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Chapter One

Introduction

A large portion of computer science research is today directed toward distributed

systelns. These systetns al10w a number of individual computers to communicate,

cooperate and share resources in performing work. There are many kinds of

distributed systems, ranging from gcographically distributed communication

networks to tightly coupled nUlltiprocessors. Each of thcse provides cCltain

advantages over a single system. A geographical1y distributed network is normally

used prinlarily to allow sharing of ideas and data. A tightly coupled systenl, on the

other hand, allows a higher processing throughput than a single processor.

1.1 Loosely Coupled Systcnls

I am particularly interested in two of the advantages often ascribed to distributed

. systems: the increased throughput from performing tasks concurrently, and the

increased availability of having extra processors available in case some fail.

The second goal requires that the processors be independent enough that failure of

one does not preclude operation of the others. However, they rntlst be similar

enough that the tasks running at one processor can be run on another if the first

fails. As a result, I will be concentrating on what are often referred to as loosely

coupled distributed systems. These consist of processors wh ich share access to sonle

peripherals such as printers and terminals, as well as mass storage, so that a task is

not tied to a particular proccssor. The majority of communication is via a network.

This allows isolation of a failing processor (as opposed to a system with shared

memory, where a failing processor might ITIodify memory used by another

proccssor.)
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1.2 Need for Load BHlancing

Having such a syste111 does not automatical1y guarantee that we wil1 have achieved

these goals. A nunlbcr of problems remain, such as how to accomplish the necessnry

coml1lllnication and nl0nitoring of tasks in order to prevent conflict. ~1l1e problel11

which interests me, often referred to as load balancing, is how to assign the tasks

which need to be acconlplished to the processors available. In particular, I would

like to do this assignment in a helcrogencous1environment. I would like to do this

without assunling significant a priori knowledge about either the processors or the

tasks to be run. As a re~LlIt, part of the problenl wil1 be in determining dynanlical1y

what the characteristics of di Frerent tasks and processors arc, in order to make a

good assignment.

1.3 Usc of Load BHIHncing

There are three circumstances in which I feel load balancing is impoltant. The first,

placemenl, is deciding where to nln a newly created task. Load balancing can also

be useful at other times. I break these into two categories, redis/ribulion and

changing use.

1.3.1 Redistribution

Unplanned failure of a processor in effect creates a number of new tasks to be run.

The scenario is slightly different from that of a single new task. With a single task,

the placement is dctennincd based only on the task and the current state of the

processors. With a number of tasks, the placement could depend not only on the

task to be placed and the state of the processors. The placement decisions of al1 of

11 am lIsing hl'ICrogl'l1l'oUS to rcfcr to an cnvironmcnt in which not al1 of thc proccssors arc thc
samc. In particular. this mcans that some tasks may run bctter on some processors than on others.
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the newly orphaned tasks are interrelated. Sitllply using the current slate of the

processors to place aJl of the orphaned tasks would result in "J1 of the tasks being

placed at the least loaded processor. This would ilnmediatc1y overload that

processor. 'fhis results in a significantly more cOlnplex probletll, and yet the gains

that could result from good load balancing are correspondingly greater. A method

used for redistribution would also be useful in the case of a planned shutdown,

although the prior notice would allow other options, such as gradually moving tasks'

from the processor to be shut down. This would make maintenance less of a burden

on the users of the system, as they need notice only a slight decrease in the system

performance.

A sinlilar situation occurs when a processor is restarted, or a new node is added to

the system. Although there is no emergency which must be handled, load balancing

is still called for in order to make usc of the new processing power available (and

ease the load on everything else.)

A third situation, which in a way combines the above two, is what to do in the case

of a processor which is overloaded. This is not quite as bad as a failure, as

processing still continues, but load balancing could result in tasks completing much

sooner.

1.3.2 Changing Use

In some cases, the load on the system may beconle unbalanced even though all of

the tasks were originally placed at the best locations, and no processors have failed.

This is a result of changes in the use of tasks. This could be happen as a result of a

task completing, leaving a lightly-loaded processor. Some tasks, such as mailer

programs or data base managers, run continuously. These tasks act as servers. The

characteristics of these tasks may change over time, as nlore (or less) demand is
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nlude for their services. Due to these changes~ it I1lay be desirable to t1l0Ve already

running tasks in order to itnprove the overaJJ system performance.

'l'his case introduces a problem that was not present in the first two cases. lnere is

nornlally some expense associated with nloving a task. This could be increased use

of the nctwork~ extra shutdown and startup expense for the tasks moved~ or simply

the time lost while the task is being moved. As a result~ a trade-off must be made

between the cost of moving tasks and the eventual gains in systetn perfornHlnce

from balancing the load.

1.4 Prior Work

'fhcre has already been considerable research done in the area of load balancing.

Much of this work has been directed toward detennining an optimunl sIalic

aJJocation. The static load balancing problem assumes that there are a number of .

tasks to be placed in an enlpty systeln. I believe that this may be a mathematically

interesting problem~ but most computer systems do not have the property that an
_ tasks start Sinlllltaneously and run to completion before new tasks appear. This is

actually a special case of redistribution, and as such serves as interesting

background.

There has been work done in dyna/nic load balancing. Dynatnic load balancing is

used to refer to two problems: allocation of new tasks in a system which is already

in use~ and moving tasks which are already running in order to redistribute load.

There has been some good algorilhnlic work, but it relies on assu·mptions about

system load which I feel to bc unrealistic. This results in difficulty in actuaJJy

applying this work to real systclns.
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1.4.1 Static Balancing

Much of the early work in static load balancing concentrated on two-processor or

hOlllogeneous multiprocessor systems [Bokhari 79] [Stone 78]. In addition, the tasks

to be distributed were assumed to have certain predeternlined and unchanging

rcquirements for comnllinication and processing. Usually, each task would have

some known communication with each other task, and the object of load balancing

was to mininlize these comnllinication costs. lois resulted in several methods for

reducing load balancing to a linear programming [Hofri 78] or a network flow [Stone

77] problem. Solutions to optitnally partitioning networks have been known for

some titne [Ford-Fulkerson 62]. "'his work, while mathematically interesting,

aSSUt11CS an idealized view of cOlnputer systems. Today"s distributed systems are

likely to be conlposed of tnany processors of varying types, e.g. MIT's Comlnon

Systcln project [Clark 85]. The problcm becomes much more complex, and these

solutions lose much of their usefulness.

Later research has filled in some of these gaps. Such special cases as tasks only

running on certain processors [Rao 79], costs of file storage as wel1 as CPU use,

[Morgan 77], and non-homogeneolls systems [Bokhari 81] [Chow 79] have been

explored. These solutions use a number of different techniques, making them

difficult to compare and combine. All of this work shares a common assumption,

which is that al1 tasks are started simultaneously. This may be useful in a

batch-oriented system, but is difficult to apply to on-line systems where tasks may

start at any time. In addition, this static work does not take into account changes in

system configuration. I feel that a significant contribution of load balancing should

be in reasonable handling of failures and other downtime.
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1.4.2 I)ynamic Bahtncing

More recently, work has been done on the question of dynanlic reassignnlcnt [Kar

84]. This does help us in dealing with on-line systeJ11s. l'he problem of task

reassignment in thc event of processor failure has also been investigatcd [Chou 83].

However, little work has been donc which discusses tasks with characteristics which

change over time. lnere has been some work done which does not assume this a

priori knowledge of task requirements [Stankovic 85]. This provides sOlne useful

heuristics for load balancing. However, this work does not discuss the problem of

how to determine the requirements of tasks, and it ignores the redistribution

problenl.

1.5 Overview

l'his thesis concentrates on modeling system load rather than on algorithms to

perform load balancing. In addition, a system was built that monitors load and uses

the information gathered in load balancing decisions. Although the model for load

is applicable to a variety of systems, all of the work has been influenced by the

environment in which I built the test system. TIlerefore f will describe this

environnlent in Chapter 2.

Chapter 3 gives a formal definition of load balancing, and also identifies certain

useful subproblems (such as the static balancing problem mentioned above.)

Chapters 4 and 5 fornlally introduce the model for system load, a.nd discuss how to

characterize real systems using this model. This lays the groundwork for developing

load balancing algorithms. Methods of evaluating load balancing algorithms are

discussed in chapter 6. This chaptcr also introduces a particular variant of the load

balancing problem which is shown to be NP-hard. Chapter 7 presents the algorithm

wh ich I use for load balancing.

12



The rell1aining chapters describe the design and itnplctllcntation of a load balanccr.

Chapter 8 discusses prob1cnls of distributed control of the load balanccr. Existing

solutions to sinlilar problcnls arc c0l11pared, and the one actual1y used is described

in detai1. Chapter 9 dcscribes the techniques used to detcrnline load and the actual

implementation of the load balancing. Chapter 10 presents some actual results of

the load balancer.
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Chapter rrwo

Background and I~~nvironnlent

111c direction of my work has been heavily innucnccd by the environment in which

it was done. As a result, I will first discuss this environment, in order to give a better

understanding of what I have acconlplished. 'fhis thesis was started while I was an

intern in the Conlputer Science depat1111cnt at the I.B.M. San Jose Research Lab. A

more cOlllplete description of this project is available in sonle of the papers

published by this group [Aghili 83], but I will summarize here.

2.1 I-lighly Available Systel11s Project

'rhe Highly Available Systenls (H.A.S.) Project at the IBM San Jose Research Lab

was started to investigate the usc of a loosely coupled network of nlcdium to large

computers in order to provide a highly available database systelTI. The project has

since expanded its goals to providing high availability of all computing resources

using distributed systems. The basic premise of this research is that given a number

of processors, a system can be built which will recover from the failure of one or

more (although not all) processors without human intervention. In addition, the

system should be able to Inuke productive use of all running processors at all times

(as opposed to having idle backup processors.) This leads to many interesting areas

of study, such as providing a cOlnmunications system which has predictable

behavior even when parts of the system fail, detecting failure of tasks and

processors, moving tasks from processor to processor, and load balancing.
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2.1.1 ('ommunication subsystenl

An important part of any distributed system is its means of C0t11nlUnication. '111C

project has invcstigated a number of ways of achieving fault-tolerant

conlmunications. One concept that has proven useful is that of atolnie broadcast

[Cristian 85a]. An atomic broadcast provides three guarantees:

1. Either all or none of the intended recipients will receive the broadcast.

2. All messages will be received in the same order at all sites.

3. Messages wil1 be delivered within a known time bound 8 (or will not be
delivered at all.) .

The difficulty is in guaranteeing this in the presence of failure. It has been shown

that this cannot be done in general [Fischer 83], but it is possible given S0l11e

restrictions on the allowable failurcs [Strong 85].

