RIGHTS

A Communication-Efficient Canonical Form for

Fault-Tolerant Distributed Protocols

Brian A. Coan

Massachusetts Institute of Technology

Abstract: Many fault-tolerant distributed protocols are
known. Seme of these require a large (exponential) amount
of communication. We present a general simulation of
any synchronous fault-tolerant consensus protocol by a
communication-efficient protocol. An important coral-
lary of the simulation technique is a new communication-
efficient Byzantine agreement protocol that uses about half
the number of rounds required by the best previously-
known communication-efficient Byzantine agreement pro-
tocel. Qur new protocol approaches the known lower
bound for rounds to within a small factor arbitrarily close
to 1. The only known protocols which achieve the lower
bound for rounds use an exponential amount of communi-
cation.

1. Introduction

For almost the past ten years, the task of achiev-
ing consensus in a fault-tolerant distributed computer sys-
temn has been recognized as a fundamental problem in
distributed computing. Protocols have been designed to
solve many consensus problems including the agreement
problem (see [13] and [15]), the approximate agreement
problem (see [7] and [9]), the crusader agreement problem
(see (3]), the firing squad problem (see 2| and {4]), and the
weak agreement problem (see [12]). These protocols oper-
ate in a variety of fault models including Byzantine, au-

This work was supported by the Defense Advanced Re-
search Prajects Agency (DARPA) under Contract N0OOO14-83-
K-0125, by the National Science Foundation under Grant DCR-

3-02391, by the Office of Army Research under Contract
DAAG29-84-K-0058, and by the Office of Naval Research under
Contract NO00OL4-85-K-0168.

Permission Lo copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy.o§herwise, or to republish, requires a fee and/or specfic
permntission.

© 1986 ACM 0-89791-198-9/86/0800-0063 75¢

i,

63

thenticated Byzantine, failure-by-omission, and fail-stop.
Some protocols for the Byzantine fault model require a
large (exponential) amount of communication, for exam-
ple, the agreement protocol of Lamport et al. [13] and the
approximate agreement protocoi of Fekete {9].

We give general upper bounds on the number of bits of
cornmunication needed for any synchronous simultaneous-
start non-cryptographic consensus protocol. More pre-
cisely, we show how to transform an arbitrary consensus
protocol into a canonical-form protocol; the new proto-
col solves the same problem as the original, but only uses
an amount of communication that is polynomial in the
number of processors and the number of rounds of mes-
sage exchange. To achieve this small communication cost,
the new protocol incurs an increase in running time {i.e.,
rounds of message exchange). There is a tradeolf between
the number of rounds and thé degree of the polynomial
bounding the communication. The value of this tradeoff
is determined by a numerical parameter to the transfor-
mation. For any € > 0 the transformation can produce
a canonical-form protoeol that increases the number of
rounds of the original protocol by a factor of 1 + € and
that uses Of{r - n(2/<1+3 | |og V1) bits of communication
where n is the number of processors, r is the number of
rounds, and V is the set of possible inputs to the original
protocel. Throughout this paper we let n be the num-
ber of processors in the system and we let £ be an upper
bound on the number of processor faults that a protocol
need tolerate.

Our transformation was developed for the Byzantine
fault model. In more benign fault models like failure-by-
omission’and fail-stop there is a simple extension of our
transformation that causes no ncrease :n the number of
rounds. Because the most interesting applications of our
transformation are in the Byzantine fault model, we will
restrict our attention to that model in the remainder of
this paper.

As a corollary to the results in the Byzantine fault
model, we obtain a major new result about the communi-
cation requirements of Byzantine agreement. The earliest
Byzantine agreement protocols {13] used exponential com-
munication and t-+1 rounds; ¢+1 is the known lower bound
on rounds [10]. Subsequently, improved protocols yielded

RIGHTS

polynomial communication using about 2¢ rounds (see |6},
{8, [L4], and [18]). An open question among researchers in
this area for the past few years has been whether there are
any protocols that simultaneously use fewer than 2¢ rounds
and polynomial communication. We obtain an interesting
answer to this question. For any € > 0 there is a protocol
that uses (1 + €)(t + 1) rounds and polynomial communi-
cationn. We obtain this result by applying our transforma-
tion to the communication-inefficient (¢ + 1)-round proto-
col of Lamport ef al. Another use for our transformation
is improving the communication complexity of a new ap-
proximate Byzantine agreement protocol of Fekete [9]. His
protocol has the optimal convergence rate for any multi-
round approximate agreement protocol, but requires expo-
nential communication. Using our new technique, we can
transform his protocol into a polynomial-communication
protocol with a near optimal convergence rate.

Our new method for transforming an arbitrary con-
sensus protocol, say P, into a communication-efficient
canonical-form protocol is a two-step process. The proto-
col P is first transformed into a full-information protocol;
the resulting protocol is then transformed into a compact
Jull-information protocol. A full-information protocol is a
well known [10] communication-inefficient canonical-form
protocol in which each processor, at each round, broadcasts
its entire state, receives one message from each processor,
and forms its new state as the ordered collection of all
messages received. To transform P into a full-information
protecol it suffices to find a decision rule for each processor
to apply locally to its state. It is not necessary to devise
message generation rules because all full-information pro-
tocols have the same rule: at each round each processor
broadcasts its entire state. Pease el al. [15] show that
any consensus protocol P can be transformed into a full-
information protocol, by showing how to find the decision
rule that corresponds to P. This first transformation of ?
gives a full-information canonical-form protocol that uses
the same number of rounds as 7 and exponential commu-
nication. We want to do much better than this in commu-
nication.

In the second step we further transform P into a com-
pact full-infermation protocol that uses only polynomial
communication. Because we have already shown how to
put P in the form of a full-information protocol, it is suf-
ficient to show how to simulate the message exchange of
a full-information protocol using polynomial communica-
tion. The compact full-information protocol consists of
this simulation together with the same decision rule used
in the full-information protocol.

