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A Compiler that Increases the Fault Tolerance of 
Asynchronous Protocols 

BRIAN A. COAN 

Abstract-We give a compiler that increases the fault tolerance 
of certain asynchronous protocols. Specifically, it transforms a 
“source protocol” that is resilient to crash faults into an “object 
protocol” that is resilient to Byzantine faults. Our compiler can 
simplify the design of protocols for the Byzantine fault model 
because it enables us to break the design process into two steps. 
The first step is to design a protocol for the crash fault model. 
The second step, which is completely mechanical, is to compile 
the protocol into one for the Byzantine fault model. We use our 
compiler to produce a new asynchronous approximate agreement 
protocol that operates in the Byzantine fault model. Specifically, 
we design a new asynchronous approximate agreement protocol 
for the crash fault model and observe that this protocol can be 
compiled into a protocol for the Byzantine fault model. In the 
Byzantine fault model, the new protocol improves in several 
respects on the performance of the asynchronous approximate 
agreement protocol of Dolev, Lynch, Pinter, Stark, and Weihl. 

Index Terms-Approximate agreement protocols, asynchron- 
ous distributed systems, Byzantine faults, crash faults, fault 
tolerance, protocol transformations. 

I .  INTRODUCTION 
E GIVE a compiler that transforms an arbitrary 
standard-form asynchronous protocol that tolerates 

crash faults into an asynchronous protocol that tolerates 
Byzantine faults and that solves the same problem as the 
original protocol. Our compiler incorporates communication 
primitives and a message validation scheme developed by 
Bracha [ 11. Bracha argues informally that his tools restrict the 
disruptive behavior of a processor that fails with a Byzantine 
fault. He argues that the restricted behavior is similar to that of 
a processor subject only to crash failures. He then uses these 
primitives to construct an interesting new randomized protocol 
for the Byzantine fault model. 

Our goal is similar to Bracha’s. It is to simplify the design 
and proof of asynchronous protocols that are resilient to 
Byzantine faults. Specifically, our approach is as follows. We 
incorporate Bracha’s communication primitives and message 
validation scheme in a compiler, which we prove correct. 
Then, we design and prove protocols correct in the crash fault 
model. It follows from the correctness of the compiler that the 
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protocols that we design for the crash fault model can be 
compiled into protocols that operate correctly in the Byzantine 
fault model. 

A limitation of our compiler is that it only works for 
deterministic protocols. It is an open question to construct and 
prove correct a compiler for randomized protocols. Because 
our compiler works only for deterministic protocols, it is not 
useful in the particular application that Bracha considers. 

There seem to be two principal benefits of our approach. 
First, it is simpler to design and prove protocols in the crash 
model than it is to do the same in the Byzantine model. Using 
our method, only the compiler needs to be proved correct for 
the Byzantine model. Second, our approach is modular. For 
example, we give two versions of our compiler with slightly 
different performance tradeoffs. (The two versions of the 
compiler use slightly different communication primitives.) 
After we prove a protocol correct in the crash fault model, we 
can use either version of the compiler to transform it into a 
protocol that is correct in the Byzantine fault model. 

It should be clear that our compiler must change some of the 
properties of a protocol (like the kind of faults tolerated) and 
leave other properties unchanged (like the problem solved by 
the protocol). We use correctness predicates to formalize one 
of the properties that we would like our compiler to preserve. 
A correctness predicate is any predicate defined on the inputs 
to and answers of correct processors. We show that our 
compiler preserves the satisfaction of correctness predicates 
and the property that all correct processors eventually decide. 
Thus, our compiler preserves the solution to any problem that 
can be formalized by a correctness predicate and a requirement 
that all correct processors eventually decide. Agreement and 
approximate agreement are such problems. 

Asynchronous systems are “harder” than synchronous ones 
because they can experience a superset of the executions of 
synchronous systems. If a protocol solves some problem in an 
asynchronous system, then it follows that the protocol solves 
the same problem in a synchronous system. Of course, this 
holds for any protocol that is the output of our compiler. The 
foregoing argument might lead one to think that our compiler 
is capable of transforming a synchronous protocol that solves 
some problem in the crash model into a synchronous protocol 
that solves the same problem in the Byzantine model. This is 
wrong. The difficulty is that our compiler relies on the fact 
that its source protocol operates correctly in asynchronous 
executions with crash faults. The property of asynchronous 
executions that our compiler relies on is that some messages 
between correct processors may be delivered very late. 
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A limitation of our technique is that we are unable to force a 
faulty processor to accurately report its input value. We have 
accommodated this limitation by requiring that correctness 
predicates not depend on the input to a faulty processor. A 
related limitation accounts for our inability to generalize our 
compiler to randomized protocols. The specific problem is 
that there seems to be no way of detecting a processor that is 
behaving correctly in all respects except that it “cheats” when 
it makes random choices. 

In general, the running time of a protocol may depend on 
the input. Informally, for some fixed input we say that a 
protocol has running time r if all correct processors decide by 
time r in any execution in which the message-delivery time is 
bounded above by one. Our compiler imposes certain over- 
head in the running time. There are two versions of the 
compiler. The first version increases the time by a factor of 
two and requires that the number of processors be more than 
four times the number of faults tolerated. The second version 
increases the time by a factor of three and requires that the 
number of processors be more than three times the number of 
faults tolerated. The first version of the compiler uses new 
communication primitives; the second version incorporates the 
communication primitives developed by Bracha. Both versions 
of the compiler substantially increase the number of message 
bits sent. 

Our compiler requires that its “source protocols” be in a 
particular standard form. We believe that many asynchronous 
protocols can be put into this standard form. A notable 
exception is that the protocols that are output by our compiler 
appear incapable of being put into this standard form. It would 
be desirable to extend our compiler so that it could compile 
arbitrary source protocols. We believe that this can be done, 
but the unrestricted compiler and its proof seem very 
complicated. We leave the construction and proof of the 
unrestricted compiler as an open problem. We also leave open 
the problem of ensuring that all correct processors eventually 
stop sending messages (i.e., terminate). 

Unfortunately, there are a limited number of known 
protocols that are potential source protocols for our compiler. 
The well-known impossibility result of Fischer, Lynch, and 
Paterson [8] shows that many problems have no deterministic 
solution in an asynchronous system. The only problems 
currently defined in the literature that can be solved with 
deterministic protocols in asynchronous systems are the 
approximate agreement problem [ 5 ] ,  the inexact agreement 
problem [9], and the task assignment problem [2]. Despite the 
limited number of potential source protocols, we believe that 
our compiler is interesting because of the method that it 
embodies (i.e., modularizing the verification of fault-tolerant 
distributed protocols). In the synchronous case, where more 
problems have solutions, an analogous compilation technique 
has been developed by Neiger and Toueg [lo]. 

Using the two versions of our compiler, we produce a pair 
of new asynchronous approximate agreement protocols that 
are resilient to Byzantine faults. Our protocols improve in 
several respects on the asynchronous approximate agreement 
protocol of Dolev, Lynch, Pinter, Stark, and Weihl [5]. Our 
method is to design a new asynchronous approximate agree- 

ment protocol for the crash fault model and observe that this 
protocol can be compiled into a protocol for the Byzantine 
fault model (using either version of our compiler). The 
protocol that we design in the crash fault model uses many 
ideas developed by Dolev et al. for use in their protocol. (The 
approximate agreement problem is defined in Section 11.) 

In the Byzantine fault model, our new approximate agree- 
ment protocols tolerate a larger proportion of faulty processors 
than the protocol of Dolev et al. Their protocol requires that 
the number of processors be more than five times the number 
of faults tolerated. One version of our protocol requires that 
the number of processors be more than four times the number 
of faults tolerated; the other requires that the number of 
processors be more than three times the number of faults 
tolerated. The second version of our protocol has an optimal 
amount of redundancy. This follows because Fischer, Lynch, 
and Merritt [7] have shown that no protocol solves the 
approximate agreement problem unless the number of proces- 
sors is more than three times the number of faults tolerated. 

Dolev et al. [5] propose using the convergence rate as a 
measure of the quality of an approximate agreement protocol. 
Intuitively, the convergence rate of an approximate agree- 
ment protocol is the factor by which the range of possible 
answers is reduced each unit of time. Despite the overhead 
introduced by the compiler, one of our approximate agreement 
protocols has an improved convergence rate for some small 
system sizes. Our improvement in the convergence rate does 
not contradict the proved optimality of the convergence rate of 
the protocol of Dolev et al. Their claim of optimality is for 
protocols of a particular form-a form which is very similar to 
the standard form defined in this paper. The output of our 
compiler is not of that form. Asynchronous approximate 
agreement protocols with optimal convergence rates, but large 
messages, have been designed for the crash and failure-by- 
omission models by Fekete [6] .  

The running time of either of our approximate agreement 
protocols depends only on the inputs to the correct processors 
and the size of the system. In the protocol of Dolev et al., the 
faulty processors can choose the amount of time that will 
elapse before the correct processors decide. 

We now give an outline of the remainder of the paper. In 
Section 11, we define the approximate agreement problem. In 
Section 111, we give our model for asynchronous protocols that 
operate in either the crash fault model or the Byzantine fault 
model. In Section IV, we present our compiler and we prove 
that it works correctly. In Section V, we give a new 
asynchronous approximate agreement protocol for the crash 
fault model and we prove it correct. We then note that this 
protocol can be compiled into a protocol for the Byzantine 
fault model. 

