
approximate agreement protocol of Fekete [9!. 

We give general upper bounds on the number of bits of 
communication needed for any synchronous simultaneous- 
start non-cryptographic consensus protocol. More pre- 
cisely, we show how to transform an arbitrary consensus 
protocol into a canonical-form protocol; the new proto- 
col solves the same problem as the original, but only uses 
an amount of communication that is polynomial in the 
number of processors and the number of rounds of mes- 
sage exchange. To achieve this small communication cost, 
the new protocol incurs an increase in running time ( i . e . ,  
rounds of message exchange). There is a tradeoff between 
the number of rounds and the ~ degree of the polynomial 
bounding the communication. The value of this tradeoff 
is determined by a numerical parameter to the transfor- 
mation. For any c > 0 the transformation can produce 
a canonical-form protocol that increases the number of 
rounds of the original protocol by a factor of 1 + e and 
that uses O ( r  • nr2/~]+3 . log ]Vl) bits of communication 
where n is the number of processors, r is the number of 
rounds, and V is the set of possible inputs to the original 
protocol. Throughout this paper we let n be the num- 
ber of processors in the system and we let t be an upper 
bound on the number of processor faults that a protocol 
need tolerate. 

Our transformation was developed for the Byzantine 
fault model. In more benign fault models like failure-by- 
omission*and fail-stop there is a simple extension of our 
transformation that causes t~o increase :n the number of 
rounds. Because the most interesting applications of our 
transformation are in the Byzantine fault model, we will 
restrict our attention to that model in the remainder of 
this paper. 

As a corollary to the results in the Byzantine fault 
model, we obtain a major new result about the communi- 
cation requirements of Byzantine agreement. The earliest 
Byzantine agreement protocols [13] used exponential com- 
munication and t + 1 rounds; t + 1 is the known lower bound 
on rounds [10]. Subsequently, improved protocols yielded 
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polynomial communicat ion using about 2t rounds (see [6], 
{8], [14], and [lSJ). An open question among researchers in 
this area for the past  few years has been whether  there are 
any protocols that  simultaneously use fewer than 2t rounds 
and polynomial communicat ion.  We obtain an interesting 
answer to this question. For any e > 0 there is a pro tocol  
that  uses (1 + e)(t + 1) rounds and polynomial communi-  
cation. We obtain  this result  by applying our t ransforma- 
tion to the communication-inefficient (t + l ) - round proto- 
col of Lampor t  et al. Another  use for our t ransformat ion 
is improving the communicat ion  complexity of a new ap- 
proximate Byzantine agreement protocol of Fekete [9]. His 
protocol has the opt imal  convergence rate for any multi- 
round approximate agreement  protocol, but  requires expo- 
nential communicat ion.  Using our new technique, we can 
t ransform his protocol into a polynomial-communicat ion 
protocol with a near opt imal  convergence rate. 

Our new method  for transforming an arbi t rary con- 
sensus protocol,  say P,  into a communication-efficient 
canonical-form protocol is a two-step process. The proto- 
col .P is first t ransformed into a lull-information protocol; 
the resulting protocol is then transformed into a compact 
]ull-information protocol.  A full-information protocol is a 
well known [10] communication-inefficient canonical-form 
protocol in which each processor, at each round, broadcasts  
its entire state,  receives one message from each processor, 
and forms its new state as the ordered collection of all 
messages received. To transform P into a full-information 
protocol it suffices to find a decision rule for each processor 
to apply locally to its state. It is not necessary to devise 
message generat ion rules because all full-information pro- 
tocols have the same rule: at each round each processor 
broadcasts its entire state.  Pease et al. [15] show that  
any consensus protocol P can be t ransformed into a full- 
informat ion protocol, by showing how to find the decision 
rule that  corresponds to P.  This first t ransformat ion of P 
gives a full-information canonical-form protocol that  uses 
the same number of rounds as .P and exponential  commu- 
nication. We want to do much bet ter  than this in commu- 
nication. 

In the second step we further t ransform P into a com- 
pact full-information protocol tha t  uses only polynomial  
communicat ion.  Because we have already shown how to 
put P in the form of a full-information protocol, it is suf- 
ficient to show how to simulate the message exchange of 
a full-information protocol using polynomial  communica-  
tion. The  compact  full- information protocol  consists of 
this simulation together with the same decision rule used 
in the full-information protocol. 

The heart  of our technique is our new method for 
efficiently simulating the message exchange port ion of a 
full-information protocol. We do this by using data  com- 
pression techniques to condense the information being sent 
around. Messages are compressed by the sender and ex- 
panded by the recipient. In parallel with the rest of the 
compact  full-information protocol,  each processor at each 
round computes  an expansion function that  it can apply 
to incoming compressed messages to obtain the full mes- 

sage text. It is necessary that all correct processors be 
able to consistently expand any message sent by a correct 
processor. This consistency requirement seems difficult to 

achieve in the presence of faults, because it requires that 
the correct processors agree on how to carry out the com- 

pression and expansion. Such agreement might, at first, 
seem to require Byzantine agreement or some other time- 

costly protocol. We overcome this difficulty by using a 

new, different form of agreement that we call avalanche 
agreement. The difference between avalanche agreement 

and Byzantine agreement is explained in Section 4. Using 
an avalanche agreement protocol to agree on their expan- 

sion function enables the correct processors to achieve a 

sufficient level of agreement at a cost that we can afford. 

One limitation of our technique is that it can use a 
large amount of local computing resources. A complete 

reconstruction of the local state of processors in a full- 
information protocol requires exponential space and time. 
It is straightforward to devise an efficient data represen- 

tation that requires only a polynomial amount of space; 

however, the question of how much time is required to 
reach a decision remains open. 

In Section 2 we review the definition of the Byzantine 

agreement problem. In Section 3 we give our definition 

of simulation. In Section 4 we define the avalanche agree- 
ment problem and give a protocol that solves the problem. 
In Section 5 we present a compact full-information proto- 

col -- a communication-efficient protocol that simulates a 

full-information protocol. 