The heart of our technique is our new method for
efficiently simulating the message exchange portion of a
full-information protocol. We do this by using data com-
pression techniques to condense the information being sent
around. Messapes are compressed by the sender and ex-
panded by the recipient. In paraltlel with the rest of the
compact full-information protocol, each processor at each
round computes an expansion function that it can apply
to incoming compressed messages to obtain the full mes-

i,

64

sage text. It is necessary that all correct processors be
able to consistently expand any message sent by a correct
processor. This consistency requirement seems difficult to
achieve in the presence of faults, because it requires that
the correct processors agree on how to carry out the com-
pression and expansion. Such agreement might, at first,
seem to require Byzantine agreement or some other time-
costly protocol. We overcome this difficulty by using a
new, different form of agreement that we call avalanche
agreement. The difference between avalanche agreement
and Byzantine agreement is explained in Section 4. Using
an avalanche agreement protocol to agree on their expan-
sion function enables the correct processors to achieve a
sufficient level of agreement at a cost that we can afford.

One limitation of our technique is that it can use a
large amount of local computing resources. A complete
reconstruction of the local state of processors in a full-
information protocol requires exponential space and time.
It is straightforward to devise an efficient data represen-
tation that requires only a polynomial amount of space;
however, the question of how much time is required to
reach a decision remains open.

In Section 2 we review the definition of the Byzantine
agreement problem. In Section 3 we give our definition
of simulation. In Section 4 we define the avalanche agree-
ment problem and give a protocol that solves the problem.
In Section 5 we present a compact full-information proto-
col ~— a communication-efficient protocol that simulates a
full-information protocol.

2. The Byzantine Agreement Problem

A synchronous Byzantine agreement protocol is run
by a distributed system of n processors, at most ¢ of which
may fail. Communication is over a network that is fully
connected and reliable. The computation takes place in a
series of rounds. In each round the correct processors first
send messages, then receive messages and finally make a
local state change based on the messages received and their
state. Correct processors send messages according to their
programs. Failed processors can send arbitrary messages.

Each processor starts the protocol with an input
value, v, from a fixed set of legal inputs, V. The goal
is that after some number of rounds each correct processor
will irrevocably decide on an element of V' as its answer.
There are two conditions that the correct processors must
satisfy.

» Agreement condition: All correct processors reach the
same decision.

e Validity condition: If all correct processors start the
protocol with input v then v is the decision of all of
the correct processors.

3. Simulations

In this section we give our definition of one proto-
col simulating another and we characterize some impor-
tant properiies of protocol behavior that are preserved

RIGHTS

by our simulations. We take the first step toward show-

ing that any consensus protocol can be simulated by a
communications-efficient protocol, that is, we show that
the full-information protocol can simulate any consensus
protocol. After this section, the remainder of the paper is
devoted to showing how to simulate the full-information
protocol using a particular communications-eflicient pro-
tocol which we call the compact full-information protocol.

3.1 Definitions

Following Lynch, Fischer, and Fowler [14] we model a
consensus protocol as a synchronous system of automata.
We find it convenient to introduce this formalism in order
to discuss simulations. Later, when we give our protocols
we will use a higher level language. The mapping back to
automata is straightforward. A protocol P is described by
the following.

¢ V is the set of input values.
¢ } is the set of processor states.

¢ L is the set of messages.

* ppo: @ — L,for p,g € {1,...,n}, is the message
generation function for messages sent from processor p
to processor q.

o« & L* = @, for p € {1,...,n}, is the state tran-
sition function for processor p. (The prior state of
processor p is omitted from the domain of §, because
it would be redundant. Processor p can send any re-
quired information in a message to itself.)

. ‘YP : Q - {L}va fOI‘pE {1v
function for processor p.

yn}, is the decision

An element of @ is identified with each element of V.
These are the initial states. The decision of processor p in
some execution of protocol P is the first non- L value of
~p(s:) where s, is the round 7 state of processar p. After
processor p has decided, future values of v, are ignored.

A round consists of sending messages, receiving mes-
sages, and making a local state change. Each processor
starts in the initial state corresponding to its input value.
In any execution of protocol P a correct processor sends
according to its message generation function and a faulty
processor sends arbitrary messages from L. An erecution
of protocol P is a 4-tuple (k, F, I, M) where k is the number
of rounds in the execution, ¥ is the set of faulty proces-
sors, I is a vector of inputs for the processors, and M is the
set of messages (with their origin, destination, and round
sent) sent by faulty processors in all rounds up to round k.
In this paper we restrict our attention to executions in
which the number of faulty processors is less than ¢ Let
processor. p be correct in execulion £. We let state(p, L E)
denote the round 1 state of processor p in execution £.

Let P and P’ be protocols with the same set of possible
inputs. Protacol P’ simulates protocol P if there is a non-
decreasing function r from the natural numbers onto the
natural numbers and a set of functions fp for p £ {1,...,n}
from the processor states of P’ to the processor states of P

i,

65

such that for any execution E' = (k, F, 1, M’) of P’ there
is an execution E = (r(k), F, I, M) of P such that for any
correct processor p and for any 7 (where 1 <1 < k) it is
the case that f,(state(p,i, E’)) = state(p,r(t), £). We say
that the [, are the simulation functions and that r is the
sealing function.

Execution E of protocol P is a deciding execution if all
processors that are correct in E have decided. Protocol P
terminates if there is some k such that any k-round execu-
tion of P is a deciding execution. If E = (k, £, I, M) is a
deciding execution of P then ans(E) is defined to be the n-
tuple whose pt* component is state{p,k, E) if processor p
is correct in E and 1 otherwise.

Predicate C is a correctness predicate if its domain is
(Vu{L})"x2{trm} x V™ Protocol P satisfies correctness
predicate C if for any deciding execution & = (k, F, [, M)
the valee of C(ans(E),F,I) is true. We observe that
the correctness conditions for Byzantine agreement and
approximate agreement can be formulated as correctness
predicates.

