
Distrib. Comput. (2008) 21:55–84
DOI 10.1007/s00446-008-0056-2

Consensus and collision detectors in radio networks

Gregory Chockler · Murat Demirbas · Seth Gilbert ·
Nancy Lynch · Calvin Newport · Tina Nolte

Received: 29 September 2006 / Accepted: 21 February 2008 / Published online: 11 March 2008
© Springer-Verlag 2008

Abstract We consider the fault-tolerant consensus problem
in radio networks with crash-prone nodes. Specifically, we
develop lower bounds and matching upper bounds for this
problem in single-hop radios networks, where all nodes are
located within broadcast range of each other. In a novel break
from existing work, we introduce a collision-prone commu-
nication model in which each node may lose an arbitrary sub-
set of the messages sent by its neighbors during each round.
This model is motivated by behavior observed in empirical
studies of these networks. To cope with this communication
unreliability we augment nodes with receiver-side collision
detectors and present a new classification of these detectors

This work is supported by MURI–AFOSR SA2796PO 1-0000243658,
USAF–AFRL #FA9550-04-1-0121, NSF Grant CCR-0121277,
NSF-Texas Engineering Experiment Station Grant XS64961-CS, and
DARPA F33615-01-C-1896.

G. Chockler
IBM Haifa Research Laboratory, Mount Carmel,
31905 Haifa, Israel
e-mail: chockler@il.ibm.com

M. Demirbas
CSE, University at Buffalo, SUNY, Buffalo, NY 14260, USA
e-mail: demirbas@cse.buffalo.edu

S. Gilbert
EPFL IC, Lausanne, Switzerland
e-mail: seth.gilbert@epfl.ch

N. Lynch · C. Newport (B) · T. Nolte
CSAIL, MIT, Office 32-G670, The Stata Center, 32 Vassar Street,
Cambridge, MA 02139, USA
e-mail: cnewport@mit.edu

N. Lynch
e-mail: nlynch@mit.edu

T. Nolte
e-mail: tnolte@mit.edu

in terms of accuracy and completeness. This classification is
motivated by practical realities and allows us to determine,
roughly speaking, how much collision detection capability is
enough to solve the consensus problem efficiently in this set-
ting. We consider nine different combinations of complete-
ness and accuracy properties in total, determining for each
whether consensus is solvable, and, if it is, a lower bound on
the number of rounds required. Furthermore, we distinguish
anonymous and non-anonymous protocols—where “anony-
mous” implies that devices do not have unique identifiers—
determining what effect (if any) this extra information has
on the complexity of the problem. In all relevant cases, we
provide matching upper bounds.

Keywords Wireless ad hoc networks · Consensus ·
Collision detectors · Fault-tolerance

1 Introduction

As wireless technology continues to improve and miniatur-
ize, we observe an increasing interest in large-scale, widely-
deployed radio networks. Many services and applications in
these environments (e.g., TDMA scheduling, remote man-
agement and re-programming of sensors, temperature and
climate control, and assembly line monitoring) require
wireless devices to coordinate their actions in the face of
failures resulting from hardware malfunction, physical dam-
age, battery depletion, or enforced hibernation. Fault-tolerant
agreement, that is, consensus, is an essential building block
for these applications as it facilitates consistent distributed
behavior.

In this paper, we study the fault-tolerant consensus prob-
lem in radio networks with crash-prone devices. We focus on
solving consensus in single-hop networks where the devices

123

56 G. Chockler et al.

are located within communication range of each other and are
sufficiently synchronized to operate in a synchronous (i.e.,
round by round) manner. Radio networks introduce several
challenges not found in typical distributed systems.

First, communication in wireless networks is unreliable:
collisions, wireless interference, and other electromagnetic
anomalies may cause significant message disruption. Second,
the deployment of devices cannot be carefully controlled, so
the number of deployed devices (and, perhaps, the density of
the deployment) is a priori unknown. Moreover, the devices
may be “anonymous,” meaning that they have no unique iden-
tifiers.

To cope with undetectable message loss, we augment
the devices with collision detectors. Collision detectors mon-
itor the broadcast medium and attempt to deliver notifications
when message loss is detected. They do not provide any infor-
mation with respect to the number of lost messages or the
identities of their senders. Moreover, there is no guarantee
that a device performing a transmission can detect collisions
(unlike, for example, Ethernet networks [29]).

In a novel break from prior work, we consider collision
detectors that may be unreliable. Inspired by [6], we classify
collision detectors according to their completeness, the abil-
ity to detect collisions, and accuracy, the ability to report only
real collisions (no false positives). For each collision-detector
class that we introduce, we show how to solve consensus and
provide matching lower bounds.

We consider two accuracy properties: permanent
accuracy and eventual accuracy. While permanently accurate
collision detectors are more powerful, eventually accurate
collision detectors are more realistic, as they result in algo-
rithms that are robust in the face of false positives (caused,
perhaps, by electromagnetic noise and broadcasts by nearby
devices). The latter is particularly important for multi-hop
algorithms in which neighboring regions might interfere with
local collision detection.

Since most current collision detector implementations
can occasionally miss a collision, we also consider several
ways of weakening the assumption of completeness. In par-
ticular, we consider: (1) a majority complete collision detec-
tor that guarantees to detect a collision only if half or more
of the messages sent in a round are not received, (2) a half
complete collision detector that guarantees to detect a colli-
sion only if more than half of the messages sent in a round
are not received, and (3) a 0-complete collision detector that
guarantees to detect a collision only if all the messages sent
in a round are lost. Not all of these classes are meant to cor-
respond to specific hardware devices. They are used, instead,
to probe the exact completeness threshold at which the com-
plexity of agreement changes. For example, the difference
between the majority and half complete properties is small.
We show, however, that moving from one to the other intro-
duces a significant increase in complexity.

We consider the eight collision detector classes obtained
by combining these completeness and accuracy properties.
We also consider the possibility of no collision detector. We
analyze the computational power of each of these classes
in the context of two other relevant network parameters:
eventual stabilization of message loss behavior, and the pres-
ence/absence of unique identifiers. We consider (1) the abil-
ity to solve consensus, (2) the solution complexity, and (3)
the robustness to message loss. Our results provide separa-
tion among many of these classes in terms of the parameters
above (Fig. 1).

An important contribution of our analysis is in providing
feedback to hardware/firmware designers with respect to the
requirements for collision detectors. In fact, one of the main
questions motivating this research is the question of how reli-
able a collision detector is really needed in a radio network.
While there recently has been significant progress in imple-
menting collision detection [13,32,38], there has been little
formal analysis of the minimal requirements. We show that
reasonable and readily implementable collision detectors are
sufficient.

1.1 Network model overview

In Sects. 4, 5, and 6 we formally define our model. This model
captures a single-hop radio network in which all nodes are
within broadcast range of each other. (Note, the focus on a
single hop is common practice when studying coordination
problems in a wireless setting; cf., [12,25]).

Because we are interested in ad hoc deployments, we
assume that the number of devices participating in the net-
work is a priori unknown. We consider both devices with
and without unique identifiers. We call the former “non-
anonymous” and the latter “anonymous.” Indeed, one of the
questions we address in this study is the power gained by
having reliable identification.

Algorithms proceed in synchronized rounds. We note
that in real radio systems, the length of a communication
round might be long relative to the time required to transmit
a single packet. (Tuning a round to the exact time required
to transmit, though often assumed in theory, is impractical in
real world deployments. Clock drift and dynamic link layers
make such precision difficult to achieve.) This allows for the
possibility of multiple messages being received in a single
round. Our model is the first, that we know of, to capture this
empirically-inspired potential complexity.

Any subset of the messages sent during a given round
can be lost at any receiver (with the trivial exception that
senders always receive their own messages). To mitigate this
loss we introduce (potentially unreliable) collision detectors.
As mentioned, we describe these detectors in terms of com-
pleteness and accuracy. A goal of this study is to determine,
roughly speaking, how much collision information is enough

123

Consensus and collision detectors in radio networks 57

to solve consensus. To allow progress, we consider networks
that satisfy an eventual collision freedom property that states
that, eventually, if only a single device transmits, all devices
receive the message. This is a strict generalization of the
broadcast behavior assumed in most studies of this setting.
(These prior studies maintain that if a single device transmits
its message is always received. We note that unexpected inter-
ference might make this property hard to maintain in every
round.)

Finally, we also introduce a service which we call a
contention manager. This service encapsulates the task of
reducing contention on the broadcast channel. In each round,
the manager suggests that each device either be active or
passive. Informally, the former is meant to indicate that a
device can try to broadcast in the upcoming round, and the
latter indicates that a device should be silent. Most reasonable
contention managers should eventually stabilize on only a
small number of devices (e.g., 1) being labeled as active, thus
allowing, in executions satisfying eventual collision freedom,
for messages to be delivered without collision.

The contention manager captures the challenge of dis-
tributed medium access control. This problem is well-studied
in practice [4,7,18,19,21,29,33]. Our goal is to separate the
complexity of reducing contention from the complexity of
solving specific coordination problems such as consensus.
Accordingly, our termination bounds are given relative to
the stabilization point of the contention manager.

1.2 Upper bounds overview

In Sects. 7 and 8, we describe our consensus algorithms.
Algorithm 1 assumes a majority complete collision

detector (which reports a collision if the process did not
receive at least a majority of the messages transmitted). It
solves consensus in a constant number of rounds after the
eventual collision freedom property holds and the contention
manager has stabilized. The algorithm proceeds in round
pairs. In the first round of the pair, active processes propose
a decision value. In the second round, processes that failed
to receive a proposal transmit a veto. The collision detector
ensures that if a veto is sent, then all processes will either
receive this veto or a collision notification and, therefore,
know not to decide. The detector also prevents partitions in
the proposal phase. If two processes receive two different
proposals, the detector notifies them of their loss.

Algorithm 2 weakens the collision detector to satisfy
only 0-completeness (which guarantees to report a colli-
sion only if all messages are lost). It terminates in O(lg |V |)
rounds, where V is the set of potential decision values. This
algorithm also uses a propose/veto structure. The difference,
however, is that the propose phase has expanded to include
one round for each bit in the proposal. The single-round pro-
posal of Algorithm 1 cannot work in this setting, as the weak

guarantees of a 0-complete detector might allow processes
to partition without knowing it.

Algorithm 3 weakens the network model so that it no
longer guarantees any message delivery, even if only a sin-
gle process is transmitting. Processes are left to communi-
cate, in the worst case, through collision notifications. Using
these binary semaphores, processes walk through a search
tree of decision values trying to identify a valid initial value
to decide. The algorithm terminates in O(f lg |V |) rounds,
where f is the total number of failures. (A failed process can
cause the processes to start over at the top of the tree.)

The first two algorithms assume only eventual accuracy.
That is, eventually the collision detectors stop reporting false
positives. The third algorithm requires permanent accuracy.
All three algorithms are anonymous. For the sake of com-
pleteness, we address, in Sect. 8.3, the non-anonymous set-
ting in which the space of possible IDs is smaller than the
space of decision values (a rare case). We sketch an algo-
rithm that runs leader election on the IDs, and terminates in
O(lg |I |) rounds, where I is the ID space.

1.3 Lower bounds overview

In Sect. 9 we prove lower bounds.
We start with Theorem 4 which shows consensus to be

impossible without collision detection. The proof employs
a partitioning argument. It follows directly, in Theorem 5,
that consensus is also impossible with a detector that never
guarantees accuracy. (Permanent false positives render the
detector useless.)

In Theorem 6, we show that an anonymous consensus
solution using a detector that is no better than half-complete
requires Ω(lg |V |) rounds. This proves Algorithm 2 tight.
The proof uses a counting argument to show that there exist
two initial values that generate the same sequence of trans-
missions for the first lg |V | rounds. During these rounds,
the simultaneous communication can prevent two partitions,
each starting with one of these two initial values, from learn-
ing about the other—delaying decision. In Theorem 7, we
extend the argument to non-anonymous algorithms and refine

the bound toΩ
(

min
{

lg |V |, lg |I |n
})

, showing the algorithm

described in Sect. 8.3 to be (close to) tight. 1

In Theorem 8, we show consensus to be impossible in
an environment with eventual accuracy and no eventual col-
lision freedom guarantee. This result proves Algorithm 3’s
requirement of an accurate detector to be optimal. The proof
argues that in a setting where no messages are delivered, false
collision notifications can be arranged to communicate any
arbitrary value (violating validity).

1 The described algorithm runs in lg |I | not lg |I |n rounds.

123

58 G. Chockler et al.

Algorithm 1: Solving consensus with ECF and a collision detector from maj-♦AC.