This capability in a conlmunication system simplifies the problem of distributed

control, as communication failures can almost be ignored. I make use of this

communication primitive in order to simplify distributed decision handling in my

load balancing system. lois will be discussed in nlore detail later, in Section 8.3.

2.1.2 Resource management

Another part of the project involves monitoring the status of tasks in order to insure

that all required services are available. This is done through the Auditor subsystem

[Aghili 83]. The auditor is responsible for restarting tasks in the event of failure.

This is an obvious place to make lise of load balancing. As a result, my design and

implementation was oriented towards the same type of tasks as the auditor.
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2.2 Base ()pefClting Systcnl

AU of the prototyping of this research has taken place on top of IBM's VM/SP

opcrati ng system. 111 is operati ng system is based on the concept of a virtual

nlachine, a simulated single-user processor. Each task runs in a separate virtual

machine. This gives a clear level of granularity in regards to load balancing

decisions. A task is not tied to a particular viltual machine. This aUows the task to

be moved to virtual machines on different physical processors. Load balancing

decisions consist of choosing which physicallnachine a task should run on.

In some cases, tasks may only be able to run on certain physical machines. This

could happen if, forexalllpJc, only one or two of the availahle physical nlachines

had access to mass storage required by the task. I do take this into account, and

allow for restrictions on the freedom of my load balancing decisions. Without some

freedom, however, load balancing is no longer an interesting question. Multiple

paths to disks or system-wide file servers can be used to enable the processor

independence necessary in order to use load balancing to best: advantage.

2.3 Innuencc of H.A.S. Environnlcnt on this Work.

The tasks of most interest in this system are continuously running services, such as

database managers, mail servers, or tile servers. As a result, long-term usage

patterns for these tasks can be developed and lIsed in load balancing decisions. I

take advantage of this assumption, and integrate monitoring of both tasks and

processors into my load balancing. This is not to say, however, that this work is

irrelevant to other types of tasks. Such tasks as compilers and text formatters may

not run continuously, but their load characteristics should be similar from run to

run. This docs vary with input, but monitoring and averaging over individual runs

can give figures which can be llsed in much the same way as those from

continuously running tasks.

16



'rhe result is that this research assunles that tasks are stable enough that SOlllC

characterization of thenl can be developed. This can be either through continuous

observation. or through nlonitoring of a number of individual runs. This pmtly

defines the granularity of what is considered a task, ac; it must be possible to

independently monitor tasks.
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Chapter rrhrce

Definition of I.Joad Balancing

Load balancing involves choosing an assignlTIel1t of tasks to processors. We start

with a set T of tasks and a set P of processors, and deternline a configuration of the

system where S()Jne subset of the tasks in T are running on some subset of the

processors in P. Sonlctimes the systenl nlay already have certain tasks running at

certain processors. In sonle cases these may be moved, in others they nlay be fixed.

Note that we do not necessarily have to run all or the tasks, or usc all or the

processors. In some situations we may want to get all of the tasks done as quickly as

possible; in others wc ITIay wanl to get cer1ain tasks done within a cCI1ain time, and

the rest of the tasks can wait.

Load balancing, then, is used to determine the configuration of the system:

Definition 3-1: A configuration c is a set of pairs (T,P) where each T is a
task, P is a processor, and there is at most one pair for each task Te C.

(T,P)e C means that Tis running on processor P in the given configuration.

Load balancing can be defined as a function which maps a set of tasks to be run onto

this pairing of tasks to processors. The following definitions give several classes of

load balancing functions. The first is the general casc.

llefinition 3-2: A load balancing function takes a configuration C and a
set .\' of tasks (where any task Te S is not in C), and returns a new
configuration C' containing at most one pair corresponding to each task in
5; and each task in C.

Note that this function is not limited to choosing where to place the tasks in s. New

tasks can be assigned to processors, tasks already running in the system can be

reassigned to new processors, and some tasks may not be assigned to any processor.

18



rfhis definition tclls us what qualifics as a load balancing function, but docs not

specify what the function should accomplish. l~he goal of load balancing is to

inlprove the perfornlance of thc SystCfll. rnlis is done by distributing the load

imposed by the tasks across the proccssors available. lois load is different from

system to system, and can be quite conlplcx. A modcl for load is given in chapters 4

and 5. The goal of load balancing can likewise vary fronl systenl to system. This can

make load balanCing a computationally difficult problctn, as shown in section 6.1.

In many cases, the power of the gencral load balancing function is not necessary.

There arc special cases of load balancing problcnls which arc often useful. It may be

easier to develop efficient algorithms which give an assignment meeting the dcsired

goal for these cases than for the general load balancing problcm. I rcfcr to these

special cascs as initial distribution, task placement, and redistribution.

Definition 3-3: An initial distribution function takes a set S of tasks and a
set ~ of processors, and returns a configuration C, where for each pair
(T, P) € C, T € S and p € GJ.

ll1is performs an "initial assignment of tasks to processors in an empty system,

otherwise known as Sialic load balancing.

Dyna/nic load balancing is used to refer to two problems. These are described in the

following definitions.

Ilefinition 3-4: A task placement function takes a task and a configuration,
and returns a processor on which to place the task (or null, specifying that
the task is not put on any processor.)

A placement function is useful when adding a single task to an already funning

system.

Definition 3-5: A redistribution fu nction takes a can figu ration C and
feturns a new configuration (', where each task T€ C' isin C.

19



Such a fllnction can be lIsed to even the load in an already running systcnl. 'rhis is

uscful when a task changes its running characteristics, due, for cxmnple, to an

incrcase in thc nunlbcr of people tnaking requcsts of that task.

20



Model for Systenl l.Joad

In order to decide which tasks to assign to which· processors. we must be able to

evaluate potential choices. One way to do this is to compare the processing

resources needed by a task with the resources provided by a processor. To do this,

we need a general method to:

1. Characterize the capacities of a processor. These are the total resources
that the processor can provide.

2. Characterize the requirements of a task. T'hesc are the resources lIsed by
the task, and may vary dcpendi ng on the state of the system.

3. Relate these two.

This would give the infonnation necessary to make decisions, except that we do not

yet have a goal. I see the end goal of load balancing as minimizing the response time

of the system. This is the time from when a request is submitted until the result is

returned. Not only is this what a user really nleans when asking how fast a system is,

but it would seem easy to measure: simply start a task, and measure the time it takes

to complete. However, general-purpose computer systems are capable of handling a

variety of tasks, which may have different running characteristics. Which do we

choose in order to measure the response time?

It would seem reasonable to choose some task as a "standard" with which to

measure response time. For example, some commonly used system command could

be timed each time it was called, and this would be used as the system response

tinle. Alternatively. a special program could be written which would be run each

21



time the response time of the system was needed. rIlle tilne required for this special

program to run would be the response time for the system.

If the response times of all lllSks were directly proportional to this "standard task",

this would be a useful measure of system performance. However, tasks may vary in

the kind of processing required. One task could need a lot of CPU time while

another requires the use of a communication channel. lllis difference in the kind of

processing resources required by a task can result in the "standard task" not actually

reflecting the perfonnance of other tasks on the processor. For example, the

"standard task" could be CPU dependent, and run very slowly in a system with an

overloaded CPU, but an I/O intensive task would still run quickly. 11lere has been

work done which takes these differences into account [Kuck 78], but with an

emphasis on performance analysis, not load balancing.

Many time-sharing operating systenls will allow tasks using different kinds of

processing to run concurrently. For example, while one task is waiting on 1/0,

another can use the CPU. In this way, running two tasks simultaneollsly will result

in better response times than running them sequentially. However, two tasks which

compete for the same resource will not gain by running concurrently. They will

have to share the resource, resulting in slower response. Tasks which do not need to

use that resource, however, will still run as quickly as before. Load balancing

algorithms can exploit this concurrency if they are able to consider different

processing resources separately.

Considerations like these make characterizing the load on a system more difficult. A

"standard task" will actually only reflect the response times for tasks requiring a

sinlilar set of resources. Mininlizing response time is still a good goal, but the load

on a systef11 can not be measured lIsing a single task, or for that matter, any single

value. To adequately characterize load it is necessary to look at a variety of factors.
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4.1 Load as it I~esourcc Vector

In order to capture this variety of processing types, I will represent processing

resources using a vcc/or. The components of this vector correspond to anlounts of

particular processing resources, e.g., CPU cycles/second, menlory, coml11unication

channels, etc. 'fhe processing resources aciually used as the componenL'i of the

vector are based on the system under consideration. For exanlple, in a systenl with

very high speed cOlnnlllnication channels, communication costs may be insignificant

enough to be ignored in load balancing. These resource vectors will be used to

describe both the cap'!city of individual processors, and the resources used by

individual tasks.

Definition 4-1: A Ucsource vector R = (r1• ••• ,r ) is a length 11 vector of
11

non-negative reals. Rfi) is used to refer to resource r ..
I

'rhis relates to processors in the following manner. &lch processor has an associated

resource vector R where each cOlllponent R[i] of the vector characterizes the

processor's capacity for resource,.. Typical values for these cOlnponents would be
I

the num ber of instructions per second of the CPU, or the total amount of memory

attached to the processor.