Theorem 1: If protocol P! simuiates protoco!l P with sim-
ulation functions f for p € {1,...,n}, P has decision func-
tions v, for p € {1,...,n}, and P’ has decision functions
Yp(s) = vp(fe(s)), for p € {1,...,n} then the following
two conditions hold.

(1) If protocal P terminates then so does protocol P'.

{2) If protacol P satisfies some correctness predicate (
then so does protocol P'.

Proof: Let r be the scaling function of the simulation.

Condition (1): Because protocol P terminates there is
a k such that all k-round executions of P decide. Because
r is onto, there is a &’ such that r(&') = k. We show that
an arbitrary k’-round execution E' = (rlk), F,I,M’) of
P’ must decide. By the definition of simulation there is a
deciding execution E = (k, F,I, M) of P such that for all
correct processors p and for all ¢ (where 1 < ¢ < &') it is the
case that f,(state(p,i, E')) = state(p,r(i), E). Because r
is onto and by the choice of 4/, execution &' is also a
deciding execution. Therefore protocel P! termninates.

Condition (2): Suppose not. Then there is a de-
ciding execution £’ = (k,F,I,M') of P’ such that
Clans(E"), F, 1) is false. By the definition of simulation
there is an execution £ = (r(k},F,{, M) of P such that
for any correct processor p and for any ¢ (where 1 <7 < k)
it is the case that fy(state(p,t, E)) = state(p,7(i), E). By
choice of 7', C(ans(FE), F,I) is also false, contradiction. O

3.2 A Simple Simulation

In the full-information protocel {shown as Protocol 1)
each processor at each round broadcasts its entire state, re-
ceives one message from each processor, and forms its new
state as the ordered collection of all messages received. We
now review the well-known resuit that a full-information
protocol can simulate an arbitrary consensus protocol.

RIGHTS

Initialization for processor p:
STATE «— the initial value of processor p

Code for processor p in round r:

1. broadcast STATE
2. receive MsG, from processor g for 1 < g < n
3. STATE + {MSGy,...,MSG,}

Protocol 1: The Full-Information Protocol

Theorem 2: Let protocol P be an arbitrary consensus
protocol. The full-information protocol simulates proto-

col P.

Proof: Let @ be the state set of the full-information pre-
tocol. Suppose protocol P has input set V', message gen-
erating functions py o for p,g € {1,...,n}, and state tran-
sition functions &, for p € {1,....n}. Let r be the iden-
tity function on integers and define f,(s) for s £ Q and
pe{l,...,n} to be

s ifseV;
fols) = {6p(m]p(f,(s,)),_..,,L,L,P(fn(sn))) otherwise.

We can verily that the simulation has simulation functions
fp for pe {1,...,n} and scaling fenction r. a

4. Avalanche Agreement

We formulate and solve the avalanche agreement prob-
lem as a building block for use in our compact full-
information protocol. At various points in the compact
full-inférmation protocol it is convenient to achieve some
measure of agreement among the correct processors. We
might try using a standard Byzantine agreement protocol
for this purpose. Unfortunately, we find that we cannot af-
ford the cost (in rounds) of standard Byzantine agreement.
By using an avalanche agreement protocal instead, we are
able to achieve a sufficient level of agreement among the
correct processors at a cost that we can afford.

A protocol that solves the avalanche agreement prob-
lem operates under the same failure and communication
assumptions as a Byzantine agreement protocol. Each pro-
cessor begins the protocol either with an input value from
some fixed set V' or with no input. We refer to the elements
of the set V as values, and we indicate the absence of an
input by saying that a processor has input L. Each cor-
rect processor may, at some point during the execution of
the protocol, irrevocably decide on a value (element of V')
as its answer. There are three conditions that the correct
processors must satisfy.

¢ Avalanche condition: U any correct processor de-
cides v in round 7 then all correct processors decide v
by round r + 1.

s Consensus condition: If all correct processors start
the protocol with input v then v is the decision of all
of the correct processors by round 2.

» Plausibility condition: If any correct processor de-
cides v then v must have been the input to some caor-
rect processor.

i,

66

There are five ways in which the avalanche agreement
problem differs from the standard Byzantine agreement
problem. First, there is no requirement that all executions
{(of an avalanche agreement protocol) terminate. Second,
certain executions (those in which all correct processors
have the same input) are required to terminate very fast
(in two rounds). Third, in any execution that terminates,
all of the correct processors are required to make their
decisions within some window of two rounds. Fourth, some
correct processors may begin the protocol with no input
vaiue. Fifth, no correct processor is permitted to produce
as an answer any value that was not the input to at least
one correct processor. The first of these differences tends to
make the avalanche agreement preblem easier to solve than
the Byzantine agreement problem. The remainder of the
differences tend to make the avalanche agreement problem
harder to solve than the Byzantine agreement problem.
The combined effect of all of the differences is to make the
two problems incomparable.

A variant of the Byzantine agreement problem formu-
lated by Dolev [5] is the crusader agreement problem. At
first glance, the avalanche agreement problem may appear
similar to the crusader agreement problem, but this simi-
larity is superficial. The two problems are incomparable.
Crusader agreement is a harder problem in that all execu-
tions of a protocol must be deciding executions. Avalanche
agreement is harder in that the answer, if it exists, must
be unique. By contrast, up to two distinct answers can be
produced by correct processors in an-execution of a cru-
sader agreernent protocol. Some correct processors agree
on some answer; the rest decide that the sender is faulty.

It is straightforward to use standard techniques like
those of Fischer, Lynch, and Merritt {11] to show that
there is no avalanche agreement protocel that tolerates ¢
processor fauits unless the total number of processors, n,
is at least 3¢ + 1. This bound is tight. Protocol 2 solves
the avalanche agreement problem for n = 3t + 1. Tt is
a new deterministic protocol designed to solve this new
problem; however, it incorporates many ideas from previ-
ously known randomized protocols for the standard Byz-
antine agreement problem. Among these are the protocols
of Ben-Or [1], of Chor and Coan [3], and of Rabin [17].

