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ABSTRACT issue of scaling the number of clients that are served by a SAN

As in many other distributed settings, a fundamental en-
abler in this environment for clients to coordinate thetiats
is an agreement protocol. It is well known that in order to
solve agreement in a non-blocking manner three phases are
needed [43, 44]. This leads to the usage of the Paxos pro-
tocol [31, 32, 15, 34] and its variants, as is done, e.g., in
Petal [35] and Frangipani [46]. Briefly, the Paxos protosa i
3-phase commit protocol that uses the 1st phase to determine
a proposition value, the 2nd phase to fix a decision value, and

able in Active Disks and in Object Storage Device contrsller the 3rd phase to commit to it. The Paxos protocol was recently

making our solution suitable for state-of-the-art StorAgea adapted for utilization by SAN clients in the Disk Paxos prot
Network (SAN) environments. col [20]. Both the original Paxos protocol and its Disk vatia

are geared toward a fixed and known number of clients. In par-

ticular, in Disk Paxos, each client must use a pre-designate
1. INTRODUCTION area on disk to write values, and must read the values written

Inrecent years, advances in hardware technology have madeby all other potential clients. Consequently, adding néants

possible a new approach for storage sharing, in which glient to the system is a costly operation that involves real-tinog
access disks directly overstorage area networkSAN). In a ing [20]. Also, the complexity of memory (disk) operations
SAN, disks are directly attached to high speed networks that does not scale with the number of clients.
are accessible to clients. The clients access raw disk data, In contrast, we provide an adaptation of Paxos that supports
which is mediated by disk controllers with limited memory infinitely many clients. Our solution builds on a strengthen
and CPU capabilities. Clients run file system services and ing of the disk model which is driven by current technologica
name servers on top of raw 1/O. Since clients (or a group of advances in the storage area. Our use of strong memory ob-
designated SAN servers) need to coordinate and secure theirjects is further justified by the impossibility result of $ieo
accesses to disks, they need to implement distributed sicces 5.3, that shows that even in failure-free runs, finite reaitéw
control and locking for the disks. However, once a client ob- memory is insufficient for solving agreement among infinyitel
tains access to a file, it accesses data directly throughAhe S~ many processésHence, to provide a solution which is realis-
thus eliminating the slowdown bottleneck at the file system tic in practice, we employ stronger memory objects. This ap-
server. IBM'sStorage TanK7] is an example of a commer-  proach is motivated by recent development in controlleiclog
cially available SAN system that solves many of the coordi- that enhances the functionality of disks for SAN and provide
nation, sharing and security issues involved with SANs @lor for Active Diskscapable of supporting stronger semantics ob-
examples are given in Section 2). In this paper, we tackle the jects (see, e.g., [22]). In particular, specialized fumasi that
require specific semantics not normally provided by drivas ¢
*This work was supported in part by the Israeli Ministry of be provided by remote functions on Active Disks. Examples
Science grant #1230-3-01 include aread-modify-writeoperation, or an atomicreatethat

both creates a new file object and updates the corresponding

directory object. Such advanced operations are already use

for optimization of higher-level file systems such as NFS on
Permission to make digital or hard copies of all or part of twork for NASD [23].

personal or classroom use is granted without fee providatidbpies are  The existence of strong shared memory objects does not ob-
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to 7 - . .
republish, to post on servers or to redistribute to listguies prior specific - Section 5.3 actually provides a stronger result, proving im
permission and/or a fee. possibility of constructing a different type of object theanon-

PODC’02 Monterrey, California USA sensus object. By the universality of the consensus oBjégt[
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We present an improvement to the Disk Paxos protocol by
Gafni and Lamport which utilizes extended functionalitydan
flexibility provided byActive Disksand supports unmediated
concurrent data access by an unlimited number of processes.
The solution facilitates coordination by an infinite numbér
clients using finite shared memory. It is based on a collec-
tion of read-modify-write objects with faults, that emaad

new, reliable shared memory abstraction calledried regi-

ster. The required read-modify-write objects are readily avail




viate the need for an agreement protocol. Admittedly, if we
had even one reliable disk with read-modify-write operadio
we could leverage coordination off it to solve agreement, as
shown by Herlihy in [27]. However, in a scalable SAN, disks
will frequently become unavailable. Unfortunately, it ig-i
possible to use a collection of fail-prone read-modifyteri
objects to emulate a reliable one [28]. Hence, our construc-
tion is necessarily more involved. It should be noted that us
ing a farm of disks also has the benefit of distributing client
accesses among multiple disks in order not to introduce un-
necessary contention. Hence, our solution provides fdn bot
high availability, and for load sharing among disks.

Our solution first breaks the Paxos protocol using an ab-
straction of a shared object calledranked register which
is driven by a recent deconstruction of Paxos by Boichat et
al. in [6]. Briefly, a ranked register supportsread and
rr-write operations that are both parameterized by an inte-
ger (the rank/ballot). The main property of this object iatth
arr-read with rankr; is guaranteed to “see” any completed
rr-write whose rankr, satisfiesr; > r2. In order for this
property to be satisfied, some lower rankedvrite opera-
tions that are invoked afterra-read has returned mustbort.
Armed with this abstract shared object, we show the follgwin
two constructions:

1. We provide a simple implementation of Paxos-like agree-
ment using the abstraction of one reliable shared rankeed reg
ster that supports infinitely many clients. Briefly, in this-i
plementation (see Figure 1) a participating client choases
(unique) ranksr-read 's the ranked register with it, and then
writes the ranked register either with the value it read Xif e
ists) or with its own input. If ther-write operation succeeds
(i.e., it does not abort), then the process decides on thtewri
value. Else, it retries with a higher rank.