1 Process Pi :
2 estimatei ∈ V, initially set to the initial value of process Pi
3 phasei ∈ {proposal, veto}, initially proposal
4 For each round r , r ≥ 1 do:
5 if (phasei = proposal) then
6 if CM()i = active then
7 bcast(estimatei)i
8 messagesi ← SET(recv()i)

9 CD-advicei ← CD()i
10 if (CD-advicei �= ±) and (|messagesi | > 0) then
11 estimatei ←min{messagesi }
12 phasei ← veto
13 else if (phasei = veto) then
14 if (CD-advicei = ±) or (|messagesi | > 1) then
15 bcast(veto)i
16 veto-messagesi ← recv()i
17 CD-advicei ← CD()i
18 if (veto-messagesi = ∅) and (CD-advicei = null) and (|messagesi | = 1) then
19 decide(estimatei)i
20 phasei ← proposal
21

Algorithm 2: Solving consensus with ECF and a 0-♦AC collision detector.

1 Process Pi :
2 estimatei ∈ V 0,1, initially set to a binary rep. of Pi

′s initial value
3 phasei ∈ {prepare, propose, accept}, initially prepare
4 size← �lg |V |�
5 For each round r , r ≥ 1 do:
6 if (phasei = prepare) then
7 if CM()i = active then
8 bcast(estimatei)i
9 messagesi ← SET(recv()i)

10 CD-advicei ← CD()i
11 if (CD-advicei �= ±) and (|messagesi | > 0) then
12 estimatei ←min{messagesi }
13 decidei ← true
14 biti ← 1
15 phasei ← propose
16 else if (phasei = propose) then
17 if (estimatei [biti] = 1) then
18 bcast(veto)i
19 votesi ← recv()i
20 CD-advicei ← CD()i
21 if ((|votesi | > 0) or (CD-advicei = ±)) and (estimatei [biti] = 0) then
22 decidei ← false
23 biti ← biti + 1
24 if (biti > size) then
25 phasei ← accept
26 else if (phasei = accept) then
27 if (not decidei) then
28 bcast(veto)i
29 veto-messagesi ← recv()i
30 CD-advicei ← CD()i
31 if (|veto-messagesi | = 0) and (CD-advicei �= ±) then
32 decide(estimatei)i
33 phasei ← prepare

123

Consensus and collision detectors in radio networks 59

Algorithm 3: Solving consensus with a 0-AC collision detector but without ECF.

1 Process Pi :
2 estimatei ∈ V, initially set to the initial value of process Pi
3 phasei ∈ {vote-val, vote-left, vote-right, recurse}, initially vote-val
4 curri , A node pointer, initially set to the root of a balanced binary search tree representation of V
5 For each round r , r ≥ 1 do:
6 if (phasei = vote-val) then
7 if (estimatei = val[curri]) then
8 bcast(‘vote′)i
9 msgs(1)i ← recv()i

10 CD(1)i ← CD()i
11 phasei ← vote-left
12 else if (phasei = vote-left) then
13 if (estimatei ∈ left[curri]) then
14 bcast(‘vote′)i
15 msgs(2)i ← recv()i
16 CD(2)i ← CD()i
17 phasei ← vote-right
18 else if (phasei = vote-right) then
19 if (estimatei ∈ right[curri]) then
20 bcast(‘vote′)i
21 msgs(3)i ← recv()i
22 CD(3)i ← CD()i
23 phasei ← recurse
24 else if (phasei = recurse) then
25 if (|msgs(1)i | > 0) or (CD(1)i = ±) then
26 decide(val[curri])i
27 else if (|msgs(2)i | > 0) or (CD(2)i = ±) then
28 curri ← left[curri]
29 else if ((|msgs(3)| > 0) or (CD(3)i = ±)) then
30 curri ← right[curri]
31 else
32 curri ← parent[curri]
33 phasei ← vote-val
34

Finally, in Theorem 9, we show that consensus with an
accurate detector and no eventual collision freedom requires
Ω(lg |V |) rounds. This proves Algorithm 3 tight. The proof
(sketch) notes that collision notifications are the only means
of communication if messages are never guaranteed to be
delivered. A notification leaks only one bit of information.
To spell out a decision value, therefore, requires one round
for each bit (Fig. 1).

2 Related work

Local radio broadcast is inherently unreliable due to the pos-
sibility of message collisions. Many solutions have been pro-
posed to mitigate some of this uncertainty. For example, the
most widely-used MAC layers in wireless ad hoc networks
make use of physical carrier sensing and exponential backoff
to help reduce contention on the channel; cf. [1,32,36,39].
For unicast communication with a known recipient virtual
carrier sensing (the use of clear to send and ready to send
control messages) can be used to help eliminate the well-
known hidden terminal problem and exposed terminal prob-
lem (see [5] for a more extensive discussion of these common
problems and how virtual carrier sensing attempts to solve

them). Similarly, in these situations where the recipients are
known, link-layer acknowledgments can be used to help the
sender verify the success or failure of its transmission and
potentially trigger re-transmissions as needed.

In many cases, however, the recipients are unknown,
rendering virtual carrier sensing and link-layer acknowledg-
ments unusable. In practical multicast communication,
though physical carrier sensing goes a long way toward reduc-
ing message loss on the wireless medium, it does not elim-
inate it. To verify this reality, consider empirical studies of
ad hoc networks, such as [17,24,37,40], which show that
even with sophisticated collision avoidance mechanisms
(e.g., 802.11 [1], B-MAC [32], S-MAC [39], and T-MAC
[36]), and even assuming low traffic loads, the fraction of
messages being lost can be as high as 20–50%. Accordingly,
algorithm design for these networks must take into account
the expectation of lost messages.

2.1 Practical implementations of collision detectors
and contention managers

Collision detectors Initial experiments with collision detec-
tor implementations have shown that simple detection

123

60 G. Chockler et al.

Fig. 1 Summary of results for
each combination of collision
detector property and collision
freedom assumption. Each cell
includes a tight running time
and pointers to the sections
containing the corresponding
upper and lower bounds. When
not otherwise specified, a bound
is assumed to hold for both the
anonymous and non-anonymous
case. The value V represents the
size of the consensus value
space, I the size of the ID space,
and f the bound on the number
of failures

schemes can achieve zero completeness in 100% of rounds,
and majority completeness in over 90% of rounds. We are
confident that with further refinement the majority complete-
ness property can be satisfied in much closer to 100% of
rounds. Our approach, which is admittedly rudimentary,
relies on a combination of carrier sensing and failed CRC
checks to indicate interference. (See [9] for a more detailed
discussion) More experienced electrical engineers could,
undoubtedly, produce significantly better heuristics for
detecting this behavior. Indeed, in a study by Deng et al. [13],
it is suggested that there currently exists no technical obsta-
cle to adding carrier-sensing based collision detection sup-
port to the current 802.11 protocol. Even better results can be
obtained if we consider hardware modifications. The use of
a separate busy-tone channel [20], for example, would make
zero complete detection trivial.

Contention managers In our simulation and testbed imple-
mentations of the consensus algorithms that follow (Sect. 8),
we relied on a simple contention manager driven by ran-
dom coin-flips. Specifically, all contention managers initially
return active. If contention is detected on the channel, the
contention manager switches to passive with probability
0.5. If silence is detected on the channel, a manager switches
from passive to active with the same probability. In
our experiments, this simple approach consistently yielded

stabilization (collision free broadcast) in approximately lg n
rounds [10].

Beyond our simple implementation, the general prob-
lem of contention on a multiple access channel has been
well-studied. Starting with early work on protocols such
as Aloha [2] and the binary exponential backoff used in
Ethernet [29], the development and analysis of contention
management on a shared channel has enjoyed considerable
attention; cf., [4,7,15,18,19,21,22,29,30,33]. More recently,
for example, Jurdzinski and Stachowiak [22] prove aΩ((log n
log (1/ε))/(log log n+ log log (1/ε)) round lower bound on
isolating a single process in a single-hop radio network with
uniform algorithms, known n, and a global round counter.
(A bound of Ω(n log n) exists for unknown n and local round
counters.) Farach-Colton et al. [15] tighten the lower bound
to Ω(log n log (1/ε)) rounds, which matches an upper bound
provided in [22]. It remains open how these bounds would
change in our model of variable-strength receiver collision
detection.

2.2 Consensus in wireless networks

There has been extensive prior work focused on fault-tolerant
consensus in synchronous [28], partially synchronous [14],
asynchronous with failure detectors [27,6] and fully
asynchronous [16] message passing systems with reliable or

123

Consensus and collision detectors in radio networks 61

eventually reliable point-to-point channels. In particular, to
tolerate message loss the work of [14,27] assumes an even-
tually connected majority component and an a priori known
number of participants. Both of these assumptions are
unavailable in the wireless ad hoc environments we consider.

Santoro and Widmayer [34,35] study consensus in the
presence of unreliable communication, and show that con-
sensus is impossible if as few as (n−1) of the n2 possible
messages sent in a round can be lost. In this study, we circum-
vent this impossibility result with both our collision detectors
and contention managers; which can be used in executions
that satisfy eventual collision freedom to provide eventual
message reliability. Also, algorithms in [35] are not applica-
ble in our setting because they rely on a priori knowledge
of the number of participants, and they do not tolerate node
failures.

In [26], Kumar presents a quorum-based solution that
solves fault-tolerant consensus among subsets of nodes in
a multi-hop wireless sensor network. The model, however,
differs from ours in that it requires nodes to have signifi-
cant advance knowledge of the network topology, and fail-
ure behavior is constrained to maintain specific redundancy
guarantees.

Aspnes et al. [3] present a solution for consensus in wire-
less networks with anonymous but reliable nodes, and reli-
able communication. Although anonymity is not a primary
focus of our paper, most of our algorithms are, in fact, anony-
mous as they do not use node identifiers. In addition, our algo-
rithms work under more realistic environment assumptions
as they tolerate unreliable communication and node crashes.

Koo [23] presents an (almost) tight lower bound for the
maximum fraction of Byzantine neighbors that still allows
atomic broadcast to be solved in radio networks where each
node adheres to a pre-defined transmission schedule. We
do not consider Byzantine failures and, unlike Koo, we do
assume unreliable broadcast.

We presented the justification and main properties of
our model in [8]. Many of the algorithms and lower bounds
examined in this study were first described in [11]. And,
in [9], we discussed how to implement the elements of our
model in practice.

3 Preliminaries

The following supplementary definitions aid the description
of our model, upper bounds, and lower bounds.

• Given two multisets M1 and M2, M1 ⊆ M2 indicates that
for all m ∈ M1: m ∈ M2 and m does not appear in M1

more times than it appears in M2.

• Given two multisets M1 and M2, M1
⋃

M2 indicates the
multiset union of M1 and M2 in which any element m ∈
M1 (resp. m ∈ M2) appears the total number of times that
m appears in M1 and M2.

• We say a multiset M is finite if it is described by only a
finite number of (value, number) pairs.

• For a finite multiset M , described by a sequence of (value,
number) pairs, we use |M | to indicate the sum of the num-
ber components of these pairs, that is, the total number
of instances of all values in M .

• For a finite set of values V , we use Multi(V) to indicate
the set of all possible finite multisets defined over V .

• For a finite set S, we use M S(S) to indicate the multiset
containing one of each element in S.

• For a finite multiset M , we use the notation SET (M) to
indicate the set containing every value that appears in M .

4 The system model

We model a synchronous single-hop broadcast network with
non-uniform message loss, contention management, and col-
lision detection. Formally, we define I to be the finite set of
all possible process indices, and M to be a fixed message
alphabet. We then provide the following definitions:

Definition 1 (Process) A process is some automaton A
consisting of the following five components:

1. statesA, a potentially infinite set of states.
2. startA, a non-empty subset of statesA known as the start

states.
3. f ailA, a single state from statesA known as the fail state.
4. msgA, a message generation function that maps

statesA × {active, passive} → M
⋃
{null}

where M is our fixed message alphabet and null is a
placeholder indicating no message. We assume:

msgA(f ailA, ∗) = null

5. transA, a state transition function mapping

statesA × Multi(M)× {±, null}
×{active, passive} → statesA

where Multi(M) is the set of all possible finite multisets
defined over M . We assume:

transA(f ailA, ∗, ∗, ∗) = f ailA

123

62 G. Chockler et al.

In this definition, {±, null} represent the possible inputs from
the collision detector, and {active, passive} the possible
advice from the contention manager. The f ailA state models
crash failures.