Consider the variant of the avalanche agreemerit prob-
lem in which the consensus condition has been strength-
ened to require agreement in one round rather than two.
It is straightforward to use the proof techniques of Fischer
and Lynch (10| to show that if n < 4t there is no solution
to this variant. If n > 4t + 1 then it is easy to solve the
problem using a simple variant of Protocol 2. We omit the
details here.

In the following discussion and proof of Protocol 2 we
append two subscripts to each variable from the protocol.
The first subscript, say r, is a positive integer and the sec-
ond subscript, say p, is in {1,...,n}. By this notation we
mean the value of the subscripted variable at processor p
at the end of round r. For example, vaL,, is the value of
variable vaL at processor p at the end of round r.

RIGHTS

Initialization for processor p:
vAL + the initial value of processor p
Code for processor p in round r:

broadcast vAL
receive MSG, from processor g for L < g<n
3. let ANS be the most frequent non-1 message
among the MsG; {break ties arbitrarily)
let NnuM be the number of occurrences of ANS
if r =1 then
if NuM > 2t+ 1
then vaL + ANS
else vAL — 1
7. if r > 1 then
if NUM > ¢ 4+ 1 then vAL « aNs
if NuM > 2t + 1 and have not decided yet
then decide vaL

[+

& oo

© x

Protocol 2: The Avatanche Agreement Protocol

In any exccution of Protocol 2, value v is persisient
if there is some correct processor p such that vaL, , = v.
Processor p uotes for value v in round r if it sends any
round r messages containing only v. In every round each
correct processor broadcasts a message containing at most
one value. A single message that contains more than one
value is obviously erroneocus and is discarded immediately
by its recipient. So, a correct processor only votes for
one value in each round, but a faulty processor may vote
for many values by sending conflicting votes to different
recipients.

We give an informal description of the avalanche
agreement protocol before proving it correct. All proces-
sors run the same code. For convenience we describe the
protocol from the point of view of an arbitrary correct pro-
cessor p. At the end of round r, the variable vaL, , holds
the value, if any, that processor p currently prefers as its
answer. In round r + 1 processor p votes for vaL,, and
then updates iis preference based on the votes it receives.
The first round plays a speclal role in the protocol, In
round 1, the number of values favored by carrect proces-
sors is reduced to at most one — the persistent value. The
protocol ensures that after round ! no correct processor
votes for any value other than the persistent value. In the
second and subsequent rounds processor p uses the num-
ber of votes to predict when there will be an “avalanche”
of correct processors favoring some value v (which must be
the unique persistent value). As soon as processor p gets
enough {2t + 1) votes to predict an avalanche it decides v.
Processor p continues to participate in the protocol (send
and receive messages) after it has decided.

Lemma 8: There is at most one persistent value.

Proof: Assume not. Then, there are values v and v' and
correct processors p and ¢ such that vaL,, = v # v’ =
VaLyq. In round 1 processor p must have received at least
2t + 1 votes for value v and processor g must have received
at least 2t + 1 votes for value v’. The total number of
processors is 3t + 1; therefore, at least ¢ + | processors
including at least one correct processor voted for both v

i,

67

and v’. This is impossible behavior for a correct processor,
contradiction, m]

Lemma 4: For all correct processors p and for all rounds
r > 1, eiiher VAL, , is the persisient value or vaL, , =

Proof: The claim for r = 1 follows immediately from
Lemma 3, so assume that r > 2 is the first round in which
the claim fails. There is some correct processor p and some
non-persistent value v such that vac,, = v. In round
processor p must have received at least £ + 1 votes for v; at
teast one is from some correct processor g. So, VAL, 1, =
v. This contradicts the assumption that r is the first round
in which the claim fails.]

Theorem 5: Protocol 2 solves ihe avalanche agreement
problem.

Proof: We show that the avalanche, consensus, and plau-
sibility conditions are satisfied.

Avalanche condition: Say that processor p decides v in
round 7. By Lemma 4, any correct processor that decides
must pick the unique persistent value. Thus, the decision
of an arbitrary correct processor ¢ is v. We conclude the
proof by showing that all correct processors decide v by
round r + 1. In round r processor p gets at least 2¢ + 1
votes for v; at least ¢ + 1 are from correct processors. So,
all processors get at least ¢ + 1 votes for v in round ». By
Lemma 4, any correct processor gels at most ¢ votes for
any value v’ % v. Therefore, processor g sets VAL, 4 to v
in round r, broadcasts v in round# + 1, gets at least 2¢ + 1
votes for v in round r + 1, and decides v by round + 1.

Consensus condition: Let value » be the input to all
of the correct processors. There are at least 2¢ + 1 correct
processors that all broadcast » in round 1. All correct
processors receive at least 2¢ + 1 votes for v in round 1 and
therefore broadcast v in round 2. All correct processors
receive at least 2t + 1 votes for v in round 2 and therefore
decide v in round 2.

Plausibility condrition: Let value v be the decision of a
correct processor p. By Lemma 4, v is the persistent value.
So, at least 2t + 1 processors (at least ¢ + 1 of which are
correct) voted for v in round 1. Value v is input to all of
these correct processors. O

The cammunication cost of Pretocol 2 is high because
processors send messages for an unbounded number of
rounds. This cost can be limited in twe ways. In many
applications (including Section 5) we are only interested
in the results of an avalanche agreement protocol for a
small fixed number of rounds. We can limit the commu-
nication cost by halting the protocel in the frst round in
which we are uninterested in its results. Alternatively, a
simple coding convention for messages allows us to imple-
ment Protocol 2 so that at most O(n? - log{V|) message
bits are used in any execution. In Protocol 2 each correct
processor broadcasts a non-null message each round. The
convention gives a meaning to null messages. A pracessor
that wishes to send the same message that it sent in the
previous round instead sends the null message (at a cost
of 0 bits). It is easy to show that using this convention

each correct processor sends at most 3 non-null messages
in any execution.

