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ABSTRACT
We present an improvement to the Disk Paxos protocol by
Gafni and Lamport which utilizes extended functionality and
flexibility provided byActive Disksand supports unmediated
concurrent data access by an unlimited number of processes.
The solution facilitates coordination by an infinite numberof
clients using finite shared memory. It is based on a collec-
tion of read-modify-write objects with faults, that emulate a
new, reliable shared memory abstraction called aranked regi-
ster. The required read-modify-write objects are readily avail-
able in Active Disks and in Object Storage Device controllers,
making our solution suitable for state-of-the-art StorageArea
Network (SAN) environments.

1. INTRODUCTION
In recent years, advances in hardware technology have made

possible a new approach for storage sharing, in which clients
access disks directly over astorage area network(SAN). In a
SAN, disks are directly attached to high speed networks that
are accessible to clients. The clients access raw disk data,
which is mediated by disk controllers with limited memory
and CPU capabilities. Clients run file system services and
name servers on top of raw I/O. Since clients (or a group of
designated SAN servers) need to coordinate and secure their
accesses to disks, they need to implement distributed access
control and locking for the disks. However, once a client ob-
tains access to a file, it accesses data directly through the SAN,
thus eliminating the slowdown bottleneck at the file system
server. IBM’sStorage Tank[7] is an example of a commer-
cially available SAN system that solves many of the coordi-
nation, sharing and security issues involved with SANs (More
examples are given in Section 2). In this paper, we tackle the�This work was supported in part by the Israeli Ministry of
Science grant #1230-3-01
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issue of scaling the number of clients that are served by a SAN.
As in many other distributed settings, a fundamental en-

abler in this environment for clients to coordinate their actions
is an agreement protocol. It is well known that in order to
solve agreement in a non-blocking manner three phases are
needed [43, 44]. This leads to the usage of the Paxos pro-
tocol [31, 32, 15, 34] and its variants, as is done, e.g., in
Petal [35] and Frangipani [46]. Briefly, the Paxos protocol is a
3-phase commit protocol that uses the 1st phase to determine
a proposition value, the 2nd phase to fix a decision value, and
the 3rd phase to commit to it. The Paxos protocol was recently
adapted for utilization by SAN clients in the Disk Paxos proto-
col [20]. Both the original Paxos protocol and its Disk variant
are geared toward a fixed and known number of clients. In par-
ticular, in Disk Paxos, each client must use a pre-designated
area on disk to write values, and must read the values written
by all other potential clients. Consequently, adding new clients
to the system is a costly operation that involves real-time lock-
ing [20]. Also, the complexity of memory (disk) operations
does not scale with the number of clients.

In contrast, we provide an adaptation of Paxos that supports
infinitely many clients. Our solution builds on a strengthen-
ing of the disk model which is driven by current technological
advances in the storage area. Our use of strong memory ob-
jects is further justified by the impossibility result of Section
5.3, that shows that even in failure-free runs, finite read/write
memory is insufficient for solving agreement among infinitely
many processes1. Hence, to provide a solution which is realis-
tic in practice, we employ stronger memory objects. This ap-
proach is motivated by recent development in controller logic
that enhances the functionality of disks for SAN and provide
for Active Disks, capable of supporting stronger semantics ob-
jects (see, e.g., [22]). In particular, specialized functions that
require specific semantics not normally provided by drives can
be provided by remote functions on Active Disks. Examples
include aread-modify-writeoperation, or an atomiccreatethat
both creates a new file object and updates the corresponding
directory object. Such advanced operations are already used
for optimization of higher-level file systems such as NFS on
NASD [23].

The existence of strong shared memory objects does not ob-1Section 5.3 actually provides a stronger result, proving im-
possibility of constructing a different type of object thana con-
sensus object. By the universality of the consensus object[27],
this a fortiori implies impossibility of constructing agreement.



viate the need for an agreement protocol. Admittedly, if we
had even one reliable disk with read-modify-write operations,
we could leverage coordination off it to solve agreement, as
shown by Herlihy in [27]. However, in a scalable SAN, disks
will frequently become unavailable. Unfortunately, it is im-
possible to use a collection of fail-prone read-modify-write
objects to emulate a reliable one [28]. Hence, our construc-
tion is necessarily more involved. It should be noted that us-
ing a farm of disks also has the benefit of distributing client
accesses among multiple disks in order not to introduce un-
necessary contention. Hence, our solution provides for both
high availability, and for load sharing among disks.

Our solution first breaks the Paxos protocol using an ab-
straction of a shared object called aranked register, which
is driven by a recent deconstruction of Paxos by Boichat et
al. in [6]. Briefly, a ranked register supportsrr-read andrr-write operations that are both parameterized by an inte-
ger (the rank/ballot). The main property of this object is that
a rr-read with rank r1 is guaranteed to “see” any completedrr-write whose rankr2 satisfiesr1 > r2. In order for this
property to be satisfied, some lower rankedrr-write opera-
tions that are invoked after arr-read has returned mustabort.
Armed with this abstract shared object, we show the following
two constructions:

1. We provide a simple implementation of Paxos-like agree-
ment using the abstraction of one reliable shared ranked regi-
ster that supports infinitely many clients. Briefly, in this im-
plementation (see Figure 1) a participating client choosesa
(unique) rank,rr-read ’s the ranked register with it, and then
writes the ranked register either with the value it read (if ex-
ists) or with its own input. If therr-write operation succeeds
(i.e., it does not abort), then the process decides on the written
value. Else, it retries with a higher rank.