Definition 2 (Algorithm) An algorithm is a mapping from
I to processes.

An algorithm specifies which process runs on each node.
Notice, an algorithm A can encode i in the state of each
automaton A(i). This models unique IDs. For settings in
which we desire no unique IDs, we use the following defin-
ition:

Definition 3 (Anonymous) An algorithm A is anonymous
if and only if: ∀i, j ∈ I , A(i) = A(j).

Next, we define a P-transmission trace, defined over a non-
empty subset P of I . It describes, at each round of an execu-
tion involving processes in P , how many processes broadcast
a message (notated ci) and the number of messages received
at each process (notated Ti).

Definition 4 (P-transmission trace) A P-transmission
trace, where P is a non-empty subset of I , is an infinite
sequence of ordered pairs (c1, T1), (c2, T2), ... where each
ci is a natural number less than or equal to |P|, and each Ti

is a mapping from P to {0, ..., ci }.
P-CD trace describes what collision detector advice each
process receives in each round.

Definition 5 (P-CD trace) A P-CD trace, where P is a non-
empty subset of I , is an infinite sequence of mappings, C D1,
C D2, ... where each C Di maps from P to {±, null}.
We can now formally define a collision detector, for a given
set P of indices, as a function from P-transmission traces to a
set of P-CD traces. That is, given a description of how many
messages are sent in each round, and how many messages
each process receives in each round, the collision detector
describes which sequences of collision detector advice are
valid. Notice, this definition prevents the collision detector
from making use of the identity of the senders or the contents
of the messages.

Definition 6 (P-Collision detector) A P-collision detector,
where P is a non-empty subset of I , is a function from P-
transmission traces to non-empty sets of P-CD traces.

To define a contention manager, we first define, as we did for
the collision detector, the relevant type of trace. Here, this
is a P-CM trace which simply describes which contention
manager advice (either active or passive) is returned to
each process during each round.

Definition 7 (P-CM trace) A P-CM trace, where P is a
non-empty subset of I , is an infinite sequence of mappings,
C M1, C M2, ... where each C Mi maps from P to {active,
passive}.
We can now formally define a contention manager, for a set
P ⊆ I , as a function from some set A ⊆ P to a set of P-CM
traces. A can be, for example, the correct processes in the
system (those which never enter the f ail state), allowing for
manager definitions that stabilize to only correct process(es)
being active.

Definition 8 (P-Contention manager) A P-contention
manager, where P is a non-empty subset of I , is a function
from each subset of P to a non-empty set of P-CM traces.

Next we define an environment, which describes a group of
process indices, a collision detector, and a contention man-
ager. Roughly speaking, an environment describes the plat-
form on which we can run an algorithm.

Definition 9 (Environment) An environment in our model
consists of:

• P , a non-empty subset of I ,
• a P-collision detector, and
• a P-contention manager.

For a given environment E , we use the notation E .P to indi-
cate the set of process indices described by E , E .C D to
indicate the collision detector described by E , and E .C M to
indicate the contention manager described by E .

Finally, we define a system, which is the combination of
an environment with a specific algorithm. Because an envi-
ronment describes a set of process indices, and an algorithm
is a mapping from process indices to processes, a system
describes a set of specific processes and the collision detec-
tor and contention manager that they have access to. Notice,
because we can combine any algorithm with any environ-
ment, the processes described by a system will have no a
priori knowledge of the number of other processes also in
the system (beyond, of course, the loose upper bound |I | on
the ID space).

Definition 10 (System) A system in our model is a pair
(E,A), consisting of an environment E , and an algorithm A.

4.1 Executions and indistinguishability

An execution α of a system (E,A), is an infinite sequence
C0, M1, N1, D1, W1, C1, M2, N2, D2, W2, C2, ...

where Cr describes the process states in round r , Mr the
sent messages in r , Nr the received messages in r , and Dr

123

Consensus and collision detectors in radio networks 63

and Wr the collision detector and contention manager advice,
respectively, in r , along with the appropriate well-formedness
criteria. (See Definition 19 in Appendix A for the formal
definition.)

That is, we assume the states evolve according to the
transition function for A and the message receive behavior
upholds integrity and no-duplication. A process that trans-
mits in r receives its own message in r . Loss at other processes
is unconstrained (i.e., in a given round, any process can
fail to receive any arbitrary subset of messages transmitted
by other processes). We assume that the collision detector
and contention manager advice is consistent with the def-
initions of the detector and manager described by E . That
is, the collision advice is consistent with one of the E .P-CD
traces returned by passing E .C D the E .P-transmission trace
described by α, and the contention advice is consistent with
one the E .P-CM traces, returned by passing E .C M the set
of processes that never enter their f ail state in α.

Following the normal convention, we say two execu-
tions defined over systems (E,A) and (E ′,A), are indistin-
guishable with respect to a process A(i), i ∈ E .P ∩ E ′.P ,
through round k, if the process has the same states, received
messages, collision detector and contention manager advice
through the first k rounds. (See Definition 20 in Appendix A
for the formal definition).

The following helper functions will also prove useful in
our discussion. For a given execution α defined over system
(E,A), we define:

• tT (α) to be the E .P-transmission trace (c1, T1), (c2, T2),

. . . where for all i > 0: ci describes the number of mes-
sages transmitted in round i , and Ti [j], for all j ∈ E .P ,
describes the number of messages received by A(j) in i .

• tC D(α) to be the E .P-CD trace C D1, C D2, ... where for
all i > 0 and j ∈ E .P , C Di [j] describes the collision
advice given to A(j) in i .

• tC M (α) to be the E .P-CD trace C M1, C M2, ... where for
all i > 0 and j ∈ E .P , C Mi [j] describes the contention
manager advice given to A(j) in i .

• tC (α) to be the largest possible subset A of P where for
all j ∈ A, process j never enters its f ail state in α.

(See Appendix A for more formal definitions).

4.2 Process failures and message loss

Process failures Any number of processes can fail by crash-
ing (that is, permanently stop executing). This is captured in
our model by the f ail state of each process. As described in
our execution definition, any process, during any round, can
be non-deterministically transitioned into its fail state. Once
there, by the definition of a process, it can never leave the fail

state and never broadcast any message. We say a process is
correct in a given execution, if and only if it never enters its
fail state. Notice, tC (α) describes the complete set of correct
processes in execution α. (See Definition 21 in Appendix A
for the formal definition).

Message loss As described above, any process in any round
can fail to receive any subset of messages sent by other
processes. Recall, however, that in real systems, if only a
single process broadcasts during a given round, we might
reasonably expect that message to be successfully received.
This might not always be true, as, for example, interference
from outside of our single-hop area could occasionally cause
non-uniform message disruption, but we could expect this
property to hold eventually.2 Accordingly, we define a com-
munication property, which we refer to as the eventual col-
lision freedom (ECF) property, that captures this behavior.
If an execution satisfies ECF, then there exists a round rcf ,
such that in all rounds r ≥ rcf , if only one process transmits,
all processes receive this single message. (See Definition 1
in Appendix A for the formal definition).

5 Contention managers

In our model, the contention manager encapsulates the task
of reducing contention on the broadcast channel. In each
round, the manager suggests that each process either be active
or passive. Informally, the former is meant to indicate that
a process can try to broadcast in the upcoming round, and
the latter indicates that a process should be silent. Most rea-
sonable contention managers should eventually stabilize on
a single process being labeled as active in each round, thus
allowing, in executions satisfying eventual collision freedom,
for messages to be delivered without collisions.

Notice there are some similarities between contention
managers and failure detectors. A contention manager that
stabilizes to a single active process, for example, resembles
Ω . Failure detectors, however, provide information on fail-
ures and help processes cope with asynchrony. Contention
managers, on the other hand, provide contention resolution.
Failure detectors encapsulate partial synchrony. Contention
managers encapsulate randomized back-off strategies.

5.1 The wake-up and leader election services

A natural contention manager property can be defined as
follows: a given P-contention manager, SC M is a wake-up

2 As is often the case in distributed system definitions, the notion that a
property holds for the rest of an execution starting at a certain, unknown
point, is a generalization of the more realistic assumption that the prop-
erty holds for a sufficiently long duration.

123

64 G. Chockler et al.

service, if there exists a round rwake such that for all rounds
r ≥ rwake, only a single correct process is advised to be
active.

A reasonable extension of this property might guaran-
tee stabilization to a single leader. We provide the following
definition: a P-contention manager SC M is a leader election
service, if there exists a round rlead such that for all rounds
r ≥ rlead, the same single correct process is the only process
advised to be active. (See Properties 2 and 3 in Appendix A
for the formal definitions).

Notice, by definition, a leader election service is also
a wake-up service. To obtain the strongest possible results,
we will use the stronger leader election service when con-
structing lower bounds and the weaker wake-up service when
constructing the matching upper bounds.

5.2 Contention manager classes

A contention manager class is simply the set of all contention
managers that satisfy a specific property. In this paper, we
consider three such classes:

1. The WS class includes all wake-up services.
2. The LS class includes all leader-election services.
3. To aid the definition of our third class, we first define

the P-contention manager N OC MP , where P is a non-
empty subset of I , to be the trivial contention manager
that assigns active to all process indices in all rounds.
Using this definition, we define the NoCM class to be
the set consisting of N OC MP for all non-empty subsets
P ⊆ I .

5.3 The maximal leader election service

To aid the construction of lower bounds, it will prove use-
ful to define a contention manager that captures, for a given
set P of process indices, all possible contention manager
behaviors that satisfy the leader election service property for
this set. We call this the maximal leader election service
for P as it represents the maximal element in the set of all
P-contention managers that satisfy the leader election ser-
vice property. Formally, we use the notation M AX L SP to
refer to this contention manager for a given P . The formal
definition is given in Definition 22 in Appendix A.

6 Collision detectors

We classify collision detectors in terms of their completeness
and accuracy properties. The former describes the conditions
under which a detector guarantees to report a collision. The

latter describes the conditions under which a detector guar-
antees not to report a collision when none actually occurred.

6.1 Completeness properties

Here we provide informal definitions for the completeness
properties considered in this study. See Properties 4, 5, 6, and
7 in Appendix A for the formal definitions.

We say that a collision detector satisfies completeness
if it guarantees to report a collision at any process that lost
even one message. (Property 4 in Appendix A).

As we discuss in the introduction, in many practical
scenarios, the MAC layer can reliably detect collisions only
if a certain fraction of the messages being broadcast in a
round is lost. It is reasonable, therefore, to consider weaker
completeness properties, such as the following:

A collision detector satisfies majority completeness if
it guarantees to report a collision at any process that loses
half or more of the messages sent during the round. Equiva-
lently: it returns a notification if the process did not receive a
majority of the messages sent. (Property 5 in Appendix A).

A closely related property: a collision detector satisfies
half completeness if it guarantees to report a collision at any
process loses more than half of the messages sent during the
round. Equivalently: it returns a notification if the process
did not receive at least half of the messages sent. (Property 6
in Appendix A).

Notice the close similarity between half and majority
completeness. The two properties differ only by, at most,
a single message. That is, the half completeness property
allows a process to lose at most one more message than the
majority completeness property before guaranteeing to report
a collision. As we show in Sect. 9, this small difference gen-
erates a significant complexity gap in the rounds required to
solve consensus.

Finally, a collision detector satisfies zero completeness
if it guarantees to report a collision at any process that loses
all of the messages broadcast during that round. (Property 7
in Appendix A). This final definition is appealing because
of its practicality. It requires only the ability to distinguish
silence from noise (a problem solved by the carrier sens-
ing capabilities integrated into many existing wireless MAC
layers).

6.2 Accuracy properties

Here we provide informal definitions for the accuracy proper-
ties considered in this study. See Properties 8 and 9 in Appen-
dix A for the formal definitions.

A collision detector satisfies accuracy if it guarantees
to report a collision to a process only if that process failed to
receive a message. (Property 8 in Appendix A). In order
to account for the situation in which arbitrary noise can be

123

Consensus and collision detectors in radio networks 65

Fig. 2 A summary of collision detector classes

mistaken for collisions (for example, colliding packets from a
neighboring region of a multi-hop network) we will also con-
sider collision detectors satisfying a weaker accuracy prop-
erty. Specifically, we say that a collision detector satisfies
eventual accuracy if in every execution there exists a round
racc such that for all r ≥ racc the detector becomes accurate.
(Property 9 in Appendix A). This might capture, for exam-
ple, the time after which higher-level coordination protocols
ensure that neighboring regions of the network become silent.
Because this round differs in different executions, algorithms
cannot be sure of when this period of accuracy begins, so they
must be resilient to false detections.