5. Compact Full-Information Protocols

In Section 1 we outlined the two-step process by which
we transform an arbitrary consensus protocol P into a
communication-efficient canonical form. The protocol P
is first transformed into a full-information protocol that
is then transformed into a compact full-information proto-
col. In this section we complete the description by showing
how the compact full-information protocol can simulate
the message exchange portion of a full-information proto-
col using only a polynomial number of message bits.

5.1 Definitions

For any set S a 0-dimensional array of Sisany s € 5.
An i-dimensional arrgy of S is any vector {m,,...,m;,)
where, for all §, m; is an (¢ — 1)-dimensional array of 3.
Our definition of array is standard except that the size
along each dimension is always n. An tndex array is an
array of {1,...,n}. A value array is an array of ¥ where
V is the set of possible inputs to 2. In a full-information
protocol, all messages sent by correct processors are value
arrays and at each round the state of each correct processor
is a value array:

A partzal function may be undefined (denoted 1)
on some elements of its domain. We adopt the conven-
tion that-any partial function used in this paper is un-
defined whenever any of its arguments is undefined and
that any array used-in this paper is undefined when-
ever any of its elements is undefined. Partial function f
is an erztension of partial function g if for all z either
f(z) = g(z) or g(z) = L. A function f defined on ar-
rays is substitutive if for all ay,...,an the following holds:

flas,..sa0)) = {fla1),. .., flan)).

When we transform an arbitrary protocol P into a
compact full-information protocol the tradeoff between
time and communication is determined by parameter k.
For any integer k > 0, there is a compact full-information
protocol @ that is structured as a series of blocks of & + 2
rounds. In each of the first & rounds of a block, 2 makes
one round of progress in its simulation of P. The last two
rounds are overhead — no progress is made.

We define some functions that relate various ways of
numbering rounds. Let # > 0 be a round in a compact
fuil-information protocol.

e BLOCK(r) = [r/(k + 2}] is the block of which round r
is a part.

s prIOR(r) = (BLOCK{r) — 1) - (k + 2) is the last round
prior to the current block.

e pHAsE(r) = r—PRIOR(r) is the number of rounds since
the start of the current block.

e siMuL(r) = k- (BLock(r) — 1) + MIN(PHASE(r), k) is
the number of rounds of progress that have currently
been made in the simulation of the full-information
protocol.

RIGHTS L

68

[n Table 1, we illustrate the relationship among these quan-
tities for 14 actual and 8 simulated rounds of a compact
full-information protocol with parameter 2.

r 1|2({3/4)5]|6,778{9!10/11]12(|13[14
BLock(r) [|1(Lf1|1,2[2/2|2(3|3|3|3|44
PRIOR{r) |(|0|0|0|O|4|4|4 4|3 &|8]|8]|12]12
puase(r) | 1|2]3|4|1)2|3|af1|2i3|ai1]|2
sIMUL(r) 12{2(2|3|4!4|4|5|6;6[6//7}8

Table 1: An Execution of 14 Rounds with k = 2

5.2 Subprotocols

Ordinary sequential programming problems are fre-
quently decomposed into simpler subproblems using sub-
routines. In a similar way we simplify our compact full-
information protocol by using avalanche agreement as a
subprotocol. Subprotocols are similar to subroutines in
that they help us decompose problems; however, they have
different semantics. For example, our subprotocols run in
parallel with the main protocol and their results take at
least one round to becorne available. In this subsection we
define the syntax and semantics that we will use for calls
to subprotecols.

Recall that each round of any protocol 7P consists of
three components that are performed in order: sending
messages, receiving messages, and local state change. In
the language we use to write our protocols there is no spe-
cific mechanism that ensures that this structure is followed;
however, a quick inspection is generally sufficient to verify
that it is. We will only write protocols that conform to
this round structure.

We adopt the convention that if a call to subproto-
col suB appears in round r of protoco! P then the first
round of sup coincides with round r of P. This implies
that the call to sus should appear in the text of P before
any round r sends and that all inputs to suB must be avail-
able at the start of round r (i.e., computed at round r — 1
at the latest). If processor p decides in suB in the round
that coincides with round ' of P then we make this an-
swer available to processor p in round r’ of P before it com-
putes its local state change. This simply means that in the
local-state-change portion of each round of protocol P we
perform all of the local state changes of the subprotocols
before we perform the local state change of P. Relative or-
der among the subprotocols does not matter because they
do not interact. We require that all processors in proto-
col P initiate precisely the same subprotocols at precisely
the same rounds. If in round r of protocol P there are z
active subprotocols running then all round r messages are
(z + 1)-tuples — one component for each subprotocol and
one compenent for 2.

Within a protocol P, a call to subprotocol suB is writ-
ten

call sus(input: v, result: ouT, rounds: r)

where 18 and QUT are variables in # and r is an integer.
(We require that all processors in P use the same value
for r.}) Let 7' be the round in which protocol P executes
the call statement. The variable IN must be defined by
the end of round r’ — 1. Subprotocol suB is started with
input [N in round r’ and run for » rounds. The variable ouT
initially has the value L. If processor p in subprotocol svs
decides v in round r of P then the instance of variable cuT
at processor p is set to v at the start of the local-state-
change portion of round r of P. There is no requirement
that processors in suB eventually -decide.

5.3 The Protocol

The code for the compact fuil-information protocol is
given as Protocol 3. In the following discussion and proof
we append two subscripts to each variable from Protocol 3.
The first subscript, say 7, is a positive integer and the sec-
ond subscript, say p, is in {1,...,n}. By this notation we
mean the value of the subscripted variable at processor p
at the end of round ». For example, OUTg s, , is the value
of variable ouT, s at processor p at the end of round r.