Definition 4-2: The capncity of a processor P is a resource vector
capacily(P), where the the i th entry in the vector denotes p's capacity for
resource'r

This leads to a method of describing of a task using a vector of requirefnen/s, where

each component of the vector refers to the amount of a particular resource used by

the task. For exmnple, one component of the vector for a processor nlay refer to

how many instructions can be processed per second. For a task, this component of

the vector would give how many instructions the task executes per second. This is

not sufficient, however, as the running characteristics of a task are dependent on its

environnlcnt. For example, a task which accesses a network may spend more tinlC

waiting for data fronl the network at a processor with a slow conlmunication link
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than at one with a fast link. Sincc it is spending 1l10rC tinlc waiting. it will use less of

the CPU. rn,e requirements of a task may change depending on the state of the rest

of the system.

l11e requirenlents of a task can be characterized llsing a resource vector when the

system is stable. In fact. for each possible configuration of the system there may be

a different resource vector which characterizes the task. T'his leads to characterizing

a task using a scI of resource vectors. In Clny given configuration, one of these

resource vectors will actually correspond to the resources used by the task. 111is

vector is referred to as the curren/ requirenlen/s vector.

Ilcfinition 4·3: The requirements of a task T is a set of resource vectors
requircmellls(T). f:'"11ch vector RE rcquiremcll!s(T) represents a possible pattern
of resource usage by 1~ where the component R(i) of the vector
corresponds to the anl0unt of resource r. lIsed when R is the current

I
requirenlenls vee/or for the task.

In order to make use of this set we must be able to determine which of the resource

vectors is the currenl requiremenls vector in a given configuration. In general, this is

done by taking a profile of the entire system.

Definition 4·4: Profile(C) is a function which takes a configuration c and
returns a set of (T,R) pairs, where for each task T€ C, R € requiremenls(T) is
the corresponding current require/nenls vee/or.

ll1ese functions give liS the necessary information to completely characterize a

system.

Definition 4·5: A system is composed of

p ={P}. a fixed set of processors,

T={T}, a fixed set of lasks,
n. a fixed. totally ordered set of 11 resources,

where r. denotes the i th resource in the set, and
[

capacity, requirCI11Cnts. and profile functions.

These functions are quite general. As stated, any change in the configuration could
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affect every task. In some cases it would be nice to detennine the statLls of the tasks

on a particular processor without knowing the entire systenl configuration. This can

be done if the status ofa task only depends on the local part of the configuration.

Ilcfinition 4-6: Stntus(/', S) is a function which takes a processor and a set
.\' of tasks, and returns a set of (T,R) pai~'s corresponding to each task Te .\',
where R e rcquirements(T) corresponds to the current requirements vector for
Twhen every task Te S is running on P.

Note: This function is only valid if it can be defined such that
shltuS(p,s)~prolilc(c), where (T,P)eC~TeS.

11lere is an invariant on the relation of tasks and processors which must be satisfied

by profile (and therefore by status.) rfhis is that the tasks running on a processor

will never use more than that processor's capacity of any resource.

For any processor P and resource i., (4-1)
Let ~={R} such that (1~ P)E C and (T, R )eprufllc(C). Then
~ R [i]:S capacity(l')[i]
Ref),

Another way to describe this invariant is to use an availability vector. This vector

corresponds to the amount of resources a processor has which are not in use. The

. above equation states that the availability of any resource cannot be negative.

Definition 4·7: Availability(p, C) is a resource vector corresponding to the
unused capacity of P running in configuration C. It is defined such that:

Let ~={R} such that (T, P)E C and (T, R )eproflle(C). Then
Availability(1', C )[i]=capacily( P )[i] - ~ R (i)

ReGJ>

11lis gives the information necessary to make load balancing decisions. The next

step is to define the goal of load balancing.
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4.2 Quality

In order to state the goal of load balancing, I lise a concept of task quality. 11lis is a

number which gives a nleasure of how well a task is.running, based on which vector

is the currenl requirenW/lIS vector. This will normally be related to the response tinle

of the task, although other goals could be chosen. Desirable current requirements

vectors will have high qualities, and undesirable current requirenlents vectors will

have low qualities.

Definition 4-8: A task quality function takes a task T and a resource vector
R (where RE rcquirell1ellts(T»), and returns a non-negative number.

Such a function is effectively a ranking of the resource vectors in requirclI1cllts(T).

l'he resource vector which corresponds to a task. having all of the resources it can

possibly use will have the highest quality, and one which corresponds to the task not

being able to run at all will have quality O.

The real goal of load balancing is to improve the overall response titne of the system.

11le task quality function gives us a measure by which to judge individual tasks. We

now need a configuration quality function which uses all of the individual task

qualities to give a measure of how well the entire system is running.

Definition 4-9: A configuration quality function takes a set of
(task, task quality) pairs and returns a real number.

A configuration quality function is what is actually used to evaluate load balancing

decisions. A simple configuration quality function would be to just average the task

qualities; however, it may be desirable to assign priorities to certain tasks. l'hus a

typical configuration quality function would be a weighted average of the task

qualities.

Note that these functions take no notice of where tasks arc running, only how they

are funning. 111is is a desirable feature, as the goal of load balancing is to place tasks
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so as to increase the speed or the systenl. 'fhe location of tasks is only interesting in

that it affects the speed of the individual tasks. but this is renccted in the current

requircrncnt'i vector. The task quality. and thus the configuration quality. a.re based

on the current requirements vector. lllerefore the quality can only reflect the

location of tasks as it relates to the speed of the system, which is exactly what is

desired for load balancing.
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Chapter ~"'ive

Relation of Model to Actual Systenls

The main goal of any model is to help us to understand the real world. In particular,

this model is intended to be useful in pcrfornling load balancing in real computer

systems. It provides a means of dividing load balancing into two problems:

characterizing the system, and developing algorithtns for load balancing. I will

discuss the former problem in this chapter, and the latter in chapter 7.

I will try to describe general techniques for using this model to characterize systems.

Section 9.1 discusses an actual ilnplementation based on this nlodel.

111ere are a number of factors which contribute to the load on a processor. Some of

these have been mentioned (CPU, I/O) as justification for the model. Here is a

more comprehensiye list

• Processor lise (there may be a variety of these, such as specialized
numeric processors.)

• Memory (again, this is not necessarily a single item. Large systems often
have caches or various speeds of memory.)

• Storage devices (Disk, Tape)

• Interprocess communications

• Peripherals (Le., printers)

It is impottant to renlember that this list is by no means cotnplet.e; as computer

systems grow and develop, new factors may appear.

It would be impossible to list a1l of the factors that contribute to load, and describe
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here exactly how to characterize each of thenl. This is a task which Jllust be

perfornlcd separately for each systenl. It is possible, however, to develop SOtlle

gcneral techniqucs to usc in describing a system. To do this. I divide these factors

into two classes, shared and dedic~lted resources. A shared resource is one which can

service nlultiple tasks simultaneously. An· example would be a processor in a

time-sharing systenl. Dedicated resources are those that are tied to a single task,

such as a tape drive.

In the above exanlp1cs, the difference between sharcd and dedicated rcsources is in

how long the resource is tied to a particular task. A tinlc-shared CPU wil1 nonnal1y

spcnd less thnn a sccond on each task. If the tinle required to move the task to a

different processor is sholter than the wait for this one, such as in a shared-memory

system, processors would be considered a dedicated resourcc. However, in a

loosely-coupled systenl the time required to t110Ve a task will be longer. In these

SYStCll1S, a CPU would be shared. The decision as to which resources are dedicated

and which are shared may vary considerably between SYStCll1S, but the handling of

each of the two separate cases stays the same.

5.1 Dedicated Resources

To characterize a dedicated resource, the processor vector simply has a number

corresponding to the anlount of that resource available on the processor. The task

requirements vectors are similar. 111ese contain a number corresponding to the

amount of the resource in lise. One of the requirenlents vectors corresponds to the

case in which the resource is not available. In this case, the conlponent of the vector

corresponding to the resource indicates that none is in use. In addition, the other

component') will indicate little or no lise of any resources, indicating that the task is

waiting for the resource. The task quality will be 0, reflecting that the task is not

accomplishing anything. This indicates that this is a poor choice of location for the

29



task. However, in sonlC situations it nlay be desirable to place the task on a

processor even though it won't be ablc to rUll. For exanlplc," if S0l11C resource is

located at only one processor, the tasks needing that resource could be placed on

that processor to wait for the resource to become available.

An exarnple of a dedicated resource would be mernory (assuming a single level

memory system, systems using paging and caching are discussed in the next section.)

'fhe component of the vector capacil)'(P)[l11eJJlory] would indicate the anlount of

memory available. A task T requiring a fixed amount 111 of memory would have one

vector R() E rel/uirel11f'llls(T) with Ru[II1('/1101)'] =O. l'he rest of the conl poncnts and the

task quality of R would also be O. All of the other vectors R.E requircJJlellls(7'), irf 0u 1

would have R .[JI1eJJlO1J'l = 111. The meaning of the invariant given in equation 4-1 is
1

clear; the tasks on a processor can not use more memory than the processor has.

In some cases, the task may be able to run without a dedicated resource, perhaps by

using an alternative resource. In this case, instead of having a single requirenlents

vector for the case in which the dedicated resource is not available, the set of

requirements vectors is partitioned into two subsets. One subset of the potential

vectors handles the case where the resource is not available. The vectors in this

subset reflect the running characteristics of the task without the resource, and show

that the task is not making use of the resource. The second subset states that the

resource is in use, and each vector corresponds to a potential operating condition

while using the resource. This is the general case of dedicated resources.

5.2 Shared Resources

Shared resources are those which can theoretically be divided up infinitely. A prime

example is a CPU, which can be tinle-shared between any nunlber of tasks. Another

task can always be added, but the t~sks already on the processor will su ffer.Note
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that this is in theory; in practice there is nannally an upper Iilnit on the aInOlint of

sharing that can be done. This can be handled by having an extra conlponent in the

vector which keeps track of the nlaximllnl alll01lnl of sharing which can be done, in

the manner of a dedicated resource.

The interesting part of a characterizing a shared resource is representing the sharing.