2. The Byzantine Agreement Problem 

A synchronous Byzantine agreement protocol is run 

by a distributed system of n processors, at most t of which 
may fail. Communication is over a network that is fully 
connected and reliable. The computation takes place in a 
series of rounds. In each round the correct processors first 
send messages, then receive messages and finally make a 

local state change based on the messages received and their 

state. Correct processors send messages according to their 
programs. Failed processors can send arbitrary messages. 

Each processor starts the protocol with an input 
value, v, from a fixed set of legal inputs, V. The goal 

is that after some number of rounds each correct processor 
will irrevocably decide on an element of V as its answer. 

There are two conditions that the correct processors must 

satisfy. 

• Agreement condition: All correct processors reach the 
same decision. 

• Validity condition: If all correct processors s tar t  the 
protocol with input v then v is the decision of all of 
the correct processors. 

3 .  S i m u l a t i o n s  

In this section we give our definition of one proto- 
col s imulat ing another  and we characterize some impor- 
tant  properties of prQtocol behavior that  are preserved 
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by our simulations. We take the first step toward show-' 
ing that  any consensus protocol can be simulated by a 
communications-efficient protocol, that  is, we show that  
the full-information protocol can simulate any consensus 
protocol. After this section, the remainder  of the paper is 
devoted to showing how to simulate the full-information 
protocol using a part icular  communications-efficient pro- 
tocol which we call the compact  full-information protocol. 

3.1 D e f i n i t i o n s  

Following Lynch, Fischer, and Fowler [14] we model a 
consensus protocol as a synchronous system of automata .  
We find it convenient to introduce this formalism in order 
to discuss simulations. Later, when we give our protocols 
we will use a higher level language. The  mapping back to 
au tomata  is straightforward. A protocol .P is described by 
the following. 

• V is the set of input values. 

• Q is the set of processor states.  

• L is the set of messages. 

• #p,q : Q ~ L, for p,q E { 1 , . . . , n } ,  is the message 
generation function for messages sent from processor p 
to processor q. 

• 6p : L n ~ Q, for p E {1 . . . .  ,n},  is the state tran- 
sition function for processor p. (The prior state of 
processor p is omit ted  from the domain of ~ip because 
it would be redundant.  Processor p can send any re- 
quired information in a message to itself.) 

• 7 p  : Q ~ {_1_} u V, for p E { 1 , . . . , n } ,  is the decision 
function for processor p. 

An element of Q is identified with each element of V. 
These are the initial states. The  decision of processor p in 
some execution of protocol P is the first non-& value of 
3'p(si) where si is the round i state of processor p. After 
processor p has decided, future values of 7p are ignored. 

A round consists of sending messages, receiving mes- 
sages, and making a local state change. Each processor 
starts in the initial state corresponding to its input value. 
In any execution of protocol P a correct processor sends 
according to its message generat ion function and a faulty 
processor sends arbi t rary messages from L. An execution 
of protocol P is a 4-tuple (k, F, I ,  M)  where k is the number 
of rounds in the execution, F is the set of faulty proces- 
sors, I is a vector of inputs for the processors, and M is the 
set of messages (with their origin, destination, and round 
sent) sent by faulty processors in all rounds up to round k. 
In this paper  we restrict our at tention to executions in 
which the number of faulty processors is less than t. Let 
processor p be correct in execution E.  We let state(p, i, E) 
denote the round i state of processor p in execution E. 

Let P and .P' be protocols with the same set of possible 
inputs. Protocol 2 '  simulates protocol P if there is a non- 
decreasing functiorL r from the natural  numbers onto the 
natural  numbers and a set of functions fp for p E { 1 , . . . ,  n} 
from the processor states of P '  to the processor states of .P 

such that  for any execution E' = (k, F, I, M')  of P '  there 
is an execution E = (r(k),.F, I, M) of P such that  for any 
correct processor p and for any i (where 1 < i < k) it is 
the case that  h(s ta te (p , i ,E ' ) )  = state(p,r(i) ,E).  We say 
that  the fp are the simulation functions and that  r is the 
sealing function. 

Execution E of protocol 2 is a deciding execution if all 
processors that  are correct in E have decided. Protocol P 
terminates if there is some k such that  any k-round execu- 
tion of P is a deciding execution. If E = (k, F, I , M )  is a 
deciding execution of 2 then has(E) is defined to be the n- 
tuple whose pth component  is state(p, k, E) if processor p 
is correct in E and ± otherwise. 

Predicate  C is a correctness predicate if its domain is 
(VU{A_})n x2{1 ...... } x V n. Protocol  P satisfies correctness 
predicate C if for any deciding execution E = (k, F, I ,  M)  
the value of C(ans(E) ,F, I )  is true. We observe that  
the correctness conditions for Byzantine agreement and 
approximate agreement can be formulated as correctness 
predicates. 

T h e o r e m  1: If protocol P' simulates protocol P with sim- 
ulation functions fp forp ~ ( 1 , . . .  ,n},  P has decision func- 
tions "Tp for p E { 1 , . . . , n } ,  and P' has decision functions 
"7~(s) = "Tp(fp(s)), for p 6 {1 . . . .  ,n} then the following 
two conditions hold. 

(1) If  protocol P terminates then so does protocol P". 

(2) If protocol P satisfies sor~e correctness predicate C 
then so does protocol P'. 

P r o o f :  Let r be the scaling function of the simulation. 

Condition (1): Because protocol P terminates there is 
a k such that  all k-round executions of P decide. Because 
r is onto, there is a k' such that  r(k') = k. We show that 
an arbi t rary k ' - round execution E '  = ( r ( k ) , F , I , M  t) of 
.P' must decide. By the definition of simulation there is a 
deciding execution E = (k, F, I ,  M)  of .P such that  for all 
correct processors p and for all i (where 1 < i < k') it is the 
case that  f v ( state(p, i, E') ) = state(p, r( i) , E ). Because r 
is onto and by the choice of ~' ,  execution E '  is also a 
deciding execution. Therefore protocol pi terminates.  