2. The reliable shared ranked register abstraction cannot be
supported for an unbounded number of clients using only finite
read/write memory (proof is provided in Section 5.3). Further-
more, no single fail-prone disk with even stronger semantics
object may implement it. Therefore, we provide an implemen-
tation of a ranked register shared among an unbounded number
of clients. The implementation employs a farm of disks, each
of which supports one read-modify-write register, of which
a threshold may experience non-responsive crash faults. The
fault tolerant emulation performs eachrr-read or rr-write op-
eration on a majority of the disks, and takes the maximally
ranked result as the response from an operation. The number
of participating disks required for the emulation is determined
only by the level of desired fault tolerance, and the memory on
each one is constant, regardless of the number of participating
clients.

Our approach is readily implementable is SAN with Active
disks. To this extent, it may serve as an important specification
of the kind of functionality that is desired by SAN clients and
that disk manufacturers may choose to provide.

Additionally, our approach faithfully represents anotherre-
alistic setting, the classic client-server model, with a poten-
tially very large and dynamic set of clients. This is the set-
ting for which scalable systems like the Fleet object repository

[37] were designed. In this setting, a highly available service
is implemented by a replicated set of servers, a threshold of
which may be faulty. Clearly, each server is capable of imple-
menting stronger-semantics objects, e.g., a single sharedran-
ked register, that is accessible by any number of clients. Thus,
our paradigm provides for coordination and information shar-
ing among transient clients through the group of servers. It
does not require servers to interact among themselves, and it
avoids the complexity of failure monitoring and reconfigura-
tion which is manifested, e.g., in group communication mid-
dlewares [41, 11].

2. RELATED WORK
Our work deals with solving the Consensus problem [33],

one of the most fundamental problems in distributed comput-
ing. Consensus is the building block for replication paradigms
such as state machine replication [30, 45], group membership
(see [41, 11] for survey), virtual synchrony [5], atomic broad-
cast [10], total ordering of messages [29, 19], etc. Consen-
sus is known to be unsolvable in most realistic models such as
asynchronous message passing systems [18] and asynchronous
shared memory with read/write registers [36, 27, 16] if evena
single process can fail by crashing. While it is usually straight-
forward to guarantee the consistency of a consensus decision
alone (safety), the difficulty is in guaranteeing progress in face
of uncertainty regarding process failures. The usual approaches
to circumventing Consensus impossibility include strengthen-
ing the basic model by assuming different degrees of syn-
chrony (see e.g., [16, 17, 14]), augmenting the system with
unreliable failure detectors [10], and employing randomiza-
tion (see a survey in [13]). Specifically, our solution uses one
of the most widely deployed implementations of the state ma-
chine replication [30, 45], the Paxos algorithm [31, 32, 15,
34]. At the core of Paxos is a consensus algorithm called
Synod. The Synod protocol deals with the Consensus impossi-
bility by guaranteeing progress only when the system is stable
so that an accurate leader election is possible. This assumption
is equivalent to assuming the
 failure detector of [9] which
was shown in [9] to be the weakest failure detector that can be
used to solve Consensus.

As shown below in Section 5.3 though, when an infinite
number of processes is present, even non-faulty ones, agree-
ment is impossible to achieve using only a finite number of
atomic read/write registers. Not surprisingly, the Paxos pro-
tocol is in fact designed with built-in knowledge of all of the
participants. The focus of our work is on guaranteeing safety
of the consensus decision in the presence of an infinite number
of processes. Other results in this model and a classification
based on levels of simultaneity can be found in [38, 21]. As
for liveness, we can use standard approaches as above to cir-
cumvent impossibility, and we leave it outside the scope of this
work.

Our usage of shared-access SAN disks as shared memory is
greatly influenced by the recent Disk Paxos protocol of Gafni
and Lamport [20]. In Disk Paxos, the protocol state is repli-
cated at network attached disks some of which can crash or
become inaccessible. The participating processes access the
state replicas directly over a SAN. Disk Paxos assumes sim-
ple commodity disks which support only primitive read and
write operations. It supports a bounded and known number of



clients, and uses disk memory proportional to their number.In
contrast, we stipulate Active Disks that are capable of serving
higher semantics objects, which provide us with the strength
needed to guarantee safe decisions in face of an unbounded
number of clients. The amount of memory we utilize per disk
is fixed regardless of the number of participating clients.

The environment model that faithfully reflects our setting is
an asynchronous shared memory system where processes in-
teract by means of a finite collection of shared objects some
of which can be faulty [1, 28]. Similarly, the Consensus pro-
tocol of Disk Paxos, called Disk Synod, is in fact an imple-
mentation of Consensus in an asynchronous shared memory
system with atomic read/write registers which can incur non-
responsive crash failures. It should be noted that in [28], Jayanty,
Chandra and Toueg prove that it is impossible to implement
wait-free Consensus in such an environment if at most one
shared object can stop responding forever. This result holds
regardless of the number, size and type of the shared objects
used by the implementation. Hence, merely by stipulating
stronger disks we would still be unable to circumvent the im-
possibility. Nevertheless, we show that the ranked register is
sufficient for implementing non-fault-tolerant Consensuswith
unbounded number of participants. A remarkable feature of
the ranked register is that it allows for wait-free implemen-
tation in a shared memory system with non-responsive crash
faults and therefore, can be used as a building block for im-
plementing fault-tolerant Disk Paxos with unbounded number
of processes. As before, the way to guarantee progress de-
spite the impossibility result is by augmenting the system with
a leader election primitive which is required to be eventually
accurate in order for the protocol to be live.