11. THE APPROXIMATE AGREEMENT PROBLEM 
The approximate agreement problem is stated for various 

fault models including crash and Byzantine. The requirements 
given here apply to both of these fault models. In a protocol 
for the approximate agreement problem, each processor 
begins with some real number as its input. Each correct 
processor may, at some point during the execution of the 
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protocol, irrevocably decide on a real number as its answer. A 
parameter 6 specifies the precision required in the solution. 
There are three conditions that the correct processors must 
satisfy in all executions. 

Agreement condition: If U and U ’  are the decisions of 
two correct processors, then I U - U ’  1 I 6 .  

Validity condition: If U is the decision of some correct 
processor, then there are correct processors with inputs i and 
i’ such that i 5 U I i’.  

Decision condition: All correct processors eventually 
decide. 

III. THE MODEL 
We model processors as state machines that communicate 

by sending messages. In Section 111-A, we begin by defining 
some parameters that specify the size of the systems that we 
consider. In Section 111-B, we give our model for asynchron- 
ous protocols subject to crash faults. In Section 111-C, we 
define a subset of the possible executions in the crash fault 
model; we call them sequenced executions. In Section III-D, 
we give our model for asynchronous protocols subject to 
Byzantine faults. In Section 111-E, we define correctness 
predicates as a way to formalize part of the definition of a 
problem in the asynchronous model. Finally, in Section 111-F, 
we define our time measure. 

A .  Definition of Parameters 
For the remainder of this paper, let n be the number of 

processors, let t be an upper bound on the number of 
processors that fail, and let N = { 1, * * , n} .  We define the 
redundancy to be (n - l ) / t .  For the remainder of this paper, 
we assume that the redundancy is at least 3 and we let E be an 
arbitrary fixed value of the parameter to the approximate 
agreement problem. 

Let 9+ be the set of positive integers; let 32 be the set of 
natural numbers, including 0; and let be the set of real 
numbers. 

B. The Crash Fault Model 
A processor is modeled as an infinite state machine with a 

message buffer. The message buffer-modeled as a multiset of 
messages-holds those messages that have been sent to the 
processor but not yet received. Messages in the message 
buffer are tagged with the identity of the sending processor. In 
each step, a processor receives a set containing at most one 
message from its buffer and (based on its transition function) 
sends a finite set of messages. The transition function of a 
processor uses the current state and current set of messages 
received to compute a new state and a set of messages to be 
sent. There is a fixed set Vof possible inputs to the processors. 
Without loss of generality, we assume that * CI V and I 6 
V. For each element U E V ,  each processor has one initial 
state that corresponds to having input U. The processors are 
indexed by the set N.  

A configuration C is a vector of n states, one for each 
processor, and a vector of n multisets of messages, one for 
each message buffer. An initial configuration has all proces- 
sors in initial states and all buffers equal to the empty multiset. 

An event is denoted either (step: p )  or (receive: p ,  q, m).  
The event (step: p )  models processor p taking a step without 
receiving a message. The event e = (step: p )  is applicable to 
any configuration. The configuration resulting from applying 
event e to configuration C,  denoted e(C),  is obtained from C 
by changing the state of processor p according to the transition 
function and adding messages from processor p (tagged with 
sender p )  to the appropriate buffers according to the transition 
function. The event (receive: p ,  q, m )  models processor p 
receiving the message m from processor q. The event e’ = 
(receive: p ,  q, m )  is applicable to configuration C if the 
message m (tagged with sender q)  is an element of the buffer 
of processor p in configuration C .  The configuration resulting 
from applying event e‘ to configuration C, denoted e‘(C),  is 
obtained from C by removing the message m from the buffer 
of processor p ,  changing the state of processor p according to 
the transition function, and adding messages from processor p 
(tagged with sender p )  to the appropriate buffers according to 
the transition function. 

A schedule is a finite or infinite sequence of events. A finite 
schedule U = ele2 - ek is applicable to configuration C if el 
is applicable to C ,  e2 is applicable to el(C),  etc. The resulting 
configuration is denoted a(C). An infinite schedule is applica- 
ble to configuration C if every finite prefix of the schedule is 
applicable to C. 

For executions, we adopt a succinct representation which 
contains enough information to determine the behavior of 
every processor at all times. Formally, an execution of a 
protocol is a triple (F, Z, U )  where F C N, where Z = ( i , ,  * . , 
in) is a one-dimensional array of V ,  where U is a schedule 
applicable to the initial configuration in which an arbitrary 
processor p begins in the initial state that corresponds to 
having input ip, where all processors in N - F take an infinite 
number of steps in U ,  and where every message that is sent to a 
processor that takes an infinite number of steps in U is 
eventually delivered. A processor p is faulty in the execution 
(F, I ,  U) if p E F; otherwise, p is correct. (In the case that 
some processor sends multiple identical messages to a proces- 
sor that takes an infinite number of steps, our “eventual 
delivery” requirement should be taken to have the following 
meaning. If the number of copies sent is finite, then the 
number of copies delivered is equal to the number of copies 
sent. If the number of copies sent is infinite, then the number 
of copies delivered is infinite.) 

Each processor has a decision function that maps from 
processor states to V U {*}. Recall that * V .  In the first 
step in which the decision function of a processor applied to 
the current state is U E V ,  we say that the processor decides U. 
The intuition is that after a processor has decided, the value of 
its decision function is irrelevant. An execution is a deciding 
execution if all correct processors eventually decide. A 
protocol decides if all of its executions are deciding execu- 
tions. 

The model we have just given is one of the 32 crash fault 
models that were categorized and analyzed by Dolev, Dwork, 
and Stockmeyer [4]. Their 32 variants arise from five 
independent binary choices for five parameters that character- 
ize the degree of asynchrony. The description of our model 
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using these parameters follows. Processor step time is 
unbounded. Message delivery time is unbounded. Message 
delivery is unordered (i.e., any two messages sent to processor 
p can be delivered out of the order in which they were sent). A 
processor can send any finite set of messages in one step (i.e., 
processors have an “atomic broadcast” capability). A proces- 
sor can receive and send as part of one step. The impossibility 
result of Fischer, Lynch, and Paterson holds for our model 

There will be no atomic broadcast capability in our 
[41, 181. 

Byzantine fault model. 
C. Sequenced Executions in the Crash Fault Model 

In our correctness proofs, we construct certain executions 
for the crash fault model. All of these executions belong to the 
class of sequenced executions, which we now define. If E = 
(F, I ,  a) is an execution, C is the initial configuration in 
execution E, a’ is a prefix of a, and p E N ,  then we define 
deliver(E, a’, p )  to be the set of schedules that 1) are 
applicable to the configuration a’(C), 2) deliver to processor 
p all of the messages that are in the buffer of p in the 
configuration a’(C),  and 3) do nothing else. An execution E 
= (F, I ,  a) is sequenced if a can be expressed as the 
concatenation of subschedules, a = aoalaz . e ,  where a, = 
a(r, l)a(r, 2)  * * a(r, n), and where a(r, p )  satisfies one of 
the following three conditions for all r E 32 and for all p E 
N :  

Condition 1: p E F and, for all r‘ 1 r, a(r’ ,  p )  is the 
empty sequence. 

Condition 2: r = 0 and a(r, p )  = (step: p ) .  Recall that 
(step: p )  is the event in which processor p takes a step without 
receiving messages. 

Condition 3: r 1 1 and a(r, p )  is in deliver(E, aoal * * 

Intuitively a sequenced execution is organized into a series 
of “phases.” In each phase, the processors are each given a 
“turn” (in ascending numerical order by processor number). 
In its first turn, a processor either takes a step without 
receiving messages or fails, never to recover. In each 
subsequent turn, a processor that is still operating either 
receives all of the messages that were in its buffer at the start 
of the current phase or fails, never to recover. In any turn in 
which a processor takes steps it, of course, sends messages 
according to its protocol. 

We observe that the partitioning of any sequenced execution 
into phases is unique. Thus, we make the following definition. 
In a sequenced execution, we say that an event happens in 
phase r if it is in a(r, p )  for some p .  
D. The Byzantine Fault Model 

The Byzantine fault model has much in common with the 
crash fault model. In this subsection, we define only those 
parts of the Byzantine fault model that differ from the crash 
fault model. The two differences are in the definition of events 
and in the definition of executions. 

An event is denoted either (step: p ) ,  (receive: p ,  q ,  m), or 
(error: p ,  q ,  m ) .  The events (step: p )  and (receive: p ,  q ,  m) 
are defined as they are in the crash fault model. The event 
(error: p ,  q ,  m )  models processor p erroneously sending the 

or-1, P I .  

message m to processor q .  The event e = (error: p ,  q ,  m)  is 
applicable to any configuration. The configuration resulting 
from applying event e to configuration C,  denoted e(C),  is 
obtained from C by adding the message m (reliably tagged 
with sender p )  to the buffer of processor q .  