Condition (2}: Suppose not. Then there is a de- 
ciding exbecution E' = ( k , F , I , M ' )  of P '  such that  
C(ans(E'), F,I)  is false. By the definition of simulation 
there is an execution E = ( r ( k ) , F , I , M )  of 2 such that  
for any correct processor p and for any i (where 1 < i < k) 
it is the case that  fp(state(p, i, E')) = state(p, r(i),.E). By 
choice of 7' ,  C(ans(E), F, I) is also false, contradiction. [] 

3.2 A S i m p l e  S i m u l a t i o n  

In the full-information protocol (shown as Protocol 1) 
each processor at each round broadcasts its entire state,  re- 
ceives one message from each processor, and forms its new 
state as the ordered collection of all messages received. We 
now review the well-known result that  a full-information 
protocol can simulate an arbitrary consensus protocol. 

65 



1. 
2. 
3. 

Ini t ia l izat ion for processor  p: 

STATE ~ the init ial  value of processor  p 

Code for processor  p in round  r: 

b roadcas t  STATE 
receive MSGq f rom processor q for 1 < q < n 
STATE ~ (MSGi, . . .  ,MSGn> 

P r o t o c o l  1: The  Ful l - Informat ion  Protocol  

T h e o r e m  2: Let protocol P be an arbitrary consensus 
protocol. The full-information protocol simulates proto- 
col P. 

P r o o f :  Let Q be the  s ta te  set of the  fu l l - informat ion pro- 
tocol. Suppose  protocol  P has inpu t  set V, message gen- 
e ra t ing  functions/zp,q for p,q E { 1 , . . . , n } ,  and  s t a t e  t ran-  
s i t ion funct ions  tip for p E {1 . . . .  , n} .  Let r be the iden- 
t i ty funct ion  on integers and  define fv(s) for s E Q and  
p E {1 . . . . .  n}  to be 

{ s  i f s E V ;  
f v ( s ) =  8v(#l ,v(f l(s~))  . . . .  ,#,~,v(f,~(sn))) otherwise.  

We can verify t h a t  the  s imula t ion  has  s imula t ion  funct ions  
fv for p E { 1 , . . . , n }  and  scaling funct ion  r. [] 

4 .  A v a l a n c h e  A g r e e m e n t  

We formula te  and  solve the avalanche agreement  prob-  
lem as a bui ld ing block for use in our compac t  full- 
informalfion protocol .  At  var ious points  in the  compac t  
fu l l - inf0rmat ion protocol  it is convenient  to achieve some 
measure  of agreement  among  the  correct  processors.  We 
might  t ry using a s t a n d a r d  Byzan t ine  agreement  protocol  
for this  purpose.  Unfor tunate ly ,  we find t h a t  we canno t  af- 
ford the cost (in rounds)  of s t a n d a r d  Byzan t ine  agreement .  
By using an  ava lanche  agreement  protocol  ins tead,  we are 
able to achieve a sufficient level of agreement  among  the  
correct  processors  at  a cost t h a t  we can afford. 

A protocol  t h a t  solves the  avalanche agreement  prob-  
lem operates  under  the  same failure and  communica t i on  
a s sumpt ions  as a Byzan t ine  agreement  protocol .  Each pro- 
cessor begins the  protocol  e i ther  wi th  an input  value from 
some fixed set V or wi th  no input .  We refer to the  e lements  
of the  set V as values, and  we indicate  the  absence  of an  
input  by saying t h a t  a processor  has  input  _l_. Each cor- 
rect processor  may, at  some po in t  du r ing  the  execut ion of 
the  protocol ,  i r revocably decide on a value (element  of V) 
as its answer.  There  are three  condi t ions  t h a t  the  correct  
processors must  satisfy. 

• Avalanche condition: If any correct  processor  de- 
cides v in round  r then  all correct  processors decide v 
by round  r + 1. 

• Consensus condition: If all correct  processors  s t a r t  
the  protocol  wi th  i npu t  v then  v is the  decision of all 
of the  correct  processors by round  2. 

• Plausibility condition: If any correct  processor de- 
cides v then  v mus t  have been the input  to some cor- 
rect processor.  

There  are five ways in which the  ava lanche  agreement  
p rob lem differs f rom the s t a n d a r d  Byzan t ine  agreement  
problem.  Fi rs t ,  there  is no requ i rement  t h a t  all execut ions 
(of an  avalanche agreement  protocol)  t e rmina te .  Second, 
cer ta in  execut ions  ( those in which  all correct  processors  
have the  same  input)  are required to t e r m i n a t e  very fast 
(in two rounds) .  Th i rd ,  in any execut ion t h a t  t e rmina tes ,  
all of the  correct  processors  are requi red  to make thei r  
decisions wi th in  some window of two rounds .  Four th ,  some 
correct  processors may begin the  protocol  wi th  no input  
value. Fi f th ,  no correct  processor is pe rmi t t ed  to produce 
as an  answer  any value t h a t  was not  the  inpu t  to at  least 
one correct  processor.  The  first of these  differences tends  to 
make the  avalanche agreement  p rob lem easier to solve t h a n  
the  Byzan t ine  agreement  problem.  The  r ema inde r  of the 
differences tend  to make  the  avalanche agreement  p rob lem 
harde r  to solve t h a n  the  Byzan t ine  agreement  problem.  
The  combined  effect of all of the  differences is to make the 
two prob lems  incomparab le .  

A va r i an t  of the  Byzan t ine  agreement  p rob l em formu- 
lated by Dolev [5 t is the  crusader  agreement  problem.  At 
first glance, the  avalanche agreement  p rob lem may appear  
s imilar  to the  c rusader  agreement  p rob lem,  bu t  this  simi- 
larity is superficial.  The  two problems  are incomparab le .  
Crusader  agreement  is a ha rde r  p rob lem in t h a t  all execu- 
t ions of a protocol  mus t  be deciding execut ions.  Avalanche 
agreement  is ha rde r  in t h a t  the  answer,  if it exists,  mus t  
be unique.  By cont ras t ,  up to two d is t inc t  answers  can be 
p roduced  by correct  processors in an .execu t ion  of a cru- 
sader  agreement  protocol.  Some correct  processors  agree 
on some answer;  the  rest  decide t h a t  the  sender  is faulty. 