At each round each correct processor computes sev-
eral ezpansion functions based on its current state — in
particular, based on the results of the varidus avalanche
agreement subprotocols that it has run. The round r ex-
pansion functions of processor p are denoted ¢, p, for
b € {t,...,8LocK(r)}. If & > 1 then ¢y, is a substi-
tutive partial function from index arrays to value arrays.
If b = 1 then ¢, p is the identity function on value arrays
{which is also substitutive). Because expansion functions
are substitutive, it is sufficient to define them on scalars.
We let ¢y, p(2) = L ifeither b=1and ¢ Vorb > 1
and z ¢ {1,...,n}. In all other cases ¢}, is defined as
fotlows.

onral) = {

(All uses of @y,rp in Protocol 3 refer to the above defini-
tion.}

x ifd=1;
®5—1,rp(OUTzprp) otherwise.

We explain the sense in which cors, , is a compressed
form of the state of processor p in the simulated full-
information nrotocol. We define FULL STATE., in terms
of information available in the round r state cof proces-
sor p as follows: FULL_STATErp = ®orouk(r),rp(CORE,).
What we will show in Section 5.5 is that for any round r,
if PHAsB(r) < k then the round siMuL(r) state of correct
processor p in the simulated full-information protocol is
FULL._STATEy . In this sense CORE, is the compressed
state of processor p at round r in Protocol 3. Because
of the substitutivity property of the expansion function
and other properties which we will state and prove in Sec-
tion 5.4 it is possible for our protocol to work directly with
compressed processor states.

5.4 Technical Lemmas

Lemma 6: For all correct processors p and for all pro-
cessors q, if ¥’ = prior(r) — L, b = BLoOcK(r), b > 1, and
OUTgs.-p # 1 then there is some correct processor u such
that ¢y 1. u(OUTs.rp) # L.

Initialization for processor p:
CORE + the initial value of processor p

Code for processor p in round » where b = BLOCK(7):

1. if PHASE(r) < k then
2. broadcast CORE
3. recetve Msc; from processor tfor L <i<n
4. forz — 1tondo
5. if ¢y rp(MsG) = L
then VAL; &« CORE
else VAL; «— MSG;
6. CORE « (VAL{,..., VALy,}
7. if PHASE(r) = k+ 1 then
8. broadcast cORE
9. receive MsG, from processor gfor 1l < g<n
10. forv« 1tondo
11. if @y ro(MsG) = L
then INgpy — L
else INj g4 - MSG;
12. if PHASE(r) = k& + 2 then
13. for i — 1 to n do
14. call AvaLancHE({input: IN; py1,
result: OUT;p4 1, rounds: &k + 3)
15. CORE + p

Protocol 3: The Compact Full-Information Protocot

Proof: OUTgp ., is the answer produced by an invora-
tion of avalanche agreement. By ghe plausibility condition
of avalau’he agreement, there is some correct processor u
that started this invocation of avalanche agreement with
input ©UTgp,.p. Processor v must have observed that
b 10,u(0UTqprp) # L at step 1T of the code; other-
wise, it would have used L (no legal input) as its input to
avalanche agreement. O

Lemma 7T: For all b > 0 and for all correct processors p
and ¢, if sLock(r) = b and pRASE(r) # k +2 then ¢s,re1,p
is an extension of ¢ r 4.

Proof: The proof is by induction on b.

Basis: (b = 1) This is trivial because ¢sr41,p and
&b,r,q aTe both the identity function.

Induction: (b > 1) Consider an arbitrary message m.
If ¢p,rq(m) = L then the claim is trivially true. So,
assume that ¢prq(m) # L. We wish to show that
Ob,r41,p(M) = Bp,rq(m). Let I be the set of indices in m.
Let r* = priow(r). By the substitutivity property of
the expansion functions, @y ,+1,, and ds rgq, it is sufficient
to show that for all 7 in J that ¢u_1,.p(CUTibr+1,0) =
¢b—l,r’,q(0UTi,b,r,q]-

Because ¢y,,q(m) # L we know that for all ¢ in I,
OUT;prg # L and therefore by the avalanche condi-
tion of avalanche agreement OUTip,ryt,p = OUTibrq-
By Lemma 6, there is a correct processor § such that
$b_1,r0=1,5(OUTiprq) # L. By the induction hypoth-
esis, Pp_1,,1,p and @p_1,,4 ATE extensions of @p_1,01,6
and 80 Go—1, p(OUTisrt1p) = $o-1,p(0UTi,ra) =
d’b—l.r‘—l,l(OUTi,b,r,q) = ¢b~l.r’,q(0UT1’,b,r,q)- B}

69

RIGHTS L

RIGHTS

Lemma 8: If PHASE(r) = & and BLOCK(r) = b then for
all correct processors p and ¢, OUTp b41,r4+3,9 = COREyp.

Proof: In round r + 2, avalanche agreement on the
round r + I message broadcast by processor p wiil be ini-
tiated. The round r + 3 result of this agreement at pro-
CeSSOT § i8 OUT,pq1,ry3,q- Each correct processor will use
either CORE,, (which is the round r + 1 message broad-
cast by correct processor p} or L as its input to this
avalanche agreement protocol. Step 5 of the code ensures
that, ¢y, ,{CORE; ;) # L. S0, by Lemma 7, for all correct
Processors s, @b rv1,s (coRE,p) # L. Therefore all correct
processors wiil use CORE, , as input to the avalanche agree-
ment protocol started at round r+2. By the consensus con-
dition of avalanche agreement OUTpp41,,4+34 = CORE,p
which is what we sought to show. o

5.5 Proof of Simulation

For alip € {L,...,n} and for any processor state s de-
fine the function fy(s) to be @y .k(r),rp(CORE,,) Where
r and CORE are implicit in s.