An execution of a protocol is a triple (F, I ,  a) where F C 
N ,  where I = ( i l ,  - e ,  in) is a one-dimensional array of V ,  
where U is a schedule applicable to the initial configuration in 
which an arbitrary processor p begins in the initial state that 
corresponds to having input i,, where all processors in N - F 
take an infinite number of steps in a, where every message that 
is sent to a processor in N - F is eventually delivered, where 
processors in N - Ftake no error steps, and where processors 
in F take only error steps. A processor p is faulty in the 
execution (F, I ,  a) if p E F; otherwise, p is correct. 

In each message buffer, each message is tagged with its 
sender. The tags on all messages-even messages from faulty 
processors-are accurate. So a faulty processor does not have 
the ability to “impersonate” some other processor. 

The requirement that a faulty processor take only error steps 
does not restrict the kinds of faults that can be exhibited in an 
execution. This is true because any message sending pattern 
can be achieved with error steps and because we are never 
interested in examining the state of a faulty processor. In 
particular, a faulty processor’s error steps may mimic correct 
behavior for an arbitrary (even infinite) period of time. 

We could give a definition of “sequenced executions” in 
the Byzantine fault model analogous to the definition of 
sequenced executions in the crash fault model. We omit that 
definition because we have no need to discuss such executions 
formally. 

E. Correctness Predicates 
In this subsection, we define correctness predicates as a way 

to formalize part of a problem definition (i.e., they formalize 
the relationship between inputs and outputs). A problem 
definition is formalized by requiring that all executions are 
deciding executions which satisfy some specific correctness 
predicate. Our formalism cannot be used to define problems 
for which nondeciding executions are acceptable. The defini- 
tions in this subsection apply to both the crash fault model and 
the Byzantine fault model. 

Predicate 6 is a correctnesspredicate if its domain is ( V  U 
If E = (F, ( i l ,  * * . ,  in),  a) is any execution, then 

inp(E) is defined to be ( i ; ,  - - e ,  i;)  where id = i, if processor 
p is correct in E and ip = 1 otherwise. If E is any deciding 
execution, then ans(E) is defined to be (al, - , a,) where a, 
is the decision of processor p in execution E if p is correct in E 
and a, = 1 otherwise. Protocol ‘X satisfies correctness 
predicate 6 if for any deciding execution E the value of 
6(inp(E), ans(E)) is true. Correctness predicates furnish a 
convenient way of formalizing the correctness requirements 
for a consensus protocol. For example, protocol ‘X solves the 
approximate agreement problem (with parameter 6 )  if it 
decides and it satisfies correctness predicate 6 that is defined 
below. Let 

a ( I ,  A ) =  A ( (a ,= l )  V ( a k = l )  V ( la j -akls6)) ,  
j , k E N  
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and 

j E N  

whereZ = ( i l l  . e - ,  in)  andA = ( a l ,  . . a ,  a,,). Now let @(I,  
A) = @(I,  A) A V ( I ,  A). The correctness predicate Q. 
formalizes the agreement condition and the correctness predi- 
cate V formalizes the validity condition. 

F. Time 
In this subsection, we define a notion of time in asynchron- 

ous executions. We will use this notion when we discuss the 
performance of our compiler. The definitions in this subsec- 
tion apply to both the crash fault model and the Byzantine fault 
model. 

We define S to be a timing if S is an infinite nondecreasing 
unbounded sequence of real numbers. Let E = (F, Z, a) be an 
execution. If event e is the ith element of a, then the time at 
which event e occurs in timing S of E is r where r is the ith 
element of S .  Timing S of execution E is 1-bounded if 1) each 
processor that takes a nonerror step in E takes its first step at 
time 0 and 2) any message that is sent at time x is delivered at 
or before time x + 1. (The time at which a particular message 
is sent is defined to be the time of the event that causes the 
message to be inserted in a buffer.) A timed execution is a 
pair (E, S )  such that S is a 1-bounded timing of E. 

Let X be a protocol and let Z = ( i l ,  * e ,  in)  be a vector of 
inputs to X. Protocol X has running time r for  input I if all 
correct processors decide by time r in all of the timed 
executions of protocol X where processor p has input ip for all 
p E N. 

IV. THE COMPILER 
We give two versions of our compiler. One works in any 

system where the redundancy is at least four. For any input, it 
increases the running time by a factor of two. The other works 
in any system where the redundancy is at least three. For any 
input, it increases the running time by a factor of three. We 
prove the correctness of the first version of the compiler. The 
correctness proof for the second version is similar and is only 
sketched. 

It would be tedious to write protocols directly in terms of 
our formal model. In the remainder of this paper, we write 
protocols in a higher level language. The mapping from 
protocols written in the higher level language to protocols 
written directly in terms of the formal model is a straightfor- 
ward exercise that we omit. To accommodate our new higher 
level language for expressing protocols, we will redefine the 
terms “transition function” and “decision function” in the 
body of this section. 

A. Standard Protocols 
Our compiler works only for protocols in standard form. A 

protocol is in standard form if it corresponds to an instance of 
Protocol 1 customized by specifying A, V, S, and 9. A is the 
set of possible values of the variable STATE. V C A is the set of 

possibleinputs. S:N x 9 +  x (A U {A})“ + A  U {I} is 
the transition function. The transition function maps a triple 
consisting of a processor index, a positive integer (represent- 
ing an “asynchronous round” number), and a vector of 
messages (A represents the absence of a message) into either a 
processor state (i.e., element of A )  or undefined (i.e., I). 
9 : N  x 9 + x A + V U {*} is the decision function. The 
decision function maps a triple consisting of a processor index, 
a positive integer, and a processor state into a possible 
decision. In the range of the decision function, an element of V 
represents a decision and * represents the absence of a 
decision. Throughout the rest of this paper, an instance of 
Protocol 1 customized with A ,  V,  S ,  and 9 is denoted e (A, 
V ,  S, a>). For the remainder of this section, we choose an 
arbitrary fixed A ,  V ,  S, and 9. 

Protocol I :  The Standard Protocol (Crash Faults): 

Initialization for processor p :  
STATE + the initial value of processor p 
M S G ~ , ~  +- X for all ( 1 ,  q )  E 9 + x N 

1. fort-+- 1 tocmdo 
2. broadcast (r ,  STATE) 

3. 
4. 
5 .  M S G ~ , ~  + m 
6. STATE e s( p ,  r, (MSGr,l, * , MSG,,,)) 

7. 
8. if DECISION E V then decide DECISION. 

until M S G , , ~  # X and I { q E N :  M S G , , ~  # A} 1 L n - t do 
receive any message ( 1 ,  m )  from any processor q 

DECISION + 9 ( p ,  r ,  STATE) 

We impose the requirement that S(  p ,  r ,  ( m l ,  * * e ,  m,))  f 
I if and only if there is a set G C N such that p E G, I G I 1 
n - t ,  and m4 # X for all q E G. That is, S ( p ,  r ,  ( m , ,  . * e ,  

m,))  is defined on exactly those message patterns (i.e., 
patterns of which elements of ( M I ,  . . , m,) are defined) that 
would cause a correct processor p to exit the inner loop (steps 
3-5) and proceed to step 6 .  We remark that it is essential to the 
operation of Protocol 1 that the transition function is defined 
on those message patterns on which it may be evaluated, but it 
is only as a technical convenience that we require that it is 
undefined on all other message patterns. 

A standard-form protocol operates in a series of asynchron- 
ous rounds. The rth execution of the body of the main loop is 
asynchronous round r .  A processor ends asynchronous 
round r when it completes the last instruction in its rth 
execution of the body of the main loop. At the start of each 
asynchronous round, a correct processor broadcasts a message 
containing its state. It then waits to receive messages from a 
sufficiently large group of processors (including itself). It 
computes its new state by applying its transition function to a 
triple consisting of its index, its current asynchronous round 
number, and the vector of messages received. Finally, it 
(possibly) decides on an answer by applying its decision 
function to its new state. It may seem unusual that a correct 
processor sends a copy of its state to itself (and waits to receive 
it) in each asynchronous round. We adopt this convention as a 
technical convenience which simplifies our compiler. 

We say that M is a message array if it is a two-dimensional 
array of A U { A }  indexed by 9 +  and N (asynchronous 
rounds and processor indexes). Message array L is an 
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extension of message array M if for all r and p either Lr,p = 
Mr,p or Mr,p = A. Let 3n be the set of all message arrays. In 
protocol e ( A ,  V, S, a) the variable MSG at any processor is 
always an element of 3n. If the value at processorp of MSG,,~  is 
ever m, then p received the message (r, m) from processor q. 
The value at processor p of M S G , , ~  is X if p has received no 
message (r, m) from processor q for any m. It is easy to see 
from the code that if processor q sends a message (r, m) to 
processor p ,  then it never sends a message (r, m’)  to 
processor p. Thus, at any time, the message array MSG at 
processor p contains all of the messages received by processor 
p up to the present time. Note that messages that arrive “too 
late” are stored in MSG at processorp but do not affect the state 
or decision of processor p. 

B. Filtered Message Arrays 
In this subsection, we define a filter that we will use in both 

versions of our compiler. This filter operates on message 
arrays. It obliterates (replaces by X) messages that Seem 
“implausible” and it passes all other messages unchanged. It 
is an adaptation of a “validation” scheme due to Bracha [I]. 
We now define the filter. 