It is s t r a igh t fo rward  to use s t a n d a r d  techniques  like 
those of Fischer,  Lynch,  and  Mer r i t t  II_l] to show t h a t  
there  is no avalanche agreement  protocol  t h a t  tolerates  t 
processor  faults  unless the ~otai n u m b e r  of processors,  n, 
is a t  least 3t ÷ 1. This  bound  is t ight .  Protocol  2 solves 

the  ava lanche  agreement  p rob lem for n = 3t ÷ 1. It is 
a new de te rmin i s t i c  protocol  designed to solve this  new 
problem;  however,  it incorpora tes  many  ideas from previ- 
ously known randomized  protocols  for the  s t a n d a r d  Byz- 
an t ine  agreement  problem.  Among  these are the protocols 
of Ben-Or  [1], of Chor  and  Coan  [3], and  of Rab in  [17]. 

Consider  the var iant  of the  avalanche agreemerit  prob-  
lem in which the consensus  cond i t ion  has  been s t r eng th -  
ened to require  agreement  in one round  ra the r  t h a n  two. 
It is s t ra igh t fo rward  to use the  proof  techniques  of Fischer 
and  Lynch [10] to show t h a t  if n < 4t there  is no solut ion 
to this var iant .  I f n  > 4 t + l  then  it is easy to solve the  
p rob lem using a s imple  var ian t  of Protocol  2. We omit  the  
detai ls  here. 

In the  following discussion and  proof  of Protocol  2 we 
a p p e n d  two subscr ip t s  to each var iable  f rom the  protocol.  
The  first subscr ip t ,  say r, is a posi t ive integer and  the  sec- 
ond  subscr ip t ,  say p, is in { 1 , . . . ,  n}. By this  no ta t ion  we 
mean  the value of the  subscr ip ted  var iable  at  processor  p 
at  the end of r o u n d / ' .  For example ,  VALr,p is the  value of 
variable  VAL at  processor  p a t  the  end  of round  r. 
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Initialization for processor p: 

VAL ~ the initial value of processor p 

Code for processor p in round r: 

1. broadcas t  VAL 
2. r e c e i v e  M S G q  f r o m  processor q for 1 < q ~ n 
3. let ANS be the most  frequent non-_L message 

among the MSGi (break t ies  arbitrarily) 
4. let NUM be the number  of occurrences of nNs 
5. i f r  = 1  then 
6. if NUM >_ 2t + 1 

then VAL ~ ANS 

else VAL ~ .J_ 

7. i f r  > 1 then 
8. if N U M  ~ t ÷ 1 then VAL ~ A N S  

9. if NUM > 2t + 1 and have not decided yet 
then decide VAL 

P r o t o c o l  2: The Avalanche Agreement  Protocol 

In any execution of Protocol  2, value v is persistent 
if there is some correct processor p such that  V.~L~,p = v. 
Processor  p votes for value v in round  r if it sends any 
round r messages containing only v. In every round each 
correct  processor broadcas ts  a message containing at most 
one value. A single message that  contains more than  one 
value is obviously erroneous and is discarded immediately 
by its recipient. So, a correct  processor only votes for 
one value in each round,  but  a faulty processor may vote 
for many values by sending conflicting votes to different 
recipients. 

We give an informal description of the avalanche 
agreement  protocol before proving it correct.  All proces- 
sors run the same code. For convenience we describe the 
protocol from the point of view of an arbi t rary correct pro- 
cessor p. At the end of round r, the variable vnL~,p holds 
the value, if any, tha t  processor p currently prefers as its 
answer. In round r + 1 processor p votes for VALr,V and 
then updates  its preference bas.ed on the votes it receives. 
The first round plays a speda l  role in the protocol. In 
round 1, the number  of values favored by correct proces- 
sors is reduced to at most  one - -  the persistent  value. The 
protocol ensures tha t  after round 1 no correct processor 
votes for any value other  than the pers is tent  value. In the 
second and subsequent  rounds processor p uses the num- 
ber of votes to predict  when there will be an "avalanche" 
of correct  processors favoring some value v (which must  be 
the unique persis tent  value). As soon as processor p gets 
enough (2t + 1) votes to predict  an avalanche it decides v. 
Processor  p continues to par t ic ipate  in the protocol (send 
and receive messages) after it has decided. 

L e m m a  3: There is at mos t  one pers is tent  value. 

P r o o f :  Assume not. Then,  there are values v and v t and 
correct processors p and q such tha t  VALi,p = v -~ v ~ = 
VALi,q. In round 1 processor  p must  have received at least 
2t -t- 1 votes for value v and processor q must  have received 
at least 2t + 1 votes for value v ~. The total number  of 
processors is 3t + 1; therefore,  at least t + 1 processors 
including at  least one correct  processor voted for both v 

and v t. This is impossible behavior for a correct processor,  
contradict ion.  D 

L e m m a  4: For all correct processors p and for all rounds 
r _> 1, e i ther  VALr, p iS the  pers is tent  value or VALr ,  p : 

P r o o f :  The claim for r = 1 follows immediately from 
Lemma 3, so assume tha t  r > 2 is the first round in which 
the claim fails. There  is some correct processor p and some 
non-pers is tent  value v such tha t  VALr,v = v. In round r 
processor p must have received at least t + 1 votes for v; at 
least one is from some correct processor q. So, VAL r_ l,q : 

v. This contradicts  the assumpt ion  that  r is the first round 
in which the claim fails. [] 

T h e o r e m  5: Protoco] 2 solves the avalanche agreement  
problem. 

P r o o f :  We show that  the avalanche, consensus,  and plau- 
sibility condit ions are satisfied. 

Avalanche condition: Say that  processor p decides v in 
round r. By Lemma 4, any correct processor that  decides 
must pick the unique persistent  value. Thus,  the decision 
of an arbi t rary  correct  processor q is v. We conclude the 
proof by showing tha t  all correct processors decide v by 
round r -r 1. In round r processor p gets at least 2t ÷ 1 
votes for v; at least t + 1 are from correct  processors. So, 
all processors get at least t + 1 votes for v in round r. By 
Lemma 4, any correct  processor gets at most t votes for 
any value v t ~ v. Therefore, processor q sets VALr, q to Y 
in round r, broadcasts  v in r o u n d s -+  1, gets at least 2 t +  1 
votes for v in round r + 1, and decides v by round r + 1. 