Notice that we do not consider eventual completeness
properties. It is easy to show that consensus is impossible
if a collision detector might satisfy no completeness prop-
erties for an a priori unknown number of rounds. In this
setting, the processes can be split into two partitions. In
one partition all processes start with initial value 0. In the
other partition, processes start with initial value 1. If all the
messages are prevented from travelling between the parti-
tions, and the completeness properties of the detectors are
suspended long enough for the processes to decide, these
decisions occur without the partitions having learned of each
other—violating agreement.

It remains an interesting open question, however, to con-
sider what might be possible with detectors that guarantee a
weak completeness property at all times and satisfy a stronger
completeness property eventually. For example, using such a
detector, can one design an algorithm that terminates quickly
in the case where the strong property holds from the first
round?

6.3 Collision detector classes

In this paper, we focus, for the most part, on collision detec-
tors that satisfy various combinations of the completeness
and accuracy guarantees described above. To aid this dis-
cussion we define several collision detector classes, where
a collision detector class is simply the set of all collision
detectors that satisfy a specific collection of properties. The
main classes we consider are described in Fig. 2. You will
notice that we provide notation for eight different classes,
each representing a different combination of the two accuracy
and four completeness properties presented in this section.
For example, the half-♦AC class is the set of all collision
detectors, defined over all index sets P , that satisfy both half
completeness and eventual accuracy.

When we construct upper bounds, we assume they will
work with any detector from a given class. When we derive
lower bounds for a given class, we, as the lower bound
designer, are free to choose which detector from the class
to consider.

Before continuing, we introduce two special collision
detection classes for which notation is not included in Fig. 2.
The first is the NoACC class, which we define to include all
collision detectors that satisfy completeness, but not neces-
sarily accuracy.

To aid the definition of our second special class, we first
define the P-collision detector N OC DP , where P is a non-
empty subset of I , to be the trivial detector that assigns ± to
all process indices in all rounds for all P-transmission traces.
Using this definition, we define the NoCD class to be the set
consisting of N OC DP for all non-empty subsets P ⊆ I . We
establish the following straight-forward relation which will
aid our lower bound construction:

Lemma 1 The collision detector class NoCD is a subset of
the class NoACC (NoCD ⊆ NoACC).

Proof Follows directly from the definitions. ��

6.4 Maximal collision detectors

It will prove useful, in the construction of lower bounds,
to define collision detectors that capture all possible behav-
iors for a given class. Specifically, we use the notation
MAXCDP (C) to describe the P-collision detector that
returns, for a given P-transmission trace, every P-CD trace
that results from a P-collision detector in C . See Defini-
tion 23 in Appendix A for the formal definition.

6.5 The noise lemma

Before continuing, we note the following lemma (and asso-
ciated corollary), that captures an important guarantee about
the behavior shared by all collision detector classes consid-
ered in this study:

Lemma 2 For any execution α of system (E,A), where
E .C D satisfies zero completeness, the following guarantee
is satisfied: For all r > 0 and i ∈ E .P, if tT (α)(r) = (c, T)

and c > 0, then either T (i) > 0 or tC D(α)(r)(i) = ±. That
is, if one or more processes broadcast in round r, then all
processes either receive something or detect a collision.

Proof The zero completeness properties guarantees a col-
lision notification in the case where one or messages are
broadcast but none are received. ��
Notice that, by definition, completeness, majority complete-
ness, and half completeness all imply zero completeness.

123

66 G. Chockler et al.

Accordingly, Lemma 2 holds for systems containing a
collision detector that satisfies any of our completeness prop-
erties.

Corollary 1 For any execution α of system (E,A), where
E .C D satisfies zero completeness, the following guarantee
is satisfied: For all r > 0 and i ∈ E .P, if tT (α)(r) = (c, T)

and T (i) = 0 and tC D(α)(r)(i) = null, then c = 0. That is,
if any process receives nothing and detects no collision, then
no message is broadcast.

Proof Follows directly from Lemma 2. ��

7 The consensus problem and related definitions

In the consensus problem, each process receives as input, at
the beginning of the execution, a value from a fixed set V ,
and eventually decides a value from V or fails.3 We say the
consensus problem is solved in this execution if and only if
the following three properties are satisfied:

1. Agreement: no two processes decide different values.
2. Strong validity: if a process decides value v, then v

is the initial value of some process. A variant to this
property is Uniform validity, which requires that if all
processes share the same initial value v, then v is the only
possible decision value. To obtain the strongest possible
results, we consider uniform validity (the weaker of the
two) when proving our lower bounds, and strong validity
when proving our matching upper bounds.

3. Termination: all correct processes eventually decide.

These properties should hold regardless of the number of
process failures. To reason about the guarantees of a given
consensus algorithm we need a notation for describing
exactly the conditions under which the algorithm solves con-
sensus. To accomplish this, we first offer the following two
definitions that describe large classes of environments that
share similar properties:

Definition 11 (E(D, M)) For any set of collision detectors
D, and set of contention managers M , E(D, M) = {E |E is
an environment such that E .C D ∈ D and E .C M ∈ M}.
Definition 12 (En(D, M)) For any set of collision detectors
D, set of contention managers, M , and positive integer n,
En(D, M) = {E |E ∈ E(D, M) and |E .P| = n}.
3 To capture the notion of an “input value” in our model, assume a
process has one initial state for each possible initial value. Therefore,
the collection of initial states at the beginning of an execution (that is,
the vector C0) describes the initial value assignments for that execution.
To capture the notion of “deciding” in our model, assume each process
has one (or potentially many) special decide states for each initial value.
By entering a decide state for v, the process decides v.

To obtain the strongest possible results, we use the first def-
inition when proving upper bounds and the second (chosen
for any arbitrary n > 1), when proving lower bounds.

We now offer two different notations that capture use-
ful classes of algorithms. The first class describes algorithms
that solve consensus in executions that satisfy eventual colli-
sion freedom, while the second, more general class, describes
algorithms that solve consensus regardless of the collision
behavior.

Definition 13 ((E ,V ,ECF)-consensus algorithm) For any
set of environments E , and value set V , we say algorithm
A is an (E ,V ,ECF)-consensus algorithm if and only if for
all executions α of system (E,A), where E ∈ E , initial
values are assigned from V , and α satisfies eventual collision
freedom, consensus is solved in α.

Definition 14 ((E ,V ,NOCF)-consensus algorithm) For
any set of environments E , and value set V , we say algo-
rithm A is an (E ,V ,NOCF)-consensus algorithm if and only
if for all executions α of system (E,A), where E ∈ E , and
initial values are assigned from V , consensus is solved in α.

Finally, before addressing specific algorithms, we present the
following general definition, and associated lemma, which
will facilitate the discussion to follow:

Definition 15 (Communication stabilization time (CST))
Let α be an execution of system (E,A), where α satisfies
eventual collision freedom, E .C M is a wake-up service, and
E .C D satisfies eventual accuracy. The Communication sta-
bilization time of α (also denoted C ST (α)) is equal to:

max{rcf , racc, rwake}
where rcf , racc, and rwake are the rounds posited by the even-
tual collision freedom, eventual accuracy, and wake-up
service properties, respectively.

Lemma 3 Let α be an execution of system (E,A), where
α satisfies eventual collision freedom, E .C M is a wake-up
service, and E .C D satisfies eventual accuracy. For any round
r ≥ C ST (α) where no process is advised to be passive by
the contention manager broadcasts, the following conditions
are true:

1. Each process receives every message broadcast in round
r.

2. No process detects a collision in round r.

Proof Because the C ST (α) occurs at or after rwake, only a
single process will be advised to be active by the contention
manager in round r . By assumption, therefore, if any process
broadcasts during r , it will be this single process. Because the

123

Consensus and collision detectors in radio networks 67

execution satisfies eventual collision freedom and C ST (α) ≥
rcf , if this process broadcasts, then every process receives
its message. And, finally, because C ST (α) ≥ racc, we are
guaranteed no spurious collision notifications in round r . The
two conclusions follow directly. ��

8 Consensus algorithms

In this section, we describe the algorithms that will match the
bounds established in Sect. 9. We sketch the main ideas of the
correctness proofs—providing the necessary information to
understand the key intuition behind the algorithms. A more
rigorous treatment of these arguments can be found in [31].

Pseudocode conventions To simplify the presentation of
the algorithms we introduce the following pseudocode con-
ventions: for a given round and process pi , bcast(m)i speci-
fies the message m, broadcast by pi during the current round
and recv()i describes the multiset of messages (potentially
empty) that pi receives during the current round. As defined
in 3, we use the notation SET (recv()i) to indicate the set
containing every unique value in the multiset recv()i . We use
CD()i and CM()i to refer to the advice returned to pi , dur-
ing the current round, by its collision detector and contention
manager, respectively. In Algorithm 2, we use the convention
V 0,1 to indicate a binary representation of value set V . That
is, V 0,1 replaces each value in V with a unique binary string.
We assume that these sequences are each of length �lg |V |�
(which is, of course, enough to encode |V | unique values).
Similarly, we use bracket-notation to access a specific bit
in one of these strings. For example, if estimatei ∈ V 0,1,
then estimatei [b], for 1 ≤ b ≤ �lg |V |�, indicates the bth
bit in the binary sequence estimatei . And, finally, we use
decide(v)i to indicate that process pi decides value v.

Halting Notice, our model does not offer an explicit treat-
ment of halting, which is relevant in certain practical applica-
tions. One could imagine, for example, in such settings, the
use of an extra round in which processes broadcast to indi-
cate they have not yet decided. A decided process could then
safely halt after hearing this round to be silent. As it turns out,
for all but the first algorithm in this section, it is safe to sim-
ply halt immediately upon deciding. (That is, there is never
a need for a decided process to aid undecided processes).

Roadmap We start in Sect. 8.1 by describing an anony-
mous algorithm that solves consensus in executions satisfy-
ing eventual collision freedom using a wake-up service and
any collision detector from maj-♦AC. As, by definition, AC,
♦AC, and maj-AC are all subsets of the class maj-♦AC, this
algorithm solves consensus for these detectors as well. The

algorithm guarantees termination in a constant number of
rounds after the communication stabilization time.

We then proceed in Sect. 8.2 to describe an anony-
mous algorithm that solves consensus in executions satisfy-
ing eventual collision freedom using a wake-up service and
any collision detector from 0-♦AC. All other collision detec-
tor classes we consider (with the exception of NoCD and
NoACC) are subsets of 0-♦AC, making this a general solu-
tion to the problem in all practical contexts. The algorithm
guarantees termination in Θ(lg(|V |) rounds after the com-
munication stabilization time. In Sect. 8.3, we describe a
non-anonymous variant of this algorithm that guarantees ter-
mination in min{lg |V |, lg |I |} rounds after the communica-
tion stabilization time.

Finally, in Sect. 8.4 we describe an anonymous algo-
rithm that solves consensus, even in executions that do not
satisfy eventual collision freedom, using any collision detec-
tor from 0-AC. The algorithm terminates in O(lg(|V |) rounds
after failures cease.

8.1 Anonymous consensus with ECF and collision
detectors in maj-♦AC

The pseudo-code in Algorithm 1 describes an anonymous
(E(maj-♦AC,WS),V ,ECF)-consensus algorithm. That is, it
is guaranteed to solve consensus in any execution satisfying
eventual collision freedom in an environment with a wake-up
service and collision detector from maj-♦AC. This imple-
mentation tolerates any number of process failures and ter-
minates by round C ST + 2.

The algorithm consists of two alternating phases: a pro-
posal phase and a veto phase. In the proposal phase, every
process that is advised to be active by its contention man-
ager broadcasts its current estimate. If a process hears no
collisions and receives at least one value, then it updates its
estimate to the minimum value received. If a process detects
a collision, or receives no messages, then it does not update
its estimate.

During the next round, which is a veto-phase round,
a process broadcasts a “veto” message if it heard a collision
notification in the proposal phase or received two or more dif-
ferent values in the proposal phase. We are, therefore, using
a negative acknowledgment scheme in which processes use
the veto phase to notify other processes about bad behavior
observed in the preceding phase. A process can decide its
estimate if it makes it through a veto-phase round without
receiving a veto message4 or detecting a collision.

The basic idea is that a “silent” veto round indicates
that no process has any reason to complain about the

4 Remember, by the definition of our model, processes always receive
their own broadcasts, so if a process broadcasts a veto it will definitely
not decide this round.