Our ranked register abstraction was largely inspired by work
of Boichat et al. [6] on deconstructing the Paxos protocol. This
paper proposes a modular decomposition of Paxos based on
a simple shared memory register calledround-based register.
Intuitively, both the round-based register and the ranked re-
gister encapsulate the notion of Paxosballots2 which are used
by the protocol to ensure value consistency in presence of con-
current updates. While being in line with the general decon-
struction idea of Boichat et al., our ranked register neverthe-
less provides much weaker guarantees and supports a slighter
different interface.

2.1 SAN technology
Our work was motivated by advances in storage technol-

ogy and the SAN paradigm. A storage area network enables
cost-effective bandwidth scaling by allowing the data to be
transferred directly from network attached disks to clients so
that the file server bottleneck is eliminated. The Network At-
tached Secure Disks (NASD) [22] of CMU is perhaps the most
comprehensive joint academy-industry project which laid the
technological foundation of network attached storage systems.
NASD introduced the notion of anobject storage device (OSD)
which is a network attached disk that exports variable length
“objects” instead of fixed size blocks. This move was enabled
by recent advances in the Application Specific Integrated Cir-
cuit (ASIC) technology that allows for integration sophisti-
cated special-purpose functionality into the disk controllers.2Ballots roughly correspond torounds and to ranks in the
round-based and the ranked register respectively.

The NASD project also addresses other aspects of the network
attached disk technology such as file system support [23], se-
curity [24] and network protocols [22].

Active Disks [42, 2] is a logical extension of the OSD con-
cept which allows arbitrary application code to be downloaded
and executed on disks. One of the applications of the active
disks technology is enhancing disk functionality with special-
ized methods, such as atomic read-modify-write, that can be
used for optimization and concurrency control of higher-level
file systems.

Issues concerned with data management in SAN based file
systems, such as synchronization, fault tolerance and security,
are investigated in [7] in the context of IBM Storage Tank
project.

Other work which addresses scalability and performance is-
sues of network storage systems (not necessarily concerned
with network attached disks) include NSIC’s Network-Attached
Storage Device project [40], the Netstation project [25] and the
Swarm Scalable Storage System [26]. Petal [35] is a project to
research highly scalable block-level storage systems. Frangi-
pani [46] is a scalable distributed file system built using Petal.
xFS: Serverless Network File Service [4] attempts to provide
low latency, high bandwidth access to file system data by dis-
tributing the functionality of the server (e.g. cache coherence,
locating data, and servicing disk requests) among the clients.

Concurrency control was identified as one of the critical is-
sues in the network attached storage technology because of
inherent lack of a central point of coordination [3]. The con-
currency control in the Petal [35] virtual disk storage system
and the Frangipani [46] file system is achieved using repli-
cated lock servers which utilize Paxos for consistency. Con-
sequently, Disk Paxos is a natural candidate for enabling lock
management in network attached storage systems. In this pa-
per we show that by enhancing network attached disk func-
tionality with two simple read-modify-write operations, which
are realistic to support with the OSD and Active Disk tech-
nologies, it is possible both to adapt Disk Paxos to support an
unbounded number of clients and to reduce its communication
cost.

3. SYSTEM MODEL
We consider an asynchronous shared memory system con-

sisting of a countable collection of client processes interact-
ing with each other by means of a finite collection of shared
objects. The processes are designated by numbers1; 2; : : : .
Client may fail by stopping (crashing). The implementation
should be wait-free in the sense that the progress of each non-
faulty client should not be prevented by other clients concur-
rently accessing the memory as well as by failures incurred by
other clients.

Operations on memory objects have non-zero duration, com-
mencing with an invocation request and ending with a response.
We assume that the sequence of requests produced by a pro-
cessi is well-formedin the sense thati never initiates a new
request before it has received a response to its previously in-
voked request. The shared memory objects themselves may
fail by crash, i.e., stop responding. As in [28], we call these
non-responsive crash faults.

According to [28], wait-free consensus is impossible in such
a setting. Therefore, similar to the Paxos approach, we over-



come this impossibility by assuming the existence of a sep-
arate leader election oracle. The oracle guarantees the even-
tual emergence of a unique non-faulty leader, though when
this happens in unknown to the clients themselves.

4. PAXOS WITH INFINITELY MANY
PROCESSES

In this section we present the implementation of a Paxos
protocol that supports infinitely many clients. Our protocol
employs a special type of shared memory register, called aran-
ked register, which for now we assume is failure-free. Later,
we show how to implement a fault tolerant ranked register in
our environment.

Intuitively, the ranked register encapsulates the notion of
ballots which are used by the Paxos protocol to ensure value
consistency in presence of concurrent updates. The idea of
modeling the Paxos protocol this way is due to [6]. How-
ever, while the ranked register interface bears similarities to
theround-based registerof [6], its specification is weaker than
that of [6]. The register provides a clean isolation of the essen-
tial properties of Paxos into a well-defined building block,thus
simplifying reasoning about the protocol behavior.