For the capacity vector of the processor, each shared resource is represented by a

value in the vector corresponding to the amount of that resource which the

processor is capable of providing. Task vectors contain a corresponding value

denoting the aInount of the resource that that task is using. This seenlS no different

from the method for handling a dedicated resource. The diffcrence shows up when

a particular resource becomes a bOlllcneck. In this case, the resource is fully utilized.

In the dedicated resource casc, this meant that no other task could make lise of the

resource. The value for a dcdicatcd resource in the requirements vectors for a task

had only two possible values. corresponding to the task either having or not having

usc of the resource.

With a shared resource, addition of another task results in some or all of the tasks

receiving a smaller share of the rcsource. How this division of the resource is done

depends on the scheduler in the operating system. With a fair scheduler, the loss of

resources will be spread across all of the tasks. More complex schedulers may divide

the resource up differently. However, in any case, the task requirements vectors for

a task will have many possible values for the resource. depending on what share of

the resource the task is given. If the capacity of the processor for a shared resource

is not as great as the amount of that resource the tasks on the processor would like to

use. then the current requirenlcnts vector for some of the tasks will reflect a lower

than dcsired use of the resource, so as to satisfy equation 4-1. This will lower the

quality of the tasks, and thus the quality of the system.
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Using the exanlple of a CPU, the capacity vector of a processor contains a

COl1lpOnent with the number of instructions per second that the 'processor is capable

of. 'nlC requirclnents vectors for each task will havc a corrcsponding conlponent

giving the nunlbcr of instructions per second llsed by the task. This number will

vary between 0 and sonle nlaximum, depending on which resource vector is the

curren/ requirel11en/s vee/or. 'fhe current requircnlcnts vectors f<)r all of the tasks are

choscn so as to satisfy equation 4-1. As a result, the nUlnber of instructions per

second used by all of the task on a proccssor is less than or cqual to the number of

instructions per second that thc processor is capable of.

A more complex cxanlplc, involving both shared and dedicated resourccs, is a

nUlltilevel nlclnory system (caching, or paged Blain memory). Overall, the total

amount of virtual nlcnl0ry on the processor is a dedicated resource (although

enough is nornlully available that this will not be a Inajor factor in load balancing.)

But main menlory (or a cache) is shared. When all Jnain memory is in lise, some of

the information in main memory is paged Ollt to a disk, and other information is

brought in. This allows processing to continue (although at a slower rate.) ll1is sort

of a memory can be represented using a separate component of the resource vector

for each type of memory. Tasks attempt to run entirely in main memory, but when

this is not possible, a vector is chosen which rcpresents theaverage ,UTIount of main

memory in use by the task, as well as the total virtual memory in use. As the average

amount of main memory in use by a task goes down, so would the task's use of other

resources. TIlis would cause the task quality to go down.

]n telms of the model, the difference between shared and dcdicated resources is that

whereas a dedicated resource Pal1itions the requirements vectors into two subsets, a

shared resource pm1itions the requirements vectors into a possibly infinite number

of subsets. In effect, then, dedicated resources can be thought of as a subset of

shared resources. However, I seereasons to actually think of the two as different.
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1. Load balancing decisions for dedicated resources involvc qualities with
only two possiblc valucs corresponding to the availability or lack of the
resource. In nlany cases, this is a sinlplc run/no run decision.

2. Use of a dedicated resource docs not changc the current requirements
vector of other tasks. lois makes predicting the results of a placement
decision much easier.

A load balancer will have to ask different questions for the two types of resources.

With a dedicated resource, the question wilt normalty be "Which tasks should be

run?" With a shared resource, the question is doser to "In this configuration. are

there any tasks which are not running well enough?" The first is a much simpler

question to answer. perhaps by prioritizing the ulsks. 'fhe second problern involves

many trade-offs. Except in real-time control systems. it is rare to have an absolute

cutoff for adequate performance.

5.3 I~cprcscnting Conlnlunications

The cost of cornnlunicating over a particular channel is easily represented by either

a shared or dedicated resource (depending on what sort of a protocol is being used.)

However, deciding which communications channel a task is going to use is a

different matter. [n fact, two tasks which communicate will not need to use such a

channel at all if they are on the same processor. How can this be represented?

One way to do this is to have a component in the resource vector which contains a

different value for each link which may be used to communicate between the two

tasks (including one for the case when they are on the same processor.) TIl is

cornponent is used only for purposes of determining which link is used for

communication between the tasks, and does not correspond to a processing

resource. The profile function will know that for this cornponent, resource vectors

must be chosen such that the value of this resource in the current requirements

vectors for the two tasks are compatible.
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'Illis component pmtitions the set of requirenlcnts vectors for the two tasks into a

different subset for each possible comnlllnication link between the tasks. 111e

vectors in each subset will reflect the processing resources used when that link is in

use for the intertask communication. For example, if one of the processing

resources was a COnllTIUnication link between processors a and b, then the resource

vectors for the two tasks would only use this rcsource (the communication link) if

one task was on aand the other was on b. The "extra" component would make sure

that the current rcquirementsvector for each of the tasks would show use of the

cotTImunications link if and only if one task was on a and the other was on b.

In this casc~ the status function is no longer valid~ since the requirements vector

currently in use nlay be dependent on the location of a tusk which is not at the

current processor. This appears to nlake load balancing nlore fornlidable, although

it is difficult to actually prove that the problem is more difficult
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CII,lptcr Six

I~~valuation of l.Joad Balancing AlgorithnlS

The previous chapters have specified what load balancing is, what infornlation is

Llscd in load balancing, the goal of load balancing, and how to characterize a

particular system. Before introducing an algorithm for load balancing, I would like

to discuss ITIethods ofjudging load baluncing algorithms. Onc nlcthod is to compare

the quality of the configurations produced by an algorithlTI with the quality of an

optiJl1al configuration. This optimal assignnlent is the one which actual1y has the

highest configuration quality. Finding the optinlal configuration may be

conlputationally in feasible, however (sce section 6.1.) As a result, there should be

other nlcans by which to measure load balancing algorithms.

One criterion is the efficiency of the load balancing algorithm. A load balancing

algorithm will take processing resources away from other tasks. A trade-off must be

made between the gains of load balancing, and the cost involved in load balancing.

An algorithm which determines the optimal configuration is not helpful if the time

required to run the algorithm is longer than the time available to complete the tasks

wh ich are waiting to be assigned.

Another criterion based on preventing the load balancing algorithm from overusing

system resources is stability. If task requirements and processor capacities do not

change, and new tasks arc not introduced, then multiple runs of a stable load

balancing algorithm (in particular, the redistribution function) will eventually stop

making changes in the configuration. A load balancing algorithnl which does not

meet this criterion will constantly be nloving tasks. The load imposed by nl0ving

tasks wil1 be detrilTIental to the systGrn. As such, a load balancing algorithm should
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be able to rcach SOlllC point at which it IS satisfied, and seeks no further

im provctnents.

l'his is not enough, however, as no load balancing at aJ) (assigning tasks to

processors on some random basis) will satisfy the two previous criteria. Testing if

the algorithm inlproves the configuration quality wil1 ensure that a load balancing

algorithm gives some gains, but is a less detnanding criterion than comparing with

an optimal configuration. This, like s/ability, is nlost pertinent to redistribution

algorithms.

rrhis is not intended to be a conlplcte list. It is a sampling or considerations which

arc impol1ant in the design of a load balancing algorithm. rrhc following section

justifies the use of criteria other than optimality in judging load balancing

algorithms.

6.1 Conlputational Difficulty of Load Balancing.

Finding an optimal solution to load balancing (an algorithm which maximizes the

configuration quality) can be a computationaJ)y expensive problem. A particular

load balancing problem is given by specifying a systeln (definition 4-5), and task

quality and configura/ion qualify functions. An optimal solution for a particular load

balancing problem is a load balancing function (definition 3-2) which gives the

configuration with the highest configuration quality for any particular set of tasks to

be run. For some load balancing problems, finding an optimal solution can be

shown to be an NP-hard problem. This section describes such a problem, and

shows that it is NP-hard.

I will actually be working with a problem which I call nlinilnum accep/able

configuration. lois problem is to dcternline if given a particular minimum
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configuration quality AI and a set of tasks to be run~ there is a configuration with

configurativllquality~ AI. This is no harder than the optinlul solution problem~ as if we

can find an optinlal solution to a given load balancing problem, we can easily check

to see if the optimal configuration quality is greater than the minimum l/. Showing

that the minimum acceptable configuration problem for a particular load balancing

problem is NP-hard will thus show that optimal load balancing for that problem is

also NP-hard.

In addition~ 1 restrict minimum acceptable configuration to finding an initial

distribution. This is a special case of the general load balancing problem (definition

3-2)~ and thus showing that initial distribution is NP-hard for a particular problem

shows that general load balancing for that problelTI is also NP-hard.

The mininlum acceptable configuration problem, then, is as follows:

Definition 6-1: For a particular load balancing problem (i.e. a system plus
task and configuration quality functions), the mininlum acceptable
configuration problem asks:

Given a set of processors ~ a set of tasks S, and a minimum
acceptable configuration quality AI, does there exist a
con figuration C= initial dislriburioll(S,~) such that

1. V TeS, 3 PE~ such that (T,P)eC

2. configura/ioll qualily(profile(C» ~ AI ?

Note that this problenl requires that all of the tasks be nln.

There are scheduling problems which arc sinlilar to load balancing which have been

shown to be NP-complete. These use a single value, the time required to conlplcte a

task, as the sole information needed to describe a task in order to make scheduling

decisions. This is cOlnparable to load balancing llsing a single processing resource.

The following class of load balancing problems is sinlilar'to these scheduling

problems.
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Dl'finilion 6-2: The sin~le resource class of load balancing problclTIs is
defined as follows:

Let R be a single-conlponcnt rational-valued vector.
Note: Since there is only a single processing resource in this
systenl, I will actually usc resource vectors as a value instead of
a one-component vector. l'his is done fi)r ease of notation, and
is no different frolll using a single component resource vector.

Let P be a fixed set of processors.