2. The reliable shared ranked register abstraction canmot b
supported for an unbounded number of clients using onhefinit
read/write memory (proof is provided in Section 5.3). Farth
more, no single fail-prone disk with even stronger semantic
object may implement it. Therefore, we provide an implemen-

[37] were designed. In this setting, a highly available s&rv

is implemented by a replicated set of servers, a threshold of
which may be faulty. Clearly, each server is capable of imple
menting stronger-semantics objects, e.g., a single shared
ked register, that is accessible by any number of clientasTh
our paradigm provides for coordination and informationrsha
ing among transient clients through the group of servers. It
does not require servers to interact among themselvestand i
avoids the complexity of failure monitoring and reconfigura
tion which is manifested, e.g., in group communication mid-
dlewares [41, 11].

2. RELATED WORK

Our work deals with solving the Consensus problem [33],
one of the most fundamental problems in distributed comput-
ing. Consensus is the building block for replication pagaus
such as state machine replication [30, 45], group memlgershi
(see [41, 11] for survey), virtual synchrony [5], atomic ade
cast [10], total ordering of messages [29, 19], etc. Consen-
sus is known to be unsolvable in most realistic models such as
asynchronous message passing systems [18] and asynciironou
shared memory with read/write registers [36, 27, 16] if e’en
single process can fail by crashing. While it is usuallyigtnt
forward to guarantee the consistency of a consensus decisio
alone (safety), the difficulty is in guaranteeing progresace
of uncertainty regarding process failures. The usual sgaires
to circumventing Consensus impossibility include strbegt
ing the basic model by assuming different degrees of syn-
chrony (see e.g., [16, 17, 14]), augmenting the system with
unreliable failure detectors [10], and employing randaniz
tion (see a survey in [13]). Specifically, our solution usaes o
of the most widely deployed implementations of the state ma-
chine replication [30, 45], the Paxos algorithm [31, 32, 15,
34]. At the core of Paxos is a consensus algorithm called
Synod The Synod protocol deals with the Consensus impossi-
bility by guaranteeing progress only when the system idetab
so that an accurate leader election is possible. This aggrmp
is equivalent to assuming the failure detector of [9] which
was shown in [9] to be the weakest failure detector that can be

tation of a ranked register shared among an unbounded numberused to solve Consensus.

of clients. The implementation employs a farm of disks, each
of which supports one read-modify-write register, of which
a threshold may experience non-responsive crash faults. Th
fault tolerant emulation performs eaghread or rr-write op-

eration on a majority of the disks, and takes the maximally

As shown below in Section 5.3 though, when an infinite
number of processes is present, even non-faulty ones,-agree
ment is impossible to achieve using only a finite number of
atomic read/write registers. Not surprisingly, the Paxas p
tocol is in fact designed with built-in knowledge of all ofeth

ranked result as the response from an operation. The numberParticipants. The focus of our work is on guaranteeing gafet

of participating disks required for the emulation is detiered
only by the level of desired fault tolerance, and the memary o
each one is constant, regardless of the number of pariicipat
clients.

Our approach is readily implementable is SAN with Active
disks. To this extent, it may serve as an important spedificat
of the kind of functionality that is desired by SAN clientsdan
that disk manufacturers may choose to provide.

Additionally, our approach faithfully represents another
alistic setting, the classic client-server model, with d@epe
tially very large and dynamic set of clients. This is the set-
ting for which scalable systems like the Fleet object rejoogi

of the consensus decision in the presence of an infinite numbe
of processes. Other results in this model and a classifitatio
based on levels of simultaneity can be found in [38, 21]. As
for liveness, we can use standard approaches as above to cir-
cumvent impossibility, and we leave it outside the scopéisf t
work.

Our usage of shared-access SAN disks as shared memory is
greatly influenced by the recent Disk Paxos protocol of Gafni
and Lamport [20]. In Disk Paxos, the protocol state is repli-
cated at network attached disks some of which can crash or
become inaccessible. The participating processes adoess t
state replicas directly over a SAN. Disk Paxos assumes sim-
ple commodity disks which support only primitive read and
write operations. It supports a bounded and known number of