4.1 The ranked register
We first define ranked register as a building block of Paxos.

Let Ranksbe a totally ordered set of ranks with a distinguished
initial rank r0, and Vals be a set of values. We also con-
sider the set of pairs denotedRV als which isRanks�V als
with selectorsrank andvalue. A ranked register is a multi-
reader, multi-writer shared memory register with two opera-
tions: rr-read(r)i by processi, r 2 Ranks, whose corre-
sponding reply isvalue(V )i, whereV 2 RV als[fhr0;?ig.
And rr-write(V )i by processi, V 2 RV als, whose reply is
either 
ommiti or aborti. Note that in contrast to a stan-
dard read/write register interface, bothrr-read and rr-write
operations on a ranked register take a rank as an additional ar-
gument; and itsrr-write operation might abort, whereas thewrite operation on a standard read/write register always com-
mits (i.e., returnsa
k).

In the following discussion we often say that arr-read op-
erationR returnsa valueV meaning that the register responds
with value(V ) in response toR. We also say that arr-write
operationW commits(aborts) if the register responds with
ommit (abort) in response toW .

We will restrict our attention to runs in which invocations ofrr-write on a ranked register use unique ranks. More formally,
we will henceforth assume that all runs satisfy the following:

DEFINITION 1. We say that a run satisfiesrank uniqueness
if for every rankr 2 Ranks, there exists at most onev 2V als and one processi such thatrr-write(hr; vi)i is invoked
in the run.

In practice, rank uniqueness can be easily ensured by choos-
ing ranks based on unique process identifier and a sequence
number. The main reason we use this restriction is to sim-
plify establishing the correspondence between the values writ-
ten with specific ranks and the values returned by therr-read
operation.

We now give a formal specification of the ranked register.
We start by introducing the following definition:

DEFINITION 2. We say that arr-read operationR =rr-read(r2)i seesa rr-write operationW =rr-write(hr1; vi)j if R returnshr0; v0i wherer0 � r1.
The ranked register is required to satisfy the following three
properties:

PROPERTY1 (SAFETY). Everyrr-read operation returns
a value and rank that was written in somerr-write invocation
or hr0;?i. Additionally, letW = rr-write(hr1; vi)i be arr-write operation that commits, and letR = rr-read(r2)j ,
such thatr2 > r1. ThenR seesW .

PROPERTY2 (NON-TRIVIALITY ). If a rr-write opera-
tion W invoked with the rankr1 aborts, then there exists arr-read (rr-write) operation with rankr2 > r1 which returns
beforeW is invoked, or is concurrent toW .

PROPERTY3 (LIVENESS). If an operation (rr-read orrr-write) is invoked by a non-faulty process, then it eventu-
ally returns.

Note that if therr-write operation would not have been al-
lowed to abort sometimes, then it would be impossible to sat-
isfy all the three properties above, since once arr-read opera-
tion with a rankr returns a value written by arr-write opera-
tion with a rankr0 < r, there is no way it could see the value
written by a subsequentrr-write with a rankr0 < r00 < r.

Also note that our ranked register specification is very weak:
In particular, it allows in some situations forrr-write oper-
ation to commit even though there exists another previously
committedrr-write with a higher rank. The reason for that
not being a problem stems from the way the ranked register is
used by the Consensus implementation in Section 4.2. In par-
ticular, each process in our Consensus implementation invokesrr-write only after it invokesrr-read with the same rank and
this rr-read returns. Thus, the ranked register Safety prop-
erty ensures that in every finite execution prefix, each value
written by a committedrr-write must be returned by one of
the rr-read operations with a higher rank if such exist. Con-
sequently, in each run of the Consensus implementation, anyrr-write operation, which is invoked afterrr-readwith a higher
rank has returned, would necessarily abort.

4.2 Agreement using a ranked register
We now outline an agreement protocol which employs a

shared ranked register. This formulation of the agreement pro-
tocol is identical to that of Boichat et al. in [6], and is repeated
here for completeness. However, since the specification of our
ranked register differs significantly from the properties of the
round-based registerof [6], we provide a different and neces-
sary proof of correctness for the protocol employing our ran-
ked register. In particular, we address the correctness in aset-
ting with an unbounded number of clients.

Thedecideroutine depicted in Figure 1 is executed by every
client that tries to form agreement. It takes as arguments an
initial value and a monotonically increasing unique rank value.
It returns the agreement value or aborts. Thedecideroutine
is guaranteed to return an agreement value at the latest when
a non-faulty leader has been elected and allowed to force a
decision.

We now outline the correctness argument of the agreement
algorithm. Due to space limitation, we provide only a sketch
of a proof.



Shared: ranked registerrr, read/write registerde
ision 2 RV als,
initially de
ision = hr0;?i
Local: V 2 RV als
Processi:
ProcedureDECIDE(inp), inp 2 RV als:

if (de
ision 6= hr0;?i)
returnde
ision;V  rr:rr-read(inp:rank)i;

if (V = hr0;?i) thenV:value inp:value;V:rank inp:rank
if (rr:rr-write(V )i = 
ommit) thende
ision V ;

returnde
ision;
else

returnabort;
fi

Figure 1: Paxos using a ranked register

LEMMA 1. For any finite execution�, letW0 =rr:rr-write(hr0; v0i) be the lowest rankedrr-write invoca-
tion which commits in�. Then, in any extension of� in whichW = rr:rr-write(hr; vi), r > r0, is invoked,v = v0.

PROOF. Our proof strategy is to build a chain ofrr-write
’s from W0 to W , such that eachW writes the value that it
reads from the precedingrr-write in the chain. We then show
that the same value is written in all of theserr-write ’s by
induction on the length of such chains.