Let T be a fixed, infinite set of tasks, where each task T€ T has
an associated weight w(T)€ (), 0 < w(T)~ 1. .
T'his weight is used to rank the tasks in ternlS of the anlount of
resources required. This would nornla1Jy be incorporated into
the requirenlCl1/s of the task, but is separated to simplify the
NP-hardness proof.

V p€ P, letcapacily(P)= 1. .

Note that all processors are identical.

V T€ T, let require/l1ellls(T)= {x Ix€ (), 0 s x s I}.
The current requirenlcnts of a task can be anything from 0
(using none of the resource) to 1 (using all of the resource'
available on a single processor.)

task quality(T, R)= w(T)· R.

configuratiun quality({(T, R H)= min (task quality(T, R».
{(T, R)}

The configuration quality is the quality of the lowest quality
task in a gi ven can figu ration.

38



profllc(C)={('1~R)} such that for each PEC,

1. ~ R=CGpl1cily(P)
(7: R)f projile(C) I(T, P)E C

2. If (T., P), (T., P)E C, and (T., R .), (T., R .) Eprofllc(C), then
I J I I--lJ

task qua!ity(T., R .)= task quality(T., R .)
I I J J

The first item is equation 4-1, arid the sec()nd states that the
current requirements vector for all of the tasks on a given
processor are chosen so that the task qualities of the tasks on
that processor will be the saine.

We can now state the theorem which is the focus of this section.

Theorem 6-3: 'fhe fninifnu/11 acceptable co/{figuratioll probleln for a single
resource load balancing problem is NP-hard.

Proof: Reduction from the multiprocessor scheduling problenl given on
page 65 of [Garey 79]. The scheduling problem as defined by Garey and
Johnson is as follows (paraphrased and some notation changed for
compatibility):

Theorem 6-4:

Let ~be a finite set of tasks,
I(T)E71+ the "length" ofTE~
111 E7l + a number 0 f processors,
J) E7l + a deadline.

The multiprocessor scheduling problem:

Does there exist a partition ~=~IU~U ... U~1l of ~
into III disjoint sets such that

max (~ I(T)5':/J ?
~.C~ TE~.
,- 1

is NP-Complete.

Proof: See [Garey 79].

This corresponds closely to the problem oftheorenl 6-3. We have a set of
tasks, a set of processors, a cutoff (in this case, a deadline, not a minimum
quality), and a weighting function for tasks.

The multiproccssor scheduling problem statcs that if the totallength or all
the tasks assigned to any processor is too great, they will not be completed
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by the deadline. This is analogous to saying that if the tusks on a
processor desire too much of a resource~ the fask qualifY of these tasks wilJ
be unacccptably low.

Given this, the maximum used in theorcln 6-4 corresponds to
configura/ion qualify. The multiprocessor scheduling problem asks if
there exists an assignnlcnt such that all of the tasks will conlplete by a
certain deadline. The minitllUm acceptable configuration problem asks if
there is an assignment such that the configuration quality is greater than
the mininllJm. If we takc the configuration quality to bc the nlinimum of
thc task qualities, then the two are analogous.

In order to show the reduction, it l1lust be shown that a solution for the
problenl of theorenl 6-3 can be used to solve the problenl of thcorcnl 6-4,
with any convcrsions necessary being pcrf()rnled in polynonlial time. l-'he
dosc correspondencc bctwecn the problenls sinlplilies this. lne following
lemma shows that a solution for the lllinitnulll acceptable quality problem
for single resource load balancing can be used to solve the multiprocessor
scheduling problem.

First, we must convelt an instance of the 11lultiprocessor scheduling
problem to an instance of the minimunl acceptable ~onfiguration load
balancing problem. TIlis can be done using the following function f.

Given an instance x of the multiprocessor scheduling problem
(a finite set ~of tasks, a number of processors Ill, a deadline J)..

and a length function I(T»), define an instance fix) of the
minimum acceptable configuration problem for single resource
load balancing as follows:

..\'={TET Ieach IE~has a corresponding Tsuch that w(T)=_I_}
I(T)

q>={l'l ... Pm}

AI=..!.
D

Notc that the set S must be of the SUtlle size as the set~

Lemn13 ·6·5: Instance x of the nlultiprocessor scheduling
problem is satisfiable if and on Iy if instance [(x) of the
minillllim acceptable quality problem for single resource load
balancing is satisfiable.
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Proof: ASSUllle we can solve the 111111tnlUm acceptable
con figuration problenl fiJI' single resource load balancing. l'hen
we know that the fbllowing is true if and only if an instance
satisfies the 111inimunl acceptable configuration problem:

cOl/figura/iol/ quality(profilf(C» ~ AI

min (/askquali/y(7:R»~AI
(T, R ) E profile(C)

Using the definition of profile given in definition 6-2, we know
that the task quality on any given processor P is constant, and is
given by

v(T, R ) Eprofilc(C), (T, P)E C,

task quulity( 'I: R)= w( T)' R = '(~')
We also know frorTI the profile function that

~ R=capaci/y(P)
(T. R). TOil P

CotTIbining these (and noting that capl1ci/y(l) =1), we get
I(T) ~ R= I(T)

R (T. R ), TOil P R

Since the task quality, and thus its inverse, is constant on any
given processor,

~ i(T)R=/(T)

(T, R), TOil P R R

~ I(T)= I(T) 1
(T. R), Ton P R task quality(T, R)

This can be carried back into the configuration quality to give

min ( 1 ) ~ AI
PE P ~ leT)

(T, R), TOil P
(iff the problem is satisfied.)

Since IJ € 7L + I IJ=..!- ~ 1, so the previous line can be transformed
M -

to
max ( ~ I( T) ) ~ J)
PEP (T, R ). T em P
(iff the problem is satisfied.)

Since the partitions of Gf in the rTIultiprocessor scheduling
problem correspond to the assignment of tasks to processors
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above. this last statcnlcnt answers thc nul1tiproccssor
schcduling question. •

All that rcrnains is to show that the conversion function f can be
perfonned in polynonlial time. The construction of the set of processors ~
and the conlputation of the nlinimum acccpiilble can figuration AI are
trivial. The only difficult problcI11 is the propcr choice of tusks in .\'. For
each task IE~ the set of tasks to be scheduled, a corresponding task TET
must be chosen such that its weighting function w(T)= 1//(1). However,
since the tasks requirements sets are all identical, the only distinguishing
characteristic is the weighting function. 111is allows us to construct the set
..\' by constructing a weighting function for each task. This is trivial, and
thus the construction of s can be done in polynomial time.

This shows the polynomial time reduction of the multiprocessor
scheduling problem to the minil11UI11 acceptable configuration problern
for single resource load balancing. •

This proves that finding an initial distribution which meets some minimum

configuration quality for a single resource load balancing problem is NP-hard, and

thus the problem of optimal load balancing for the problem is NP-hard.

The class of load balancing problems defined above is actual1y quite simple, with all

processor capacities identical and a single component in the resource vector. It can

be easily rcduced to load balancing problems specified in other ways by a simple

restriction. I believe that many of the load balancing problems encountered in

actual systems can be shown to be NP-hard in this manner. This justifies the search

for non-optinlal, but efficient, algorithms for load balancing.
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Chapter Seven

Heuristics for Load Balancing

The emphasis of this thesis is not on developing optimal or efficient algorithms for

load balancing. It instead concentrates on working alit a better way to describe the

problem, and showing that this description is lIseful in relation to real-world

systenls. 'rhere has been a good deal of work done in the area of load balancing

algorithms (see section 1.4.) Some of this work could be extended to use this model

for load without great difficulty, using the technique discussed in the next section

for reducing resource vector load to a single value. Any seriolls discussion of load

balancing algorithms for this model should go beyond that, however. Such a

discussion would be beyond the scope of this thesis. As such, the following simple

algorithm is presented with little discussion as to optimality of decisions or

cOlnparison with other algorithms.

7.1 Placcnlcnt Algorithnl

The system implemented uses a simple task placement algorithm. The idea behind

the algorithm is that a single processing resource is chosen as the crilical resource,

and this resource is lIsed to find the best location for the task. This would seem to

have all of the problems of using a single value for load. However, this algorithm

differs from algorithms based on a single measure of load in that the decision of

what to use as a load balancing criterion is based on the current system

configuration. For example, a database manager will be heavily dependent on

access to disk, and thus will be placed on a processor with plenty of unused I/O

capacity. However, if I/O is not heavily utilized in the system, some other resource

may be llsed as the criterion for load balancing
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Actually ~ this single criterion is chosen fronl aJ1long shared resources. [)edicated

resources are checked first, and if placing the task at a given pr()cessor would violate

the invariant of equation 4-1, it is rct1loved frolll the set of possible locations for the

task. Once this is done, the critical resource is chosen.

The nlanner used to select the critical resource is to choose one of the task's resource

vectors as a baseline vector. This vector should be one which gives a measure of the

relative use of various resources under a wide variety of configurations. For

exanlple, a mail systeln would primarily make use of comlllunications channels.

Although SCHue CPU alld other resources would be needed, these would be small in

relation to the conlmunicalion cost. If the cOlllnlunication channel was heavily used

by other tasks, the amount used by the I1laH server would probably be sn1all, but the

amount of CPU lise would go down as well. 11le cornnulnication lIsed by the nlail

server would still be relatively large compared to the use of other resources.

11lcre are a number of possible ways to choose this baseline vector. One possibility

would be to use the vector which is most often chosen as the current requirements

vector. Another would be to decide on some standard configuration, and use the

current requirements vector in that standard configuration as the baseline vector.

This latter method is the one used in the system described in chapter 9. The choice

of the baseline vector is dependent on the system, and should reflect the relative use

of resources in a variety of configurations.

Once the baseline vector is chosen, the resource in this vector with the highest value

could be used as the critical resource. However, this strategy does not take into

account the status of the rest of the system. The method used is to compare the

task's baseline vector with a vector which is built fronl information about the current

system state. This is done by finding a componcnt-by-component average of the

current requirclnents vectors of all the tasks in the systeln. This average gives a
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nleans for detcnnining which resources are heavily used in the systenl. In more

forlllal terms:

Definition 7-1: Avcragc(P,f') is a resource vector defined as follows:

Let ~ = {R} such that (R t T)Eprojilf(C) and (T, P)E C.