clients, and uses disk memory proportional to their numimer.  The NASD project also addresses other aspects of the network
contrast, we stipulate Active Disks that are capable ofisgrv  attached disk technology such as file system support [23], se
higher semantics objects, which provide us with the stiengt curity [24] and network protocols [22].
needed to guarantee safe decisions in face of an unbounded Active Disks [42, 2] is a logical extension of the OSD con-
number of clients. The amount of memory we utilize per disk cept which allows arbitrary application code to be downkxhd
is fixed regardless of the number of participating clients. and executed on disks. One of the applications of the active
The environment model that faithfully reflects our setting i  disks technology is enhancing disk functionality with spec
an asynchronous shared memory system where processes inized methods, such as atomic read-modify-write, that can be
teract by means of a finite collection of shared objects some used for optimization and concurrency control of higheele
of which can be faulty [1, 28]. Similarly, the Consensus pro- file systems.
tocol of Disk Paxos, called Disk Synod, is in fact an imple- Issues concerned with data management in SAN based file
mentation of Consensus in an asynchronous shared memorysystems, such as synchronization, fault tolerance andiggcu
system with atomic read/write registers which can incur-non are investigated in [7] in the context of IBM Storage Tank
responsive crash failures. It should be noted thatin [28jadty,  project.
Chandra and Toueg prove that it is impossible to implement  Other work which addresses scalability and performance is-
wait-free Consensus in such an environment if at most one sues of network storage systems (not necessarily concerned
shared object can stop responding forever. This resultshold with network attached disks) include NSIC's Network-Atiad
regardless of the number, size and type of the shared objectsStorage Device project [40], the Netstation project [25] tre
used by the implementation. Hence, merely by stipulating Swarm Scalable Storage System [26]. Petal [35] is a praject t
stronger disks we would still be unable to circumvent the im- research highly scalable block-level storage systemsagrra
possibility. Nevertheless, we show that the ranked registe  pani [46] is a scalable distributed file system built usingaRe
sufficient for implementing non-fault-tolerant Consenwlith XFS: Serverless Network File Service [4] attempts to previd
unbounded number of participants. A remarkable feature of low latency, high bandwidth access to file system data by dis-
the ranked register is that it allows for wait-free implemen tributing the functionality of the server (e.g. cache cenee,
tation in a shared memory system with non-responsive crash locating data, and servicing disk requests) among thetslien
faults and therefore, can be used as a building block for im-  Concurrency control was identified as one of the critical is-
plementing fault-tolerant Disk Paxos with unbounded numbe sues in the network attached storage technology because of
of processes. As before, the way to guarantee progress de-inherent lack of a central point of coordination [3]. The €on
spite the impossibility result is by augmenting the systethw  currency control in the Petal [35] virtual disk storage syst
a leader election primitive which is required to be everijual and the Frangipani [46] file system is achieved using repli-
accurate in order for the protocol to be live. cated lock servers which utilize Paxos for consistency. -Con
Our ranked register abstraction was largely inspired bykwor  sequently, Disk Paxos is a natural candidate for enablickj lo
of Boichat et al. [6] on deconstructing the Paxos protocbisT management in network attached storage systems. In this pa-
paper proposes a modular decomposition of Paxos based onper we show that by enhancing network attached disk func-
a simple shared memory register callednd-based register tionality with two simple read-modify-write operationshigh
Intuitively, both the round-based register and the ranked r  are realistic to support with the OSD and Active Disk tech-
gister encapsulate the notion of Paxadlots® which are used nologies, it is possible both to adapt Disk Paxos to support a
by the protocol to ensure value consistency in presencesf co unbounded number of clients and to reduce its communication
current updates. While being in line with the general decon- cost.
struction idea of Boichat et al., our ranked register nénert
less provides much weaker guarantees and supports a slighte

different interface. 3. SYSTEM MODEL
We consider an asynchronous shared memory system con-
2.1 SAN technology sisting of a countable collection of client processes atter

Our work was motivated by advances in storage technol- ing with each other by means of a finite collection of shared
ogy and the SAN paradigm. A storage area network enables objects. The processes are designated by nunmbeérs. ..
cost-effective bandwidth scaling by allowing the data to be Client may fail by stopping (crashing). The implementation
transferred directly from network attached disks to chesn should be wait-free in the sense that the progress of each non
that the file server bottleneck is eliminated. The Network At  faulty client should not be prevented by other clients concu
tached Secure Disks (NASD) [22] of CMU is perhaps the most rently accessing the memory as well as by failures incuryed b
comprehensive joint academy-industry project which laigelt  other clients.
technological foundation of network attached storageesyst Operations on memory objects have non-zero duration, com-
NASD introduced the notion of asbject storage device (OSD)  mencing with an invocation request and ending with a respons
which is a network attached disk that exports variable lengt We assume that the sequence of requests produced by a pro-
“objects” instead of fixed size blocks. This move was enabled cessi is well-formedin the sense that never initiates a new
by recent advances in the Application Specific Integratee Ci  request before it has received a response to its previonsly i
cuit (ASIC) technology that allows for integration sophist  voked request. The shared memory objects themselves may

cated special-purpose functionality into the disk comgrsl fail by crash, i.e., stop responding. As in [28], we call #hes
non-responsive crash faults
2Ballots roughly correspond tmunds and toranksin the According to [28], wait-free consensus is impossible irtsuc

round-based and the ranked register respectively. a setting. Therefore, similar to the Paxos approach, we over



come this impossibility by assuming the existence of a sep-
arate leader election oracle. The oracle guarantees time eve
tual emergence of a unique non-faulty leader, though when
this happens in unknown to the clients themselves.

4. PAXOS WITH INFINITELY MANY
PROCESSES

In this section we present the implementation of a Paxos
protocol that supports infinitely many clients. Our protioco
employs a special type of shared memory register, calted-a
ked register which for now we assume is failure-free. Later,
we show how to implement a fault tolerant ranked register in
our environment.