Consensus condition: Let value v be the input to all 
of the correct processors. There are at  least 2t + 1 correct 
processors tha t  all b roadcas t  v in round 1. All correct  
processors receive at least 2t + 1 votes for v in round 1 and 
therefore broadcas t  v in round 2. All correct processors 
receive at least 2t + 1 votes for v in round 2 and therefore 
decide v in round 2. 

Plausibili ty condition: Let value v be the decision of a 
correct processor p. By Lemma 4, v is the persistent value. 
So, at least 2t + 1 processors (at least t + 1 of which are 
correct) voted for v in round 1. Value v is input to all of 
these correct processors.  [] 

The communicat ion cost of Protocol 2 is high because 
processors send messages for an unbounded number of 
rounds.  This cost can be limited in two ways. In many 
applications (including Section 5) we are only interested 
in the results of an avalanche agreement protocol for a 
small fixed number  of rounds. We can limit the commu- 
nication cost by halting the protocol in the first round in 
which we are uninterested in its results. Alternatively, a 
simple coding convention for messages allows us to imple- 
ment  Protocol  2 so that  at most O(n 2 • log tVi) message 
bits are used in any execution. In Protocol  2 each correct 
processor broadcas ts  a non-null message each round. The 
convention gives a meaning to null messages. A processor 
that  wishes to send the same message that  it sent in the 
previous round instead sends the null message (at a cost 
of 0 bits). It is easy to show tha t  using this convention 
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each correct processor sends at most 3 non-nul l  messages 
in any execut ion.  

5. Compact  F u l l - I n f o r m a t i o n  P r o t o c o l s  

In Section 1 we out l ined the two-step process by which 
we t r a n s f o r m  an  a rb i t r a ry  consensus protocol P into a 
communicat ion-eff ic ient  canonical  form. The  protocol P 
is first t r an s fo rmed  into a ful l - informat ion protocol  t h a t  
is then  t r ans fo rmed  into a compact  fu l l - informat ion proto-  
col. In this  sect ion we complete  the  descr ipt ion by showing 
how the  compac t  ful l - information protocol  can s imulate  
the  message exchange por t ion  of a fu l l - informat ion proto-  
col us ing only a polynomial  n u m b e r  of message bits.  

5 .1  D e f i n i t i o n s  

For any  set S a O-dimensional array of S is any s E S. 
An i-dimensional array off S is any vector  ( m l , . . . , m , )  
where,  for all j ,  my is an  (i - 1)-dimensional  array of S. 
Our  defini t ion of array is s t a n d a r d  except  t h a t  the  size 
a long each d imens ion  is always n. An index array is an  
array of { 1 , . . . ,  n}. A value array is an  array of V where 
V is the  set of possible inputs  to P.  In a fu l l - informat ion 
protocol ,  all messages sent  by correct  processors are value 
arrays and  a t  each round  the  s ta te  of each correct  processor 
is a value array; 

A partial funct ion may be undef ined (denoted  _J_) 
on some elements  of its domain.  We adopt  the  conven- 
t ion t h a t a n y  par t ia l  funct ion used in this  paper  is un- 
defined whenever  any of its a rguments  is undef ined and  
t h a t  any array used .in this  paper  is undef ined when- 
ever any of its e lements  is undefined. Par t ia l  funct ion f 
is an  extension of par t ia l  funct ion g if for all x e i ther  
f ( x )  = g(x) or g(x) = 2_. A funct ion f defined on ar- 
rays is substitutive if for all a t , . . .  ,am the  following holds: 

f ({at  . . . . .  an>) = < f ( a l ) , . . .  , f ( a n ) ) .  

W h e n  we t r ans fo rm an a rb i t r a ry  protocol  .P into a 
compac t  ful l - informat ion protocol  the  t radeoff  between 
t ime and  communica t ion  is de te rmined  by pa rame te r  k. 
For any integer  k > 0, there  is a compac t  ful l - informat ion 
protocol  Q t h a t  is s t ruc tu red  as a series of blocks of k + 2 
rounds.  In each of the  first k rounds of a block, Q makes 
one round  of progress in its s imula t ion  of P. The  last  two 
rounds  are overhead - -  no progress is made.  

We define some funct ions  t ha t  relate  various ways of 
number ing  rounds.  Let r > 0 be  a round  in a compac t  
ful l - informat ion protocol.  

• B L O C K ( r )  ---- [r/(k  + 2)] is the  block of which round  r 
is a par t .  

• P R I O R ( r )  = ( B L O C K ( r )  - -  1) • (k + 2) is the  last round 
prior to the  current  block. 

• PHASE(r) = r - -  PRIOR(r) is the  n u m b e r  of rounds  since 
the  s t a r t  of the  current  block. 

• SIMUL(r) ---- k .  (BLOCK(r) -- 1) + MIN(PHASE(r),k) is 
the  n u m b e r  of rounds  of progress t h a t  have current ly  
been made  in the  s imula t ion  of the ful l - information 
protocol.  

In Table  1, we i l lus t ra te  the  re la t ionship  a m o n g  these quan-  
t i t ies for 14 ac tua l  and  8 s imula ted  rounds  of a compac t  
ful l - informat ion protocol  wi th  pa rame te r  2. 

r 1 2 3 4 5 6 7 8 9110 11 12 13 14 

BLOCK(r) 1 1 1 1 2 2 2 2 3 3 3 3 4 4 

PRIOR(r) 0 0 0 0 4 4 4 4 8 8 8 8 12 12 

PHASE(r) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 

SlMUL(r) 1 2 212 3 4 4 415  6 6 6 7 8 

T a b l e  1: An Execut ion of 14 Rounds  wi th  k = 2 

5 .2  S u b p r o t o c o l s  

O r d i n a r y  sequent ia l  p r o g r a m m i n g  problems are fre- 
quent ly  decomposed  into s impler  subp rob lems  using sub-  
rout ines .  In a s imilar  way we simplify our  compac t  full- 
in fo rmat ion  protocol  by using avalanche agreement  as a 
subprotocol .  Subprotocols  are s imilar  to subrou t ines  in 
t h a t  they help us decompose problems;  however, they have 
different semantics .  For example,  our  subprotocols  run  in 
parallel  w i th  the  ma in  protocol  and  thei r  results  take at  
least  one round  to become available.  In this subsect ion  we 
define the  syn tax  and  semant ics  t h a t  we will use for calls 
to subprotocols .  