L R[i]

V resources i, average(P. C)[i)=~~ I

The baseline vector of the task to be placed is compared with this average vector,

and the component which is the highest in relation to the average is used as the

critical resource. Ir the system is sholt of some shared resource, each tusk will get

less of the resource, and the average will be lower. This will cause the di fference to

be greater, increasing the chance that the resource will be chosen as the critical

resource. For exanlple, if the processors in the system do not have enough CPU

cycles/second to keep up with the demand, the use of the CPU by each task will

drop. If the task to be placed is a mail server, it would normally be considered

conlmunication intensive. However, comparing the low values for CPU use in the

average vector with the baseline vector of the mail server may show that the mail

server uses a relatively high amount of CPU. The placement will then be done

based on the availability of CPU cycles,. as this is of greater effect on the

configuration quality than the relatively lightly used communications channels. The

algorithm for choosing the critical resource is shown in figure 7-1.

Once the critical resource is chosen, the algorithm looks for the processor with the

highest aVHilnbility of that resource. If all of the processors have 0 availability of the

resource, the processor whose tasks have the highest avcrage for the resource is

chosen. This assumes that the tasks with lower averages are doing poorly, and could

ill afford to give up more of the critical resource. 'The algorithnl for selecting a

processor is shown in figure 7-2.
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(~ritical(R, c:Y, C) is a function which takes a resource vector R, a set of processors ~,

and a con figuration c, and returns the critical resource c determined as follows:

Let A be the resource vector such that:

~ average (I', C)[i]
PEGJ

'tJ resources i, A[i]=------
IGJI

Return the shared resource c such that
R[c] R[i]

V shared resources i,-~
A[e] Alii

Figure 7·1 :Choosing the Critical Resource.
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Phlccnlcnt(T,C) takes a configuration C and a task TEe, and returns a processor P

deternl ined as follows:

Let GJ be the set of processors in c,

R E requiremellts( T) be the baseline vector chosen for T.

For each dedicated resource d,

For each processor PEG}

if (/l'ai!abiIiIY(P, C)[IIJ $ R[d] then ~=GJ- {P}

c= critica/(R,~C)

Let I'E GJ be the processor with the highest al'ai/abiliIY(P,C)[c].

If capaciIY(P)[c) > 0, return P.

else return PEg'> with the highest al'crage(P, C)[c).

Figure 7·2:Placenlent algorithm for Load Balancing.
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Chapter Eight

Ilistributed Control

One of the problems in this load balancing implementation is communicating load

balancing decisions to different processors. The load balancing system nlonitors

tasks and processors in order to determine requirements and capacities. Since the

monitoring must be done at each processor, the load balancer is already somewhat

distributed. 111is leads to qucstions about thc load balancing algorithtn, should it be

distributed, or should a central load balancer send new tasks to the proper locations?

This chapter begins with a description of some of the requirements of the system

resulting from the environment described in chapter 2. The renlainder will discuss

possible solutions. The one used in the 1rllplenlentation is then presented in detail.

8.1 Rcquircnlcnts

The primary goal of the Highly Available Systems group is just what the name

implies: providing a reliable system. As a result, any load balancing algorithm must

be able to handle failures. This immediately gives us one requirement: duplication

of infonnation. Necessary information must not be confined to a single site, where

it could be lost in case of a failure. It is easy to see that in order to handle 11 failures,

the information must be available at at least 11+ 1 sites.

This also leads to a requirement that load balancing be distributed; if the load

balancer were at a single site, failure of that site would cause loss of load balancing.

This can be handled in nlany ways: a voting system; leader election in case of

failure (or a predefined slIccession list); or distributing the algorithm such that the

loss of a particular node (and its load balancer) will not affect the rest of the system.
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8.2 Possible Protocols

One Illcthod of providing a reliable load balancing SystCITI would be to l11ake all

decisions at a central site. This site would be chosen using a leader election

protocol. The load balancing algorithnl would not have to worry about concurrency

in its own operation. The only remaining problems would be collecting the needed

data and communicating the results, so as to actually act on the decisions. This

would be basically a master-slave arrangement, with the master sending commands

to all of the remaining nodes.

Certain nodes would have to be chosen as potential nUlsters, so as to have the

information available to take over in case of a failure of the current nlaster. In

effect, this nleans full replication of code and data at all of the chosen sites; in order

to avoid having an arbitrary limit on the nlllnber of allowed failures, all information

nUlst be present at all sites. This would be easy to change, however, should SOITIeOne

wish to set such a limit and gain the corresponding savings in replicating

information.

The other possibility would be to develop a distributed load balancing algorithm.

This would have certain advantages. It may be possible to make decisions locally,

for example, a processor could determine that it is a good place to start a new task

without looking at other processors. This would lower comnulnication costs.

However, this appeared to be a difficult approach, and is not pursued in this thesis.

8.3 (lclhl-conUllon storage

TIle protocol lIsed, suggested by Flaviu Cristian [Cristian 85a]realizes sonle of the

advantages of a totally distributed protocol, while being simple and robust. lois is

done using a/olnic broadcast (described in section 2.1.1.)
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'fhe idea behind 8-comnlon storage is that all of the processors in effect share

COlllmon men1()ry, which happens to take up to ~ tinle units to update. In practice,

all changes to the 8-conlnl0n storage are nlade by broadcasting the update using an

alon1ic broadcast. The atomic broadcast guarantees that a message will arrive at all

sites within 8 time units, or will not arrive at any sites.. Each processor maintains a

local copy of 8-common storage, which is updated only when a broadcast is

received. Since the broadcast messages are received at all sites (or at none), this

guarantees that all copies of the storage will be identical.

Once we have the 8-con1mon storage, it is simple to write a fully distributed

protocol for load balancing. AU of the information on task and processor

characteristics is kept in 8-col1llnon storage. Any changes to this (for example, a

processor failing or a task changing its characteristics) arc made using an atomic

broadcast. In addition, any request to place a task, or otherwise redistribute the load

in the system, is made using an atomic broadcast. When a request to place a task or

redistribute the load arrives, each site runs an identical load balancing algorithm.

This algorithm uses only information containcd in the 8-common storage. Since all

of the copies of ~-common storage are identical, the algorithms will all give identical

results. The load balancer at each processor only acts on results which involve

starting or stopping a task at that processor. Since all of the decisions are identical,

there is no necd to communicate the results of the algorithm.

The decisions made are the same as running the same algorit.hm in a master-slave

arrangement, except that no communication of results is necessary, and all

leader-election problems are avoided. The disadvantage is in duplicating

processing, but the placement algorithm that I am using is efficient enough that this

is not a problem.

50



Ch£lpter Nine

Systenl Ilesign and Inlplenlcntation

The model for load and definitions of load balancing given in chapters 4 and 3 are

useful for describing load balancing, but difficult to apply directly to an on-line load

balancing system. For exanlple, the model describes tasks in terms require/nellis, a

set of resource vectors which potentially characterize the task. This could be a very

large set. Given a different resource vector for each configuration, if we have p

processors and t tasks, there are ,/ resource vectors for each task. Storing such a set

on the computer may be infeasible. In addition, it nlay be impossible to actually

deternline in advance all of the possible vectors which could characterize a task. As

a result, it is necessary to approximate this set, providing the vectors neccssary for

the load balancing algorithln. For example, the load balancing algorithm of chapter

7 needs only the current requirements vector, and a baseline vector.

Deteffilining this approximation is one of the more difficult parts of designing a

load balancing system. The critical factors in the load must be determined, and their

interactions studied. For example, using alJ of the main memory of a computer will

result in paging, which will slow down each task and cause each to demand less of a

percentage of the CPU. Actual or simulated use of the system should be studicd in

order to determine what conditions actually result in a fast or slow response time.

This chapter is devoted to a description of the design of the load balancer which I

developed for the systenl described in chapter 2. I will try to avoid implementation

details and instead give an overview of the reasons behind design decisions.
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9.1 Monitoring

One of the first dccisions was that thc requirements vectors should be dctcrnlincd

dynanlically. lllis mcant that I would havc to nl0nitor thc tusks to detcrnlinc the

lise of cach resource. Another possibility would be to ask the programnlcr to

describe a task, or otherwise statically determine the characteristics. I have already

given some reasons why I believe this is not a good nlcthod. One of the most

important was the desire to have an autonultic system which did not require user

intervention. I could also have chosen to have some initial SCi-Up tinlc during which

the characteristics of all. of the tasks would be deternlincd. This would neglect the

possibility that tasks change with time, and could impose difficulties on adding new

and different tasks.

Continuously monitoring the system ilnposes certain constraints and allows me to

take S0l11C liberties. Non-optilnal placenlcnt decisions are less critical, as nlistakes

will show lip in the monitoring and redistributions made. As long as the algorithm

results in significant improvements in the configuration quality, a good (although

not neccssarily optimal) configuration will eventually be reached. This allows for a

simpler and more efficient load balancing algorithm. The disadvantages are from

the extra cost imposed by monitoring the systet1l, and the difficulty of monitoring

some resources. Intertask communication, for example, is difficult and expensive to

determine by t110nitoring the system. Tracking each message and comnlunicating

the results could significantly increase comnlunication costs.

9.1.1 Choice of Processing Uesources to Consider

One of the first steps in the design was to choose which processing resources to

consider. In chapter 5 I mcntioned a numbcr of possibilities: CPU, mClnory,

communications, etc. Which of these are it1lportant in this environmcnt? In order to

nlake this decision, I looked at thrce factors For each resource:
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1. Ease of monitoring: It would not n1ake sense to nlake load balancing
decisions on infor01ation which was not available.

2. Likelihood of beconling a bottleneck: 11lere is no necd to usc a
processing resource in determining load if it is so plentiful that it will
never be critical.