Intuitively, the ranked register encapsulates the notibn o
ballots which are used by the Paxos protocol to ensure value

consistency in presence of concurrent updates. The idea of

modeling the Paxos protocol this way is due to [6]. How-
ever, while the ranked register interface bears simiksito
theround-based registesf [6], its specification is weaker than
that of [6]. The register provides a clean isolation of theees
tial properties of Paxos into a well-defined building bloitlys
simplifying reasoning about the protocol behavior.

4.1 The ranked register

We first define ranked register as a building block of Paxos.
Let Ranksbe a totally ordered set of ranks with a distinguished
initial rank ro, and Vals be a set of values. We also con-
sider the set of pairs denotdtd als which is Ranks x Vals
with selectorsrank andvalue. A ranked register is a multi-
reader, multi-writer shared memory register with two opera
tions: rr-read(r); by process, r € Ranks, whose corre-
sponding reply iwalue(V');, whereV € RValsU{{ro, L)}.
And rr-write(V'); by process, V € RVals, whose reply is
either commit; or abort;. Note that in contrast to a stan-
dard read/write register interface, bothread and rr-write
operations on a ranked register take a rank as an additional a
gument; and itsr-write operation might abort, whereas the
write operation on a standard read/write register always com-
mits (i.e., returngick).

In the following discussion we often say thatraread op-
erationR returnsa valuel” meaning that the register responds
with value(V') in response t&?. We also say that er-write
operationW commits(abortg if the register responds with
commit (abort) in response tév.

We will restrict our attention to runs in which invocatiorfs o
rr-write on aranked register use unique ranks. More formally,
we will henceforth assume that all runs satisfy the follayvin

DEFINITION 1. We say that a run satisfieank uniqueness
if for every rankr € Ranks, there exists at most one €
Vals and one processsuch thatrr-write({r,v)); is invoked
in the run.

DEFINITION 2. We say that ar-read operationR =
rr-read(rz); Seesa rr-write operationW =
rr-write({r1,v)); if Rreturns(r’,v") wherer’ > ry.

The ranked register is required to satisfy the followingethr
properties:

PROPERTY1 (SAFETY). Everyrr-read operation returns
a value and rank that was written in somewrite invocation
or (ro,L). Additionally, letW = rr-write({r1,v)); be a
rr-write operation that commits, and l€t = rr-read(rz);,
such thatrs > r;. ThenR seedV .

PROPERTY2 (NON-TRIVIALITY ). If a rr-write opera-
tion W invoked with the rank; aborts, then there exists a
rr-read (rr-write) operation with rank-, > r; which returns
beforeW is invoked, or is concurrent t&/.

PROPERTY3 (LIVENESS). If an operation ¢r-read or
rr-write) is invoked by a non-faulty process, then it eventu-
ally returns.

Note that if therr-write operation would not have been al-
lowed to abort sometimes, then it would be impossible to sat-
isfy all the three properties above, since onee-ecad opera-
tion with a rankr returns a value written by m-write opera-
tion with a rankr’ < r, there is no way it could see the value
written by a subsequent-write with a rankr’ < r”" < r.

Also note that our ranked register specification is very weak
In particular, it allows in some situations fer-write oper-
ation to commit even though there exists another previously
committedrr-write with a higher rank. The reason for that
not being a problem stems from the way the ranked register is
used by the Consensus implementation in Section 4.2. In par-
ticular, each process in our Consensus implementatiok@sv/o
rr-write only after it invokesrr-read with the same rank and
this rr-read returns. Thus, the ranked register Safety prop-
erty ensures that in every finite execution prefix, each value
written by a committedr-write must be returned by one of
the rr-read operations with a higher rank if such exist. Con-
sequently, in each run of the Consensus implementation, any
rr-write operation, which is invoked after-read with a higher
rank has returned, would necessarily abort.

4.2 Agreement using a ranked register

We now outline an agreement protocol which employs a
shared ranked register. This formulation of the agreement p
tocol is identical to that of Boichat et al. in [6], and is repsd
here for completeness. However, since the specificationrf o
ranked register differs significantly from the propertiéghe
round-based registeof [6], we provide a different and neces-
sary proof of correctness for the protocol employing our ran
ked register. In particular, we address the correctnessat-a
ting with an unbounded number of clients.

Thedecideroutine depicted in Figure 1 is executed by every
client that tries to form agreement. It takes as arguments an

In practice, rank uniqueness can be easily ensured by choos-initial value and a monotonically increasing unique rankiga
ing ranks based on unique process identifier and a sequencdt returns the agreement value or aborts. THeeideroutine

number. The main reason we use this restriction is to sim-
plify establishing the correspondence between the valuiés w
ten with specific ranks and the values returned byrthecad
operation.

We now give a formal specification of the ranked register.
We start by introducing the following definition:

is guaranteed to return an agreement value at the latest when
a non-faulty leader has been elected and allowed to force a
decision.

We now outline the correctness argument of the agreement
algorithm. Due to space limitation, we provide only a sketch
of a proof.



Shared: ranked register, read/write registetlecision € RV als,
initially decision = (rg, L)
Local: V € RVals

Process:

ProcedurebECIDE(inp), inp € RV als:

if (decision # (ro, L))
returndecision;

V « rr.rr-read(inp.rank);;

if (V = (ro,L)) then
V.walue < inp.value;

V.rank < inp.rank

if (rr.re-write(V); = commit) then
decision < V;
returndecision;

else
returnabort;

fi

Figure 1: Paxos using a ranked register

LEMMA 1. For any finite execution, let Wy =
rr.rr-write({ro,vo)) be the lowest rankeér-write invoca-
tion which commits imx. Then, in any extension efin which
W = rr.r-write((r,v)), r > ro, is invokedy = vg.