Recall t h a t  each round  of any protocol  P consists  of 
th ree  componen t s  t h a t  are per formed in order:  sending  
messages,  receiving messages, and  local s t a t e  change.  In 
the  language  we use to wri te  our  protocols there  is no spe-  
cific mechan i sm t h a t  ensures t ha t  this  s t ruc tu re  is followed; 
however,  a quick inspect ion is general ly sufficient to verify 
t ha t  it is. We will only write protocols t h a t  conform to 
this  round  s t ruc ture .  

We adop t  the  convent ion  t h a t  if a call to subpro to-  
col SUB appear s  in round  r of protocol  P then  the  first 
round  of SUB coincides with round  r of P. This  implies 
t h a t  the call to SUB should  appear  in the  text  of P before  
any round  r sends  and  t h a t  all inpu ts  to SUB must  be avail- 
able at  the  s t a r t  of round  r (i.e., compu ted  at  r ound  r - 1 
at  the  la test) .  If processor p decides in SUB in the  round  
t ha t  coincides wi th  round  r t of P t hen  we make this  an- 
swer avai lable to processor p in r o u n d  r ~ of P before it com- 
putes  its local s ta te  change.  This  s imply  means  t ha t  in the 
local-s ta te-change por t ion  of each round  of protocol  P we 
perform all of the  local s ta te  changes  of the  subprotocols  
before we per form the  local s t a t e  change of .P. Relat ive or- 
der  among  the  subprotocols  does no t  m a t t e r  because they 
do not  interact .  We require t h a t  all processors in proto-  
col P in i t ia te  precisely the  same subprotocols  at  precisely 
the  same rounds.  If in round  r of protocol  P there  are x 
active subprotocols  runn ing  then  all round  r messages are 
(x + 1)-tuples - -  one componen t  for each subpro tocol  and  
one componen t  for P.  

Wi th in  a protocol P ,  a call to subprotocol  SVB is writ-  
ten  

call st, B(input:  iN, result:  OUT, rounds:  r) 
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where XN and OUT are variables in .P and r is an integer. 
(We require that  all processors in P use the same value 
for r.) Let r '  be the round in which protocol P executes 
the call s tatement .  The variable iN must be defined by 
the end of round r '  - 1. Subprotocol sue  is started with 
input IN- in round r' and run for r rounds. The variable OUT 

initially has the value _1_. If processor p in subprotocol SUB 
decides v in round r of ? then the instance of variable OUT 
at processor p is set to v at the start  of the local-state- 
change portion of round r of P. There is no requirement 
that  processors in SUB eventually :decide. 

5.3 T h e  P r o t o c o l  

The code for the compact  full-information protocol is 
given as Protocol 3. In the following discussion and proof 
we append two subscripts to each variable from Protocol 3. 
The first subscript,  say r, is a positive integer and the sec- 
ond subscript,  say p, is in { 1 , . . . ,  n}. By this notation we 
mean the value of the subscripted variable at processor p 
at the end" of round r. For example, OUWq,b,r, p is the value 
of variable OUTq, b at processor p at the end of round r. 

At each round each correct processor computes sev- 
eral expansion/unctions based on its current state - -  in 
particular,  based on the results of the various avalanche 
agreement subprotocols that  it has run. The round r ex- 
pansion functions of processor p are denoted Cb,r,p, for 
b E {1 . . . . .  BLOCK(r)}. If b > 1 then Cb,r,p is a substi- 
tutive partial function from index arrays to value arrays. 
If b = 1 then Cb,r,p is the identity function on value arrays 
(which is also substitutive).  Because expansion functions 
are substitutive,  it is sufficient to define them on scalars. 
We let ~bb,r,p(z) = ± if ei ther b = 1 and x ~ V or b > 1 
and  z ~ {1 . . . . .  n}. In all other  cases Cb,~,p is defined as 
follows. 

x i fb  = 1; 
~b'r'P(Z)'= qJb-l,r,p(OUTz,b,r,p) otherwise. 

(All uses of q~b,r,v in Protocol  3 refer to the above defini- 
tion.) 

We explain the sense in which CORE.,p is a compressed 
form of the state of processor p in the simulated full- 
information nrotocol. We define F.LL ~TATE.,p in terms 
of intormaUon available in the round r s tate of proces- 
sor p as follows: FULL_STATE~,p = CBL,,.,K(~),r,~(CORE~.p). 
What  we will show in Section 5.5 is that  for any round r, 
if PHASE(r) _< k then the round SIMUL(r) s tate of correct 
processor p in the simulated full-information protocol is 
FULL_STATEr,p. In this s e n s e  COREr,p is the compressed 
state of processor p at round r in Protocol 3. Because 
of the subst i tut ivi ty property of the expansion function 
and other properties which we will s tate and prove in Sec- 
tion 5.4 it is possible for our protocol to work directly with 
compressed processor states. 

5.4 Technica l  L e m m a s  

L e m m a  6: For all correct processors p and for all pro- 
cessorsq, f i r '  = PRIOR(r) -- 1, b = BLOCK(r), b > 1, and 
OUTq,b,r, p ,~ ..[. then there is some correct processor u such 
that q~b-*.r'.u(OVTq,b,r,p) # ±.  