Indeed, letR = rr:rr-read(r) be therr-read correspond-
ing to W that is executed beforeW is invoked. By safety,R returns the pairhr0; w0i or a higher ranking pairhrk; w0i
that was written in someWk = rr-write(rk; �). Sincerk >r0, again the correspondingrr:rr-read(rk) returnshr0; w0i
or a higher ranked written value. And so on. Eventually,
we obtain a unique chainW0;W1; :::;Wk;W , such that for
each ofW1; ::;Wk;W , the correspondingrr-read returns the
value/rank pair written by the precedingrr-write in the chain.

We now show by induction on the lengthk of the chain thatW writesv0. If k = 0, thenR returnsv0 and by the agreement
protocolW writesv0.

Otherwise, suppose for all chains of length< k it holds that
the lastrr-write writes v0, and consider the chain above of
lengthk. ForWk, the (unique) chain fromW0 isW0;W1; :::;Wk.
By the induction hypothesis,Wk writes v0. Hence, againR
readsv0 and according to the protocol,W writesv0.

The following theorem immediately follows from Lemma 1:

THEOREM 1. The algorithm in Figure 1 guarantees that
for any two processesi andj such thatde
ide(v)i returnsV
andde
ide(v0)j returnsV 0 , V:value = V 0:value; and the
decision value is equal tov:value, wherev is the argument of
somede
ide operation which was invoked in the run.

4.3 Atomic object emulation using a ran-
ked register

Ultimately, the purpose of forming coordination is to sup-
port data sharing among clients consistently. Many protocols

leverage atomic data emulation off of the consensus building
block we already have. In this section we show how a ranked
register can be useddirectly to construct an atomic object of an
arbitrary typeT . This yields a one-tier, practical construction.

We start by defining the notion of the object type. An object
type T consists of the following: (1) a setV of values; (2)
an initial valuev0 2 V ; (3) a set ofinvo
ations ; (4) a set
of responses ; and (5) a functionf : invo
ations � V !responses � V .

The atomic object emulation pseudocode appears in Fig-
ure 2. The operationsubmit takes as a parameter the invo-
cation to execute, and returns the invocation response. We
assume that each invocationa 2 invo
ations can be sub-
mitted at most once throughout the run. We assume that the
chooseRankroutine returns unique and monotonically increas-
ing ranks. The ranked register is used to build a unique invo-
cation order that ensures that the returned responses are con-
sistent with the object typeT .

The protocol employs a data type, calledObjectStates, whose
elements are calledobject states. An object state encapsulates
the current object valuev 2 V , and the set of invocations
which were applied to obtainv along with their corresponding
responses. More formally,ObjectStatesis defined to be a set
of pairsV � finvo
ations � responsesg with selectorsval
andresp. We use the setRStates = Ranks�Obje
tStates
with selectorsrank, state to represent the set of values writ-
ten/read to/from the ranked register.

Let us fix� 2 Obje
tStates and an invocationa. We de-
fine the following shortcuts to query and modify the�’s com-
ponents: (1) a functionresponse: Obje
tStates�invo
ations! responses , such thatresponse(�; a) = � iff ha; �i 2�:resp; (2) a predicaterefle
ts: Obje
tStates�invo
ations! ftrue; falseg such thatrefle
ts(�; a) = true iff 9� 2responses : ha; �i 2 �:response; (3) an operatorapply :Obje
tStates � invo
ations ! Obje
tStates , such thatapply(�;a) = �0 iff �0:val = v0 and�0:resp = �:resp [fha; �ig, wherehv0; �i = f(a; �:val).

Due to the lack of space we will not give a correctness proof
of the atomic object emulation. Below, we outline the proof
strategy and state the main results. The proof is based on the
same idea as the correctness proof of the agreement imple-
mentation: We consider a chain ofrr-write invocations start-
ing from the initialrr-write (which commits withhr0; v0; ;i)
such that eachrr-write in the chain writes the value that it
reads from the precedingrr-write . We prove that the object
values written by each committedrr-write in this chain are
consistent with a sequence of object values obtained by apply-
ing operations submitted in the run according to the functionf of typeT . This result directly implies the following:

THEOREM2 (ATOMICITY ). The algorithm in Figure 2
emulates an atomic object of typeT .

Finally, the next theorem asserts the liveness:

THEOREM3 (LIVENESS). There exists a numberN such
that if a non-faulty processi invokingsubmit(a) becomes the
exclusive leader and remains to be the exclusive leader for at
mostN iterations of the loop in lines 2.3–15, thensubmit(a)
eventually returns.



Shared: A read/write register� 2 Obje
tStates;
initially � = fv0; ;g;
a ranked registerrr with values inRStates
initialized byrr:rr-write(hr0; v0; ;i) which commits.
Local: r 2 Ranks, initially r = r0; V 2 RStates;

Processi:
submit(a)i : invo
ations ! responses :
(1) while(true) do
(2) wait to become the leader;
(3) while(isLeader ()) do
(4) if (re
e
ts(�; a))
(5) returnresponse(�; a);
(6) r 
hooseRank(r);
(7) V  rr:rr-read(r);
(8) if (:re
e
ts(V:state; a))
(9) V:state apply(V:state; a);
(10) V:rank  r;
(11) if (rr:rr-write(V ) = 
ommit) then
(12) �  V:state;
(13) returnresponse(V:state; a);
(14) fi
(15) od
(16) od

Figure 2: Emulating an arbitrary atomic object

PROOF. Sincei becomes an exclusive leader for the first
time, 
hooseRank ensures that there exists a numbern that
aftern iterations of the loop in lines 2.3–15, its rankr becomes
higher than ranks of all otherrr-write invocations in the run.
At this point, non-triviality implies thatrr-write in line 2.11
must commit. The committed object state� depends on the
object state value�0 returned by the precedingrr-read : If �0
was derived usinga, then�0 = �. Otherwise,�0 is obtained
by applyinga to �0. Thus,submit(a) returns at the end of
this iteration so thatN = n.