Theorem 9: The compact full-information protocol sim-
ulates the full-information protocol with simulation func-
tions f; for+ € {1,...,n} and scaling function sIMUL.

Proof: We must show that for any r and for any r-
round execution £ of the compact full-information pro-
tocol, there is a sSiIMUL(r)-round execution &' of the full-
information protocol such that for any correct processor p
and for any i (where 1 < i <) it is the case that
[n(state(p,, E)) = stete(p, siMUL(t), E').

The proof is by induction on . Let & = BLoCK({r),
and let ' = spMUL(r).

Basis: (r = 0.} The execution E’ is simply con-
structed. The set of correct processors in E' is the same
as in £. The correct processors have the same input in the
two executiens.

Induction: If PHASE(r) > k then the theorem follows
from Lemma 7 and the induction hypothesis. Assume in-
stead that PHASE(r) < k.

If PHASE(r) = 1 and r > 1 then let the execution F
consist of the first r — 3 rounds of E; otherwise, let the
execution F consist of the first r — 1 rounds of £. By the
induction hypothesis there is an (v —1)-round execution £’
of the full-information protocol such that F is & simulation
of F'. We show that the (r’ — 1)-round execution F’ can
be extended by one round to get the »’-round execution E’
whose existence is claimed.

The extension to F' is fully described by specifying
the round r’ messages sent from faulty processors to cor-
rect processors. It is unnecessary to specify the messages
sent by correct processors because there is no choice and
it is unnecessary to specify the messages sent from faulty
processors to faully processors because these message-s. do
not matter.

Let s be.an arbitrary faulty processor and let p be an
arbitrary correct processor. We specify that the round r'

i,

70

message from s to p in E' is @b,r,p(VALa,rp). By the induc-
tion hypothesis ¢y rp(vaL,,) # L.

Let (vy,...,0) = &b r;(CORE,,); and let (v],...,v;)
be the final state of processor p in E'. We now verify that
{r1,...,vn) = {v],...,v,). Consider an arbitrary proces-
sor ¢. It is sufficient to show that v, = v;. There are three
cases.

Case 1: (Processor g is correct and PHASE(r) = 1 and
r > 1) Since g is correct, v} = $b_1,,-3,4(CORE,_3,4) #
L. By Lemma 8, OUTq6,rp = CORE,_3,. Therefore pro-
cessor p places g in the g-th position of CORE,, and the
g-th component of s r,p (CORE,,p) i8 @p—1,r—1,0(OUTg,5,7,p)-
$b=1,r—1,p{OUTgb,rp) = @b 1,-—3,¢(COREs—3,9) by Lemma
7. Therefore, vy = $y_1,r—3,¢(CORE,~3,4). This shows
that vg = v,.

Case 2: (Processor g is correct and either PHASE(r) >
1orr = 1) Because g is correct MSGg,rp = CORE,—1 ¢
and v) = @pr-1,¢(MSCq,rp) # L. We can see that by
Lemma 7, @y, p(MSGg rp) = $b,r 1,¢(MSGq,r,s). Therefore
(in steps 5-6) processor p.incorporates M5Gy, -, as the g-th
component of CORE, p, and so vy = ¢p;,,(MSGq,rp}. This
shows that vq = /.

Case 8: (Processor ¢ is faulty.) By the specification
of B, vj = ¢yrp(VALsrp). Processor p (in steps 5-6)
incorporates VAL, yp as the g-th component of CORE, .

So, vy = ¢p,r,p(VALs,rp). This shows that v, = v;.]
5.8 Performance Analysis

Corollary 10: For any € > 0, the Byzantine agreement
problem can be solved in (1 + €)(t + 1) rounds using O(¢ -
nl2/e1+3 . |og |V'|) message bits.

Proof: There are known (¢ + 1)-round exponential-
message Byzantine agreement protocols, for example the
protocol of Lamport et al. {13]. This means that there is
a decision rule to apply to the final state if we use the
compact full-information protocol to simulate ¢ + 1 rounds
of message exchange in a full-information protocel. The
simutation together with the decision rule constitutes a
Byzantine agreement protocol.

In each of the first & rounds of a block of the compact
full-information protocol, one round of progress is made in
the simulation of the full-information protocol. In the last
two rounds, no progress is made. Therefore, for all z, in
’“—flz actual rounds, the compact full-information proto-
col has simulated at least z rounds of the full-information
protocol. In order for our Byzantine agreement protocol
to terminate within (1 + €)(¢ +1) actual rounds, we require
that {k + 2}/& < 1 + €. Sclving for the minimum inte-
ger k we get k = [2/e]. Therefore, to achieve Byzantine
agreement in {1 + €)(¢t + 1) rounds, we run the compact
fall-information protocel with parameter & = [2/€] and
then (after ¢ + 1 simulated rounds}-apply the decision rule
derived from Lamport’s protocol.

For the compa.ct_fu]l—information protocol, the com-
munication cost consists of the cost of avalanche agreement
and the cost of the remainder of the protocol. In the non-

RIGHTS

avalanche portion of the protocol, in each of Cft) rounds
each processor broadcasts a message of size O(n* - log [V)
for a total cost of O(t - n¥+2 . log |V|) bits. This cost is
dominated by the cost of avalanche agreement. In the
avalanche agreement portion of the protocol, in each of
Q{t) rounds, each processor broadcasts at most n messages
of size O(n* - log [V |) for a total of Oft-r**3 .log |V |). Ex-
pressed in terms of €, this communication complexity is
Ot - n!¥*142 . og [V|) message bits. i

If n > 4t + 1 then a modification of our technique
can transform any (¢ + 1)-round consensus protocol to a
(1+¢€)(t+1)-round protocol that uses O(t-nl1/1+3.log |V)
message bits. Given that n > 4i +1 it is possible to solve a
variant of the avalanche agreement problem with a consen-
sus condition modified to require a decision in one round
rather than two. Using this variant avalanche agreement
protocol, we can reduce the number of rounds in each block
of a compact full-information protocol by one. Analyzing
the new compact full-information protocol gives the total
communication cost of O(¢-n/1/¢1+3.log .V |) message bits.