For all G C N ,  define pick(G, (U], - * e ,  U,)) to be (U;, * * * , 
U;) where U; = U; if i E G and U/ = X otherwise. The 
function pick returns a vector in which those elements of ( u t ,  

e ,  U,) with indexes in N - G are replaced by X. The 
function filter maps from 3n to 3n. Define filter(L) to be M 
where 

if Ll,p E V; 
otherwise, 

and 

for all r E ( 2 ,  3, * e }  and for all p E N. For all p,  MI,^ 
is equal to LIrP if and only if LI,p is an element of V, the set of 
possible inputs to the protocol. For allp and for all r 1 2, Mr,p 
is equal to Lr,p if and only if there is some set G C N such that 
Lr,p is the message that would be sent by a correct processor p 
that received the messages in pick(G, (Mr-  * ,  Mr-l,,)). 

In the next three lemmas, we prove basic properties of 
filtered message arrays. 

Lemma I: Suppose that L is a message array and M = 
filter(L).ForallrE 4 + a n d p E  N, i fMr ,p= X , thenM,+~ ,~  
= A. 

Proof: Immediate from the definition of filter(L). U 
Lemma 2: If L is a message array, then L is an extension of 

0 
Lemma 3: If message array L is an extension of message 

array M,  then filter(L) is an extension of filter(M). 
Proof: Let L ’  = filter(L) and let M‘ = filter(M). We 

prove by induction on r that, for all r and for all p ,  either Lr?” 

filter(L). 
Proof: Immediate from the definition of filter(L). 

= or M:, = X. 

Basis: (r = 1): Consider an arbitrary p E N. IfM;,P = A, 
then the claim is trivially true, so assume that M;,p # A. By 
Lemma 2, M;,p = By the definition of filter(M),  MI,^ 
E V. Because L is an extension of M, L1,p = MI,p .  By the 
definition of filter(L), L;,p = L1,p. Thus, L;,p = M;,p. 

Induction: Consider an arbitrary p E N. If M;,p = A, then 
the claim is trivially true, so assume that M;,, # X. By Lemma 
2, Mr:p = Mr,p. Because L is an extension of M, Lr,p = Mr,p. 
By the definition of filter(M), there is some set G C N such 
that M;-l,g # X for all q E G and 

M r , p = S ( ~ ,  r -1 ,  pick(G, (M;-l,l, ..., M;-],,))). 

By the induction hypothesis, 

pick(G, (M;- * * * M:- I , n ) )  

=pick(G, (L ; - ] , ] ,  * * * ,  L;-l,,,)). 

Thus, by the definition of filter(L), L:,p = Lr,p. So we have 
that L;,p = M:,. 0 

C. The Object Protocol 
Our compiler operates by translating an instance of Protocol 

1 customized by A ,  V, S, and 53 into an instance of Protocol 2 
customized by A, V, S, and 9. Throughout the rest of this 
paper, an instance of Protocol 2 customized with A ,  V,  S,  and 
9 is denoted @ ( A ,  V ,  S, a). 

The skeleton of Protocol 2 is similar to that of Protocol 1. 
Four important features of Protocol 2 should be noted. First, 
Protocol 2 requires that the redundancy be at least four. 
Second, there is extra communication in Protocol 2. Each 
processor uses this extra communication to construct a 
message array called RAW. Third, in Protocol 2 each correct 
processor applies its transition function to its copy of the 
message array MSG, which it obtains by filtering its copy of the 
message array RAW. Fourth, the exit test in step 3 ensures that 
the transition function is defined (i.e., not 1 ) whenever it is 
evaluated. 

Protocol 2: The Object Protocol (Byzantine Faults, n 1 
4t + 1): 

Initialization for processor p :  
STATE + the initial value of processor p 
 VOTE/,^,^,^ +- X for all (I, q, i, U) E 9 + x N x 3t x N 
 RAW/,^ + X for all (I, q)  E 4 + x N 
M S G / , ~  + X for all (I, q)  E 4 + x N 

broadcast (r, p, 0, STATE) 

until MSG,,~  # X and 1 { q  E N: MSG,,~  # A} I 2 n - t 
do 
receive any message (I, q, i, m) from any processor 

if  VOTE^,^,^,^ = X then 

1. f o r r  + 1 to 00 do 
2. 
3. 

4. 

5 .  

7 .  
8. 
9. 

10. 
11. MSG + filter(RAw) 

U 

6. VOTEl>qJ,lI + m 
NUM + 1 {s E N:VOTE/,~,~,~ = m} 1 
if i = 0 and q = U then broadcast ([, q, 1, m) 
if NUM = n - 2t then broadcast (I, q, i + 1, m) 
if NUM = n - t then  RAW^,^ + m 
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12. STATE + S ( p ,  r, ( M S G , , ~ ,  * e ,  MSG,,,)) 

13. DECISION + a>(p, r, STATE) 
14. if DECISION E I/ then decide DECISION. 

As in a standard-form protocol, Protocol 2 operates in a 
series of asynchronous rounds. The rth execution of the body 
of the main loop is asynchronous round r. At the start of each 
asynchronous round, a correct processor p broadcasts a 
message containing the current value of the variable STATE at 
processor p. It then waits until its filtered message array (i.e., 
the value of MSG at processor p )  contains messages from a 
sufficiently large group of processors (including itself). It 
computes a new value for its copy of the variable STATE by 
applying its transition function to a triple consisting of its 
index, its current asynchronous round number, and the vector 
of messages in its filtered message array. Finally, it (possibly) 
decides on an answer by applying its decision function to its 
new value of STATE. 

A correct processor in Protocol 2 locally maintains the 
invariant that MSG = filter(rww), except in steps 10 and 11. It 
updates its copy of the array RAW in step 10 and reestablishes 
the invariant in step 11. A correct processor places a message 
in its copy of the array RAW when it has accumulated enough 
votes for that message. It stores the votes that it receives in its 
copy of the array VOTES. If VOTES/,~,;,, = m at correct processor 
p ,  then processor U sent processor p a level i vote that  RAW^,^ 
should be m.  If a correct processor receives a level 0 vote from 
processor q that  RAW^,^ should be m ,  then it sends a level 1 vote 
that  RAW/,^ should be m. If a correct processor receives n - 2t 
level i votes that  RAW^,^ should be m ,  then it sends a level i + 1 
vote that  RAW/,^ should be m. If it receives n - t level i votes 
that  RAW/,^ should be m ,  then it sets its copy of  RAW/,^ to m.  

D. Preliminary Lemmas 
In this subsection, we give five lemmas that will be of use in 

our main correctness argument in the next subsection. The 
first four lemmas establish some basic properties of the 
communication primitives used in Protocol 2 and the last 
lemma establishes an important liveness property for Protocol 
2 .  

Lemma 4: Let r E 4 + andp  E N. If any correct processor 
ever assigns any value m to its copy of  RAW,,^ in an execution 
of protocol @ ( A ,  V ,  S, D), then every correct processor 
eventually assigns the value m to its copy of  RAW,,^ and no 
correct processor ever assigns any value m ’ # m to its copy 
of 

Proof: Any correct processor that assigns a value to its 
copy of  RAW,,^ does it immediately after receiving an (r, p ,  i ,  
m ’ ) message for some i E 32. and m ’ E A .  We call such a 
message a level i message. Let j be the smallest number such 
that a level j message causes some correct processor to assign 
a value of its copy of  RAW,,^, let q be such a processor, and let 
d be the value assigned. Processor q gets n - t messages (r, 
p ,  j ,  d ) .  At least n - 2t are from correct processors. There 
are at most 2t processors that could send an ( r ,  p ,  j ,  d ’ )  
message for any d‘ # d. Thus, no correct processor assigns 
any d’ # d to its copy of  RAW,,^ based on a level j message. It 
is easy to show by induction o n j ’  that for a l l j ’  2 j + 1 and 
for all d’ # d there are no (r, p ,  j ’  , d’ ) messages sent by any 

correct processor. All correct processors eventually receive n 
- 2t messages (r, p ,  j ,  d )  and broadcast an (r, p ,  j + 1, d )  
message. Thus, each correct processor eventually receives n 
- t messages (r, p ,  j + 1, d )  and assigns d to its copy of 

Based on Lemma 4, for all r E 4 + and p E N,  we define 
the eventual value of  RAW,,^ in an execution of protocol 63 ( A ,  
V,  S,  a>), denoted  RAW,,^], to be the common value assigned 
to  RAW,,^ by the correct processors. If the correct processors 
never assign a value to  RAW,,^, then we define   RAW,,^] to be h. 
(Note that   RAW,,^] is an abstract global variable which we 
define based on the many local copies of  RAW,,^ maintained by 
the correct processors.) We define the eventual value of RAW, 

denoted [RAW], in the obvious way. That is, [RAW] is the two- 
dimensional array whose elements are the eventual values of 
the corresponding elements of RAW. Based on Lemmas 3 and 
4, we define the eventual value of MSG,,~ and MSG analogously. 

Lemma 5: If a correct processor p ever broadcasts the 
message (r, p, 0, m )  for any r and m ,  then  RAW,,^] = m. 