4.4 Providing liveness
As in the original Paxos protocol, we guarantee liveness

through a separate leader election service module. The leader
election service does not need to be always safe, and may al-
low multiple leaders to exist at times. However, in order to
guarantee progress, it must eventually and for a sufficiently
long time provide an exclusive leader. For many years, the
distributed computing community identified various building
blocks that guarantee such progress. The semi-synchronous
(likewise the timed-asynchronous) model [14] does this by
stipulating that the system goes through stability periodsin
which the system is synchronous, and that are long enough
to elect a leader. The failure-detectors approach initiated by
Chandra and Toueg in [10] formally models the minimal con-
ditions that guarantee that (eventually) a unique leader emerges
using a failure-suspicion oracle or a leader oracle [10, 39].
Chockler et al. [12] provide an explicit construction of a mu-
tual exclusion primitive that guarantees probabilistically the
eventual emergence of unique leader. And randomized al-
gorithms introduce randomization steps that probabilistically
guarantee that a decision value is converged on by a majority
(see the survey in [13]).

Adapting these approaches to a setting with infinitely many
processes poses an interesting challenge: Intuitively, a desir-
able leader election oracle should be powerful enough to solve
Consensus, and at the same time be implementable under some
reasonable system assumptions (e.g., partial synchrony).But
even during system stability periods, it is unrealistic to require
a failure detector to output an exclusive leader forever, unless
some bounds are assumed on the maximum number of clients
that can potentially or concurrently contend for becoming a
leader. For example, the probabilistic mutual exclusion prim-
itive of [12] guarantees eventual emergence of an exclusive
leader if the number of concurrently contending processes is
bounded (but unknown). Other examples of such restricting
assumptions can be found in [38]. The exact specification and
implementation of a leader election module is the subject of
the ongoing work and is not pursued further here.

5. IMPLEMENTING A RANKED REGI-
STER

In this section, we deal with the problem of implementing
a wait-free shared ranked register. First, in Section 5.1, we
specify how a single ranked register is implemented from a
read-modify-write object. Second, in Section 5.2, we build
a wait-free fault tolerant ranked register from a collection of
fail-prone ones. We complete with a proof of impossibility of
constructing a ranked register out of finitely many read/write
registers in Section 5.3.

5.1 A single ranked register
Our shared memory model assumes the existence of atomic

shared objects such as read-modify-write registers. By this,
we capture the assumption that each “disk” is capable of ac-
cepting from clients subroutines with I/O operations for exe-
cution, and indivisibly performing them. The disk itself may
become unavailable, and hence, the shared memory objects
it provides may suffer non-responsive crash faults. For this
reason, no single read-modify-write object suffices for solv-
ing agreement on its own (as in Herlihy’s consensus hierarchy,
see [27]). Rather, we first use each read-modify-write object
to construct a ranked-register (which may also incur a non-
responsive crash fault), and then, use a collection of ranked
registers to construct a non-faulty ranked-register, fromwhich
agreement is built.

LetX = (Ranks�Ranks� V als)[ fhr0; r0;?ig with
selectorsrR, wR andval. The implementation of a ranked
register uses a single read-modify-write shared objectx 2 X
of unbounded size whose fieldx:rR holds the maximum rank
with which arr-read operation has been invoked;x:wR holds
the maximum rank with which arr-write operation has been
invoked; andx:val holds the current register value. The im-
plementation pseudocode is depicted in Figure 3. For clarity,
invocations of read-modify-write operationsrmw-read andrmw-write are enclosed within “lock” and “unlock” state-
ments, to indicate that they execute indivisibly.

LEMMA 2. The pseudocode in Figure 3 satisfies Safety.

PROOF. That arr-read operation can only return a valid
value that was actually used in arr-write operation orhr0;?i
is obvious from the code. Now consider arr-write opera-
tion W1 = rr-write(hr1; v1i)i that commits and letR2 =



Types:X = (Ranks �Ranks� V als) [ fhr0; r0;?ig
with selectorsrR, wR andval
Shared:x 2 X.
Initially x = hr0; r0;?i
Local: V 2 RV als, status 2 fa
k; na
kg.
Processi:rr-read(r)i:

lock x:V  rmw-read(r)
unlock x
returnVrr-write(hr; vi)i :
lock x:status rmw-write(r; v)
unlock x
if (status = a
k)

return
ommit
returnabort

Read-modify-write procedures:rmw-read(r):
if (x:rR < r)x:rR r
returnhx:wR;x:valirmw-write(r; v):
if (x:rR � r ^ x:wR < r)x:wR rx:val v

returna
k
returnna
k

Figure 3: An implementation of a single ranked registerrr-read(r2)j , r2 > r1 be arr-read operation which returnshr; vi. Let mw1 denote thermw-write() procedure called
from withinW1 andmr2 thermw-read() procedure invoked
within R2. Since the read-modify-write semantics ofx en-
sures sequential access,mr2 must be sequenced aftermw1.
For otherwise,x:rR � r2 > r1 so thatmw1 returnsna
k andW1 aborts. Thus,R2 returns the tuple written by armw-write
proceduremw0 which is eithermw1 or somermw-write pro-
cedure sequenced aftermw1. Let r0, v0 be the arguments
passed tomw0. Then,r0 � r1, since otherwise,x:wR �r1 > r0 so that the value ofx remains unchanged. More-
over, by the rank-uniqueness assumption,r0 = r1 implies
thatmw0 = mw1. Therefore,hr; vi = hr0; v0i and eitherhr0; v0i = hr1; v1i, or r0 > r1 as needed.

