
A C o m m u n i c a t i o n - E f f i c i e n t C a n o n i c a l F o r m f o r

F a u l t - T o l e r a n t D i s t r i b u t e d P r o t o c o l s

B r i a n A. C o a n

M a s s a c h u s e t t s I n s t i t u t e o f T e c h n o l o g y

A b s t r a c t : Many fault-tolerant distributed protocols are
known. Some of these require a large (exponential) amount
of communication. We present a general simulation of
any synchronous fault-tolerant consensus protocol by a
communication-efficient protocol. An important corol-
lary of the simulation technique is a new communication-
efficient Byzantine agreement protocol that uses about half
the number of rounds required by the best previously-
known communication-efficient Byzantine agreement pro-
tocol. Our new protocol approaches the known lower
bound for rounds to within a small factor arbitrarily close
to 1. The only known protocols which achieve the lower
bound for rounds use an exponential amount of communi-
cation.

1. I n t r o d u c t i o n

For almost the past ten years, the task of achiev-
ing consensus in a fault-tolerant distributed computer sys-
tem has been recognized as a fundamental problem in
distributed computing. Protocols have been designed to
solve many consensus problems including the agrebment
problem (see [13] and [15]), the approximate agreement
problem (see [7] and [9]), the crusader agreement problem
(see 'th]), the firing squad problem (see [2] and [4]), and the
weak agreement problem (see [12[). These protocols oper-
ate in a variety of fault models including Byzantine, au-

This work was supported by the Defense Advanced Re-
search Projects Agency (DARPA) under Contract N00014-83-
K-0125, by the National Science Foundation under Grant DCR-
83-02391, by the Office of Army Research under Contract
DAAG29-84-K-0058, and by the Office of Naval Research under
Contract N00014-85-K-0168

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

thenticated Byzantine, failure-by-omission, and fail-stop.
Some protocols for the Byzantine fault model require a
large (exponential) amount of communication, for exam-
ple, the agreement protocol of Lamport et al. [13] and the
approximate agreement protocol of Fekete [9!.

We give general upper bounds on the number of bits of
communication needed for any synchronous simultaneous-
start non-cryptographic consensus protocol. More pre-
cisely, we show how to transform an arbitrary consensus
protocol into a canonical-form protocol; the new proto-
col solves the same problem as the original, but only uses
an amount of communication that is polynomial in the
number of processors and the number of rounds of mes-
sage exchange. To achieve this small communication cost,
the new protocol incurs an increase in running time (i . e . ,
rounds of message exchange). There is a tradeoff between
the number of rounds and the ~ degree of the polynomial
bounding the communication. The value of this tradeoff
is determined by a numerical parameter to the transfor-
mation. For any c > 0 the transformation can produce
a canonical-form protocol that increases the number of
rounds of the original protocol by a factor of 1 + e and
that uses O (r • nr2/~]+3 . log]Vl) bits of communication
where n is the number of processors, r is the number of
rounds, and V is the set of possible inputs to the original
protocol. Throughout this paper we let n be the num-
ber of processors in the system and we let t be an upper
bound on the number of processor faults that a protocol
need tolerate.

Our transformation was developed for the Byzantine
fault model. In more benign fault models like failure-by-
omission*and fail-stop there is a simple extension of our
transformation that causes t~o increase :n the number of
rounds. Because the most interesting applications of our
transformation are in the Byzantine fault model, we will
restrict our attention to that model in the remainder of
this paper.

As a corollary to the results in the Byzantine fault
model, we obtain a major new result about the communi-
cation requirements of Byzantine agreement. The earliest
Byzantine agreement protocols [13] used exponential com-
munication and t + 1 rounds; t + 1 is the known lower bound
on rounds [10]. Subsequently, improved protocols yielded

© 1986 A C M 0-89791-198-9/86/0800-0063 75¢ 63

polynomial communicat ion using about 2t rounds (see [6],
{8], [14], and [lSJ). An open question among researchers in
this area for the past few years has been whether there are
any protocols that simultaneously use fewer than 2t rounds
and polynomial communicat ion. We obtain an interesting
answer to this question. For any e > 0 there is a pro tocol
that uses (1 + e)(t + 1) rounds and polynomial communi-
cation. We obtain this result by applying our t ransforma-
tion to the communication-inefficient (t + l) - round proto-
col of Lampor t et al. Another use for our t ransformat ion
is improving the communicat ion complexity of a new ap-
proximate Byzantine agreement protocol of Fekete [9]. His
protocol has the opt imal convergence rate for any multi-
round approximate agreement protocol, but requires expo-
nential communicat ion. Using our new technique, we can
t ransform his protocol into a polynomial-communicat ion
protocol with a near opt imal convergence rate.

Our new method for transforming an arbi t rary con-
sensus protocol, say P, into a communication-efficient
canonical-form protocol is a two-step process. The proto-
col .P is first t ransformed into a lull-information protocol;
the resulting protocol is then transformed into a compact
]ull-information protocol. A full-information protocol is a
well known [10] communication-inefficient canonical-form
protocol in which each processor, at each round, broadcasts
its entire state, receives one message from each processor,
and forms its new state as the ordered collection of all
messages received. To transform P into a full-information
protocol it suffices to find a decision rule for each processor
to apply locally to its state. It is not necessary to devise
message generat ion rules because all full-information pro-
tocols have the same rule: at each round each processor
broadcasts its entire state. Pease et al. [15] show that
any consensus protocol P can be t ransformed into a full-
informat ion protocol, by showing how to find the decision
rule that corresponds to P. This first t ransformat ion of P
gives a full-information canonical-form protocol that uses
the same number of rounds as .P and exponential commu-
nication. We want to do much bet ter than this in commu-
nication.

In the second step we further t ransform P into a com-
pact full-information protocol tha t uses only polynomial
communicat ion. Because we have already shown how to
put P in the form of a full-information protocol, it is suf-
ficient to show how to simulate the message exchange of
a full-information protocol using polynomial communica-
tion. The compact full- information protocol consists of
this simulation together with the same decision rule used
in the full-information protocol.