PROOF Our proof strategy is to build a chain efwrite
's from Wy, to W, such that eachiV writes the value that it
reads from the preceding-write in the chain. We then show
that the same value is written in all of thesewrite 's by
induction on the length of such chains.

Indeed, letR = rr.rr-read(r) be therr-read correspond-
ing to W that is executed befor® is invoked. By safety,
R returns the paifro, wo) or a higher ranking paitr, wo)
that was written in som&V,, = rr-write(ry, *). Sincery, >
ro, again the correspondingr-.rr-read(ry) returns(rg, wo)
or a higher ranked written value. And so on. Eventually,
we obtain a unique chaiiy, Wh, ..., Wi, W, such that for
each ofiy, .., Wy, W, the correspondingr-read returns the
value/rank pair written by the precedingwrite in the chain.

We now show by induction on the lengttof the chain that
W writeswg. If k = 0, thenR returnsvy and by the agreement
protocol W writeswvy.

Otherwise, suppose for all chains of lengthk it holds that
the lastrr-write writes v, and consider the chain above of
lengthk. ForW,, the (unique) chain froriy is Wy, Wh, ..., Wi.
By the induction hypothesidy;, writesvy. Hence, agairR
readsvy and according to the protocdly” writesvy. [

The following theorem immediately follows from Lemma 1:

THEOREM 1. The algorithm in Figure 1 guarantees that
for any two processesand j such thatdecide(v); returnsV’
anddecide(v'); returnsV' | Vivalue = V'.value; and the
decision value is equal to.value, wherev is the argument of
somedecide operation which was invoked in the run.

4.3 Atomic object emulation using a ran-
ked register

Ultimately, the purpose of forming coordination is to sup-
port data sharing among clients consistently. Many prdsoco

leverage atomic data emulation off of the consensus bgjldin
block we already have. In this section we show how a ranked
register can be usatirectlyto construct an atomic object of an
arbitrary type7T . This yields a one-tier, practical construction.

We start by defining the notion of the object type. An object
type 7 consists of the following: (1) a sét of values; (2)
an initial valuevy € V; (3) a set ofinvocations; (4) a set
of responses; and (5) a functionf : invocations x V. —
responses X V.

The atomic object emulation pseudocode appears in Fig-
ure 2. The operatiosubmit takes as a parameter the invo-
cation to execute, and returns the invocation response. We
assume that each invocatian € invocations can be sub-
mitted at most once throughout the run. We assume that the
chooseRankoutine returns unique and monotonically increas-
ing ranks. The ranked register is used to build a unique invo-
cation order that ensures that the returned responses &re co
sistent with the object typ&.

The protocol employs a data type, calf@tjectStatesvhose
elements are calleabject statesAn object state encapsulates
the current object valug € V, and the set of invocations
which were applied to obtain along with their corresponding
responses. More formall@bjectStatess defined to be a set
of pairsV x {invocations x responses} with selectorsal
andresp. We use the seéRStates = Ranks x ObjectStates
with selectors-ank, state to represent the set of values writ-
ten/read to/from the ranked register.

Let us fixo € ObjectStates and an invocatiom. We de-
fine the following shortcuts to query and modify this com-
ponents: (1) a functionesponse: ObjectStates X invocations
— responses, such thatresponse(o,a) = p iff {(a,p) €
o.resp; (2) apredicatee flects: ObjectStates X invocations
— {true, false} such thatre flects(o,a) = trueiff Ip €
responses : (a,p) € o.response; (3) an operatoupply :
ObjectStates X invocations — ObjectStates, such that
apply(o,a) = o' iff o’.val = v' ando’.resp = o.resp U
{(a, p)}, where(v', p) = f(a, 0.val).

Due to the lack of space we will not give a correctness proof
of the atomic object emulation. Below, we outline the proof
strategy and state the main results. The proof is based on the
same idea as the correctness proof of the agreement imple-
mentation: We consider a chain efwrite invocations start-
ing from the initialrr-write (which commits with(ro, vy, @)
such that eaclr-write in the chain writes the value that it
reads from the preceding-write . We prove that the object
values written by each committed-write in this chain are
consistent with a sequence of object values obtained by-appl
ing operations submitted in the run according to the fumctio
f of type 7. This result directly implies the following:

THEOREM2 (ATOMICITY). The algorithm in Figure 2
emulates an atomic object of tyffe

Finally, the next theorem asserts the liveness:

THEOREM3 (LIVENESS). There exists a numbeéy such
that if a non-faulty processinvoking submit(a) becomes the
exclusive leader and remains to be the exclusive leadertfor a
mostN iterations of the loop in lines 2.3-15, thenbmit(a)
eventually returns.