Initialization for processor p: 

CORE ~-- the initial value of processor p 

Code for processor p in round r where b = BLOCK(r): 

1. if PHASE(r) _< k then 
2. broadcast  CORE 
3. receive MSG~ from processor i for 1 < i < n 
4. f o r i ~ l  t o r t  do 
5. i f  Cb,r,p(MSGi) -= k 

then VALi ~ CORE 
else VALi 4--- MSGi 

6. CORE ~ (VAL1 . . . . .  VALn) 

7. if PHASE(r) = k-1" 1 then 
8. broadcast  CORE 
9. receive MSGq from processor q for 1 < q _< n 
10. f o r i ~  1 t o n d o  
11. if Cb,r,p(MSGi) = ± 

then INi ,b+l  *-- _1_ 
e l se  INi ,b+l  ~ MSGi 

12. if PHASE(r) = k + 2 then 
13. f o r i ~  1 to n do 
14. call AV-ALANCHE(input: XNi,b+l, 

result: OUTi,b+t, rounds: k + 3) 
15. CORE +-- p 

P r o t o c o l _ 3 :  The Compact  Full-Information Protocol  

P r o o f :  OUT¢,b,r;p is the answer produced by an invoca- 
tion of avalanche agreement. By ~he plausibility condit ion 
of avalan,~he agreement, there is some correct processor u 
that  s ta r ted  this invocation of avalanche agreement with 
input OUTq,b,r,p. Processor u must have observed that  
~5b--t,r,,u(OUTq,b,,,p) # ± at step 1t of the code; other- 
wise, it would have used ± (no legal input) as its input to 
avalanche agreement. D 

L e m m a  7: For all b > 0 and for all correct processors p 
and q, i/BLOCK(r) = b and PHASE(r) ~ k + 2  then ~bb,r+t,p 
is an extension o[ ~b,r,q. 

Proof :  The proof is by induction on b. 

Basis: (b = 1) This is trivial because Cb,,+l,p and 
~bb,r,q are both the identity function. 

Induction: (b > I) Consider an arbi t rary message m. 
If fbb,r,q(fr~) = ± then the claim is trivially true. So, 
assume that  ¢b,r,q(m) ~ ±. We wish to show that  
~bb,r+l,p(m) = f~b,r,q(m). Let I be the set of indices in m. 
Let r '  = PRIOR(r}. By the subst i tut ivi ty property of 
the expansion functions, ~bb,r*t,p and Cb,r,q, it is sufficient 
to show that  for all i in I that  ¢b-l,e,p(OUTi,b,r+l,p) = 

~b-l,r',q(OUTi,b,r,q) • 

Because ~b,r,q(m) ~ ± we know that  for all i in I ,  
OUTi,b,r, q ~ ± and therefore by the avalanche condi- 
tion of avalanche agreement OUTi,b,r%l,p = OUTi,b,r,q. 
By Lemma 6, there is a correct processor s such that  
~b_l,r,_l,s(OUTi,b,r,q) ~ ± .  B y  the induction hypoth- 
esis, ~b-l,r',p and Cb-l,r',q are extensions of C~b-l,r'-*,s 
and s o  ~b-,,r,,p(OUTi,b,r+t,p) : ~)b-l,r',p(OUTi,b,r,q) : 

~b--l,r'-l,s(OUTi,b,r,q) = ~b-l,r',q(OUTi,b,r,q). O 
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L e m m a  8: / f  PHASE(r) = k and BLOCK(r) = b then for 
all correct processors p and q, OUTp,b.+l,r-i.3,q = COREr,p. 

P r o o f :  In round r + 2, avalanche agreement on the 
round r + 1 message broadcast  by processor p will be ini- 
tiated. The round r + 3 result of this agreement at pro- 
cessor q is OUTp,b..l_l,rq-3, q. Each correct processor will use 
either coaE~,p (which is the round r + 1 message broad- 
cast by correct processor p) or _1_ as its input  to this 
avalanche agreement protocol. Step 5 of the code ensures 
that,  Cb,r,p(COaEr,p) ~ J-. So, by Lemma 7, for all correct 
processors 8, Cb ~-l,a (COREr,p) ~ _t_. Therefore all correct 
processors will u s e  COREr,p aS input to the avalanche agree- 
ment protocol s tar ted at round r+2 .  By the consensus con- 
dition of avalanche agreement OUTp,b+l,r_b3,q ~- COREr,  p 
which is what  we sought to show. [3 

5.5 P r o o f  o f  S i m u l a t i o n  

For all p E {1 , . . .  ,n}  and for any processor s tate s de- 
fine the function fp(s) to be ¢ . . . . . . .  (0,~,p(COaE~,p) where 
r and CORE are implicit in s. 

T h e o r e m  9: The compact full-information protocol sim- 
ulates the full-information protocol with simulation func- 
tions f i  for i E ( 1 , . . .  ,n} and scaling function SIMUL. 

P r o o f :  We must show that  for any r and for any r- 
round execution E of the compact  full-information pro- 
tocol, there is a SIMUL(r)-round execution E '  of the full- 
information protocol such that  for any correct processor p 
and for any i (where 1 _< i <_ r) it is t h e  case that  
fp(state(p,  i, E) ) = state(p, S,MUL(i), E ' ) .  

The  proof is by induction on r. Let b = BLOCK(r), 
and let r '  = SIMUL(r). 

Basis: (r = 0.) The execution E ~ is simply con- 
structed. The set of correct processors in E '  is the same 
as in E.  The correct processors have the same input  in the 
two executions. 

Induction: If PHASE(r) > k then the theorem follows 
from Lemma 7 and the induction hypothesis. Assume in- 
stead that  PHASE(r) < k. 

If PHASE(r) = 1 and r > 1 then let the execution F 
consist of the first r - 3 rounds of E;  otherwise, let the 
execution F consist of the first r - 1 rounds of E. By the 
induction hypothesis there is an (r - 1)-round execution F r 
of the full-information protocol such that  F is a simulation 
of F I. We show that  the (r '  - 1)-round execution F ~ can 
be extended by one round to get the rLround execution E I 
whose existence is claimed. 

The extension to F '  is fully described by specifying 
the round r ~ messages sent from faulty processors to cor- 
rect processors. It is unnecessary to specify the messages 
sent by correct .processors because there is no choice and 
it is unnecessary to specify the messages sent from faulty 
processors to faulty processors because these messages do 
not matter .  

Let s be.an arbitrary faulty processor and let p be an 
arbitrary correct processor. We specify that  the round r ' 

message from s to p in E I is Cb,r,p(VALs,r,r,). By the induc- 
tion hypothesis Cb,r,p(vaLs,T,p) ~ ±.  