LEMMA 3. The pseudocode in Figure 3 satisfies Non-
Triviality.

PROOF. According to the pseudocode, arr-write opera-
tion W with rank r aborts if thermw-write() procedurew
called withinW returnsna
k. This happens ifw seesx:rR >r or x:wR � r. This is only possible if somermw-write()
procedure with rankr0 � r, or armw-read() procedure with
rank r0 > r is sequenced beforew. This could happen only
as a result of some previously returned or concurrentrr-read
(rr-write ) with rankr0 > r (r0 � r). By the rank-uniqueness
assumption, no tworr-write operations are ever invoked with
the same rank. Therefore,W can abort only due to some pre-
viously returned or concurrentrr-read or rr-write with rankr0 > r as needed.

LEMMA 4. The pseudocode in Figure 3 satisfies Liveness.

PROOF. Liveness trivially holds since bothrr-read andrr-write always return something (i.e., the implementation is
wait-free).

We have proven the following theorem:

THEOREM 4. The pseudocode in Figure 3 is an implemen-
tation of a ranked register.

5.2 A fault-tolerant construction of a ran-
ked register

In this section we present a wait-free implementation of a
ranked register from ranked registers that may experience non-
responsive crash faults. The register supports an unbounded
number of clients. Our construction utilizesn shared ranked
registers up tob(n�1)=2
 of which can incur non-responsive
crash. The pseudocode appears in Figure 4.

LEMMA 5. The pseudocode in Figure 4 satisfies Safety.

PROOF. That arr-read operation can only return a valid
value that was actually used in arr-write operation orhr0;?i
is obvious from the code. Now consider arr-write opera-
tion W1 = rr-write(hr1; v1i)i that commits and letR2 =rr-read(r2)j , r2 > r1 be arr-read operation which returnshr; vi. Since bothW1 andR2 access at leastd(n + 1)=2e
ranked registers, there exists a single registerrrk accessed by
bothW1 andR2. Moreover, the Safety ofrrk ensures that
the tuplehr0; v0i returned byrrk:rr-read(r2)i must satisfyr0 � r1. SinceR2 returns the tuple with maximum rank,r � r0 � r1 as needed.

LEMMA 6. The pseudocode in Figure 4 satisfies Non-
Triviality.

PROOF. According to the protocol, arr-write operationW = rr-write(hr; vi)i aborts if there existsk such thatrrk:rr-write(hr; vi)i aborts. By the Non-Triviality ofrrk,
this can happen only if some invocationrrk:rr-write(hr0; v0i)j
(rrk:rr-read(r0)j) with r0 > r occur before or concurrently
to rrk:rr-write(hr; vi)i. This can only be the case if somerr-write or rr-read operation with rankr0 has been completed
before or is concurrent toW .



Shared: Ranked registersrrj , 1 � j � n
Local: S1 � RV als, S2 � f
ommit; abortg.
Processi:rr-read(r)i:S1  ;

Invoke in parallel for each1 � j � n:S1  S1 [ frrj :rr-read(r)ig
wait until jS1j � d(n+ 1)=2ehr; vi  hr0; v0i : hr0; v0i 2 S1 ^ r0 = maxhr00 ;v00i2S1r00
returnhr; virr-write(hr; vi)i :S2  ;
Invoke in parallel for each1 � j � n:S2  S2 [ frrj :rr-write(hr; vi)ig
wait until jS2j � d(n+ 1)=2e
if (abort 2 S2)

returnabort
return
ommit

Figure 4: A wait-free construction of the ranked register
out of n ranked registers

LEMMA 7. The pseudocode in Figure 4 satisfies Liveness.

PROOF. Eachrr-write or rr-read operation is guaranteed
to terminate since at mostd(n + 1)=2e ranked registers are
required to respond, no more thanb(n�1)=2
 ranked registers
can incur non-responsive crash, and each individual non-faulty
ranked register is wait-free.

We have proven the following theorem:

THEOREM 5. The pseudocode in Figure 4 is a wait-free
construction of a ranked register out ofn ranked registers such
that at mostb(n�1)=2
 can incur non-responsive crash faults.

5.3 Impossibility of constructing ranked-
register from read/write registers

In this section we prove that a ranked register cannot be
implemented using a bounded number of atomic read/write
registers (of unbounded size) in the presence of unbounded
number of clients. This proves that stronger types of shared
memory objects (such as the read-modify-write registers) are
indeed necessary even for our weak ranked-register building
block. The main result of this section is expressed in Theo-
rem 6 below. It shows that any algorithm that implements the
ranked register specification in a shared memory system withn processes must use at leastn atomic read/write registers.
It then follows that if the number of processes is not bounded,
the number of shared read/write registers needed to implement
the ranked register is also unbounded.

In order to prove this result, we utilize the technique of [8]to
prove lower bounds on the number of atomic registers needed
to solve mutual exclusion3. We start with some definitions.3We believe that this technique is general enough to be ap-
plied for proving lower bounds for many other shared memory
problems in settings with infinitely many processes.