Proof: All n - t correct processors eventually receive 
the message (r, p, 0, m )  from processor p .  They all broadcast 
the message ( r ,  p ,  1,  m ) .  All n - t correct processors 
eventually receive at least n - t copies of the message (r, p, 1, 
m) and at most t copies of any message (r, p, 1, m ‘ ) for any 
m‘ # m.  Each correct processor assigns m to its local copy of 

0 
Lemma 6: Let r E 4 + .  If a correct processor p never 

broadcasts a message (r, p ,  0, m )  for any m, then   RAW,,^] = 
A. 

Proof: It is easy to show by induction on i that no correct 
processor ever sends a message (r, p, i ,  m )  for any m.  
Therefore, no correct processor ever assigns any value to its 

0 
Lemma 7: If M is the value of the variable RAW at some 

processor p at some time in an execution and L is the value of 
the same variable at processor p at some later time in the same 
execution, then L is an extension of M. 

0 
In the next lemma, we prove an important liveness property 

Lemma 8: [MSG,,~] # h for all r E 4 + and for a l lp  E N - 

M W r , p  * 0 

 RAW,,^, and so   RAW,,^] = m. 

copy of  RAW,,^ and so   RAW,,^] = h. 

Proof: Immediate from Lemma 4. 

of Protocol 2 .  

F. 
Proof: The proof is by induction on r. 

Basis: ( r  = 1): Let p be an arbitrary correct processor. Let U 
E V be the input to processor p. In its first step, processor p 
sends the message (1, p ,  0, U). By Lemma 5,  RAW^,^] = U. By 
the definition of filter, [ M S G ~ , ~ ]  = U. 

Induction: Let p be an arbitrary correct processor. By the 
induction hypothesis, [ M S G , - ~ , ~ ]  # A. By Lemma 2 ,  
[ R A W , - I , ~ ]  # A. By Lemma 6, there is some time when 
processorp sends the message (r - 1, p ,  0, m ’ ) for some m ’ . 
Thus, there is some time at which processor p executes the 
broadcast (step 2 )  in asynchronous round r - 1. 

By the induction hypothesis, [MSG,- l,q] # h for all q E N 
- F. By Lemmas 3 and 7, there is some time after which the 
variable MSG at processor p always satisfies the condition that 
M S G , - ~ , ~  # h for all q E N - F. Therefore, processor p 
eventually sends some message ( r ,  p, 0, m).  Let M be the 
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value of the variable MSG at processor p when processor p 
sends the message (r, p ,  0, m). It follows from the code that 

~ = S ( P ,  r-1, (M~- I , I ,  ‘ ‘ ’ 3  Mr-1.n))- 

By Lemmas 3 and 4, [MSG] is an extension of M. Therefore, 
there is a G C N such that 

followed by 3) the receipt by processor p of all of the 
remaining (non-X) messages in (M,,I, - . . , Mr,n). 

Suppose E = (F, I, a) is an arbitrary execution of protocol 
@(A, V ,  S, 9). We define crash(E) to be (F,  (i;, * . . , i;), 
ai a; * ‘) where 

[ M S G I , ~ ]  if [ M S G I , ~ ]  f X; 
j‘= 

~ = S ( P ,  r- 1, p W G ,  ( [ M s G , - I , I I ,  a - . ,  [ M S G , - I , J ) ) ) .  I, otherwise, 
By Lemma 5,  RAW,,^] = m. By the definition of filter, 

and for all r [MSGr,p] = [RAWr,p]. Thus, [MSGr,p] # X. 

E. Proof of Correctness 
In this subsection, we show for any A ,  V, S, and 9 that if 

protocol (?(A, V ,  S, 9) solves some problem (formalized by 
a correctness predicate and a requirement that all correct 
processors eventually decide), then protocol @(A,  V ,  S, 9) 
solves the same problem. Recall that protocol C!(A, V,  S, 9) 
operates in the crash fault model and protocol 63 (A,  V,  S, 9) 
operates in the Byzantine fault model. Our approach is to 
exhibit for any execution E of protocol @(A,  V,  S, 9) an 
execution of protocol (?(A, V ,  S, 9) in which the correct 
processors “do the same thing” that they did in execution E. 
More specifically the property we seek is that the “eventual 
value” of MSG in the constructed execution of protocol (? (A, 
V ,  S, 9) is equal to the eventual value of MSG in execution E 
of protocol @(A, V,  S, 9). 

Let uo be an arbitrary fixed element of V. In this subsection, 
we will find it convenient to use uo as a “default input.” 

We now construct for any execution E of protocol 63 (A, V, 
S, 9) a sequenced execution of protocol (?(A, V,  S, a), 
denoted crash(E), in which the correct processors “do the 
same thing” that they did in E. Because crash(E) is a 
sequenced execution in the crash fault model, it is completely 
determined by the following three items: 1) the inputs to the 
processors, 2) the number, if any, of the last phase in which 
each processor takes steps, and 3) the order in which each 
operating processor receives its phase r messages for each r. 
We will construct crash@) so that the following three 
properties hold: 1) the input to processor p is [ M S G ~ , ~ ]  if 
[ M S G ~ , ~ ]  # X and uo otherwise, 2) a processorp sends a phase r 
message if and only if [MSG, ,~]  # A, and 3) messages are 
delivered to a processor p in phase r in an order that causes 
processor p to send the message (r + 1, [MSG,+ I,p]). 

Suppose p E N, r E X , and 3TZ is a message array. Define 
support( p ,  r, M )  to be the lexicographically least set G C N 
such that Mr-l ,q  # X for all q E G and 

M r , p = s ( ~ ,  r -1 ,  pick(G, ( M ~ - I , I ~  Mr-l,n))). 

If there is no such set G ,  then define support( p ,  r, M )  to be 0. 
If M I , p  = X, then define P(0, p ,  M )  to be the empty 

sequence of events; otherwise, define P(0, p ,  M )  to be the 
event (step: p). For all r I 1, if M,, I ,p  = X, then define P(r, 
p ,  M )  to be the empty sequence of events; otherwise, define 
P(r, p ,  M )  to be the sequence of events that consists of 1) the 
receipt by processorp of all of the (non-X) messages in ( M r , ~ ,  

* * ,  Mr,n) that are from processors in support(p, r + 1, M )  
- { p }  followed by 2) the receipt by processor p of Mr,p 

a: =P(r,  1, [MSGI)P(~, 2,  [MSGI), * * P(r, n, [MSGI).  
Lemma9:Letp E N, q E N ,  r E X ,  andm E A .  Let L 

be a message array. Let M = filter(L). Let C be an initial 
configuration for protocol (?(A, V,  S, 9). Let a’ = aoal . * * 

where (for 0 I r ’  I r - l)a,, = P(r’, 1, M )  * * -  

P(r’, n ,  M ) .  Suppose that a’ is a schedule that is applicable to 
configuration C. Suppose that processor p sends an (r, m) 
message to processor q in a’(C). Then m = Mr,p. 

Proof: There are two cases. 
Case I :  (r = 1): Let U be the input to processor p in 

configuration C.  Clearly, m = U. To send the message (1, m), 
processor p must take at least one step in schedule a’. It 
follows from Lemma 1 and the definition of a’ that # A. 
By the construction of a‘, U = Thus, m = 

Case 2: (r L 2): Let M‘ be the value of the variable MSG at 
processor p in protocol C! (A ,  V,  S, 9) after the application of 
the event that causes the sending of the message (r, m) from 
processor p to processor q. By Lemmas 3 and 7, message 
array M is an extension of message array M’ . Because the 
message (r, m) is sent in a‘(C), we have that support(p, r, 
M )  # 0. We claim that 

(M;-l,I, M;-l,n) 

=pick(support (P, r, M ) ,  ( M r -  1 , l r  . . ‘ 3  Mr- I , n ) ) *  

The claim follows by the definition of P(r - 1, p ,  M ) .  Using 
the claim, we calculate that 

m = S ( p , r - 1 ,  (M;-l,l, - . . ,M;- , , , ) )  Fromthecode. 

=S(p ,  r- 1, pick(support (p ,  r, M ) ,  

(Mr-  a ,  Mr- I ,n) ) )  By the claim. 

=Mr,p.  By the definition of support. 0 

Lemma IO: If E = (F,  (il,  . , in),  a) is an execution of 
protocol @(A,  V,  S, a), then E’ = crash(E) is an execution 
of protocol (!?(A, V ,  S, 9). 

Proof: Suppose that E = (F,  I’ , a’) where I‘ = (i; , 
* * e ,  i; ). Partition the schedule a’ into subschedules ai, a;, 
etc., with a,’ defined as it is in the definition of crash. 

To show that E ‘  is an execution of protocol C!(A, V ,  S, 9) 
we verify the following three properties. 1) The schedule a’ is 
applicable to the initial configuration C of (? (A ,  V,  S, 9) in 
which F is the set of faulty processors and in which processor 
p begins in the initial state that corresponds to input id for all p 
E N. 2)  All processors in N - F take an infinite number of 
steps. 3) If processor q takes an infinite number of steps, then 
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every message that is sent to processor q is eventually 
delivered. 

Property 1: We prove for all r E 32 that all events in a,’ are 
applicable. The proof is by induction on r. 

Basis: (r = 0): All events in U; are of the form (step: p )  for 
some p E N. It is immediate that a; is applicable to 
configuration C.  