Shared: A read/write register € ObjectStates; Adapting these approaches to a setting with infinitely many
initially o = {vo,0}; _ processes poses an interesting challenge: Intuitivelgsa-d
aranked registerr with values inkStates , able leader election oracle should be powerful enough t@sol
initialized by rr.rr-write((ro, vo, #)) which commits. Consensus, and at the same time be implementable under some
Local: r € Ranks, initially r = ro; V' € RStates; . .

reasonable system assumptions (e.g., partial synchr@).
Process: even during system stability periods, it is unrealisticequire
a failure detector to output an exclusive leader forevelesm
some bounds are assumed on the maximum number of clients
that can potentially or concurrently contend for becoming a
leader. For example, the probabilistic mutual exclusiampr

submit(a);: tnvocations — responses:
(1) while(true) do

2 wait to become the leader; ~ .
@3) while(is Leader ()) do itive of [12] guarantees eventual emergence of an exclusive
(4) if (reflects(o, a)) leader if the number of concurrently contending processes i
%) returnresponse (o, a); bounded (but unknown). Other examples of such restricting
(6) r 4 chooseRank(r); assumptions can be found in [38]. The exact specification and
8 i‘f/(:erfggcr;(e“;‘i%){e ) implementation of a leader election module is the subject of
) V.state < appl;;/(\/.state a); the ongoing work and is not pursued further here.

(20) V.rank < r;

(11) if (rr.rr-write(V') = commit) then 5. IMPLEMENTING A RANKED REGI-

(12) o < V.state;

(23) ' returnresponse(V.state, a); STER

(14) fi In this section, we deal with the problem of implementing
823 od od a wait-free shared ranked register. First, in Section 54, w

specify how a single ranked register is implemented from a
read-modify-write object. Second, in Section 5.2, we build
a wait-free fault tolerant ranked register from a collectf
fail-prone ones. We complete with a proof of impossibilify o
constructing a ranked register out of finitely many readavri
registers in Section 5.3.

PrROOF Sincei becomes an exclusive leader for the first 51 A single ranked register

time, choose Rank ensures that there exists a numhbethat . .
aftern iterations of the loop in lines 2.3-15, its rankecomes Our shared memory model assumes the existence of atomic

higher than ranks of all other-write invocations in the run. ~ Shared objects such as .read-modify-V\‘/‘riFe Eegisters. By thi
At this point, non-triviality implies thatr-write in line 2.11 we capture the assumption that each “disk” is capable of ac-
must commit. The committed object statedepends on the cepting from clients subroutines with 1/O operations foe-ex

object state value’ returned by the preceding-read : If o’ cution, and indivisibly performing them. The disk itself yna
was derived using, theno’ = o. Otherwises" is obtained become unavailable, and hence, the shared memory objects

by applyinga to o’. Thus, submit(a) returns at the end of it provides may suffer non-responsive crash faults. Fa thi

Figure 2: Emulating an arbitrary atomic object

this iteration so thalV' = n. [J reason, no single read-modify-write object suffices fovsol
ing agreement on its own (as in Herlihy’s consensus hieyarch
4.4  Providing liveness see [27]). Rather, we first use each read-modify-write dbjec

to construct a ranked-register (which may also incur a non-
responsive crash fault), and then, use a collection of nke
registers to construct a non-faulty ranked-register, framch
agreement is built.

Let X = (Ranks x Ranks x Vals) U {(ro, 0, L)} with
selectors'R, wR andwval. The implementation of a ranked

As in the original Paxos protocol, we guarantee liveness
through a separate leader election service module. Theread
election service does not need to be always safe, and may al-
low multiple leaders to exist at times. However, in order to
guarantee progress, it must eventually and for a suffigientl

long time provide an exclusive leader. For many years, the register uses a single read-modify-write shared objeet X

distributed computing community identified various burilgli of unbounded size whose fieldr B holds the maximum rank
blocks that guarantee such progress. The semi-synchronous

. > . . with which arr-read operation has been invoket;w R holds
(likewise the timed-asynchronous) model [14] does this by . : ; . )

. ) ” N the maximum rank with which e-write operation has been
stipulating that the system goes through stability periods . . - ;

. . invoked; andz.val holds the current register value. The im-
which the system is synchronous, and that are long enough | . docode is depicted in Ei .
to elect a leader. The failure-detectors approach indide plementation pseudocode is depicted in Figure 3. For glarit

Co - invocations of read-modify-write operationsww-read and
Chandra and Toueg in [10] formally models the minimal con- rmw-write are enclosed within “lock” and “unlock” state-
ditions that guarantee that (eventually) a unique leaderges ments. to indicate that thev execute indivisibl
using a failure-suspicion oracle or a leader oracle [10, 39] ' y Y-
Chockler et al. [12] provide an explicit construction of a-mu LEMMA 2. The pseudocode in Figure 3 satisfies Safety.
tual exclusion primitive that guarantees probabilisticahe
eventual emergence of unique leader. And randomized al- PROOF That arr-read operation can only return a valid
gorithms introduce randomization steps that probahitiy value that was actually used irawrite operation oro, L)
guarantee that a decision value is converged on by a majority is obvious from the code. Now considerrawrite opera-
(see the survey in [13]). tion W1 = rr-write((r1,v1)); that commits and leR, =



with selectors' R, w R andval
Sharedz € X.
Initially « = (ro, 70, L)

Local: V' € RVals, status € {ack,nack}.
Process:

rre-read(r);:
lock z:
V <« rmw-read(r)
unlock x
returnV’

rr-write((r,v));:
lock x:
status < rmw-write(r, v)
unlock x
if (status = ack)
returncommsit
returnabort