The heart of our technique is our new method for
efficiently simulating the message exchange port ion of a
full-information protocol. We do this by using data com-
pression techniques to condense the information being sent
around. Messages are compressed by the sender and ex-
panded by the recipient. In parallel with the rest of the
compact full-information protocol, each processor at each
round computes an expansion function that it can apply
to incoming compressed messages to obtain the full mes-

sage text. It is necessary that all correct processors be
able to consistently expand any message sent by a correct
processor. This consistency requirement seems difficult to

achieve in the presence of faults, because it requires that
the correct processors agree on how to carry out the com-

pression and expansion. Such agreement might, at first,
seem to require Byzantine agreement or some other time-

costly protocol. We overcome this difficulty by using a

new, different form of agreement that we call avalanche
agreement. The difference between avalanche agreement

and Byzantine agreement is explained in Section 4. Using
an avalanche agreement protocol to agree on their expan-

sion function enables the correct processors to achieve a

sufficient level of agreement at a cost that we can afford.

One limitation of our technique is that it can use a
large amount of local computing resources. A complete

reconstruction of the local state of processors in a full-
information protocol requires exponential space and time.
It is straightforward to devise an efficient data represen-

tation that requires only a polynomial amount of space;

however, the question of how much time is required to
reach a decision remains open.

In Section 2 we review the definition of the Byzantine

agreement problem. In Section 3 we give our definition

of simulation. In Section 4 we define the avalanche agree-
ment problem and give a protocol that solves the problem.
In Section 5 we present a compact full-information proto-

col -- a communication-efficient protocol that simulates a

full-information protocol.

2. The Byzantine Agreement Problem

A synchronous Byzantine agreement protocol is run

by a distributed system of n processors, at most t of which
may fail. Communication is over a network that is fully
connected and reliable. The computation takes place in a
series of rounds. In each round the correct processors first
send messages, then receive messages and finally make a

local state change based on the messages received and their

state. Correct processors send messages according to their
programs. Failed processors can send arbitrary messages.

Each processor starts the protocol with an input
value, v, from a fixed set of legal inputs, V. The goal

is that after some number of rounds each correct processor
will irrevocably decide on an element of V as its answer.

There are two conditions that the correct processors must

satisfy.

• Agreement condition: All correct processors reach the
same decision.

• Validity condition: If all correct processors s tar t the
protocol with input v then v is the decision of all of
the correct processors.

3 . S i m u l a t i o n s

In this section we give our definition of one proto-
col s imulat ing another and we characterize some impor-
tant properties of prQtocol behavior that are preserved

64

by our simulations. We take the first step toward show-'
ing that any consensus protocol can be simulated by a
communications-efficient protocol, that is, we show that
the full-information protocol can simulate any consensus
protocol. After this section, the remainder of the paper is
devoted to showing how to simulate the full-information
protocol using a part icular communications-efficient pro-
tocol which we call the compact full-information protocol.

3.1 D e f i n i t i o n s

Following Lynch, Fischer, and Fowler [14] we model a
consensus protocol as a synchronous system of automata .
We find it convenient to introduce this formalism in order
to discuss simulations. Later, when we give our protocols
we will use a higher level language. The mapping back to
au tomata is straightforward. A protocol .P is described by
the following.

• V is the set of input values.

• Q is the set of processor states.

• L is the set of messages.

• #p,q : Q ~ L, for p,q E { 1 , . . . , n } , is the message
generation function for messages sent from processor p
to processor q.

• 6p : L n ~ Q, for p E {1 ,n}, is the state tran-
sition function for processor p. (The prior state of
processor p is omit ted from the domain of ~ip because
it would be redundant. Processor p can send any re-
quired information in a message to itself.)

• 7 p : Q ~ {_1_} u V, for p E { 1 , . . . , n } , is the decision
function for processor p.

An element of Q is identified with each element of V.
These are the initial states. The decision of processor p in
some execution of protocol P is the first non-& value of
3'p(si) where si is the round i state of processor p. After
processor p has decided, future values of 7p are ignored.

A round consists of sending messages, receiving mes-
sages, and making a local state change. Each processor
starts in the initial state corresponding to its input value.
In any execution of protocol P a correct processor sends
according to its message generat ion function and a faulty
processor sends arbi t rary messages from L. An execution
of protocol P is a 4-tuple (k, F, I , M) where k is the number
of rounds in the execution, F is the set of faulty proces-
sors, I is a vector of inputs for the processors, and M is the
set of messages (with their origin, destination, and round
sent) sent by faulty processors in all rounds up to round k.
In this paper we restrict our at tention to executions in
which the number of faulty processors is less than t. Let
processor p be correct in execution E. We let state(p, i, E)
denote the round i state of processor p in execution E.

Let P and .P' be protocols with the same set of possible
inputs. Protocol 2 ' simulates protocol P if there is a non-
decreasing functiorL r from the natural numbers onto the
natural numbers and a set of functions fp for p E { 1 , . . . , n}
from the processor states of P ' to the processor states of .P

such that for any execution E' = (k, F, I, M') of P ' there
is an execution E = (r(k),.F, I, M) of P such that for any
correct processor p and for any i (where 1 < i < k) it is
the case that h(s ta te (p , i ,E ')) = state(p,r(i) ,E). We say
that the fp are the simulation functions and that r is the
sealing function.

Execution E of protocol 2 is a deciding execution if all
processors that are correct in E have decided. Protocol P
terminates if there is some k such that any k-round execu-
tion of P is a deciding execution. If E = (k, F, I , M) is a
deciding execution of 2 then has(E) is defined to be the n-
tuple whose pth component is state(p, k, E) if processor p
is correct in E and ± otherwise.

Predicate C is a correctness predicate if its domain is
(VU{A_})n x2{1 } x V n. Protocol P satisfies correctness
predicate C if for any deciding execution E = (k, F, I , M)
the value of C(ans(E) ,F, I) is true. We observe that
the correctness conditions for Byzantine agreement and
approximate agreement can be formulated as correctness
predicates.

T h e o r e m 1: If protocol P' simulates protocol P with sim-
ulation functions fp forp ~ (1 , . . . ,n}, P has decision func-
tions "Tp for p E { 1 , . . . , n } , and P' has decision functions
"7~(s) = "Tp(fp(s)), for p 6 {1 ,n} then the following
two conditions hold.

(1) If protocol P terminates then so does protocol P".

(2) If protocol P satisfies sor~e correctness predicate C
then so does protocol P'.

P r o o f : Let r be the scaling function of the simulation.