123

68 G. Chockler et al.

preceding proposal round. If no process has any reason to
complain about a proposal round, this means that each
process received a single value and no collision notifications.
If a process received no collision notification, then it received
a majority of the messages (by the definition of majority
completeness). Therefore, because majority sets intersect,
we conclude that all processes must have received the same
value. Therefore, any process making it through a “silent”
veto round can safely decide—even if false collision noti-
fications delay other processes from deciding that round—
because it can be assured that no value, other than its deci-
sion value, is currently alive in the network. We formalize
this argument as follows.
The proofs of validity, agreement, and termination rely on
the following two lemmas:

Lemma 4 For r ≥ 0, let Er = {v | v equals the estimate
value of some non-crashed process after r rounds.}. For any
s and r, where 0 ≤ r ≤ s, Es ⊆ Er .

Proof (Sketch) Let r + 1 be a proposal round (estimate
values cannot be modified in a veto round). Processes that
transmit in r+1 will transmit their estimate value. Processes
that receive messages will only update their estimate to the
smallest received value. Therefore, each process in r + 1
either keeps its estimate or updates its estimate to that of
another process. In both cases: Er+1 ⊆ Er ��
Lemma 5 If, for every process pi that is not crashed after
proposal-round r, |messagesi | = 1 and C D-advicei =
null, then |Er | = 1.

Proof (Sketch) By the lemma assumptions, each process
receives exactly one value and no collision notification dur-
ing round r . Assume two processes i and j , each received a
different value: i received v and j received v′. By majority
completeness, we know i and j each received a majority of
the messages sent in r . But majority sets intersect, making
it impossible for i to receive only v and j to receive only
v′. This implies that every process updates its estimate to the
same value. A contradiction. ��
Lemma 6 (Validity) If some process decides value v, then
v is the initial value of some process.

Proof (Sketch) From Lemma 4, we know Er−1 ⊆ E0, where
E0 is the set of initial values. Processes decide their estimate
value. ��
Lemma 7 (Agreement) No two processes decide different
values.

Proof (Sketch) Let r be the first round in which a process
decides. Let pi be a process that decides v in round r . By
the definition of the algorithm (line 18) we know pi received

(only) one value in round r − 1, so, by the noise lemma
(Lemma 2), all processes received either a value or collision
notification in round r−1. In round r , however, pi received no
messages or collision notification. By Corollary 1, it follows
that no process broadcast a veto in round r . This implies that
all processes received no collision notification and only one
value in round r − 1.

We apply Lemma 5 which provides that |Er−1| = 1, and
Lemma 4, which provides that for r ′ ≥ r, Er ′ ⊆ Er−1 = {v}.
This makes v the only possible decision value in any future
round. ��
Lemma 8 (Termination) All correct processes decide by
round C ST + 2.

Proof Let r equal the first proposal-phase round such that
r ≥ C ST . Because Algorithm 1 has only active processes
(that is, processes that were returned active from the con-
tention manager) broadcast during the proposal phase we
can apply Lemma 3 to r , which provides that: (1) every
process receives every message broadcast in r ; (2) no process
receives a collision notification in r . Because r ≥ rwake a sin-
gle correct process broadcasts. Every process receives this
value (call it vr) and no collision notification. Therefore,
every process adopts vr as its estimate. No process will sub-
sequently veto in round r+1. And because r+1 > racc there
will be no false positive collision notifications. This allows
all processes to decide vr in r + 1. ��
Theorem 1 For any non-empty value set V , Algorithm 1 is
an anonymous (E(maj-♦AC,WS)) that terminates by round
C ST + 2.

Proof Correctness follows from Lemmas 6, 7 and 8. ��

8.2 Anonymous consensus with ECF and collision
detectors in 0-♦AC

The pseudo-code in Algorithm 2 describes an anonymous
(E(0-♦AC,WS),V ,ECF)-consensus algorithm. That is, it is
guaranteed to solve consensus in any execution satisfying
eventual collision freedom in an environment with a wake-up
service and collision detector from 0-♦AC. This implemen-
tation tolerates any number of process failures and terminates
by round C ST + 2(�lg |V |� + 1).

Algorithm 2 consists of three alternating phases. In the
first phase, called prepare, every process advised to be
active by its contention manager broadcasts its current esti-
mate. Every process that receives at least one estimate and
no collision notifications will adopt the minimum estimate it
receives. In the second phase, called propose, the processes
attempt to check that they all have the same estimate. There is
one round dedicated to each bit in the estimate. If a process
has an estimate with a one in the bit associated with that

123

Consensus and collision detectors in radio networks 69

round, then it broadcasts a message. If a process has an
estimate with a zero in the bit associated with that round,
it listens for broadcasts, and decides to reject (by setting
decide ← f alse) if it hears any broadcasts or collisions.
In the third phase, called accept , any processes that decided
to reject in the previous phase will broadcast a veto. Any
process that receives a veto message or collision notification
realizes that there is a lack of consistency, and will cycle back
to the first phase.

The basic idea is that if two processes have different esti-
mates, there will be at least one round during the propose
phase where one process is broadcasting and one is listen-
ing. The listening process will receive either a message or a
collision notification, so it will successfully discover the lack
of agreement so far. It can now veto in the accept phase to
prevent any process from deciding a value.
The proofs of validity, agreement, and termination rely on
the following two lemmas:

Lemma 9 For r > 0, let Er = {v | v equals the estimate
value of some non-crashed process after r rounds. } For any
s and r, where 0 ≤ r ≤ s, Es ⊆ Er .

Proof (Sketch) During prepare phases, processes only
broadcast their estimate values. Processes only modify their
estimate to equal a prepare message. ��

Lemma 10 If all non-crashed processes begin accept-phase
round r with decide = true, then all non-crashed processes
begin r with the same estimate value.

Proof (Sketch) Preceding round r , each process executed one
propose-phase round for each bit of their estimate value.
Each process broadcasts only during rounds corresponding to
bits that equaled 1. If a process receives a message or collision
notification during a round where it does not broadcast, then
that process sets decide← f alse.

Because all processes begin r with decide = true, we
know that no process receives a message or collision noti-
fication during a propose-phase round in which it did not
transmit. It follows from Corollary 1 that all non-crashed
processes transmitted on the same schedule. Therefore, all
non-crashed processes must have begun r with the same
estimate. ��

Lemma 11 (Validity) If some process decides value v, then
v is the initial value of some process.

Proof (Sketch) From Lemma 9, we know Er−1 ⊆ E0, where
E0 is the set of initial values. Processes decide their estimate
value. ��

Lemma 12 (Agreement) No two processes decide different
values.

Proof (Sketch) Let r be the first round in which a process
decides. Let pi be a process that decides in r . Assume it
decides vr . This process heard no vetos in round accept-
phase round r . By Corollary 1, we conclude that no process
broadcasts a veto during r It follows that all non-crashed
started r with decide = true. By Lemma 10 these processes
share the same estimate of vr . Finally, Lemma 9 provides
that vr is the only possible decision value. ��
Lemma 13 (Termination) All correct processes decide by
round C ST + 2(�log |V |� + 1).

Proof (Sketch) Let r be the first prepare-phase round such
that r ≥ C ST . Because Algorithm 2 has only active
processes broadcast during the prepare phase (line 7), we
can apply Lemma 3 to round r , which provides that for
this round: (1) every process receives every message broad-
cast; (2) no process receives a collision notification. Because
C ST ≥ rwake, we know that a single correct process will
broadcast in r . All non-crashed processes receive this value
and no collision notification. During the propose phase,
therefore, all non-crashed processes will transmit on the same
schedule. because C ST ≥ racc there will be no false col-
lision notifications during the silent rounds, and all non-
crashed processes will therefore begin the accept phase with
decide = true. Accordingly, no process vetoes. Again,
because C ST ≥ racc, no collision notification is received,
and all non-crashed processes decide. ��
Theorem 2 For any non-empty value set V , Algorithm 2
is an anonymous (E(0-♦AC,WS),V ,ECF)-consensus algo-
rithm that terminates by round C ST + 2(�lg |V |� + 1).

Proof Correctness follows from Lemmas 11, 12 and 13. ��

8.3 Non-anonymous consensus with ECF and collision
detectors in 0-♦AC

In this section, we briefly describe a non-anonymous
(E(0-♦AC,WS),V ,ECF)-consensus algorithm, based on
Algorithm 2, that can solve consensus faster than Algorithm 2
in the special case where the space of possible IDs (I) is small
relative to the space of decision values (V). This algorithm
(almost) matches5 our non-anonymous lower bound for this
setting (Corollary 3 in 9).

We do not provide formal pseudo-code or a rigorous
correctness proof as we maintain that Algorithm 2 is the best

5 The lower bound presented in Corollary 3 requires Ω(min{lg |V |,
lg |I |n }) rounds, whereas our upper bound presented here works in
Θ(min{lg |V |, lg |I |}) rounds. Therefore, in one case, there is a gap
of 1/n, within the lg term, between the two. The n factor appears
to be an artifact of some looseness in the counting argument used in
the lower bound calculation. Indeed, in Conjecture 1, we claim that
Ω(min{lg |V |, lg |I |}) is, in fact, the real lower bound.

123

70 G. Chockler et al.

option for an (E(0-♦AC,WS),V ,ECF)-consensus algorithm.
The version described here outperforms Algorithm 2 only in
the unlikely case of an ID space being smaller then the con-
sensus value space, and we present it only for completeness.
It works as follows:

• If |V | ≤ |I |, then every process runs Algorithm 2 without
modification.

• If |V | > |I |, then every process divides up the rounds into
repeated groups of three consecutive phases, which we
will call phase 1, phase 2, and phase 3. During the phase
1 rounds, each process runs an instance of Algorithm 2
on the set of possible IDs, using its own ID as its initial
value. The decision value of this instance of Algorithm 2
describes a leader. Once a process has been identified
as a leader, it begins to broadcast its real initial value
(from V) during phase 2 rounds. Every process that has
not yet heard the leader’s value by phase 2 round r , will
broadcast “veto” in phase 3 round r+1. The leader keeps
broadcasting its value in phase 2 until it hears a silent
phase 3 round. Non-leaders decide the value in the first
phase 2 message that they receive. They then halt. The
leader decides its own value and halts after it hears a silent
phase 3 round following a phase 2 broadcast.

In the first case (|V | ≤ |I |), this algorithm finishes by C ST+
Θ(lg |V |). In the second case (|V | > |I |), the leader election
finishes by C ST + Θ(log |I |). The first successful broad-
cast and subsequent silent veto round will happen within
two rounds after whichever comes later: leader election or
C ST . This provides a worst case termination of C ST +
Θ(log |I |). Combined, we get a termination guarantee of
C ST +Θ(min{lg |V |, lg |I |}) rounds.

This algorithm, as described so far, is not fault-tolerant.
Specifically, a leader can fail after being elected but before it
broadcasts its value. Fortunately, there is an easy criterion for
detecting the failure of a leader: a silent phase 2 round after a
phase 1 decision has been reached. Any process that notices
these conditions knows definitively that the leader has failed.
This can trigger a new leader election among the remaining
processes.

There are, however, difficulties in coordinating the start
of this new leader election, as false collision notifications can
prevent all processes from learning of the leader’s death dur-
ing the same round. To circumvent this problem, processes
could run consecutive instances of consensus. During the
first instance they try to elect a leader as specified. They then
move directly into the second instance, setting their estimate
value back to their unique ID. The trick is that during this new
instance, processes do not broadcast in the prepare phase
unless they detect the current leader to be failed. By receiving
a prepare message in this phase, therefore, a process learns

of the leader’s failure in the previous phase. This ensures
that the second run of consensus cannot terminate until all
non-crashed processes have detected the current leader’s fail-
ure. (For any process to terminate in the second phase, all
processes would have had to have received a prepare-phase
message).

If the second leader crashes, the same rules will ensure
all processes participate in the third instance of consensus,
etc. After each leader failure, all non-crashed processes will
eventually learn of the failure and participate fully in the cur-
rent instance of consensus, electing a new leader. Eventually,
a correct process will be elected and successfully broadcast
its value. Notice, that the time required for the processes to
converge on a correct leader is captured in C ST , so the run-
ning time in unaffected.