3. Ease of computation: Some resources may have coolplcx interactions
which make them difficult or expensive to use in figuring load.

1chose to look at CPU use, memory requirements, and total I/O. CPU use is easy

to obtain. The operating system maintains values on both the total utilization of the

CPU and the total amount of CPU time lIsed by each task. 11lese can be used to get

valucs for the amount of CPU time used per second. Memory use is slightly more

difficult; the operating system maintains values for the paging ratc and the atTIount

of olemory actually used by cach task (as an average per timeslice.) Calculating

from these gives a reasonable set of values to use to dctermine how heavily utilized

the mClnory is.

Total I/O is also easy to obtain. The operating system maintains values for total

number ofStart I/O instructions (which call operating system primitives to perform

the actual I/O.) 1would have liked to break I/O down into separate categories for

each processor-processor path, and each path to disk. Use of the disks can proceed

in parallel, and encouraging this parallelism is a goal of the load balancer. However,

although the information necessary to make these decisions is available from the

operating system, it would be computationally expensive to obtain without

incorporating the monitoring directly into the operating system, which was beyond

the scope of my project.

For sinlilar reasons I was not able to 1l1ke into account intcrprocess cOlnmunications.

Using the actual expense of communicating on "each particular processor-processor
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path would not have been necessary. 'rhe major cost of interproccss conlnlllnication

appeared to be in the drivers on either end, due to high-speed conllnllnication

channels. Therefore the conlmunication cost was not as nUlch a factor of which pair

of processors were communicating as a factor of whether there was any interprocess

communication required. This would have nlade for a siJnple decision process;

there would be two task vectors corresponding to whether conlmunicating processes

were on the same or different processors. I would have liked to incorporate this

feature into the system, however, I felt the expense and difficulty of tracing Inessage

traffic would have been unreasonable.

9.1.2 LO~ld avcraging nlcthods

l1le next step was to deternline how to find the curren/ requiremen/s and baseline

vectors for a task. Determining the current requirenlents vector is an easy task for

the monitoring system, as the infolmation available characterizes the task in the

current configuration. The baseline vector is more difficult. To determine this we

must be able to predic/ how the task will run under a different configuration. This is

done by comparing current requirements vector with the current vectors of other

tasks, and the availability vector of the processor. The exact manner in which this is

done is described in section 9.1.3.2.

Determining these vectors is primarily a problem of studying the operating system

and performing experiments. It is difficult to give general methods for doing this.

will instead describe the methods used in my implementation for YM.

9.1.3 Data Gathering Implementation

Once the choice as to important processing resources had been made, it was

necessary to actually determine how to gather and store this information. The VM

operating system maintains information about processor usc in control blocks which
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may be accessed by privileged users. periodically gather and process this

information. l'he actual details of how the raw data is turned into lIseful

in formation follows.

9.1.3.1 Processor Data

I deviated from this model in my handling of information about processors. lne

Cl1pacily(P) vector is supposed to give the total amount of each resource on the

processor. I instead used data on the available capacity (or rather, the capacity

already in usc.) Using the nlodel directly, this information would be obtained from

looking at the current requircnlcnts vectors of the tasks. However, the information

as to the current load on the processor was easicr to obtain by monitoring directly.

In effect, what I have is an ul'ailabilily vector. This does not require many changes in

the algorithtn of chapter 7. In this system, it was computationally easier to use

availability.

The VM operating system keeps most basic information in the Prefix Storage Area.

It is out of this area that I gather information as to the machine state. ) am really

only interested in measures of CPU utilization, ·memory use, and I/O use; but these

values are not readily available. The information available amounted to total time

spent in each of a variety of wait states (see table 9-1). Periodically obtaining these

values (and noting the time passed between measurements) we can note the ratio of

time spent in each state as foHows: as follows:
. New wail- Old wait

raliooflimespelll ill wait (9-1)
Currellllime- Previous lime

Supervisor state CPU time (Operating system CPU use) can be obtained by

subtracting the sum of the resulting ratios from one.

This gives a good measure of what the current system bottlenecks are. If a

significant portion of the titne is spent in page wait, the tnemory is probably
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Nalne

Idlcwait

Pagcw~lit

IOntwait

Probtimc

IJescriplion

Total system idle wait time.

Total system page wait time.

Total system I/O wait time.

Total systcnl problem state time (User CPU use.)

Table 9·1: Data arcas containing in fornlation on CPU use [I BM 82].

overtaxed. But I am after the 10101 utilization.' Knowing the bottleneck on a

particular processor docs not help deternline if it is a bettcr choice for a task than

another processor with a similar bottleneck.

In order to find the total utilization, I look at queue lengll]; the number of tasks

actually waiting for some type of processing resource. By multiplying this value by

the ratio of the wait time for a resource to the total time passed (equation 9-1), I

obtain a good value for the desired amount of each resource. This is actually a

deviation from the model, for this does not correspond to the availabilily vector.

However, figuring the resources in this way includes information about how much

of the resource is desired with a fully utilized shared resource into the availability

vector. This necessitates only a few changes in the algorithm, and results in a

computational saving in this system. The value thus obtained is then averaged in

with old data. so as not to overreact to temporary changes in system use. This is a

choice nlude due to the degree of coupling of the system. and the expense of moving

tasks.

The actual implementation also has a number of constants which are used to weight
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this in formation. All of thc raw valucs used to compute the vectors arc nlla1tip1icd

by their corresponding constant before being used. This is needed in order to have

the vectors rncet certain constraints. For example, a vector for a processor should

show that the dernand for a particular resource has doubled is the need for that

resource by the tasks running on the processor doubles. Task vectors satisfy a

different constraint. They are supposed to renect a baseline vector, which reflects

the resource requirements of the task running in some hypothetical standard

configuration. A change in the makeup of the task should be renccted in this vector,

but a change in the way it ru ns due to a change in the denland on the processor

should not. Tl1e propcr valucs for these constants were deternlined by

experimentation. Tests were run with the system running under a variety of

configurations, and the constants were nl0dified until the desired results were

achieved. Some sarnples of the actual vectors of systems running under different

configurations are shown in appendix A. l'his experimentation turned lip certain

other situations which the nl0nitoring must correct for. For example, each of the

processors runs a background task that causes the system to spend all idle time in

I/O wait, thus giving the inlpression that an idle processor is overloaded with I/O.

9.1.3.2 Task Data

Obtaining the task data was similar. Each task (corresponding to a vir/ual machine)

has a corresponding YM BLOK. Each VM BLOK contains considerable information

about that task (see table 9-2.) The CPU values are added and divided by the time

between monitoring updates to obtain a ratio of CPU usc. lne same is done with

the SID count to obtain I/O rate. l'hc Drum, disk, and core memory values are

added to obtain the total amount of memory allocated to the task. The working set

size is taken directly as a measure of how much actual primary memory is needed.

This gives a value corrcsponding to the tasks curren/ rcquircfnCI1[S vce/or, but the
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Nanle

VMVtime

VMTTime

VMIOcnt

VMPllrUlll

VMPllisk

VMPages

VMWSProj

!JescripI ion

Virtual Problem-state CPU time used.

Virtual Supervisor-state CPU titlle used.

Virtual SID count for non-spooled I/O. (I chose to ignore
spooled I/O, as the tusks of interest in this systetn used little of
this type of I/O.)

Cou~t of user pages on drum.

Count of LIseI' pages on disk.

NUtllber of currently resident real pages.

Projected working set size. (NUJllber of pages needed to run.)

Table 9-2: Data areas containing information on tasks [IBM 82].

algorithm also needs the baseline vector. To do this, I multiply the CPU and flO

values by their corresponding values for the processor. This (after adjusting by

some constant factors as described in the previous section) gives a relatively stable

value, regardless of system load.

Each of these values are avernged in with old data, so as not to overreact to

tenlporary anOtllaJies in the running characteristics of the task. I chose to nvernge

this so as to accomplish a 90% replacement of data every hour; this value should be

chosen for each systetll based on the expense of moving tasks.
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9.1.4 COlnnlullicuting Informiltion

I have already discussed my desire to fulJy replicate information on the status of the

systetn. TIle primary drawback to this is cotnmunication cost; each update to the

information must be broadcast throughout the system. 111crefore I keep the

monitoring results in separate local storage until significant changes occur. After

each update this local information is compared with thc (local) copy of 8-common

storage. If there is a large change in the status of the processor or one of the tasks

then the new vector is used to .update 8-common storagc. This is done by

broadcasting a message stating that the vector has changed, and giving the new

values.

111e load balancing algorithm uses only the information in ~-conlmon storage. As a

result these decisions may not be made on the most current information available.

All decisions will be consistent, however, and can be based on arbitrarily current

.information (within the limit imposed by 8) at the expense of increased

communication costs.

9.2 Design of the Load Balancer

The monitoring subsystem puts the resource vectors into ~-common storage. The

load balancing subsystem is started on each receipt of an update to this storage (by

the task which receives the broadcast update.) It then goes and checks to see if the

new information is significant enough to demand action. Since all processors have a

load balancer executing the same algorithm on the same data, the same decision will

be reached at each. The action thus decided upon is carried Ollt, with each of the

load balancers performing the part of the action relevant to its processor. A more

concrete version of this is shown in figure 9-1.

Since new_task requests often cotTle in frequent batches (for example, when a
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The load balancing prograll1 is a continuous loop which waits for a message, and

then acts on it.

Note: Placement is the placetnent algorithm given in figure 7-2.

Storage is the local copy of ~-con1tnonstorage.

Local_storage is the copy of storage nlaintaincd by the nlonitor containing

current information about the local processor and tasks. This is

used only to broadcast in formation when a new load balancer is started.