Types: X = (Ranks X Ranks x Vals) U {(ro,70,L)}

Read-modify-write procedures:
rmw-read(r):
if (z.rR <)
z.rR <« r
return(z.wR, z.val)

rmw-write(r, v):
if(c.rR<rANz.wR<T)
TWwWR 7
z.val < v
returnack
returnnack

Figure 3: An implementation of a single ranked register

rr-read(rz);, r2 > 11 be arr-read operation which returns
(r,v). Let mw; denote themw-write() procedure called
from within W, andmy, thermw-read() procedure invoked
within R». Since the read-modify-write semantics mofen-
sures sequential accessy, must be sequenced afterw; .
For otherwisegz.rR > ry > r; so thatnw; returnsnack and
W aborts. ThusR; returns the tuple written by @nw-write
procedurenw’ which is eithermw, or somermw-write pro-
cedure sequenced afterw;. Letr’, v' be the arguments
passed tanw’. Then,r’ > ri, since otherwiseg.wR >
r1 > r' so that the value of remains unchanged. More-
over, by the rank-uniqueness assumptioh,= r; implies
thatmw' = mw,. Therefore,(r,v) = (r',v') and either
(r',v") = (r1,v1), orr’ > r; as needed.

LEMMA 3. The pseudocode in Figure 3 satisfies Non-
Triviality.

PrROOF According to the pseudocode,rewrite opera-
tion W with rank r aborts if thermw-write() procedurew
called withinW returnsnack. This happens ifv seesc.rR >
rorz.wR > r. This is only possible if somemw-write()
procedure with rank’ > r, or armw-read() procedure with
rankr’ > r is sequenced before. This could happen only
as a result of some previously returned or concurremtad
(rr-write ) with rankr’ > r (v’ > r). By the rank-uniqueness
assumption, no twer-write operations are ever invoked with
the same rank. Therefor8/ can abort only due to some pre-
viously returned or concurremt-read or rr-write with rank
r’ > r as needed. [J

LEMMA 4. The pseudocode in Figure 3 satisfies Liveness.

PROOF Liveness trivially holds since bott-read and
rr-write always return something (i.e., the implementation is
wait-free. O

We have proven the following theorem:

THEOREM 4. The pseudocode in Figure 3 is an implemen-
tation of a ranked register.

5.2 A fault-tolerant construction of a ran-
ked register

In this section we present a wait-free implementation of a
ranked register from ranked registers that may experieoce n
responsive crash faults. The register supports an unbdunde
number of clients. Our construction utilizesshared ranked
registers up tg (n — 1) /2| of which can incur non-responsive
crash. The pseudocode appears in Figure 4.

LEMMA 5. The pseudocode in Figure 4 satisfies Safety.

PROOF That arr-read operation can only return a valid
value that was actually used inrawrite operation oro, L)
is obvious from the code. Now considerrawrite opera-
tion W1 = rr-write({r1,v1)); that commits and leR, =
rr-read(r2)j, r2 > 11 be arr-read operation which returns
(r,v). Since bothiW; and R; access at leadi(n + 1)/2]
ranked registers, there exists a single registgraccessed by
both W, and R,. Moreover, the Safety ofr; ensures that
the tuple(r’,v') returned byrry.rr-read(r2); must satisfy
r" > r1. SinceR» returns the tuple with maximum rank,
r > >r;asneeded. [

LEMMA 6. The pseudocode in Figure 4 satisfies Non-
Triviality.

PrROOF According to the protocol, ar-write operation
W = rr-write({r,v)); aborts if there existé such that
rri.re-write((r,v)); aborts. By the Non-Triviality ofrry,
this can happen only if some invocation, .rr-write({r', v'));
(rrg.rr-read(r');) with ' > r occur before or concurrently
to rry.rr-write((r,v));. This can only be the case if some
rr-write OF rr-read operation with rank’ has been completed
before or is concurrent t/. [



Shared: Ranked registers;, 1 < j <n
Local: S1 C RVals, Sz C {commit, abort}.
Process:

rr-read(r);:
51 < @
Invoke in parallel for each < j < n:
S1 = Sy U {rr;.rr-read(r);}
wait until |S1| > [(n + 1)/2]
(ryo) < (e, 0") (e, 0') € S1 AT = maxn yinyes, T
return(r, v)

rr-write((r,v));:
52 < @
Invoke in parallel for eachh < j < n:
Sy < So U {rrj.rr-write((r,v)); }
wait until | S2| > [(n + 1)/2]
if (abort € S2)
returnabort
returncommst

Figure 4: A wait-free construction of the ranked register
out of n ranked registers

LEMMA 7. The pseudocode in Figure 4 satisfies Liveness.

PROOF Eachrr-write or rr-read operation is guaranteed
to terminate since at mo$(n + 1)/2] ranked registers are
required to respond, no more thifm—1) /2] ranked registers
can incur non-responsive crash, and each individual noltyfa
ranked register is wait-free.[]

We have proven the following theorem:

THEOREM 5. The pseudocode in Figure 4 is a wait-free
construction of a ranked register outefanked registers such
that at most (n—1)/2| can incur non-responsive crash faults.

5.3 Impossibility of constructing ranked-

register from read/write registers

We say that two system statesand s’ are indistinguishable

to process, denoteds ~ s, if the state of processand the
values of all shared variables are the sameamds’. We say
that process coversshared variable in system state if i is
about to write one in s.