8.4 Anonymous consensus with NOCF and collision
detectors in 0-AC

It is a natural question to ask whether some collision detec-
tor classes can be powerful enough to solve consensus even
if message loss is unrestricted. Surprisingly, the answer to
this question is yes. Algorithm 3 can be used to solve the
problem in O(log |V |) rounds with a collision detector in 0-
AC. This algorithm circumvents the problem of never-ending
collisions by performing a search through a balanced binary
search tree representation of the possible initial value space.
Specifically, each iteration of the search is represented by
four consecutive phases. In the first phase, called vote-val,
processes can vote for the value represented by the current
node in the tree by broadcasting a message. A process will
vote in this phase if and only if this value is its initial value.
In the second phase, called vote-le f t , processes can vote to
descend to the left child of the current node by broadcast-
ing. A process will vote in this phase if and only if its initial
value is in the sub-tree rooted at this child. In the third phase,
called vote-right , processes behave symmetrically to vote-
le f t . In the fourth phase, called recurse, processes decide
what action to take depending on the results of the voting
from the previous three phases. If they registered a vote in
the vote-val phase, they will decide the current value. If,
instead, they registered a vote in only one of the le f t and
right phases, they will descend to the appropriate child. If
they register a vote for both, they will, by default, descend
to the left child. And, finally, if no votes are registered (due
to a process failure), they ascend to the parent of the current
node.

The alert reader will notice that the recurse phase does
not need its own round, as no message is broadcast and the
receive set is ignored. For the sake of efficiency, this final
phase could be appended to the end of the vote-right phase
as an additional local computation. We leave it as its own

123

Consensus and collision detectors in radio networks 71

round only to simplify the presentation and description of
the algorithm. By eliminating this round we could, however,
reduce the factor of 8 to a factor of 6 in the termination bound.

Notice, also, that this algorithm does not use a con-
tention manager. This is because it is designed for executions
that do not necessarily satisfy eventual collision freedom.
Without this property, identifying a single broadcaster is no
longer important, as its messages are not guaranteed to ever
be delivered (as they would be in an ECF execution).

Finally, note that the termination of Algorithm 3 is
affected by failures. Imagine, for example, that a certain
process, with a small initial value, leads all other processes
deep into the left side of the search tree. Assume this process
then crashes before it can vote for its value. Under certain
initializations, all other processes might have initial values
that are found in the right subtree of the root. This would then
require all processes to traverse all the way back up the root,
and then descend again into the right sub-tree before they can
decide. In other words, this one failure added a O(log |V |)
cost to our time complexity. To capture this reality, we intro-
duce the term f , which, following convention, represents the
number of failures in a given execution. Clearly, our termi-
nation bound will be, among other things, a function of f .
Because the 0-AC collision detector class maintains accuracy
at every round, we can extend Lemma 2 and Corollary 1 to
the following, more powerful claim:

Lemma 14 For any round r of an execution of Algorithm 3,
one of the following two behaviors occurs:

1. Every process receives at least one message or a collision
notification in r .

2. Every process receives no messages and no collision
notification in r .

Proof Lemma 2 provides that if any process broadcasts in r ,
then every process receives at least one message or a colli-
sion notification. By the definition of accuracy, if no process
broadcasts in r , then no process will receive a collision noti-
fication (and, by the definition of an execution, no process
will receive a message either). ��
This allows us to make the following strong claim:

Lemma 15 For any round r, all non-crashed processes start
r with curr pointing to the same node in the binary search
tree.

Proof (Sketch) Processes navigate the search tree based upon
the sequence of noise and silence received in the preced-
ing rounds. By Lemma 14, this pattern is the same for all
processes. ��

Lemma 16 (Validity) If some process decides value v, then
v is the initial value of some process.

Proof (Sketch) A process decides if and only if it hears noise
during the vote phase. Because we assume accurate collision
detectors, noise indicates that a process transmitted during
this phase. It follows that the decided value is the voter’s
initial value. ��
Lemma 17 (Agreement) No two processes decide different
values.

Proof (Sketch) A process decides if it hears noise during a
vote phase. By Lemma 14, if one process hears noise, then
all processes hear noise. Therefore all non-crashed processes
decide the value corresponding their current location in the
search tree. Finally, by Lemma 15, we know all non-crashed
processes are located at the same node in the tree. ��
Lemma 18 (Termination) All correct processes decide
within (8 f + 4) lg |V | rounds.

Proof A failure, in the worst case, can require the processes
to traverse lg |V |nodes down toward a leaf then another lg |V |
back nodes up to the root: adding no more than
8 lg |V | rounds. Therefore, f failures add no more than
8 f lg |V | extra rounds. It may then take, in the worst case,
4 lg |V |more rounds to descend to be lead to the decision
value by a correct process. The total running time is there-
fore bounded by (8 f + 4) lg |V | ��
Theorem 3 For any non-empty value set V , Algorithm 3
is an anonymous (E(0-AC,NoCM),V ,ECF)-consensus algo-
rithm that terminates in at most (8 f + 4) lg |V | rounds.

Proof Correctness follows from Lemmas 16, 17 and 18. ��

9 Lower bounds

In this section, we show lower bounds that match (or, in the
case of Theorem 7, come close to matching) the upper bounds
of the previous section. We start, in Sect. 9.1, by examining
systems with collision detectors from the NoCD class. That
is, a system with effectively no collision detection. We show
with Theorem 4 that consensus is impossible in this con-
text; even if the system includes a leader election service and
we consider only executions that satisfy eventual collision
freedom. This highlights the necessity of collision detection,
and underscores the following observation: Eventual reliable
communication (i.e., as provided by eventual collision free-
dom and a leader election service) is not useful without a
means to determine when this period of reliability has begun

123

72 G. Chockler et al.

(i.e., a non-trivial collision detector). It then follows directly
from Lemma 1 (in Sect. 6)—which states that the collision
detector class NoCD is a subset of the class NoACC—that
consensus is also impossible in systems with collision detec-
tors from the NoACC class. That is, in systems in which
collision detector satisfies no accuracy properties. This is
formalized with Theorem 5 in Sect. 9.2.

Next, in Sects. 9.3.1, 9.3.2, and 9.3.3, we examine sys-
tems with anonymous algorithms and collision detectors from
the half-AC class. We show with Theorem 6 that, in this con-
text, consensus cannot be solved in a constant number of
rounds after the communication stabilization time; even if
the system includes a leader election service and we con-
sider only executions that satisfy eventual collision freedom.
Specifically, we prove the existence of an execution that does
not terminate before round C ST +Θ(log |V |).

We continue, in Sect. 9.3.4, to consider this same ques-
tion in the context of non-anonymous algorithms. We prove
with Theorem 7 the existence of an execution that does not
terminate before round C ST + lg

(|V ||I |
n|V |+|I |

)
1
2 . With Corol-

lary 3 we simplify this expression to obtain the cleaner asymp-

totic result: C ST+Ω
(

min
{

log |V |, log |I |n
})

. We conclude

this particular line of questioning by conjecturing, in Conjec-
ture 1, that the real bound is C ST+Ω(min{log |V |, log |I |}).

The anonymous bound is matched by Algorithm 2 from
Sect. 8, and the non-anonymous bound is (almost) matched
by the variant of Algorithm 2 described in Sect. 8.3. Note:
because we demonstrated in Sect. 8 a constant-round solution
that uses a detector from the maj-♦AC class, these results
demonstrate a substantial complexity gap between the half-
complete and majority-complete properties.

We next consider executions that do not necessarily sat-
isfy eventual collision freedom. One might expect that under
such conditions consensus cannot be solved. Indeed, with
Theorem 8, in Sect. 9.4, we show that consensus cannot be
solved with a collision detector that does not satisfy accuracy
in all rounds. With an accurate detector, however, consensus
is solvable. This was demonstrated by Algorithm 3 which
solves consensus in O(lg |V |) rounds using a detector from
0-AC and no contention manager. We show, with Theorem 9,
in Sect. 9.5, that this algorithm is optimal by proving that its
logarithmic complexity is necessary for any solution to con-
sensus in this context.

To obtain the strongest possible results, all bounds that
follow assume the weaker uniform validity property for con-
sensus, as defined in Sect. 7. We also assume the stronger
leader election service property for the contention managers
used in this section, whereas the matching upper bounds use
the weaker wake-up service property. Finally, we assume,
for every execution considered in this section, that there are
no process failures. This highlights the perhaps surprising
reality that message loss, coupled with the lack of knowledge

of number of participants, not failures, are the source of time
complexity in this setting.

9.1 Impossibility of consensus with no collision detection

We show that no algorithm can solve consensus in a system
with a collision detector from the NoCD class. This holds
even if we only consider executions that satisfy eventual col-
lision freedom, and we assume the system contains a leader
election service.

Theorem 4 For every value set V , where |V | > 1, there
exists no (E(NoCD,LS),V ,ECF)-consensus algorithm.

Proof Assume by contradiction that an (E(NoCD,
LS),V ,ECF)-consensus algorithm, A, exists. First, we fix
two disjoint and non-empty subsets of I , Pa and Pb. Next, we
define three environments A, B, C as follows: Let A.P = Pa ,
B.P = Pb, and C.P = Pa ∪ Pb. Let A.C D = N OC DPa ,
B.C D = N OC DPb , and C.C D = N OC DPa∪Pb . And let
A.C M = M AX L SPa , B.C M = M AX L SPb , and C.C M =
M AX L SPa∪Pb . By definition, A, B, C ∈ E(NoCD,LS).

Next, we construct an execution α, of the system (A,A),
and an execution β, of the system (B,A), as follows:

1. Fix the executions so there is no message loss in either
α or β.

2. In α, fix the contention manager, starting with round 1, to
return active only to the process described by min(Pa).
In β, fix the contention manager to behave the same, with
respect to min(Pb).

3. Fix the collision detector in both executions to return ±
to all processes in all rounds (the only allowable behavior
for the NoCD class).

4. In α, have all process start with initial value v, and in
β have all processes start with initial value v′, where
v, v′ ∈ V and v �= v′.

It is clear that these executions satisfy the constraints of their
environments, as, in both, the contention managers satisfy
the leader election service property, and the collision detec-
tor returns± to all processes in all rounds (the only allowable
behavior from a N OC D detector). Furthermore, we notice
that both executions trivially satisfy eventual collision free-
dom (as there is no message loss). Therefore, by the definition
of an (E(NoCD,LS),V ,ECF)-consensus algorithm, consen-
sus is solved in both. Let k be the smallest round after which
all processes have decided in both α and β.

We next construct an execution γ , of the system (C,A),
as follows:

1. Fix the execution such that for the first k rounds all
processes described by indices in Pa lose all (and only)

123

Consensus and collision detectors in radio networks 73

messages from processes described by indices in Pb, and
vice versa. Starting with round k + 1, there is no further
message loss.

2. Fix the collision detector to return ± to all processes in
all rounds, as it must.

3. Fix the contention manager, for the first k rounds, to
return active only to the processes described by min(Pa)

and min(Pb). Starting with round k + 1, the contention
manager returns active only to the process described by
min(Pa).

4. All process described by indices in Pa start with initial
value v, and all processes described by indices in Pb start
with initial value v′.

Again, it is clear that this execution satisfies the constraints of
its environment. The contention manager satisfies the leader
election service property by stabilizing to a single active
process (in round k + 1) and the collision detector returns
± to all processes in all rounds, as required by its definition.
Furthermore, we note that this execution satisfies eventual
collision freedom as message loss ceases at round k + 1.
Once again, by the definition of an (E(NoCD,LS),V ,ECF)-
consensus algorithm, consensus is solved in γ .

To reach a contradiction, we first note that, by construc-
tion, for all i in Pa , the execution γ is indistinguishable from
α, with respect to i , through round k. And for all j in Pb,
the execution γ is indistinguishable from β, with respect
to j , through round k. Therefore, by round k, all processes
described by indices in Pa will decide the same value in both
α and γ , and all processes described by indices in Pb will
decide the same value in both β and γ . By uniform validity,
however, processes decide v in α and v′ in β; thus both values
will be decided in γ —violating agreement. A contradiction.

��

9.2 Impossibility of consensus with no accuracy guarantees

Theorem 5 For every value set V , where |V | > 1, there
exists no (E(NoACC,LS),V ,ECF)-consensus algorithm.

Proof Lemma 1, from Sect. 6, establishes that NoCD ⊆
NoACC. Therefore, if an algorithm A is an (E(NoACC,
LS),V ,ECF)-consensus algorithm, thenA is an (E(NoCD,LS)

,V ,ECF)-consensus algorithm. By Theorem 4, there exists
no (E(NoCD,LS),V ,ECF)-consensus algorithm. Therefore,
there exists no (E(NoACC,LS),V ,ECF)-consensus algorithm.