Let ( v i , . . .  ,vn) = q~b,r,p(COREr,p); and let (v~ . . . . .  vln) 
be the final state of processor p in E ' .  We now verify that  

• , . , V n ) .  a n  (v t , . .  vn) = (v~,. .  ' Consider arbi t rary proces- 
' There  a r e t h r e e  sor q. It is sufficient to show that  Vq = vq. 

c a s e s .  

Case 1: (Processor q is correct  and PHASE(r) = 1 and 
r > 1.) Since q is correct, Vq.-' -- C b - l , r - 3 , q ( C O R E r - 3 , q )  
k.  By Lemma 8, OVTq,b,r,p = COREr-3,q. Therefore pro- 
cessor p places q in the q-th posit ion of COREr,p and the 
q-th component  of Cb,~,p (COREr,p) is Cb- t , r - l ,p  (OUTq,b,r,p). 
(~b_l , r_I ,p(OUTq,b ,r ,p)  -~ ( f ib_1 , r_3 ,q (COREr_a ,q)  by Lemma 
7. Therefore, vq = Cb_t,~-a,q(coaE~-s,q) .  This shows 

l 
that  vq = vq. 

Case 2: (Processor q is correct and either PHASE(r) > 
1 or r = 1.) Because q is correct MSGq,r,  p : COREr-I,q 

' = Cb,r-l,q(MSGq,r,p) ~ _k. We can see that  by and vq 
Lemma 7, Cb,r,p(USGq,r,p)-~ .qtb,r.:l~q(MSGq,~,p). Therefore 
(in steps 5-6) processor p:in¢orporates MSGq,~,p as the q-th 
component of COrtE,,p and so vq = Cb,~;p(MSGq,~,p). This 

i shows that  vq = vq. 

Case 3: (Processor q is faulty.) By the specification 
i = ~bb,r,p(VAL,,r,~,). Processor p (in steps 5-6) of E' ,  vq 

i n c o r p o r a t e s  VALs,r,p as the q-th component  of C O R E r ,  p .  
i [] So, Vq = Cb,~,p(VAL~,~,r, ). This shows that  vq = Vq. 

5.6 P e r f o r m a n c e  A n a l y s i s  

C o r o l l a r y  10: For any e > 0, the Byzant ine  agreement 
problem can be solved in (1 + e)(t + 1) rounds using O(t . 
n[ 2/ ']+3 • log IVI) message bits• 

P r o o f :  There  are known (t + 1)-round exponential-  
message Byzantine agreement protocols, for example the 
protocol of Lamport  et al. [13]. This means that  there is 
a decision rule to apply to the final s tate if we use the 
compact  full-information protocol to simulate t -~ 1 rounds 
of message exchange in a full-information protocol• The 
simulation together with the decision rule const i tutes a 
Byzantine agreement protocol• 

In each of the first k rounds of a block of the compact  
full-information protocol,  one round of progress is made  in 
the simulation of the full-information protocol. In the last 
two rounds, no progress is made. Therefore,  for all x, in 
k - ~ x  actual rounds, the compact  full-information proto- 
col has simulated at least x rounds o f  the full- information 
protocol. In order for our Byzantine agreement protocol 
to terminate within (1 + E)(t + 1) actual rounds, we require 
that  (k + 2 ) / k  < 1 + e. Solving for the min imum inte- 
ger k we get k = I2/e 1. Therefore, to achieve Byzantine 
agreement in (1 -t- e)(t + 1) rounds, we run  the compact  
full-information protocol  with paramet, el '~ k = [2/el  and 
then (after t + 1 simulated rounds~-~pply'the decision rule 
derived from Lamport ' s  protocol. 

For the compact  full-information protocol,  the com- 
munication cost consists of the cost of avalanche agreement  
and the cost of the remainder  of the protocol. In the non- 
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avalanche portion of the protocol, in each of O(t) rounds 
each processor broadcasts a message of size O(n k • log IV I) 
for a total cost of O(t • n k+2 • log IVI) bits. This cost is 
dominated by the cost of avalanche agreement. In the 
avalanche agreement portion of the protocol, in each of 
O(t) rounds, each processor broadcasts at most n messages 
of size O(n k. log IV I) for a total of O(t. n k+3. log IV I). Ex- 
pressed in terms of e, this communication complexity is 
O(t • n f21~]+s, log IVI) message bits. [] 

If n > 4t + 1 then a modification of our technique 
can transform any (t + 1)-round consensus protocol to a 
( l+e)  (t + 1)-round protocol that uses O(t.nfl/']+3.1og IVI) 
message bits. Given that n > 4t + 1 it is possible to solve a 
variant of the avalanche agreement problem with a consen- 
sus condition modified to require a decision in one round 
rather than two. Using this variant avalanche agreement 
protocol, we can reduce the number of rounds in each block 
of a compact full-information protocol by one. Analyzing 
the new compact full-information protocol gives the total 
communication cost of O(t. n H/'] +3. log IV l) message bits. 

We compare the cost (i.e., rounds and message bits) of 
our Byzantine agreement protocol (for n = 4t + 1) with the 
cost of the vrotocol of Srikanth and Toueg [181 (which uses 
she smallest number of rounds of any previously known 
protocol and which only requires that n > 3t + I). The 
protocol of Srikanth and Toueg uses 2t + 1 rounds and 
O(t.  n 2 • log n .  log lV I) message bits. If e = 1 our protocol 
uses 2t + 2 rounds and O(t .  n 4 • log IVl) message bits. If 

1 e = ~ our protocol uses 1 1 I ~t+l ~ rounds and O(t.nS.log IVI) 
message bits. If e = ½ our protocol uses 1½t + 1½ rounds 
and O(t. n 6.1og IV I) message bits. We find that our proto- 
col uses somewhat more message bits, but it allows us to 
greatly reduce the number of rounds. Also, our technique 
is more general and may therefore have greater applica- 
bility (e.g., reducing the communications cost of the ap- 
proximate agreement protocol of Fekete [91). A significant 
limitation of our technique is the large amount of local 
computation that it requires. By contrast the protocol of 
Srikanth and Toueg uses a small 'amount of space and time 
locally at each processor. In this comparison we ignore a 
possible optimization due to Dolev et al. [6] and another 
due to Perry [16] and to Turpin and Coan [19] because 
these optimizations have a similar (and small} impact on 
both protocols. 
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