Broadcast a conf i gurat i on_reques t message.
Wait Jar 2*8. to give tilnefor all oJthe inJonnation to arrive.

repeat
message : = The next nlCssage received taking update Inessagesflrst

if there is Inore lhan one in the buffer.

if message. type = new_task then
The message cOlltains a request to place a new task in the system.
processor := placement(message.task, storage)
if processor := local_processor then

Start the new task on this processor.
storage : = Predict the way the vec/orsJorall oJthe tasks

and processors will/ook after the task has started

elseif message. type = update_to_storage then
The message is an updale 10 8-common s/orage
storage[message.location] := message.new_vector

elseif message. type = configuration_request then
Broadcast updale_to_s/orage messages with Ihe vec/orsJor
all ojthe tasks and the processor in local_storage.

forever;

Figure 9·1 :Load Balancing Program
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processor fails) it is necessary to have SOtlle feel for the results of previolls decisions

before new ones arc Inade. Otherwise all of the tasks will bc dumped on the least

loaded processor, causing it to be overloaded. Since monitoring takes time, I have

chosen to attempt to predict the status of the system after each decision. 111is is

done by performing a vector addition on the task and processor resource vectors.

The function which actually relatcs each of the components is slightly more complex

than simple addition, but only as a result of constant terms which are used to handle

idiosyncrasies in the system. These must be determined for each operating systenl

by study and experimentation.

Actually starting tasks is not a part of the load balancer. In the H.A.S. project

(chapter 2) this is the responsibility of the Auditor subsystem. How these are done is

very dependent on the system: A shared memory system may just transfer a pointer

between processors; a loosely-coupled system may have to send code over the

network. There has been research in this area, for more information see [fheimer ·

85].
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Chapter "ren

I~esults

Although I have completed an operating prototype, it has not been integrated into a

system in day to day use. As such, my results arc based on experiments in a

three-processor test system using "artificial" tasks. These tasks were tightly

controlled. I urn not sure how these would conlpare with the characteristics of aclual

tasks such as a compiler or database tllanager, but they do give a good feel for the

quality of the load balancing decisions nlade.

10.1 Description of Tests

I created three sample tasks: a heavy CPU user, a memory-intensive process, and an

I/O intensive process. These were each designed to use a given amount of the target

resource, while using as little as possible of the other resources. A portion of each

task was timed, in order to give a value for response time. Some results of these tests

are given in table 10-1. Using this, I was able to obtain results for the change in

response time of each type ofjob under various load conditions.

Once I had created the jobs and run some performance tests under a variety of

conditions, I started the load balancing and monitoring system. I first tried

monitoring tasks under a variety of conditions, to make sure that the nlonitoring

system adequately reflected their baseline vector regardless of the general load

characteristics. These results are sunlmarized in appendix A.

After a waiting for a period of time to allow the monitoring to characterize the tasks,

I began to nlove tasks. While othc~wisc leaving the systetn stable, I added a given

62



Results frolll monitoring each task in an unloaded system.
Note: Units given are intended for use only as relative measures.

CPU task
Memory task
I/O task

CPU
use

2738
o
2

Memory
used
139

1517
64

Memory
desired

139
1827

64

SIO
rale

o
o

5561

Response
time

52
48
36

Table 10-1: Characteristics of tasks used in testing.

task to each of the processors, noting the resulting change in response times. I also

took note of the recommendations of the load balancer, in order to compare its

decision with the optinlal decision based on measuring response times in trials of aU

possible placements.

After trying this with multiple load situations, I tested the predict function. To do

this, ) introduced tasks slowly (folJowing the load balancer"s decisions), allowing

time for the tnonitoring to catch up. 1 then performed the same set of introductions

rapidly, testing to make sure that the resulting decisions were the same.

10.2 Evalu~ltion of Decisions

The load balancing decision process performed well. It placed tasks away from

others of the same type. This compared well with test data t11at showed that the

response time of the system deteriorated when multiple tasks of the same type were

placed on the same processor. Part of this is probably due to the sin1plistic nature of

the tasks I was using. Appendix B contains some information on the actual test

results.
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Predict did not fitre as well. For a fcw itcrations. it pcrfornlcd sllccessfully. lllc

differcnces bctween the predicted and actual system status were not large enough to

change the decisions. But the errors tendcd to build with the number of predictions

made. Whcther this is a problem is very nluch a factor of the nornlaf innux of jobs

in the system. If jobs come in infrequently, this is not too major a difficulty. Ifjobs

come in in batches, it may be desirable to look at an alternative form of load

balancing which will take all new tasks into account sinlultaneously.

10.3 Expense of Load Balancer

T'he load balancing algorithnl itself is quite sinlple and inexpensive. Since the

algorithnl is run on denland, this expense will be paid back over timc even if load

balancing only results in small gains in the configuration quality. Monitoring is

more of a problem. Since monitoring is continuous, it will result in a permanent

dccrease in configuration quality. This must be offset by a greater increase in

quality as the result of load balancing.

Fortunately, the monitoring is not that expensive. I found that the monitoring used

less than 1% of the available CPU. This was while monitoring 20 tasks at five second

intervals. I would actually use a significantly longer interval in practice, but this

savings would probably be negated by the larger number ofjobs I would expect in a

system this size. Table 10-2 contains a breakdown of the cost of the monitoring.

The potential gains of this monitoring/load balancing system more than make up

for the extra cost of running it.
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Per (~PU nlollitored
Per task nlollitored

CPU use per check
(seconds)

0.()041
0.0012

Menlory required
(byJes)
92
76

Table 10-2: Cost of running the monitor.
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Chapter 1~leven

Conclusion

I have presented a new model for load which separates different types of processing

resources. Load is given as a resource vector, as opposed to a single value. This

measure can be applied to both processors and tasks. Processors are characterized

by a C~lP~lCity resource vector, which describes the availability of each type of

processing power on that processor. Tasks are described by a set of requirements

vectors, where each vector in the set corresponds to the tasks usage of resources in a

particular system configuration (assignment of tasks to processors.)

This load model has been applied to the problem of load balancing in distributed

systems. In distributed systems where each node is capable of processing multiple

tasks simultaneously (for example, a time-shared computer), this load model

exploits concurrency at each node. A simple algorithm has been given to choose the

best location for a single task. TIlis may be extended to multiple tusk placement by

repetitive application. ]t can also be used to handle overloaded nodes by allowing

processors to "shed" tasks.

This load balancing systetn has been applied to a loosely-coupled distributed system

using IBM mainframe computers nlnning the VM operating system. A monitoring

subsystem was designed to measure the capacities of each processor and the

requirements of each task. The load balancing system was implemented, and test

results obtained which verified the advantages of this method of load balancing.
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11.1 I~csults of this Study

(..oad halancing is not a new topic. There has becn considerahle research in the area,

but only casual nlcntion has been Jnude of balancing based on different typcs of

processing power. This work provides a franlcwork for load balancing based on

multiple types of processing power.

]n addition, little work has been donc on dctermining the load imposed by tasks.

This thesis describes a 111onitoring system, which dynamically detcrmines the

characteristics of tasks and processors relcvant to load balancing. This enables an

automatic load balancing system to exploit differences in tasks and processors.

11.2 Further Work

The load balancing algorilhln presented in this thesis is quite naive. There is room

for considerable research into better algorithms for load balancing based on

multiple criteria for load. There is also room for research in determining task

characteristics. While monitoring is a useful tcchnique, it would be more efficient to

determine the running characteristics of a task statical1y. This could be done

through analysis of the object code, or as part of the compilation process. The latter

could also be lIseful in optinlization techniques; for example, optimizing a tnsk for a

processor with limited memory.
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Appendix A

Sanlple Monitor Results

Note that the units are only intended as relative measures. Figures shown for tasks

correspond to data used as a baseline vector.

I>rocessor idle

Processor
CPU li,ne

118
Page wail

o
I/O wail

829

One CPU intensive hlSk

CPlltilne Page wail I/O wail
Processor 2076 0 78

CPU Men70ry Memory SID Response
use used desired .rale lime

CPU task 2738 139 139 0 52

Three CPU intensive tasks

CPU time Page wait //0 wail
Processor 3677 0 0

CPU Memory Memory SID Response
use used desired role lime

CPU task 2090 139 139 0 120
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'1''''0 Iucluory intcnsive tasks

CPU lime Page wail I/O wail
Processor 460 980 509

CPU Ale/nary Me/nory SID Response
use used desired rale linle

Memory task 1 1569 1874 0 48

Four Illcluory intcnsive tasks

CPU lill1e Page wail I/O wait
Processor 676 4132 34

CPU Ale/nary Me/nory SID Response
use used desired role lilne

Memory task 0 587 1711 0 480

One I/O intensive task

CPU lime Page wail I/O wait
Processor 317 0 1554

CPU Me/nory Memory SID Response
use used desired rale lime

I/O task 2 64 64 5561 36

l'hree I/O intcnsive tasks

CPU lime Page wail I/O wait
Processor 545 0 2371

CPU Alemory Memory SID Response
use used desired rale linlC

I/O task 0 173 173 3028 73
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Appendix B

Sanlple Load Balancing llecisions

Note that the units are only intended as relative measures.

Moving a 111Cluory intcnsivc task.

Processor I: Two CPU tasks, one menlory task.
Processor 2: Tllrce memory tasks.
Processor 3: Two I/O tasks, one memory task.

Processor I
Processor 2
Processor 3

CPU Iilne
1043

87
58

Page wail
o

318
o

1/0 wail
o

472
848

ReCOl1unends moving 10 Processor I.

Moving a CI>U intensivc task.

Processor 1: Two CPU tasks, two memory tasks.
Processor 2: One memory task.
Processor 3: Two I/O tasks, two memory tasks.

Processor I
Processor 2
Processor 3

CPU lime
988

20
69

Page wait
o
2
o

1/0 wail
o

451
843

ReCOl1unends moving 10 Processor 2.
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Moving two I/O intensive tasks 4lnd one nlcI110ry intensive tclsk.

Processor 1: One CPU task. two memory tasks.
Processor 2: One CPU task. one I11cnlory task.
Processor 3: Two I/O tasks, two mcmory tasks.

Processor I
Processor 2
Processor 3

CPU tilne
801
791
66

Page wail
o
o
o

I/O wail
o

174
727

Recommends Inoving one I/O intensive task to Processor 2 and the other tasks to
Processor I.
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