��

9.3 Impossibility of constant round consensus with ECF
and half-AC

We next show that no algorithm can guarantee to always
solve consensus in a constant number of rounds after the

communication stabilization time if half of the messages sent
in a round can be lost without detection. Specifically, we pro-
vide two main results. In Theorem 6, presented in Sect. 9.3.3,
we show that for any anonymous (E(half-AC,LS),V ,ECF)-
consensus algorithm, there exists an execution that does not
terminate before C ST + Θ(log |V |). In Corollary 3, pre-
sented in Sect. 9.3.4, we show that for any non-anonymous
(E(half-AC,LS),V ,ECF)-consensus algorithm, there exists
an execution that does not terminate before C ST +Ω(min
{log |V |, log |I |n }).

We start, however, with some general defintions and
lemmas, presented in Sects. 9.3.1 and 9.3.2, which aid the
discussion to follow.

9.3.1 Definitions

Definition 16 (Basic Broadcast Count Sequence) The
Basic Broadcast Count Sequence of an execution α is the
infinite sequence of values drawn from {0, 1, 2+} where, for
all r > 0, the r th position in the sequence is:

• 0 if and only if no process broadcasts during round r of
α,

• 1 if and only if exactly one process broadcasts during
round r of α,

• 2+ if and only if two or more processes broadcast during
round r of α.

We say two executions α and β, have the same broadcast
count sequence through round k, for some k > 0, if and only
if the basic broadcast count sequence of both executions are
the same through the first k values.

Next, we introduce two definitions that will help us iden-
tify a specific type of “well-behaved” execution:

Definition 17 (V -start algorithm) Let V be a non-empty
set of values. We say algorithm A is a V -start algorithm if
and only if for all i ∈ I , A(i) has exactly |V | initial states
described by the set {initi (v)|v ∈ V }.
Notice that any algorithm that solves consensus over a value
set V is a V -start algorithm. This holds because a consensus
algorithm must have a unique initial state for each possible
initial value. Throughout this section, whenever we discuss a
V -start algorithm, A, that solves consensus for value set V ,
we assume for all i ∈ I and v ∈ V , that initial state initi (v)

for A(i) is the initial state of this process that corresponds to
initial value v.

We now define a specific execution type for V -start algo-
rithms:

Definition 18 (αP (v) (Alpha execution)) Let A be a V -
start algorithm, where V is some non-empty set of values,

123

74 G. Chockler et al.

v ∈ V , and P is a non-empty subset of I . Let EP be an
environment with EP .P = P , EP .C D = M AXC DP (AC),
and EP .C M = M AX L SP . Then αP (v) describes the unique
execution of system (EP ,A) that results when we:

1. Fix A(i), for all i ∈ P , to start with initial state initi (v),
2. Fix EP .C M to designate only the process corresponding

to min(P) as active,
3. Fix the execution such that in any given round, if a sin-

gle process broadcasts, then all processes receive the
message, if more than one process broadcasts, then (as
required by the model) the receivers each receive their
own message, but all other messages are lost,

4. Fix EP .C D to satisfy completeness and accuracy (as it
must by the definition of EP), and

5. Fix the execution such that there are no failures.

This execution satisfies the constraints of EP as the collision
detector, by definition, satisfies completeness and accuracy,
and the contention manager satisfies the leader election ser-
vice property by stabilizing to a single active process starting
in the first round.

A few points to notice: first, by definition, EP ∈ E(half-
AC,LS) (a complete detector is a half-complete detector).
We also note that this execution satisfies eventual collision
freedom (assumption 3 makes this explicit). Thus, if A hap-
pens to be an (E(half-AC,LS),V ,ECF)-consensus algorithm
(as it will be when we use this definition later in the section),
then any alpha execution defined over A, solves consensus.

9.3.2 Key lemmas

We first introduce a lemma, and an associated corollary, that
prove some important properties regarding the behavior of
anonymous algorithms:

Lemma 19 Let A be an anonymous V -start algorithm,
where V is a non-empty set of values, let P and P ′ be two
disjoint subsets of I such that |P| = |P ′| > 0, let f be a
bijection f : P → P ′ such that f (min(P)) = min(P ′), and
let v be an element of V . For every i ∈ P, the sequence of
states, message receive sets, contention manager advice, and
collision detector advice, describing the execution of A(i) in
αP (v), is the same as the sequence describing the execu-
tion of A(f (i)) in αP ′(v), where both alpha executions are
defined over A.

Proof (Sketch) The only difference between the two systems
is the set of participating process indices. Because, however,
we assume A is anonymous, this difference cannot affect the
executions, leading to the same behavior in both αP (v) and
αP ′(v). ��

Corollary 2 (Lemma 19) Let A be an anonymous V -start
algorithm, where V is a non-empty set of values. Let P and
P ′ be two disjoint subsets of I such that |P| = |P ′| > 0.
For all v ∈ V , and integer r > 0, αP (v) and αP ′(v) have
the same basic broadcast count sequence through the first r
rounds, where both α executions are defined over A.

Proof The decision to broadcast in a given round is a function
of a process’s state at the beginning of the round and the
contention manager advice during the round. Let f be the
bijection defined by Lemma 19. Therefore, by Lemma 19,
we know that for every i ∈ P , process A(i) broadcasts in
round r of αP (v) if and only if process A(f (i)) broadcasts
in round r of αP ′(v). Because f is a bijection from P to P ′,
the corollary follows directly. ��
We next present two counting arguments that bound the num-
ber of basic broadcast sequences that can exist among pairs
of executions over short execution prefixes. Lemma 20 con-
siders anonymous algorithms, and Lemma 21 considers non-
anonymous algorithms.

Lemma 20 Let A be an anonymous V -start algorithm,
where V is a set of values such that |V | > 1, and let P be
a non-empty subset of I . There exist two alpha executions,
αP (v) and αP (v′), defined over A, where v, v′ ∈ V , v �= v′,
and αP (v) and αP (v′) have the same basic broadcast count
sequence through the first lg |V |

2 − 1 rounds.

Proof We have |V | different alpha executions to consider;
one for each value in V . For any sequence of k rounds, there
are at most 3k possible broadcast count sequences (in each
round, three behaviors can occur that are relevant to the basic
broadcast count: no process broadcasts; one process broad-
casts; or more than one process broadcasts). We claim that
for k = lg |V |

2 − 1, the total number of sequences of length k
is less than |V |. Thus, by the pigeon-hole principle, at least
two values in V must produce the same sequence. We verify
this claim by plugging in for k and solving:

3

(
lg |V |

2 −1
)

< 3

(
lg |V |
lg 3 −log3 2

)

= 3(log3 |V |)3(− log3 2)

= |V |
2

< |V |
Lemma 21 Let A be a V -start algorithm, where V is a set
of values such that |V | > 1, and let n be an integer such that
1 < n ≤ �|I |2 �. There exist two alpha executions, αP (v) and
αP ′(v′), defined over A, where P, P ′ ⊆ I, |P| = |P ′| =
n, P ∩ P ′ = ∅, v, v′ ∈ V , v �= v′, and αP (v) and αP ′(v′)
have the same basic broadcast count sequence through the

first lg
(|V ||I |

n|V |+|I |
)

1
2 rounds.

123

Consensus and collision detectors in radio networks 75

Proof Let Π be a partition of I into disjoint sets of size n.
Let S be the set of alpha executions defined over A, all index
sets in Π , and all values in V . It follows that we have |V ||Π |
different alpha executions in S to consider. Note that for any
P ∈ Π and v ∈ V , there are exactly |V | + |Π | − 1 alpha
executions in S of the form αP (∗) or α∗(v) (that is, defined
over the same process index set P or value v). Also note,
as argued above, for any sequence of k rounds, there are at
most 3k basic broadcast count sequences. We claim that for

k = lg
(|V ||I |

n|V |+|I |
)

1
2 : |V ||Π |

3k ≥ |V |+ |Π |. If true, this implies,

by the pigeon-hole principle, that there exist at least |V |+|Π |
alpha executions in S that share the same basic broadcast
count sequence. Because no more than |V | + |Π | − 1 exe-
cutions can share the same process set or value, then at least
two of these |V |+ |Π | sequence-sharing executions must be
defined over different process index sets and values. These
are the two executions posited by our Lemma statement.
We verify this claim by plugging in for k and showing that
the following equation holds:

|V ||Π |
3k

≥ |V | + |Π |
First, however, we note that |Π | = � |I |n �, (the floor captures
the fact that I might not divide evenly by n), allowing us to
state:
|V ||I |
n3k

≥ |V | + � |I |
n
�

Next, we replace k with the following larger expression:

k′ = lg
(|V ||I |

n|V |+|I |
)

lg−1 3. This is valid because, clearly, if

our above equation is true for k′ > k then it is also true for
k. We now subsitute for k′ and simplify:

|V ||Π |
n3k′ =

|V ||Π |
n3

lg
(|V ||I |

n|V |+|I |
)

lg−1 3

= |V ||Π |
n3

log3

(|V ||I |
n|V |+|I |

)

= |V ||Π |
n |V ||I |

n|V |+|I |

= |V ||I | (n|V | + |I |)
n|V ||I |

= n|V | + |I |
n

= |V | + |I |
n

≥ |V | + � |I |
n
�

Thus, our claim is verified. ��
We conclude this subsection with a general indistinguisha-
bility lemma, involving alpha executions with similar basic
broadcast count sequences. We call this the Pasting Lemma,
as it involves the “pasting together” of two executions.

Lemma 22 (Pasting Lemma) Let A be a V -start algorithm,
where V is a set of values such that |V | > 1. Suppose
v, v′ ∈ V , k > 0, and R, R′ ⊆ I , such that v �= v′,
|R| = |R′| > 1, and R ∩ R′ = ∅. Suppose alpha execu-
tions αR(v) and αR′(v′), defined over A, have the same basic
broadcast count sequence for the first k rounds. Let ER∪R′
be an environment where ER∪R′ .P = R ∪ R′, ER∪R′ .C D =
M AXC DR∪R′(half-AC), and ER∪R′ .C M = M AX L SR∪R′ .
Then there exists an execution, γ of system (ER∪R′,A), that
satisfies eventual collision freedom, such that γ is indistin-
guishable from αR(v) (resp. αR′(v′)), through round k, with
respect to all i ∈ R (resp. j ∈ R′).

Proof We start by constructing an execution γ that satis-
fies our desired indistinguishabilities and eventual collision
freedom. We then show that this execution satisfies the con-
straints of its environment. Specifically, let γ be the unique
execution of system (ER∪R′,A) where:

1. For every i ∈ R, A(i) starts with state ini t i (v), and for
all j ∈ R′, A(j) starts with state ini t j (v

′).
2. For the first k rounds, we fix the execution to generate

the following receive behavior: if, among processes in
R, a single process broadcasts, then all processes in R
receive this message. Similarly, if, among processes in
R′, a single process broadcasts, then all processes in R′
receive this message. Broadcasters always receive their
own message (as required by the model). All other mes-
sages are lost. Notice, therefore, that for these k rounds,
a process in R (resp. R′) never receives a message from
a process in R′ (resp. R). For example, if two processes
in R broadcast, the two broadcasters receive their own
message, but no other process in R receives anything.
On the other hand, if exactly one process in R and one
process in R′ broadcast, all processes in R get the R mes-
sage and all processes in R′ get the R′ message. Starting
with round k + 1, there is no further message loss.

3. For the first k rounds, ER∪R′ .C D returns ± to A(i) for
some i ∈ R (resp. A(j) for some j ∈ R′) if and only
if it returned ± to A(i) (resp. A(j)) during this round
of αR(v) (resp. αR′(v′)). Starting with round k + 1, the
detector returns null to all processes.

4. For the first k rounds, ER∪R′ .C M returns active to
A(min(R)) and A(min(R′)). Starting with round k + 1,
it returns active only to A(min(R)).

We constructed γ such that for every i ∈ R, αR(v) is indis-
tinguishable from γ , with respect to i , through round k, and
for every j ∈ R′, αR′(v′) is indistinguishable from γ , with
respect to j , through round k. The collision detector and con-
tention manager advice for these rounds, by definition, are
the same with respect to the alpha executions. To see why the
message receive behavior is the same, we turn to assumption

123

76 G. Chockler et al.

2 of our γ definition. First, notice that no process A(i), such
that i ∈ R, ever receives a message from process A(j), such
that j ∈ R′, and vice versa. Second, process A(i), i ∈ R
(resp. A(j), j ∈ R′) only receives a message m if a sin-
gle process A(i), i ∈ R (resp. A(j), j ∈ R′) broadcasts
(and it broadcast m), and/or the receiving process broadcast
itself. This matches the definition of receive behavior in our
alpha executions. Also notice that γ satisfies eventual colli-
sion freedom as message loss stops at round k + 1.