Condition (1): Because protocol P terminates there is
a k such that all k-round executions of P decide. Because
r is onto, there is a k' such that r(k') = k. We show that
an arbi t rary k ' - round execution E ' = (r (k) , F , I , M t) of
.P' must decide. By the definition of simulation there is a
deciding execution E = (k, F, I , M) of .P such that for all
correct processors p and for all i (where 1 < i < k') it is the
case that f v (state(p, i, E')) = state(p, r(i) , E). Because r
is onto and by the choice of ~' , execution E ' is also a
deciding execution. Therefore protocol pi terminates.

Condition (2}: Suppose not. Then there is a de-
ciding exbecution E' = (k , F , I , M ') of P ' such that
C(ans(E'), F,I) is false. By the definition of simulation
there is an execution E = (r (k) , F , I , M) of 2 such that
for any correct processor p and for any i (where 1 < i < k)
it is the case that fp(state(p, i, E')) = state(p, r(i),.E). By
choice of 7' , C(ans(E), F, I) is also false, contradiction. []

3.2 A S i m p l e S i m u l a t i o n

In the full-information protocol (shown as Protocol 1)
each processor at each round broadcasts its entire state, re-
ceives one message from each processor, and forms its new
state as the ordered collection of all messages received. We
now review the well-known result that a full-information
protocol can simulate an arbitrary consensus protocol.

65

1.
2.
3.

Ini t ia l izat ion for processor p:

STATE ~ the init ial value of processor p

Code for processor p in round r:

b roadcas t STATE
receive MSGq f rom processor q for 1 < q < n
STATE ~ (MSGi, . . . ,MSGn>

P r o t o c o l 1: The Ful l - Informat ion Protocol

T h e o r e m 2: Let protocol P be an arbitrary consensus
protocol. The full-information protocol simulates proto-
col P.

P r o o f : Let Q be the s ta te set of the fu l l - informat ion pro-
tocol. Suppose protocol P has inpu t set V, message gen-
e ra t ing functions/zp,q for p,q E { 1 , . . . , n } , and s t a t e t ran-
s i t ion funct ions tip for p E {1 , n} . Let r be the iden-
t i ty funct ion on integers and define fv(s) for s E Q and
p E {1 n} to be

{ s i f s E V ;
f v (s) = 8v(#l ,v(f l(s~)) ,#,~,v(f,~(sn))) otherwise.

We can verify t h a t the s imula t ion has s imula t ion funct ions
fv for p E { 1 , . . . , n } and scaling funct ion r. []

4 . A v a l a n c h e A g r e e m e n t

We formula te and solve the avalanche agreement prob-
lem as a bui ld ing block for use in our compac t full-
informalfion protocol . At var ious points in the compac t
fu l l - inf0rmat ion protocol it is convenient to achieve some
measure of agreement among the correct processors. We
might t ry using a s t a n d a r d Byzan t ine agreement protocol
for this purpose. Unfor tunate ly , we find t h a t we canno t af-
ford the cost (in rounds) of s t a n d a r d Byzan t ine agreement .
By using an ava lanche agreement protocol ins tead, we are
able to achieve a sufficient level of agreement among the
correct processors at a cost t h a t we can afford.

A protocol t h a t solves the avalanche agreement prob-
lem operates under the same failure and communica t i on
a s sumpt ions as a Byzan t ine agreement protocol . Each pro-
cessor begins the protocol e i ther wi th an input value from
some fixed set V or wi th no input . We refer to the e lements
of the set V as values, and we indicate the absence of an
input by saying t h a t a processor has input _l_. Each cor-
rect processor may, at some po in t du r ing the execut ion of
the protocol , i r revocably decide on a value (element of V)
as its answer. There are three condi t ions t h a t the correct
processors must satisfy.

• Avalanche condition: If any correct processor de-
cides v in round r then all correct processors decide v
by round r + 1.

• Consensus condition: If all correct processors s t a r t
the protocol wi th i npu t v then v is the decision of all
of the correct processors by round 2.

• Plausibility condition: If any correct processor de-
cides v then v mus t have been the input to some cor-
rect processor.

There are five ways in which the ava lanche agreement
p rob lem differs f rom the s t a n d a r d Byzan t ine agreement
problem. Fi rs t , there is no requ i rement t h a t all execut ions
(of an avalanche agreement protocol) t e rmina te . Second,
cer ta in execut ions (those in which all correct processors
have the same input) are required to t e r m i n a t e very fast
(in two rounds) . Th i rd , in any execut ion t h a t t e rmina tes ,
all of the correct processors are requi red to make thei r
decisions wi th in some window of two rounds . Four th , some
correct processors may begin the protocol wi th no input
value. Fi f th , no correct processor is pe rmi t t ed to produce
as an answer any value t h a t was not the inpu t to at least
one correct processor. The first of these differences tends to
make the avalanche agreement p rob lem easier to solve t h a n
the Byzan t ine agreement problem. The r ema inde r of the
differences tend to make the avalanche agreement p rob lem
harde r to solve t h a n the Byzan t ine agreement problem.
The combined effect of all of the differences is to make the
two prob lems incomparab le .

A va r i an t of the Byzan t ine agreement p rob l em formu-
lated by Dolev [5 t is the crusader agreement problem. At
first glance, the avalanche agreement p rob lem may appear
s imilar to the c rusader agreement p rob lem, bu t this simi-
larity is superficial. The two problems are incomparab le .
Crusader agreement is a ha rde r p rob lem in t h a t all execu-
t ions of a protocol mus t be deciding execut ions. Avalanche
agreement is ha rde r in t h a t the answer, if it exists, mus t
be unique. By cont ras t , up to two d is t inc t answers can be
p roduced by correct processors in an .execu t ion of a cru-
sader agreement protocol. Some correct processors agree
on some answer; the rest decide t h a t the sender is faulty.

It is s t r a igh t fo rward to use s t a n d a r d techniques like
those of Fischer, Lynch, and Mer r i t t II_l] to show t h a t
there is no avalanche agreement protocol t h a t tolerates t
processor faults unless the ~otai n u m b e r of processors, n,
is a t least 3t ÷ 1. This bound is t ight . Protocol 2 solves

the ava lanche agreement p rob lem for n = 3t ÷ 1. It is
a new de te rmin i s t i c protocol designed to solve this new
problem; however, it incorpora tes many ideas from previ-
ously known randomized protocols for the s t a n d a r d Byz-
an t ine agreement problem. Among these are the protocols
of Ben-Or [1], of Chor and Coan [3], and of Rab in [17].