LEMMA 8. Suppose that there exists an algorithm that im-
plements a ranked register using only shared atomic redatéwr
registers. Lets be a reachable system state in whicls the
highest rank that appears in any operation. Themr-avrite
operationW = rr-write({r',v')); by process withr’ > r
must write some shared variable which is not coveresl in

PROOF Assume in contradiction that no non-covered shared
variable is written by in the course of¥’. We construct a sys-
tem execution which violates the Safety property of the eank
register as follows:

We first run froms each process which covers some shared
variable exactly one step so that they write the sharedblasa
they cover. Let’ be the resulting system state.

Next, we construct an execution fragment starting ins’
and not involvingi by invoking arr-read(r'") operationR at
some procesg # i whose rank-” satisfies” > r’. By the
Liveness and the Safety properties of the ranked regifter,
must return a value written by somewrite operation with
rank at most-.

We now construct another execution fragment which
starts froms as follows: We ruri solo until W commits; since
no higher rank appears ity by the Non-Triviality property
W must indeed commit. By assumption, it writes only shared
variables that are covered in From the resulting state, we
run each process which covers some shared variable exactly
one step so they overwrite everything written dip its solo

run. Lets” be the resulting state. Sineé L &' for all j # i,
we can extendvs by runninga; from s”.

By the Safety property of the ranked register, theead
operationR must return the value written by in this ex-
ecution. However, it returns a value written byrrawrite
operation with rank at most thus violating safety. A con-
tradiction. O

We now set off to prove the lower bound. We use the fol-

In this section we prove that a ranked register cannot be lowing strategy: We first prove using Lemma 9 that with any
implemented using a bounded number of atomic read/write algorithm implementing the ranked register for> 1 pro-
registers (of unbounded size) in the presence of unbounded cesses, it is possible to bring the system to a state where at
number of clients. This proves that stronger types of shared |easty, — 1 shared variables are covered while running only

memory objects (such as the read-modify-write registaes) a
indeed necessary even for our weak ranked-register bgildin
block. The main result of this section is expressed in Theo-

n — 1 processes. In this state we invokerawrite opera-
tion whose rank is higher than the the rank of every operation
invoked so far. Since thisr-write operation must commit

rem 6 beloyv. It ShOW_5_ tha_t any algorithm that implements th_e (Non-Triviality), by Lemma 8, it must write to some shared
ranked register specification in a shared memory system with yariable which has not been covered yet. This implies that an

n processes must use at leastitomic read/write registers.
It then follows that if the number of processes is not bounded
the number of shared read/write registers needed to impieme
the ranked register is also unbounded.

In order to prove this result, we utilize the technique oftf8]

other shared variable is needed in addition torthel covered
ones.

LEMMA 9. Suppose that there exists an algorithm that im-
plements a ranked register for > 1 processes using only

prove lower bounds on the number of atomic registers needed shared atomic read/write registers. Letbe any reachable

to solve mutual exclusion We start with some definitions.

3We believe that this technique is general enough to be ap-

plied for proving lower bounds for many other shared memory
problems in settings with infinitely many processes.

system state. Then foraty 1 < k < n — 1, there exists
a states;, which is reachable froms using steps of processes
1...k only, such that at least distinct variables are covered
in Sk



PROOF The proof is by induction oh.

Basis: kK = 1. Let s be any system state. We first run
processl until it returns from the last operation invoked dn
if any. This must happen due to the Liveness property of the
ranked register. Letbe the resulting system state.

In ¢, we let process invoke arr-write operationtV whose
rank is higher than the ranks of all operations invoked so far
By Non-Triviality, W" must commit. By Lemma 8|7 must
write some shared variable which is not covered in stai&e
then runl until it covers this variable. The resulting state
satisfies the lemma requirements.

Inductive step: Suppose the lemma holdskpwherel <
k < m — 2. Letus prove it fork + 1. Using the induction
hypothesis, we rurk processes from until the statesy, is
reached where at leaktdistinct shared variables are covered.
Starting insg, Starting int, we run procesg + 1 until the last
operation invoked o + 1 returns. This must happen due to
Liveness. Let be the resulting state.

In t we let process + 1 invoke arr-write operation\V’
whose rank is higher than the ranks of all operations invoked
so far. By Non-Triviality, W~ must commit. Moreover, by
Lemma 8,W must write some shared variable which is not
covered ins;. So we runk + 1 until it covers this shared
variable. The resulting statg ., satisfies the lemma require-
ments. [

We are now ready to prove the main theorem:

THEOREM 6. If there exists an algorithm that implements
a ranked register for, > 1 processes, then it must use at least
n shared atomic read/write registers.

PROOF Assume in contradiction that there exists an algo-
rithm which implements a ranked register for> 1 processes
usingn — 1 shared read/write registers.

Let s be the initial system state. Note that there are no cov-
ered variables in. We use the result of Lemma 9 and nus 1
processes from until the states,,—; is reached where the pro-
cesses covet — 1 distinct shared variables. We then invoke a
rr-write operationtV on process whose rank is higher than
the ranks of all operations invoked so far. By Non-Triviglit
W must commit. By Lemma 8 must write some shared
variable which is not covered ig,_;. However, alln — 1
shared variables are coveredsin_;. A contradiction. [

6. CONCLUSION
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