We compare the cost (7.e., rounds and message bits) of
our Byzantine agreement protocol (for n = ¢4+ 1) with the
cost of the protocol of Srikanth and Toueg [18! (which uses
the smallest number of rounds of any previcusly known
protocol and which only requires that = > 3¢ + 1). The
protocol of Srikanth and Toueg uses 2¢ + 1 rounds and
O(t -n? -logn-log |V|) message bits. If ¢ = 1 our protocol
uses 2t + 2 rounds and O(¢ - n* - log |V|) message bits. If
e = L our protocol uses 112 +14 rounds and O(t-n®-log {V})
message bits. If e = % our protocol uses I%t + 1% rounds
and O(t-»° -log |V |) message bits. We find that our proto-
col uses somewhal more message bits, but it allows us to
greatly reduce the number of rounds. Also, our technique
is more general and may therefore have greater applica-
bility (e.g., reducing the communications cost of the ap-
proximate agreement protocol of Fekete [9]). A significant
limitation of our technique is the large amount of local
computation that it requires, By contrast the protocol of
Srikanth and Toueg uses a small amount of space and time
locally at each processor. In this comparison we ignore a
possible optimization due to Dolev et al. (6] and another
due to Perry [18] and to Turpin and Coan [19] because
these optimizations have a similar (and small) impact on
both protocols.

Acknowledgment

[would like to thank Mike Fischer and Nancy Lynch
for suggesting many ways to improve the presentation of
this paper and for suggesting the general method of attack
that led to the development of this result.

References

[1] M. Ben-Or, “Another Advantage of Free Choice: Com-
pletely Asynchronous Agreement Protocols,” Proceed-
ings of the 2™¢ Symposium on Principles of Dis-
tributed Computing, pp. 27-30, 1983.

i,

71

[2] J. Burns and N. Lynch, “The Byzantine Firing Squad
Problem,” Advences in Computing Research: Paral-
lel and Distributed Computing, vol. 4, JAI Press Inc.,
Greenwich, Connecticut, to appear. (Also available as
MIT Technical Report MIT/LCS/TM-275, 1985.)

[3] B. Chor and B. Coean, “A Simple and Efficient Ran-
domized Byzantine Agreement Algorithm,” Transac-
tions on Software Engineering, vol. SE-11, pp. 331~
539, 1985.

B. Coan, D. Dolev, C. Dwork, and L. Stockmeyer,
“The Distributed Firing Squad Problem,” Proceedings
of the 17** Symposium on Theory of Computing, pp.
335-3456, 1985.

2

(5] D. Dolev, “The Byzantine Generals Strike Again,”

Journal of Algorithms, vol. 3, pp. 14-30, 1982,

D. Dolev, M. Fischer, R. Fowler, N. Lynch, and H.
Strong, “An Efficient Algerithm for Byzantine Agree-
ment without Authentication,” Information and Con-
trol, vol. 52, pp. 257-274, 1982.

D. Dolev, N. Lynch, 8. Pinter, E. Stark, and W. Weihl,
“Reaching Approximate Agreement in the Presence of
Faults,” Journal of the ACM, to appear. (Also avail-
able in Proceedings of the 37! Symposium on Reliabil-
ity in Distributed Software and Detabase Systems, pp.
145-154, 1983.)

(6]

7]

D. Dolev and R. Strong, “Polynomial Algorithms for
Multiple Processor Agreement,” Proceedings of the
14t* Symposium on Theory of Computing, pp. 401-
407, 1982.

9] A. Fekete, “Asymptotically Optimal Algorithms for
Approximate Agreement,” Proceedings of the 5t Sym-

posium on Principles of Disiributed Computing, 1986.

M. Fischer and N. Lynch, “A Lower Bound for the
Time to Assure Interactive Consistency,” {nformation
Processing Letters, vol. 14, pp. 183-186, 1982.

[10]

|11] M. Fischer, N. Lynch, and M. Merritt, “Easy Impos-
sibility Proofs for Distributed Consensus Problems,”
Proceedings of the 4 Symposium on Prineiples of

Distributed Computing, pp. 59-70, 1985.

(12] L. Lamport, “The Weak Byzaniine Generals Prob-
lem,” Journal of the ACM, vol. 30, pp. 668-676, 1983.

{13] L. Lamport, R. Shostak, and M. Pease, “The Byzan-
tine" Generals Problem,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 4, pp. 382-
401, 1982,

N. Lynch, M. Fischer, and R. Fowler, “A Simple and
Efficient Byzantine Generals Algorithm,” Proceedings
of the 2" Symposium on Relability in Distributed
Software and Database Systems, pp. 46-52, 1982.

[14]

[15| M. Pease, R. Shostak, and L. Lamport, “Reaching
Agreement in the Presence of Faults,” Journal of the

ACM, vol. 27, pp. 228-234, 1980.

|16] K. Perry, “Early $topping Protocols for Fault-Tolerant

Distributed Agreement,” Ph.D. Thesis, Cornell Uni-
versity, 1985,

[17] M. Rabin, “Randomized Byzantine Generals,” Pro-

RIGHTS

ceedings of the 24'% Symposium on Foundations of
Computer Seience, pp. 403-409, 1983,

i,

72

(18] T. Srikanth and 8. Toueg, “Byzantine Agreement
Made Simple: Simulating Authentication without Sig-
natures,” Cornell Technical Report 84-623, 1984.

(19] R. Turpin and B. Coan, “Extending Binary Byzantine
Agreement to Multivalued Byzantine Agreement,” In-
formation Processing Letters, vol. 18, pp. 73-76, 1984,