Consider the var iant of the avalanche agreemerit prob-
lem in which the consensus cond i t ion has been s t r eng th -
ened to require agreement in one round ra the r t h a n two.
It is s t ra igh t fo rward to use the proof techniques of Fischer
and Lynch [10] to show t h a t if n < 4t there is no solut ion
to this var iant . I f n > 4 t + l then it is easy to solve the
p rob lem using a s imple var ian t of Protocol 2. We omit the
detai ls here.

In the following discussion and proof of Protocol 2 we
a p p e n d two subscr ip t s to each var iable f rom the protocol.
The first subscr ip t , say r, is a posi t ive integer and the sec-
ond subscr ip t , say p, is in { 1 , . . . , n}. By this no ta t ion we
mean the value of the subscr ip ted var iable at processor p
at the end of r o u n d / ' . For example , VALr,p is the value of
variable VAL at processor p a t the end of round r.

66

Initialization for processor p:

VAL ~ the initial value of processor p

Code for processor p in round r:

1. broadcas t VAL
2. r e c e i v e M S G q f r o m processor q for 1 < q ~ n
3. let ANS be the most frequent non-_L message

among the MSGi (break t ies arbitrarily)
4. let NUM be the number of occurrences of nNs
5. i f r = 1 then
6. if NUM >_ 2t + 1

then VAL ~ ANS

else VAL ~ .J_

7. i f r > 1 then
8. if N U M ~ t ÷ 1 then VAL ~ A N S

9. if NUM > 2t + 1 and have not decided yet
then decide VAL

P r o t o c o l 2: The Avalanche Agreement Protocol

In any execution of Protocol 2, value v is persistent
if there is some correct processor p such that V.~L~,p = v.
Processor p votes for value v in round r if it sends any
round r messages containing only v. In every round each
correct processor broadcas ts a message containing at most
one value. A single message that contains more than one
value is obviously erroneous and is discarded immediately
by its recipient. So, a correct processor only votes for
one value in each round, but a faulty processor may vote
for many values by sending conflicting votes to different
recipients.

We give an informal description of the avalanche
agreement protocol before proving it correct. All proces-
sors run the same code. For convenience we describe the
protocol from the point of view of an arbi t rary correct pro-
cessor p. At the end of round r, the variable vnL~,p holds
the value, if any, tha t processor p currently prefers as its
answer. In round r + 1 processor p votes for VALr,V and
then updates its preference bas.ed on the votes it receives.
The first round plays a speda l role in the protocol. In
round 1, the number of values favored by correct proces-
sors is reduced to at most one - - the persistent value. The
protocol ensures tha t after round 1 no correct processor
votes for any value other than the pers is tent value. In the
second and subsequent rounds processor p uses the num-
ber of votes to predict when there will be an "avalanche"
of correct processors favoring some value v (which must be
the unique persis tent value). As soon as processor p gets
enough (2t + 1) votes to predict an avalanche it decides v.
Processor p continues to par t ic ipate in the protocol (send
and receive messages) after it has decided.

L e m m a 3: There is at mos t one pers is tent value.

P r o o f : Assume not. Then, there are values v and v t and
correct processors p and q such tha t VALi,p = v -~ v ~ =
VALi,q. In round 1 processor p must have received at least
2t -t- 1 votes for value v and processor q must have received
at least 2t + 1 votes for value v ~. The total number of
processors is 3t + 1; therefore, at least t + 1 processors
including at least one correct processor voted for both v

and v t. This is impossible behavior for a correct processor,
contradict ion. D

L e m m a 4: For all correct processors p and for all rounds
r _> 1, e i ther VALr, p iS the pers is tent value or VALr , p :

P r o o f : The claim for r = 1 follows immediately from
Lemma 3, so assume tha t r > 2 is the first round in which
the claim fails. There is some correct processor p and some
non-pers is tent value v such tha t VALr,v = v. In round r
processor p must have received at least t + 1 votes for v; at
least one is from some correct processor q. So, VAL r_ l,q :

v. This contradicts the assumpt ion that r is the first round
in which the claim fails. []

T h e o r e m 5: Protoco] 2 solves the avalanche agreement
problem.

P r o o f : We show that the avalanche, consensus, and plau-
sibility condit ions are satisfied.

Avalanche condition: Say that processor p decides v in
round r. By Lemma 4, any correct processor that decides
must pick the unique persistent value. Thus, the decision
of an arbi t rary correct processor q is v. We conclude the
proof by showing tha t all correct processors decide v by
round r -r 1. In round r processor p gets at least 2t ÷ 1
votes for v; at least t + 1 are from correct processors. So,
all processors get at least t + 1 votes for v in round r. By
Lemma 4, any correct processor gets at most t votes for
any value v t ~ v. Therefore, processor q sets VALr, q to Y
in round r, broadcasts v in r o u n d s -+ 1, gets at least 2 t + 1
votes for v in round r + 1, and decides v by round r + 1.

Consensus condition: Let value v be the input to all
of the correct processors. There are at least 2t + 1 correct
processors tha t all b roadcas t v in round 1. All correct
processors receive at least 2t + 1 votes for v in round 1 and
therefore broadcas t v in round 2. All correct processors
receive at least 2t + 1 votes for v in round 2 and therefore
decide v in round 2.

Plausibili ty condition: Let value v be the decision of a
correct processor p. By Lemma 4, v is the persistent value.
So, at least 2t + 1 processors (at least t + 1 of which are
correct) voted for v in round 1. Value v is input to all of
these correct processors. []

The communicat ion cost of Protocol 2 is high because
processors send messages for an unbounded number of
rounds. This cost can be limited in two ways. In many
applications (including Section 5) we are only interested
in the results of an avalanche agreement protocol for a
small fixed number of rounds. We can limit the commu-
nication cost by halting the protocol in the first round in
which we are uninterested in its results. Alternatively, a
simple coding convention for messages allows us to imple-
ment Protocol 2 so that at most O(n 2 • log tVi) message
bits are used in any execution. In Protocol 2 each correct
processor broadcas ts a non-null message each round. The
convention gives a meaning to null messages. A processor
that wishes to send the same message that it sent in the
previous round instead sends the null message (at a cost
of 0 bits). It is easy to show tha t using this convention

677

each correct processor sends at most 3 non-nul l messages
in any execut ion.