Induction: Pick an arbitrary event e = (receive: q, p,  (r, 
[MSG, ,~] ) )  from the schedule ar’ . By the induction hypothesis, 
the schedule ad a; * * . a,’- is applicable to configuration C .  
The event e is in the schedule p(r,  q,  [MSG]). By the definition 
of P(r ,  q, [MSG]), [ M S G , , ~ ]  # h. By the definition of P(r - 1, 
p ,  [MSG]), processorp sends some message (r, m )  to processor 
q in a; a,’ * a,’-, ( C ) .  By Lemma 9, m = [MSG, ,~] .  Thus, the 
message (r, [MSG, ,~] )  is placed in the buffer of processor q.  It is 
easy to see that the event e is unique in the schedule U ‘ .  

Therefore, the message (r, [MSG,,~]) is in the buffer of 
processor q in the configuration just before the event e is 
applied. It follows that the schedule a; a; * ar’ is applicable 
to configuration C.  

Property 2: We prove that all processors in N - F take an 
infinite number of steps. Let p be an arbitrary element of N - 
F. By Lemma 8, [MSG,,~] # h for all r E 4’. By the 
construction of U’, each (non-h) message in [MSG] is delivered 
to processor p in the execution (F, Z’, U’). There are an 
infinite number of such messages To receive all of these 
messages, processor p must take an infinite number of steps. 

Property 3: Let q by any processor that takes an infinite 
number of steps in execution E ’ .  We prove that every message 
sent to processor q is eventually delivered. Consider an 
arbitrary message (r ,  m )  sent from a processor p to the 
processor q in E ’ .  By property 1 and Lemma 9, m = [MSG,,~]. 

We now show that the message (r ,  [MSG,,~]) is delivered to 
processor q in execution E‘. Processor q takes an infinite 
number of steps in execution E‘.  By the definition of E ‘ ,  
[ M S G , , , ~ ]  # h for infinitely many r’.  By Lemma 8 ,  [ M S G , , , ~ ]  

# h for all r’. So [ M S G , + ~ , ~ ]  # A. By construction, the 
schedule p(r, q ,  [MSG]) includes the event (4 ,  p ,  (r, [MSG,,~])). 

Thus, the message ( r ,  m) is delivered in the execution 
E ’ .  0 

Lemma 11: If E is any execution of protocol @ ( A ,  V,  S, 
a), then the executions E and E ‘  = crash(E) have the same 
set of faulty processors and the same inputs to the correct 
processors. 

Proof: It is immediate that executions E and E ‘  have the 
same faulty processors. We now show that the correct 
processors have the same inputs in executions E and E‘. Let p 
be an arbitrary correct processor. Suppose that in execution E 
processor p has input U E V. Processor p broadcasts the 
message (1, p ,  0 ,  U) in its first step in execution E. By Lemma 
5 ,   RAW^,^] = U. By the definition of filter, [ M S G ~ , ~ ]  = U. 

0 
If E is an execution of either protocol e ( A ,  V,  S, D) or 

protocol @ ( A ,  V,  S, D), processorp is correct in E,  and r E 
32, then we define state( p ,  r, E )  to be the (r + 1)st value that 
processor p assigns to its copy of the variable STATE in the 
execution E. For example, state(p, 0, E )  is the input to 
processor p .  

Thus, the input to processor p in execution E’ is U. 

Lemma 12: If E is an execution of protocol 03 ( A ,  V ,  S, 9) 
and E‘ = crash(E), then state( p ,  r, E) = state( p ,  r ,  E ‘ )  for 
all ( p ,  r )  E (N - F )  x 9+ .  

Proof: If r = 0, then the claim follows from Lemma 11. 
Suppose instead that r 2 1. By the construction of the 
execution E ’ ,  
STATE(P, r, E ’ ) = S ( p ,  r +  1, 

pick(support ( P ,  rr [MSGI),  ([MSGr,lIr ’ . ’ 9 [MSGr,nI))) .  

By the definition of support 

S(P, r +  1, pick(supp0fl ( P ,  r ,  [MSGI), 

([MSGr,lI, * * ’ 9 [MSGr,,]))) = [MSGr+ 1,pI .  

By the definition of filter, [MSG,+ I,p] = [RAW,+ I , p ] .  By Lemma 
5, STATE(P, r ,  E )  =  RAW,+^,^]. Thus,  STATE(^, r, E ’ )  = 
STATE(P, r ,  E).  

Theorem 13: If n 2 41 + 1, then the following two 
conditions hold. 

Correctness condition: If protocol C ( A ,  V ,  S, 9) 
satisfies some correctness predicate 6 ,  then so does protocol 

Decision condition: If protocol e (A ,  V,  S, 9) decides, 

Proof: We verify that the two conditions are satisfied. 
Correctness condition: Suppose protocol e ( A ,  V ,  S, 9) 

satisfies correctness predicate 6. Let E = (F,  Z, a) be an 
arbitrary deciding execution of @ ( A ,  V, S, D). Let E ‘  = 
crash(E). By Lemma 10, E‘ is an execution of C ( A ,  V ,  S, 
D). Suppose E’ = (F’ ,  Z’, U’). By Lemma 11, F = F’ and 
inp(E) = inp(E’). By Lemma 12, E ’  is a deciding execution 
and ans(E) = ans(E’). Therefore, 6(inp(E), ans(E)) = 
6(inp(E’), ans(E’)) and @(A,  V,  S, 9) also satisfies 
correctness predicate 6.  

Decision condition: We prove the contrapositive of the 
claim. Suppose that protocol @ ( A ,  V,  S, 9) does not decide. 
By the definition of decision, there is some nondeciding 
execution E of protocol @ ( A ,  V,  S, 9). Let E ‘  = crash(E). 
By Lemma 10, E ‘  is an execution of (?(A, V,  S, 9). By 
Lemma 12, execution E ‘  is a nondeciding execution of C ( A ,  
V,  S, D). Thus, protocol e ( A ,  V,  S, 9) does not decide.U 

Theorem 14: Let I E V”. If protocol C ( A ,  V,  S, 9) has 
running time r for input I and n 2 4t + 1, then protocol 
@ ( A ,  V ,  S, 9) has running time 2 . r  for input I. 

Proof: By assumption, all correct processors decide by 
time r in all timed executions of protocol C ( A ,  V,  S, 9) with 
input I .  We claim that all correct processors decide by the end 
of asynchronous round r in all executions of protocol C ( A ,  V,  
S, D) with input I .  Suppose not. Then, there is some 
execution E of protocol C ( A ,  V ,  S, 9) with input Z in which a 
correct processor decides in asynchronous round r ’ for some 
r’ > r. We can construct a sequenced execution E’ of 
protocol e ( A ,  V ,  S, D) in which the sequence of values 
assigned to the variable STATE at each correct processor is the 
same as it is in execution E. It should be clear that each correct 
processor decides in the same asynchronous round in execu- 
tions E and E‘. For the sequenced execution E ‘ ,  consider the 
obvious 1 -bounded timing S ’ where receiving an asynchron- 

@(A,  I/, s, 9). 

then so does protocol @ ( A ,  V,  S, a). 
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ous round r“ message takes place at time r”. In the timed 
execution (E’, S ’ ) ,  there is a correct processor which decides 
at time r‘. This contradicts the assumption that there is no such 
execution. Thus, we have proved our claim that all correct 
processors decide by the end of asynchronous round r in all 
executions of protocol (?(A, V ,  S, 9) with input I. 

Let (E”,  S ” )  be an arbitrary timed execution of protocol 
@(A, V ,  S, 9) with input I. It follows from Lemma 12 that if 
there is a correct processor in the execution crash(E”) of 
protocol (?(A, V ,  S, 9) that decides in asynchronous round r’ 
for some r’, then the same correct processor decides in 
asynchronous round r’ in execution E“ of protocol @(A,  V,  
S, 9). It follows from the claim that all correct processors in 
execution E“ decide by asynchronous round r. 

We can show by induction on r“‘ that in the timed execution 
(E”,  S ” )  of protocol @(A, V ,  S, 9), all processors end 
asynchronous round r”‘ at or before time 2.r“‘. Thus, all 
correct processors in the timed execution ( E ” ,  S ” )  decide by 
time 2 - r. 0 

F. A n  Alternative Object Protocol 
The alternative version of our compiler operates by translat- 

ing an instance of Protocol 1 customized by A ,  V, S, and 9 
into an instance of Protocol 3 customized by A ,  V ,  S, and 9. 
Throughout the rest of this paper, an instance of Protocol 3 
customized with A ,  V ,  S, and 9 is denoted @ ’ ( A ,  V ,  S, 9). 
Protocol 3 requires that the redundancy be at least three. It 
uses the function filter defined in Section IV-B. 

The only difference between Protocol 3 and Protocol 2 is 
that in Protocol 3 we use a different set of communication 
primitives to install elements in the message array RAW. They 
are the communication primitives developed by Bracha [ 11. 

Protocol 3: The Object Protocol (Byzantine Faults, n 2 
3t  + 1): 

Initialization for processor p :  
STATE + the initial value of processor p 
 VOTE^,^,^,^ +- X for all (1, q, i ,  U) E 4 + x N x X x N 
 RAW!,^ + X for all (1, q )  E 4 + x N 
M S G ~ , ~  + X for all (I, q )  E 4 + x N 

broadcast (r, p ,  0, STATE) 

until MSG, ,~  # h and I { q E N: MSG,,~ # X }  I 2 n - t 
do 
receive any message (1, q, i, m )  from any processor 

if  VOTE^,^,^,^ = X then 

1. for r + 1 to 03 do 
2 .  
3. 