We say that two system statess ands0 are indistinguishable

to processi, denoteds i� s0, if the state of processi and the
values of all shared variables are the same ins ands0. We say
that processi coversshared variablex in system states if i is
about to write onx in s.

LEMMA 8. Suppose that there exists an algorithm that im-
plements a ranked register using only shared atomic read/write
registers. Lets be a reachable system state in whichr is the
highest rank that appears in any operation. Then arr-write
operationW = rr-write(hr0; v0i)i by processi with r0 > r
must write some shared variable which is not covered ins.

PROOF. Assume in contradiction that no non-covered shared
variable is written byi in the course ofW . We construct a sys-
tem execution which violates the Safety property of the ranked
register as follows:

We first run froms each process which covers some shared
variable exactly one step so that they write the shared variables
they cover. Lets0 be the resulting system state.

Next, we construct an execution fragment�1 starting ins0
and not involvingi by invoking arr-read(r00) operationR at
some processj 6= i whose rankr00 satisfiesr00 > r0. By the
Liveness and the Safety properties of the ranked register,R
must return a value written by somerr-write operation with
rank at mostr.

We now construct another execution fragment�2 which
starts froms as follows: We runi solo untilW commits; since
no higher rank appears ins, by the Non-Triviality propertyW must indeed commit. By assumption, it writes only shared
variables that are covered ins. From the resulting state, we
run each process which covers some shared variable exactly
one step so they overwrite everything written byi in its solo

run. Lets00 be the resulting state. Sinces00 j� s0 for all j 6= i,
we can extend�2 by running�1 from s00.

By the Safety property of the ranked register, therr-read
operationR must return the value written byW in this ex-
ecution. However, it returns a value written by arr-write
operation with rank at mostr thus violating safety. A con-
tradiction.

We now set off to prove the lower bound. We use the fol-
lowing strategy: We first prove using Lemma 9 that with any
algorithm implementing the ranked register forn � 1 pro-
cesses, it is possible to bring the system to a state where at
leastn � 1 shared variables are covered while running onlyn � 1 processes. In this state we invoke arr-write opera-
tion whose rank is higher than the the rank of every operation
invoked so far. Since thisrr-write operation must commit
(Non-Triviality), by Lemma 8, it must write to some shared
variable which has not been covered yet. This implies that an-
other shared variable is needed in addition to then�1 covered
ones.

LEMMA 9. Suppose that there exists an algorithm that im-
plements a ranked register forn � 1 processes using only
shared atomic read/write registers. Lets be any reachable
system state. Then for anyk, 1 � k � n � 1, there exists
a statesk which is reachable froms using steps of processes1 : : : k only, such that at leastk distinct variables are covered
in sk.



PROOF. The proof is by induction onk.
Basis: k = 1. Let s be any system state. We first run

process1 until it returns from the last operation invoked on1,
if any. This must happen due to the Liveness property of the
ranked register. Lett be the resulting system state.

In t, we let process1 invoke arr-write operationW whose
rank is higher than the ranks of all operations invoked so far.
By Non-Triviality, W must commit. By Lemma 8,W must
write some shared variable which is not covered in states. We
then run1 until it covers this variable. The resulting states1
satisfies the lemma requirements.

Inductive step: Suppose the lemma holds fork, where1 �k � n � 2. Let us prove it fork + 1. Using the induction
hypothesis, we runk processes froms until the statesk is
reached where at leastk distinct shared variables are covered.
Starting insk, Starting int, we run processk+1 until the last
operation invoked onk + 1 returns. This must happen due to
Liveness. Lett be the resulting state.

In t we let processk + 1 invoke arr-write operationW
whose rank is higher than the ranks of all operations invoked
so far. By Non-Triviality,W must commit. Moreover, by
Lemma 8,W must write some shared variable which is not
covered insk. So we runk + 1 until it covers this shared
variable. The resulting statesk+1 satisfies the lemma require-
ments.

We are now ready to prove the main theorem:

THEOREM 6. If there exists an algorithm that implements
a ranked register forn � 1 processes, then it must use at leastn shared atomic read/write registers.

PROOF. Assume in contradiction that there exists an algo-
rithm which implements a ranked register forn � 1 processes
usingn� 1 shared read/write registers.

Let s be the initial system state. Note that there are no cov-
ered variables ins. We use the result of Lemma 9 and runn�1
processes froms until the statesn�1 is reached where the pro-
cesses covern� 1 distinct shared variables. We then invoke arr-write operationW on processn whose rank is higher than
the ranks of all operations invoked so far. By Non-Triviality,W must commit. By Lemma 8,W must write some shared
variable which is not covered insn�1. However, alln � 1
shared variables are covered insn�1. A contradiction.

6. CONCLUSION
The paper presents a solution for the Consensus problem

with an unbounded number of processes, which is suitable for
state-of-the-art SAN environments. Two hurdles must be over-
come in solving the agreement problem. One is the uncertainly
of failure detection in asynchronous settings; this difficulty has
received overwhelming attention in the distributed computing
community, and is not further pursued here. The other is the
challenge of maintaining a safe decision with finite memory
when an unbounded number of processes exist. The solution
we give is to use stronger type of memory objects in order to
emulate a shared memory abstraction of a reliable ranked re-
gister. The required memory objects are readily available in
Active Disks and in NASD [22] controllers, and should serve
as a reference to the kind of disk functionality that is useful
for file system implementors. They can also be naturally sup-
ported in the most common client-server settings. The result-
ing construction is modular and memory efficient.
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