5. Compact F u l l - I n f o r m a t i o n P r o t o c o l s

In Section 1 we out l ined the two-step process by which
we t r a n s f o r m an a rb i t r a ry consensus protocol P into a
communicat ion-eff ic ient canonical form. The protocol P
is first t r an s fo rmed into a ful l - informat ion protocol t h a t
is then t r ans fo rmed into a compact fu l l - informat ion proto-
col. In this sect ion we complete the descr ipt ion by showing
how the compac t ful l - information protocol can s imulate
the message exchange por t ion of a fu l l - informat ion proto-
col us ing only a polynomial n u m b e r of message bits.

5 .1 D e f i n i t i o n s

For any set S a O-dimensional array of S is any s E S.
An i-dimensional array off S is any vector (m l , . . . , m ,)
where, for all j , my is an (i - 1)-dimensional array of S.
Our defini t ion of array is s t a n d a r d except t h a t the size
a long each d imens ion is always n. An index array is an
array of { 1 , . . . , n}. A value array is an array of V where
V is the set of possible inputs to P. In a fu l l - informat ion
protocol , all messages sent by correct processors are value
arrays and a t each round the s ta te of each correct processor
is a value array;

A partial funct ion may be undef ined (denoted _J_)
on some elements of its domain. We adopt the conven-
t ion t h a t a n y par t ia l funct ion used in this paper is un-
defined whenever any of its a rguments is undef ined and
t h a t any array used .in this paper is undef ined when-
ever any of its e lements is undefined. Par t ia l funct ion f
is an extension of par t ia l funct ion g if for all x e i ther
f (x) = g(x) or g(x) = 2_. A funct ion f defined on ar-
rays is substitutive if for all a t , . . . ,am the following holds:

f ({at an>) = < f (a l) , . . . , f (a n)) .

W h e n we t r ans fo rm an a rb i t r a ry protocol .P into a
compac t ful l - informat ion protocol the t radeoff between
t ime and communica t ion is de te rmined by pa rame te r k.
For any integer k > 0, there is a compac t ful l - informat ion
protocol Q t h a t is s t ruc tu red as a series of blocks of k + 2
rounds. In each of the first k rounds of a block, Q makes
one round of progress in its s imula t ion of P. The last two
rounds are overhead - - no progress is made.

We define some funct ions t ha t relate various ways of
number ing rounds. Let r > 0 be a round in a compac t
ful l - informat ion protocol.

• B L O C K (r) ---- [r/(k + 2)] is the block of which round r
is a par t .

• P R I O R (r) = (B L O C K (r) - - 1) • (k + 2) is the last round
prior to the current block.

• PHASE(r) = r - - PRIOR(r) is the n u m b e r of rounds since
the s t a r t of the current block.

• SIMUL(r) ---- k . (BLOCK(r) -- 1) + MIN(PHASE(r),k) is
the n u m b e r of rounds of progress t h a t have current ly
been made in the s imula t ion of the ful l - information
protocol.

In Table 1, we i l lus t ra te the re la t ionship a m o n g these quan-
t i t ies for 14 ac tua l and 8 s imula ted rounds of a compac t
ful l - informat ion protocol wi th pa rame te r 2.

r 1 2 3 4 5 6 7 8 9110 11 12 13 14

BLOCK(r) 1 1 1 1 2 2 2 2 3 3 3 3 4 4

PRIOR(r) 0 0 0 0 4 4 4 4 8 8 8 8 12 12

PHASE(r) 1 2 3 4 1 2 3 4 1 2 3 4 1 2

SlMUL(r) 1 2 212 3 4 4 415 6 6 6 7 8

T a b l e 1: An Execut ion of 14 Rounds wi th k = 2

5 .2 S u b p r o t o c o l s

O r d i n a r y sequent ia l p r o g r a m m i n g problems are fre-
quent ly decomposed into s impler subp rob lems using sub-
rout ines . In a s imilar way we simplify our compac t full-
in fo rmat ion protocol by using avalanche agreement as a
subprotocol . Subprotocols are s imilar to subrou t ines in
t h a t they help us decompose problems; however, they have
different semantics . For example, our subprotocols run in
parallel w i th the ma in protocol and thei r results take at
least one round to become available. In this subsect ion we
define the syn tax and semant ics t h a t we will use for calls
to subprotocols .

Recall t h a t each round of any protocol P consists of
th ree componen t s t h a t are per formed in order: sending
messages, receiving messages, and local s t a t e change. In
the language we use to wri te our protocols there is no spe-
cific mechan i sm t h a t ensures t ha t this s t ruc tu re is followed;
however, a quick inspect ion is general ly sufficient to verify
t ha t it is. We will only write protocols t h a t conform to
this round s t ruc ture .

We adop t the convent ion t h a t if a call to subpro to-
col SUB appear s in round r of protocol P then the first
round of SUB coincides with round r of P. This implies
t h a t the call to SUB should appear in the text of P before
any round r sends and t h a t all inpu ts to SUB must be avail-
able at the s t a r t of round r (i.e., compu ted at r ound r - 1
at the la test) . If processor p decides in SUB in the round
t ha t coincides wi th round r t of P t hen we make this an-
swer avai lable to processor p in r o u n d r ~ of P before it com-
putes its local s ta te change. This s imply means t ha t in the
local-s ta te-change por t ion of each round of protocol P we
perform all of the local s ta te changes of the subprotocols
before we per form the local s t a t e change of .P. Relat ive or-
der among the subprotocols does no t m a t t e r because they
do not interact . We require t h a t all processors in proto-
col P in i t ia te precisely the same subprotocols at precisely
the same rounds. If in round r of protocol P there are x
active subprotocols runn ing then all round r messages are
(x + 1)-tuples - - one componen t for each subpro tocol and
one componen t for P.

Wi th in a protocol P , a call to subprotocol SVB is writ-
ten

call st, B(input: iN, result: OUT, rounds: r)

68

where XN and OUT are variables in .P and r is an integer.
(We require that all processors in P use the same value
for r.) Let r ' be the round in which protocol P executes
the call s tatement . The variable iN must be defined by
the end of round r ' - 1. Subprotocol sue is started with
input IN- in round r' and run for r rounds. The variable OUT

initially has the value _1_. If processor p in subprotocol SUB
decides v in round r of ? then the instance of variable OUT
at processor p is set to v at the start of the local-state-
change portion of round r of P. There is no requirement
that processors in SUB eventually :decide.