4. 

5 .  

7. 
8. 
9. if i = 1 and NUM = n - t then broadcast 

10. if i = 2 and NUM = n - 2t then broadcast 

1 1 .  
12. MSG +- filter(RAw) 

14. 
15. if DECISION E V then decide DECISION. 

U 

6. VOTEi,q,i,u + m 
NUM +- I {s E N:VOTE,,~,~,~ = m }  I 
if i = 0 and q = U then broadcast (1, q, 1, m )  

( 1 9  4 ,  2 ,  m )  

(1, 4 ,  2 ,  m )  
if i = 2 and NUM = n - t then  RAW^,^ + m 

13. STATE +- s ( p ,  r, ( M S G r , 1 ,  ” * ,  MSGr,,)) 

DECISION +- 9 ( p ,  r, STATE) 

Theorem 15: If n L 3t + 1 ,  then the following two 
conditions hold. 

Correctness condition: If protocol (?(A, V ,  S, 9) 
satisfies some correctness predicate 6,  then so does protocol 
@’(A, V ,  S, 9). 

Decision condition: If protocol (? (A,  V ,  S ,  9) decides, 
then so does protocol @’(A, V ,  S, 9). 

Proof sketch: We begin by proving the analogues of 
Lemmas 5,6,7, and 8. The remainder of the proof is identical 

0 
Theorem 16: Let I E Vn. If protocol (?(A, V ,  S, 9) has 

running time r for input I and n 2 3t  + 1 ,  then protocol 
@’(A, V ,  S ,  ’33) has running time 3.r for input I .  

0 

to the proof of Theorem 13. 

Proof: Similar to the proof of Theorem 14. 

V . APPROXIMATE AGREEMENT PROTOCOLS 
We use our compiler to simplify the design of a new 

approximate agreement protocol that operates in the Byzantine 
fault model. In Section V-A, we review some definitions and 
basic results regarding multisets. In Section V-B, we give an 
approximate agreement protocol that operates in the crash 
fault model. In Section V-C, we prove our approximate 
agreement protocol correct in the crash fault model. In Section 
V-D, we apply the two versions of our compiler to the 
approximate agreement protocol given in Section V-B. In the 
Byzantine fault model, we compare the performance of our 
compiled protocols to the performance of the protocol of 
Dolev et al. 

A. Preliminary Definitions 
We give some definitions and prove some basic facts about 

multisets. The presentation in this subsection borrows heavily 
from Dolev et al. [5]. Lemma 19 of this subsection is very 
similar to Lemma 5 of Dolev et al. 

We view a finite multiset U of reds as a function U :  6i --* 
92 that is nonzero on at most finitely many r E 63. Intuitively, 
the function U assigns a multiplicity to each real number. In 
the remainder of this section, the term multiset always refers 
to finite multisets of reals as described above. 

The cardinality of a multiset U is given by CrE o1 U(r) and is 
denoted by I UI. A multiset is empty if its cardinality is 0; 
otherwise it is nonempty. Multiset U is a subset of multiset 
V, written U C V, if U(r) I V(r) for all r E 6i. The 
minimum min(U) of a nonempty multiset U is given by 
min(U) = min{r E a: U(r) # O } .  The maximum max(U) 
is defined analogously. If multiset U is nonempty, let p ( U )  
(the range of U )  be the closed interval [min(U), max(U)], 
and let & ( U )  (the diameter of U )  be max(U) - min(U). 

For the remainder of this paper, let c = L(n - l ) / t] .  The 
constant c, which is the floor of the redundancy, plays a role in 
the definition of our averaging functions and, as we will see in 
Theorem 25, is the convergence rate of our approximate 
agreement protocol. Suppose that U is a multiset with I U1 = 
n - t. Let MO I u1 I . - * I be the elements of U in 
nondecreasing order. Define select(U) to be the multiset 
consisting of the elements uo, U t ,  * * * ,  u ( , + I ) . ~ .  Thus, 
select(U) chooses the smallest element of U and every tth 
element thereafter. The median of multiset U ,  written 
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median(U), is defined to be U, where m = LIUl/2J. The 
mean of multiset U,  written mean(U), is defined to be 

r - U(r )  
mean ( U ) =  ~ . 

rea 1'1 
In our approximate agreement protocol, we will use the two 
averaging functions median( U ) and mean(select( U )). The 
next three lemmas characterize the convergence properties of 
these functions. 

Lemma 17: If U and V are multisets such that V C U, then 
median(V) E p(U)  and mean(select(V)) E p ( U ) .  

Proof: This is immediate from the definition of the 

Lemma 18: If U,  V, and Ware multisets such that I VI = 

IWI = n - t ,  V C U, W C U, and IUI I n, then 
median(V) E p ( W ) .  

Proof: Let uo I u1 I * * - 5 U,-,- I be the elements of 
V, let WO I w1 I * * I w,-~- I be the elements of W, and 
let uo I u1 I I ullll-l be the elements of U. We 
calculate that 

averaging functions. 0 

median ( V) 1 ut Because 1 VI 2 2t + 1. 

?ut  Because V C U. 

> W O  

=min ( W). 
Because W C Uand 1Ul-l W I s t .  

Thus, median(V) L min(W). By a similar argument, 
median( V )  I max( W).  It follows that median( V)  E p (  W). 

Lemma 19: If U,  V,  and Ware multisets such that 1 VI = 
1WI = n - t ,  V C U,  W C U, and J U (  I n, then 
I mean(select( V)) - mean(select( W)) I 5 6 ( U ) / c .  

Proof: Let uo I uI I * I U,- be the elements of 
select( V )  and let wo I w1 I I w,- I be the elements of 
select( W).  

We claim that max(ui, w;) I min(u;+ for 0 I i I c 
- 2. Let uo I uI I * * * I zqU+ be the elements of U. 
Observe that U; I U(;+ I ) . f  I U;+ because V C U and because 
there are at most t elements of U that are not in V.  Similarly, 
w; I U(;+ I wi+ Thus, max(u;, w;) I min(u;+ w;+ I)  for 
0 I i I c - 2. This concludes the proof of the claim. 

Let x = I mean(select( V)) - mean(select( W)) 1 .  We use 
the claim in the calculation that follows. 

wi+ 

1 r-1 

c j - 0  
5- * 2 1 ui- w;l By the triangle inequality. 

1 c - 1  

c 1-0 

1 

=- * 

=- ( max (uc-  1, wc- I )  - min (uo, wo) 

(max (U;, w;)-min (vi, wi))  

C 

c - 2  

+E (max (U;, wi)-min (u;+l, wi+l))) 
i = O  

~ ( m a x  ( ~ ~ - 1 ,  ~ , - ~ ) - m i n  (uo, wo) ) / c  

I (max ( U )  - min ( U ) ) / c  

By the claim. 

Because V C U and W c U. 

= 6 ( U)/C.  

B. The Protocol 

0 

Our approximate agreement protocol is given as Protocol 4. 
A processor begins the protocol by assigning its input value to 
the variable VAL. The protocol is organized into a series of 
asynchronous rounds. In each asynchronous round, each 
processor that is still operating broadcasts the value of VAL, 
waits to receive at least n - t values broadcast in the current 
asynchronous round, places the multiset of these n - t values 
in the variable SAMPLE, and applies an averaging function to 
SAMPLE to get a new value for VAL. In the first two 
asynchronous rounds, the averaging function used is median. 
In subsequent asynchronous rounds, it is mean 0 select, where 
0 denotes function composition. In asynchronous round 2, 
each processor that is operating calculates an upper bound on 
the number of asynchronous rounds required and stores the 
bound in the variable ROUNDS. When sufficient asynchronous 
rounds have elapsed, a processor decides on the current value 
of VAL as its answer. 

Protocol 4: An Approximate Agreement Protocol 
(Crash Faults, n L 3t + 1): 

Initialization for processor p :  
VAL + the initial value of processor p 

1. f o r r t l t o m d o  
2. broadcast (r ,  VAL) 

3. 
4. 

5 .  if r = 1 then 
6. VAL + median(sAMPLE) 
7. if r = 2 then 
8. VAL + median(sAMpLE) 
9. 

wait to receive (r,  *) from n - t processors 
let SAMPLE be the multiset of values received in the 

previous step 

ROUNDS + 2 + rlog,(max( 1, ~(SAMPLE)/E))~  
10. if r = ROUNDS then decide VAL 

11. i f r  > 3 then 
12. VAL + mean(select(sAMPLE)) 
13. if r = ROUNDS then decide VAL. 

Some straightforward translation is necessary to put Proto- 
col 4 in standard form. We omit the details. 

C. Proof of Correctness 
For all r L 1, we say that a processor p finishes 

asynchronous round r if it completes the last instruction in the 
code for asynchronous round r.  

Lemma 20: In every execution of Protocol 4, for all r ,  all 
correct processors eventually finish asynchronous round r.  

0 
In an execution of Protocol 4, we let X o  denote the multiset 

containing the inputs to all of the correct processors and we let 

Proof: An easy induction on r.  
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X,  denote the multiset containing the value of the variable VAL 

at the end of asynchronous round r for all processors that 
finish asynchronous round r. It follows from Lemma 20 that 
IX,l L n - t for all r. 