5.3 T h e P r o t o c o l

The code for the compact full-information protocol is
given as Protocol 3. In the following discussion and proof
we append two subscripts to each variable from Protocol 3.
The first subscript, say r, is a positive integer and the sec-
ond subscript, say p, is in { 1 , . . . , n}. By this notation we
mean the value of the subscripted variable at processor p
at the end" of round r. For example, OUWq,b,r, p is the value
of variable OUTq, b at processor p at the end of round r.

At each round each correct processor computes sev-
eral expansion/unctions based on its current state - - in
particular, based on the results of the various avalanche
agreement subprotocols that it has run. The round r ex-
pansion functions of processor p are denoted Cb,r,p, for
b E {1 BLOCK(r)}. If b > 1 then Cb,r,p is a substi-
tutive partial function from index arrays to value arrays.
If b = 1 then Cb,r,p is the identity function on value arrays
(which is also substitutive). Because expansion functions
are substitutive, it is sufficient to define them on scalars.
We let ~bb,r,p(z) = ± if ei ther b = 1 and x ~ V or b > 1
and z ~ {1 n}. In all other cases Cb,~,p is defined as
follows.

x i fb = 1;
~b'r'P(Z)'= qJb-l,r,p(OUTz,b,r,p) otherwise.

(All uses of q~b,r,v in Protocol 3 refer to the above defini-
tion.)

We explain the sense in which CORE.,p is a compressed
form of the state of processor p in the simulated full-
information nrotocol. We define F.LL ~TATE.,p in terms
of intormaUon available in the round r s tate of proces-
sor p as follows: FULL_STATE~,p = CBL,,.,K(~),r,~(CORE~.p).
What we will show in Section 5.5 is that for any round r,
if PHASE(r) _< k then the round SIMUL(r) s tate of correct
processor p in the simulated full-information protocol is
FULL_STATEr,p. In this s e n s e COREr,p is the compressed
state of processor p at round r in Protocol 3. Because
of the subst i tut ivi ty property of the expansion function
and other properties which we will s tate and prove in Sec-
tion 5.4 it is possible for our protocol to work directly with
compressed processor states.

5.4 Technica l L e m m a s

L e m m a 6: For all correct processors p and for all pro-
cessorsq, f i r ' = PRIOR(r) -- 1, b = BLOCK(r), b > 1, and
OUTq,b,r, p ,~ ..[. then there is some correct processor u such
that q~b-*.r'.u(OVTq,b,r,p) # ±.

Initialization for processor p:

CORE ~-- the initial value of processor p

Code for processor p in round r where b = BLOCK(r):

1. if PHASE(r) _< k then
2. broadcast CORE
3. receive MSG~ from processor i for 1 < i < n
4. f o r i ~ l t o r t do
5. i f Cb,r,p(MSGi) -= k

then VALi ~ CORE
else VALi 4--- MSGi

6. CORE ~ (VAL1 VALn)

7. if PHASE(r) = k-1" 1 then
8. broadcast CORE
9. receive MSGq from processor q for 1 < q _< n
10. f o r i ~ 1 t o n d o
11. if Cb,r,p(MSGi) = ±

then INi ,b+l *-- _1_
e l se INi ,b+l ~ MSGi

12. if PHASE(r) = k + 2 then
13. f o r i ~ 1 to n do
14. call AV-ALANCHE(input: XNi,b+l,

result: OUTi,b+t, rounds: k + 3)
15. CORE +-- p

P r o t o c o l _ 3 : The Compact Full-Information Protocol

P r o o f : OUT¢,b,r;p is the answer produced by an invoca-
tion of avalanche agreement. By ~he plausibility condit ion
of avalan,~he agreement, there is some correct processor u
that s ta r ted this invocation of avalanche agreement with
input OUTq,b,r,p. Processor u must have observed that
~5b--t,r,,u(OUTq,b,,,p) # ± at step 1t of the code; other-
wise, it would have used ± (no legal input) as its input to
avalanche agreement. D

L e m m a 7: For all b > 0 and for all correct processors p
and q, i/BLOCK(r) = b and PHASE(r) ~ k + 2 then ~bb,r+t,p
is an extension o[~b,r,q.

Proof : The proof is by induction on b.

Basis: (b = 1) This is trivial because Cb,,+l,p and
~bb,r,q are both the identity function.

Induction: (b > I) Consider an arbi t rary message m.
If fbb,r,q(fr~) = ± then the claim is trivially true. So,
assume that ¢b,r,q(m) ~ ±. We wish to show that
~bb,r+l,p(m) = f~b,r,q(m). Let I be the set of indices in m.
Let r ' = PRIOR(r}. By the subst i tut ivi ty property of
the expansion functions, ~bb,r*t,p and Cb,r,q, it is sufficient
to show that for all i in I that ¢b-l,e,p(OUTi,b,r+l,p) =

~b-l,r',q(OUTi,b,r,q) •

Because ~b,r,q(m) ~ ± we know that for all i in I ,
OUTi,b,r, q ~ ± and therefore by the avalanche condi-
tion of avalanche agreement OUTi,b,r%l,p = OUTi,b,r,q.
By Lemma 6, there is a correct processor s such that
~b_l,r,_l,s(OUTi,b,r,q) ~ ± . B y the induction hypoth-
esis, ~b-l,r',p and Cb-l,r',q are extensions of C~b-l,r'-*,s
and s o ~b-,,r,,p(OUTi,b,r+t,p) : ~)b-l,r',p(OUTi,b,r,q) :

~b--l,r'-l,s(OUTi,b,r,q) = ~b-l,r',q(OUTi,b,r,q). O

69

L e m m a 8: / f PHASE(r) = k and BLOCK(r) = b then for
all correct processors p and q, OUTp,b.+l,r-i.3,q = COREr,p.

P r o o f : In round r + 2, avalanche agreement on the
round r + 1 message broadcast by processor p will be ini-
tiated. The round r + 3 result of this agreement at pro-
cessor q is OUTp,b..l_l,rq-3, q. Each correct processor will use
either coaE~,p (which is the round r + 1 message broad-
cast by correct processor p) or _1_ as its input to this
avalanche agreement protocol. Step 5 of the code ensures
that, Cb,r,p(COaEr,p) ~ J-. So, by Lemma 7, for all correct
processors 8, Cb ~-l,a (COREr,p) ~ _t_. Therefore all correct
processors will u s e COREr,p aS input to the avalanche agree-
ment protocol s tar ted at round r+2 . By the consensus con-
dition of avalanche agreement OUTp,b+l,r_b3,q ~- COREr, p
which is what we sought to show. [3

5.5 P r o o f o f S i m u l a t i o n

For all p E {1 , . . . ,n} and for any processor s tate s de-
fine the function fp(s) to be ¢ (0,~,p(COaE~,p) where
r and CORE are implicit in s.

T h e o r e m 9: The compact full-information protocol sim-
ulates the full-information protocol with simulation func-
tions f i for i E (1 , . . . ,n} and scaling function SIMUL.

P r o o f : We must show that for any r and for any r-
round execution E of the compact full-information pro-
tocol, there is a SIMUL(r)-round execution E ' of the full-
information protocol such that for any correct processor p
and for any i (where 1 _< i <_ r) it is t h e case that
fp(state(p, i, E)) = state(p, S,MUL(i), E ') .

The proof is by induction on r. Let b = BLOCK(r),
and let r ' = SIMUL(r).

Basis: (r = 0.) The execution E ~ is simply con-
structed. The set of correct processors in E ' is the same
as in E. The correct processors have the same input in the
two executions.

Induction: If PHASE(r) > k then the theorem follows
from Lemma 7 and the induction hypothesis. Assume in-
stead that PHASE(r) < k.

If PHASE(r) = 1 and r > 1 then let the execution F
consist of the first r - 3 rounds of E; otherwise, let the
execution F consist of the first r - 1 rounds of E. By the
induction hypothesis there is an (r - 1)-round execution F r
of the full-information protocol such that F is a simulation
of F I. We show that the (r ' - 1)-round execution F ~ can
be extended by one round to get the rLround execution E I
whose existence is claimed.

The extension to F ' is fully described by specifying
the round r ~ messages sent from faulty processors to cor-
rect processors. It is unnecessary to specify the messages
sent by correct .processors because there is no choice and
it is unnecessary to specify the messages sent from faulty
processors to faulty processors because these messages do
not matter .

Let s be.an arbitrary faulty processor and let p be an
arbitrary correct processor. We specify that the round r '

message from s to p in E I is Cb,r,p(VALs,r,r,). By the induc-
tion hypothesis Cb,r,p(vaLs,T,p) ~ ±.

Let (v i , . . . ,vn) = q~b,r,p(COREr,p); and let (v~ vln)
be the final state of processor p in E ' . We now verify that

• , . , V n) . a n (v t , . . vn) = (v~,. . ' Consider arbi t rary proces-
' There a r e t h r e e sor q. It is sufficient to show that Vq = vq.

c a s e s .

Case 1: (Processor q is correct and PHASE(r) = 1 and
r > 1.) Since q is correct, Vq.-' -- C b - l , r - 3 , q (C O R E r - 3 , q)
k. By Lemma 8, OVTq,b,r,p = COREr-3,q. Therefore pro-
cessor p places q in the q-th posit ion of COREr,p and the
q-th component of Cb,~,p (COREr,p) is Cb- t , r - l ,p (OUTq,b,r,p).
(~b_l , r_I ,p(OUTq,b ,r ,p) -~ (f ib_1 , r_3 ,q (COREr_a ,q) by Lemma
7. Therefore, vq = Cb_t,~-a,q(coaE~-s,q) . This shows

l
that vq = vq.

Case 2: (Processor q is correct and either PHASE(r) >
1 or r = 1.) Because q is correct MSGq,r, p : COREr-I,q

' = Cb,r-l,q(MSGq,r,p) ~ _k. We can see that by and vq
Lemma 7, Cb,r,p(USGq,r,p)-~ .qtb,r.:l~q(MSGq,~,p). Therefore
(in steps 5-6) processor p:in¢orporates MSGq,~,p as the q-th
component of COrtE,,p and so vq = Cb,~;p(MSGq,~,p). This

i shows that vq = vq.

Case 3: (Processor q is faulty.) By the specification
i = ~bb,r,p(VAL,,r,~,). Processor p (in steps 5-6) of E' , vq

i n c o r p o r a t e s VALs,r,p as the q-th component of C O R E r , p .
i [] So, Vq = Cb,~,p(VAL~,~,r,). This shows that vq = Vq.

5.6 P e r f o r m a n c e A n a l y s i s

C o r o l l a r y 10: For any e > 0, the Byzant ine agreement
problem can be solved in (1 + e)(t + 1) rounds using O(t .
n[2/ ']+3 • log IVI) message bits•

P r o o f : There are known (t + 1)-round exponential-
message Byzantine agreement protocols, for example the
protocol of Lamport et al. [13]. This means that there is
a decision rule to apply to the final s tate if we use the
compact full-information protocol to simulate t -~ 1 rounds
of message exchange in a full-information protocol• The
simulation together with the decision rule const i tutes a
Byzantine agreement protocol•

In each of the first k rounds of a block of the compact
full-information protocol, one round of progress is made in
the simulation of the full-information protocol. In the last
two rounds, no progress is made. Therefore, for all x, in
k - ~ x actual rounds, the compact full-information proto-
col has simulated at least x rounds o f the full- information
protocol. In order for our Byzantine agreement protocol
to terminate within (1 + E)(t + 1) actual rounds, we require
that (k + 2) / k < 1 + e. Solving for the min imum inte-
ger k we get k = I2/e 1. Therefore, to achieve Byzantine
agreement in (1 -t- e)(t + 1) rounds, we run the compact
full-information protocol with paramet, el '~ k = [2/el and
then (after t + 1 simulated rounds~-~pply'the decision rule
derived from Lamport ' s protocol.