The next three lemmas help establish the convergence of our 
approximate agreement protocol. In proving these lemmas, we 
use the properties of our two averaging functions that we 
proved in Section V-A. 

Lemma 21: If r L 1, then p(Xr) C p ( X r - 1 ) .  
Proof: There are two cases. Either r = 1 or r L 2. 

Case I :  (r = 1): Let U be the multiset of inputs to all 
processors. Because there are n processors, 1 U\ = n. Let W 
be the multiset of inputs to an arbitrarily chosen set of n - t 
correctprocessors. Clearly, W C Xo C Uand ( W( = n - t .  
Let p be an arbitrary processor that finishes asynchronous 
round 1. Let V be the multiset of values received by processor 
p in asynchronous round 1. Because there are only crash 
faults, V C U. From step 2 of the code, I VI = n - t .  We 
have established that the multisets U, V, and W satisfy the 
preconditions of Lemma 18; therefore, median( V)  E p(  W) 
C p (XO). Because median( V)  is an arbitrarily chosen element 
of X, ,  we have that p(Xl )  C p(Xo).  

Case 2: (r 1 2): Let U = X r P l .  Let p be an arbitrary 
processor that finishes asynchronous round r. Let V be the 
multiset of values received by processor p in asynchronous 
round r. Because there are only crash faults, V c U. If r. = 2, 
then let a = median ( V ) ;  otherwise, let a = mean(select( V ) ) .  
We have established that the multisets U and V satisfy the 
preconditions of Lemma 17; therefore, a E p(X,- ,). Because 
a is an arbitrarily chosen element of X,, we have that p (X,) C 
AXr- 1)- 0 

Lemma 22: If Y is the multiset of values received by an 
arbitrary correct processor in asynchronous round 2, then 
6(X,) I 6 ( Y ) .  

Proof: Let U = Xl. Because there are n processors, 1 U1 
I n. Let p be an arbitrary processor that finishes asynchron- 
ous round 2. Let V be the multiset of values received by 
processor p in asynchronous round 2. Let W = Y. Because 
there are only crash faults, V C U and W C U. From step 2 
of the code, 1 VI = 1 WI = n - t .  We have established that 
the multisets U, V, and W satisfy the preconditions of 
Lemma 18; therefore, median( V) E p (  W )  = p(  Y). Because 
median(V) is an arbitrarily chosen element of X2, we have 
that p(X2) C p ( Y ) .  It is immediate that 6(X2) I 6 ( Y ) .  0 

Lemma 23: If r L 3, then 6(X,) I 6(X,- l)/c. (Recall that 
c is the floor of the redundancy.) 

Proof: Let U = X r - l .  Because there are n processors, 
1 U (  I n.  Let p and q be two arbitrary processors that finish 
asynchronous round r. Let V be the multiset of values received 
by processor p in asynchronous round r and let W be the 
multiset of values received by processor q in asynchronous 
round r. Because there are only crash faults, V C U and W C 
U. From step 2 of the code, I VI = 1 W( = n - t .  We have 
established that the multisets U, V, and W satisfy the 
preconditions of Lemma 19; therefore, I mean(select( V)) - 
mean(select( W)) ( I 6(X,- l)/c. Because mean(select( V)) 
and mean(select(W)) are arbitrarily chosen elements of X,, 
we have that 6(X,) I 6(X,-l)/c. 0 

Theorem 24: In the crash fault model, Protocol 4 solves the 
approximate agreement problem. 

Proof: We show that the agreement, validity, and 
decision conditions are satisfied. 

Agreement condition: Let p and p '  be arbitrary correct 
processors. Suppose that processor p decides U in asynchron- 
ous round r and processor p '  decides U' in asynchronous 
round r' . Without loss of generality, assume that r I r' . Let 
Y be the multiset of values received by processor p in 
asynchronous round 2. 

We claim that ~ ( Y ) / c ' - ~  L a(&) for all i 2 2. The proof 
of the claim is by induction on i. The basis ( i  = 2) is 
immediate from Lemma 22. The inductive step is immediate 
from Lemma 23. 

From steps 9, 10, and 13 of the code, r = 2 + rlo&(max(l, 
6( Y )/€))I. It follows that E L 6( Y ) / c ' - ~ .  By the claim, E 2 
6 (X,). Clearly, U E X, and U ' E X ,  , . By repeated application 
of Lemma 21, U E p(Xr). Thus, ( U  - U' I I 6(X,) I E .  

Validity condition: If U is the decision of some correct 
processor, then there is some r such that U E Xr.  By repeated 
application of Lemma 21, p ( X r )  C ~(XO). Thus, U E p(X0) 
and there are correct processors with inputs min(Xo) and 
max(Xo) such that min(Xo) I U I max(Xo). 

Decision condition: Let p be an arbitrary correct proces- 
sor. Processor p assigns some value-an integer greater than 
or equal to 2-to the variable ROUNDS in asynchronous round 2; 
it never changes the variable ROUNDS after asynchronous round, 
2. Eventually, processor p calculates that r = ROUNDS and it 
decides on some answer in either step 10 or step 13. Thus, 
each correct processor eventually decides. Because there are a 
finite number of correct processors, all correct processors 
eventually decide. 0 

We say that an approximate agreement protocol has 
convergence rate 1 if there is some constant k such that in 
every timed execution where the multiset of inputs to the 
correct processors is X, all correct processors decide by time 

Theorem 25: The convergence rate of Protocol 4 is c. 
Proof: For all r 1 1, it is easy to see that in any timed 

execution of Protocol 4, asynchronous round rends by time r. 
Thus, it is sufficient to show that every correct processor 
decides by asynchronous round 2 + rlo&(max(l, 6(XO)/c))1. 

Let p be an arbitrary correct processor. Let Y be the 
multiset of values received by processor p in asynchronous 
round 2. It is clear that Y C XO. So, 6 ( Y )  I ~(XO) and 
processor p assigns the value 2 + [log, (max( 1, 6 ( Y ) / € ) ) I  to 
the variable ROUNDS. Thus, processor p decides by asynchron- 

0 

D. Approximate Agreement with Byzantine Faults 
So far in this section, we have developed an approximate 

agreement protocol that tolerates crash faults. We now apply 
the two versions of the compiler developed in Section IV to 
produce approximate agreement protocols that tolerate Byzan- 
tine faults. 

It is possible to express Protocol 4 in the standard form 
defined in Section IV-A. That is, there are A ,  V, S, and 9 
such that Protocol 4 can be expressed as e(A,  V, S, 9). For 

k + riog,(max(l, 6(x)/E))i. 

ous round 2 + rlog,(max(l, 6(&)/€))1. 
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Protocol 

B ( A ,  V,S,  D) 
W A ,  v,s,m 

TABLE I 
COMPARISON OF PERFORMANCE 

Convergence Rate Minimum Redundancy 

J c  4 

fi 3 

B ( A , V , S , D )  

B ’ ( A , V , S , D )  

I 

Dolevet al. I IW-11/21 I 5 1 

- 2 2.24 2.45 2.65 2.83 

1.44 1.59 1.71 1.82 1.91 2 

TABLE II 
CONVERGENCE RATE FOR SPECIFIC VALUES OF c 

the remainder of this paper, we let A ,  V,  S, and 6)  be chosen 
in that way. 

Theorem 26: In the Byzantine fault model, for c 1 4, 
protocol @ ( A ,  V,  S, 6 ) )  solves the approximate agreement 
problem with a convergence rate of &. 

Proof: Correctness follows from Theorems 13 and 24. It 
follows from Theorems 14 and 25 that the convergence rate is 

Theorem 27: In the Byzantine fault model, for c 1 3, 
protocol 63 ’ ( A ,  V,  S, 6 ) )  solves the approximate agreement 
problem with a convergence rate of %. 

Proof: Correctness follows from Theorems 15 and 24. It 
follows from Theorems 16 and 25 that the convergence rate is 

In Tables I and 11, we compare the Dolev et al. protocol to 
the two compiled versions of our approximate agreement 
protocol. To compare the convergence rates, we need to 
overcome one obstacle. For our definition of convergence 
rate, the Dolev et al. protocol, as published, has no bounded 
convergence rate. The difficulty lies with the method that 
correct processors use to estimate the number of asynchronous 
rounds required until decision. Faulty processors can cause 
this estimate to be unboundedly pessimistic. This difficulty 
could easily be overcome if the Dolev et al. protocol were 
modified to use an estimation method similar to the one used in 
our Protocol 4. To allow for a fair comparison of convergence 
rates, we assume that the Dolev et al. protocol has been 
modified in this way. 

In Table I ,  we compare the convergence rates and the 
minimum required redundancy. We can see that the asymp- 
totic convergence rate of the Dolev et al. protocol is better 
than the asymptotic convergence rate of either compiled 

&. 0 

%. 0 
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version of our protocol. Our protocols, however, operate with 
a smaller amount of redundancy. 

In Table 11, we give numerical values of the convergence 
rate for specific small values of c. The data in Table 11 show 
that, for any system with n I 7 t ,  there is a compiled version 
of our approximate agreement protocol that has a better 
convergence rate than the Dolev et al. protocol. 
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