For the compact full-information protocol, the com-
munication cost consists of the cost of avalanche agreement
and the cost of the remainder of the protocol. In the non-

70

avalanche portion of the protocol, in each of O(t) rounds
each processor broadcasts a message of size O(n k • log IV I)
for a total cost of O(t • n k+2 • log IVI) bits. This cost is
dominated by the cost of avalanche agreement. In the
avalanche agreement portion of the protocol, in each of
O(t) rounds, each processor broadcasts at most n messages
of size O(n k. log IV I) for a total of O(t. n k+3. log IV I). Ex-
pressed in terms of e, this communication complexity is
O(t • n f21~]+s, log IVI) message bits. []

If n > 4t + 1 then a modification of our technique
can transform any (t + 1)-round consensus protocol to a
(l+e) (t + 1)-round protocol that uses O(t.nfl/']+3.1og IVI)
message bits. Given that n > 4t + 1 it is possible to solve a
variant of the avalanche agreement problem with a consen-
sus condition modified to require a decision in one round
rather than two. Using this variant avalanche agreement
protocol, we can reduce the number of rounds in each block
of a compact full-information protocol by one. Analyzing
the new compact full-information protocol gives the total
communication cost of O(t. n H/'] +3. log IV l) message bits.

We compare the cost (i.e., rounds and message bits) of
our Byzantine agreement protocol (for n = 4t + 1) with the
cost of the vrotocol of Srikanth and Toueg [181 (which uses
she smallest number of rounds of any previously known
protocol and which only requires that n > 3t + I). The
protocol of Srikanth and Toueg uses 2t + 1 rounds and
O(t. n 2 • log n . log lV I) message bits. If e = 1 our protocol
uses 2t + 2 rounds and O(t . n 4 • log IVl) message bits. If

1 e = ~ our protocol uses 1 1 I ~t+l ~ rounds and O(t.nS.log IVI)
message bits. If e = ½ our protocol uses 1½t + 1½ rounds
and O(t. n 6.1og IV I) message bits. We find that our proto-
col uses somewhat more message bits, but it allows us to
greatly reduce the number of rounds. Also, our technique
is more general and may therefore have greater applica-
bility (e.g., reducing the communications cost of the ap-
proximate agreement protocol of Fekete [91). A significant
limitation of our technique is the large amount of local
computation that it requires. By contrast the protocol of
Srikanth and Toueg uses a small 'amount of space and time
locally at each processor. In this comparison we ignore a
possible optimization due to Dolev et al. [6] and another
due to Perry [16] and to Turpin and Coan [19] because
these optimizations have a similar (and small} impact on
both protocols.

Acknowledgment

[would like to thank Mike Fischer and Nancy Lynch
for suggesting many ways to improve the presentation of
this paper and for suggesting the general method of attack
that led to the development of this result.

References

[1] M. Ben-Or, "Another Advantage of Free Choice: Com-
pletely Asynchronous Agreement Protocols," Proceed-
ings o/ the 2 nd Symposium on Principles of Dis-
tributed Computing, pp. 27-30, 1983.

[2] J. Burns and N. Lynch, "The Byzantine Firing Squad
Problem," Advances in .Computing Research: Paral-
lel and Distributed Computing, vol. 4, JAI Press Inc.,
Greenwich, Connecticut, to appear. (Also available as
MIT Technical Report MIT/LCS/TM-275, 1985.)

[3] B. Chor and B. Coan, "A Simple and Efficient Ran-
domized Byzantine Agreement Algorithm," Transac-
tions on Software Engineering, vol. SE-I1, pp. 531-
539, 1985.

[4] B. Coan, D. Dolev, C. Dwork, and L. Stockmeyer,
"The Distributed Firing Squad Problem," Proceedings
of the 17 th Symposium on Theory of Computing, pp.
335-345, 1985.

[5] D. Dolev, "The Byzantine Generals Strike Again,"
Journal of Algorithms, vol. 3, pp. 14-30, 1982.

{6! D. Dolev, M. Fischer, R. Fowler, N. Lynch, and H.
Strong, "An Efficient Algorithm for Byzantine Agree-
ment without Authentication," Information and Con-
trol, vo[. 52, pp. 257-274, 1982.

[7] D. Dolev, N. Lynch, S. Pinter, E. Stark, and W. Weihl,
"Reaching Approximate Agreement in the Presence of
Faults," Journal off the ACM, to appear. (Also avail-
able in Proceedings of the 3 rd Symposium on Reliabil-
ity in Distributed Software and Database Systems, pp.
145-154, 1983.)

[8! D. Dolev and R. Strong, "Polynomial Algorithms for
Multiple Processor Agreement," Proceedings o/ the
14 th Symposium on Theory of Computing, pp. 401-
407, 1982.

[9] A. Fekete, "Asymptotically Optimal Algorithms for
Approximate Agreement," Proceedings of the 5 th Sym-
posium on Principles of Distributed Computing, 1986.

[101 M. Fischer and N. Lynch, "A Lower Bound for the
Time to Assure Interactive Consistency," Information
Processing Letters, vol. 14, pp. 183-186, 1982.

[11] M. Fischer, N. Lynch, and M. Merritt, "Easy Impos-
sibility Proofs for Distributed Consensus Problems,"
Proceedings of the 4 th Symposium on Principles of
Distributed Computing, pp. 59-70, 1985.

[12} L. Lamport, "The Weak Byzantine Generals Prob-
lem," Journal of the ACM, vol. 30, pp. 668-676, 1983.

[13] L. Lamport, R. Shostak, and M. Pease, "The Byzan-
tine"Generals Problem," ACM Transactions on Pro-
gramming Languages and Systems, vot. 4, pp. 382-
401, 1982.

[141 N. Lynch, M. Fischer', and R. Fowler, "A Simple and
Efficient Byzantine Generals Algorithm," Proceedings

of the 2 na Symposium on Retzability in Distributed
Software and Database Systems, pp. 46-52, 1982.

I15] M. Pease, R. Shostak, and L. Lamport, "Reaching
Agreement in the Presence of Faults," Journal of the
ACM, vol. 27, pp. 228-234, 1980.

71

{16] K. Perry, "Early Stopping Protocols for Fault-Tolerant
Distributed Agreement," Ph.D. Thesis, Cornell Uni-
versity, 1985.

[17] M. Rabin, "Randomized Byzantine Generals," Pro-
cecdings of the 24 th Symposium on Foundations of
Computer Science, pp. 403-409, 1983.

[18] T. Srikanth and S. Toueg, "Byzantine Agreement
Made Simple: Simulating Authentication without Sig-
natures," Cornell Technical Report 84-623, 1984.

[t9] R. Turpin and B. Coan, "Extending Binary Byzantine
Agreement to Multivalued Byzantine Agreement," In-
formation Processing Letters~ vol. 18, pp. 73-76, 1984.

72