We must next show that γ is valid. In other words, we
must show that the contention manager and collision detector
behavior we describe satisifes the constraints of the envi-
ronment. It is easy to see that this is the case for the con-
tention manager, as, by construction, it stabilizes to a single
active process in round k + 1, thus satisfying the leader
election service property. The collision detector behavior is
more complicated. Because we specified that ER∪R′ .C D =
M AXC DR∪R′(half-AC) we must ensure that neither half-
completeness nor accuracy is ever violated in γ . This is obvi-
ous starting with round k + 1, so we focus only on the first k
rounds.

Two factors are key in this argument: first, the indistin-
guishability between γ and the alpha executions for these
first k rounds, and second, the fact that the basic broadcast
count sequence is the same for both of these alpha execu-
tions for these first k rounds. Let us examine the possible
cases from the point of view of an arbitrary process A(i),
for a single round r ≤ k, where we assume, without loss of
generality, that i ∈ R.

• Case 1 A(i) receives null from the collision detector.
If A(i) receives null in this round of γ , then, by assump-
tion 3 of our γ definition, A(i) receives null in this round
of αR(v) as well. By the definition of an alpha execution,
this means either a single process or no process broad-
cast during this round of αR(v). By our indistinguishabil-
ity and basic broadcast count equality, this implies that
either: (a) no process broadcast in this round of γ ; or
(b) exactly one process described by an index in R and
one process described by an index in R′ broadcast in
this round of γ . Accuracy is trivially satisfied in both
(a) and (b) (as the detector returned null in both). And
half-completeness is satisfied in both, as in (a) no mes-
sages are lost, and in (b) A(i) lost exactly half of the
messages—making it acceptable for it to return null by
the definition of half-completeness. (This is where we first
notice the separation between half-completeness and its
close neighbor majority completeness. If we were deal-
ing with a majority complete collision detector, returning
null in case b would be unacceptable.)

• Case 2 A(i) receives ± from the collision detector.
If A(i) receives ± in this round of γ , then, by assump-
tion 3 of our γ definition, A(i) receives ± in this round

of αR(v) as well. By the definition of an alpha execu-
tion this means two or more processes broadcast during
this round of αR(v). By our indistinguishability and basic
broadcast count equality, two or more processes described
by indices in R and two or more processes described by
indices in R′ broadcast during this round of γ . There-
fore, by assumption 2 of our γ definition, all processes
lose at least one message in this round (as the only mes-
sages received in this case are broadcasters receiving their
own message). Because there was message loss, and the
detector returned ±, half-completeness and accuracy are
clearly satsified.

Thus, our claim is verified. ��

9.3.3 Impossibility of constant round consensus with
an anonymous (E(half-AC,LS),V ,ECF)-consensus
algorithm

Theorem 6 Let V be a value set such that |V | > 1, and let
n be an integer such that 1 < n ≤ �|I |2 �. For any anonymous
(E(half-AC,LS),V ,ECF)-consensus algorithm, A, there
exists an environment E ∈ En(half-AC,LS), and an exe-
cution α of the system (E,A), where α satisfies eventual
collision freedom, C ST (α) = 1, and some process in α does
not decide until after round lg |V |

2 − 1.

Proof Let A be any anonymous (E(half-AC,LS),V ,ECF)-
consensus algorithm. Fix P and P ′ to be two disjoint subsets
of I such that |P| = |P ′| = n. In this proof we will consider
alpha executions defined over A, P or P ′, and values from V .
(Notice, by virtue of being a consensus algorithm,A is clearly
also a V -start algorithm). These executions satisfy eventual
collision freedom, have a communication stabilization time
of 1, and are defined by an environment in En(half-AC,LS).
Therefore, if we can find such an alpha execution that does
not decide for a logarithmic number of rounds, our theorem
will be proved.

First, we apply Lemma 20 to A, V , and P , which pro-
vides two alpha executions, αP (v) and αP (v′), that have
the same basic broadcast count sequence through the first
lg |V |

2 − 1 rounds. By Corollary 2, we know this, therefore, is
also true of αP (v) and αP ′(v′) (by this corollary, αP ′(v′) has
the same basic broadcast count sequence as αP (v′)). We can
now apply the Pasting Lemma (Lemma 22) to αP (v), αP ′(v′),
and k = lg |V |

2 − 1. This produces an execution γ of system
(EP∪P ′ ,A)—where EP∪P ′ .P = P ∪ P ′, EP∪P ′ .C D =
M AXC DP∪P ′(half-AC), and EP∪P ′ .C M = M AX L SP∪P ′
—that satisfies eventual collision freedom, such that γ is
indistinguishable from αP (v) (resp. αP ′(v′)), through round
k, with respect to processes described by indices in P (resp.
P ′).

123

Consensus and collision detectors in radio networks 77

Let us assume, for the sake of contradiction, that both
αP (v) and αP ′(v′) terminate by round k = lg |V |

2 − 1. By
the definition of an (E(half-AC,LS),V ,ECF)-consensus algo-
rithm, γ must solve consensus. By assumption, in both αP (v)

and αP ′(v′), all processes decide by round k in these execu-
tions. By our indistinguishability, these processes decide the
same values in γ . By uniform validity, processes described
by indices in P decide v, and processes described by indices
in P ′ decide v′. Thus, both values are decided in γ —violating
agreement. A contradiction. ��

Making the bound tight We match this lower bound with
Algorithm 2, described in Sect. 8, which is an anonymous
(E(0-♦AC,WS),V ,ECF)-consensus algorithm that guaran-
tees termination by C ST +Θ(lg |V |).

9.3.4 Impossibility of constant round consensus with a
non-anonymous (E(half-AC,LS),V ,ECF)-consensus
algorithm

We now turn our attention to the case of non-anonymous
algorithms. Here, we derive a more complicated bound, but
then show, in Corollary 3, that for reasonable parameters, it is
no worse, roughly speaking, than its anonymous counterpart.

Theorem 7 Let V be a value set such that |V | > 1, and let
n be an integer such that 1 < n ≤ �|I |2 �. For any (E(half-
AC,LS),V ,ECF)-consensus algorithm, A, there exists an
environment E ∈ En(half-AC,LS), and an execution α of
the system (E,A), where α satisfies eventual collision free-
dom, C ST (α) = 1, and some process in α does not decide
until after round lg (

|V ||I |
n|V |+|I |)

1
2 .

Proof LetAbe any (E(half-AC,LS),V ,ECF)-consensus algo-
rithm. For this proof we consider alpha executions defined
over algorithm A, value set V , and all subsets of size n of
I . These executions satisfy eventual collision freedom, have
a communication stabilization time of 1, and are defined by
an environment in En(half-AC,LS). Therefore, if we can find
such an alpha execution that does not decide for the desired
number of rounds, our theorem will be proved.

First, we apply Lemma 21, which provides two such
executions, αP (v) and αP ′(v′), where |P| = |P ′| = n,
P ∩ P ′ = ∅, and both have the same basic broadcast count
sequence through the first lg (

|V ||I |
n|V |+|I |)

1
2 rounds. We can now

apply the Pasting Lemma (Lemma 22) to αP (v), αP ′(v′),
and k = lg (

|V ||I |
n|V |+|I |)

1
2 , which, as before, provides an execu-

tion γ of system (EP∪P ′ ,A)—where EP∪P ′ .P = P ∪ P ′,
EP∪P ′ .C D = M AXC DP∪P ′(half-AC), and EP∪P ′ .C M =
M AX L SP∪P ′—that satisfies eventual collision freedom,
such that γ is indistinguishable from αP (v) (resp. αP ′(v′)),
through round k, with respect to processes described by
indices in P (resp. P ′).

Let us assume, for the sake of contradiction, that both
αP (v) and αP ′(v′) terminate by round k = lg (

|V ||I |
n|V |+|I |)

1
2

By the definition of an (E(half-AC,LS),V ,ECF)-consensus
algorithm, γ solves consensus. By assumption, in both αP (v)

and αP ′(v′), all processes decide by round k. By our indistin-
guishability, these processes decide the same values in γ . By
uniform validity, processes described by indices in P decide
v, and processes described by indices in P ′ decide v′. Thus,
both values are decided in γ —violating agreement. A con-
tradiction. ��

The obvious next question to ask is how the result of Theo-
rem 7 compares to the result of Theorem 6. At first glance,
the two results seem potentially incomparable, as the for-
mer contains both |I | and n in a somewhat complex fraction,
while the latter does not contain either of these two terms.
In the following corollary, however, we show that these two
results are, in reality, quite similar:

Corollary 3 Let V be a value set such that |V | > 1, and
let n be an integer such that 1 < n ≤ �|I |2 � and |I | = nk
for some integer k > 1. For any (E(half-AC,LS),V ,ECF)-
consensus algorithm, A, there exists an environment E ∈
En(half-AC,LS), and an execution α of the system (E,A),
where α satisfies eventual collision freedom, C ST (α) = 1,
and some process in α does not decide for Ω(min{log |V |,
log |I |n }) rounds.

Proof We consider the two possible cases:
Case 1 min{log |V |, log |I |n } = log |V |.
This implies that |V | ≤ |I |n . Therefore, we can express the
two terms as follows, where c is a constant greater than or
equal to 1:

|I |
n
= c|V |

Solving for |I | we get |I | = nc|V |. We can now make this
substitution for |I | in the bound from Theorem 7 and sim-
plify:

k = lg

(|V ||I |
n|V | + |I |

)
1

2

= lg

(|V |nc|V |
n|V | + nc|V |

)
1

2

= lg

(
nc|V |2

(c + 1)n|V |
)

1

2

= lg

(
c

c + 1
|V |

)
1

2

= (lg

(
c

c + 1

)
+ lg (|V |))1

2
= Ω(lg |V |)

Case 2 min{log |V |, log |I |n } = log |I |n .

123

78 G. Chockler et al.

This implies that |I |n ≤ |V |. As before, we can express the
two terms as follows, where c is a constant greater than or
equal to 1:

|V | = c|I |
n

We can now make this substitution for |V | in the bound from
Theorem 7 and simplify:

k = lg

(|V ||I |
n|V | + |I |

)
1

2

= lg

(
c|I |

n |I |
n c|I |

n + |I |

)
1

2

= lg

(
c|I |2

n(c + 1)|I |
)

1

2

= lg

(
c|I |

(c + 1)n

)
1

2

= lg

(
c

c + 1

)
+ lg

(|I |
n

)
1

2

= Ω

(
lg
|I |
n

)

And, of course, for the case where |V | = |I |
n , we can set

c = 1 in either equation to reduce the result of Theorem 7

to either Ω(lg |V |) or Ω
(

lg |I |n
)

; meaning any tie-breaking

criteria for the min function is fine. ��

Making the bound tight To match this bound, we can use the
algorithm informally described in Sect. 8.3. This algorithm
uses Algorithm 2 when |I | ≥ |V |, and runs Algorithm 2
on the IDs—to elect a leader which can then broadcast its
value—in the case where |I | < |V |. It runs in time C ST +
Θ(min{lg |V |, lg |I |) which comes within a factor of 1/n of
our lower bound. In the following conjecture we posit that
this algorithm is, in fact, optimal, and that this gap can be
closed through a more complicated counting argument in the
lower bound.

Conjecture 1 Let V be a value set such that |V | > 1, and let n
be an integer such that 1 < n ≤ �|I |2 � and |I | = nk for some
integer k > 1. For any (E(half-AC,LS),V ,ECF)-consensus
algorithm, A, there exists an environment E ∈ En(half-
AC,LS), and an execution α of the system (E,A), where
α satisfies eventual collision freedom, C ST (α) = 1, and
some process in α does not decide for Ω(min{lg |V |, lg |I |})
rounds.

The |I |n term in our previous result stems from the count-

ing argument in Lemma 21, where we consider only |I |n
non-overlapping subsets of I . This restriction simplifies the
counting argument, but potentially provides some extra infor-
mation to the algorithm by restricting the sets of processes
that can be participating in an execution. We conjecture that

a more complicated counting argument, that considers more
possible sets of n nodes (some overlapping), could replace
this term lg |I |.

9.4 Impossibility of consensus with eventual accuracy
but without ECF

In this section and the next, we consider executions that do
not necessarily satisfy eventual collision freedom. This might
represent, for example, a noisy network where processes are
never guaranteed to gain solo access to the channel long
enough to successfully transmit a full message. We start by
showing that consensus is impossible in this model if the
collision detector is only eventually accurate.

Theorem 8 For every value set V , where |V | > 1, there
exists no (E(♦AC,LS),V ,NOCF)-consensus algorithm.

Proof Assume by contradiction that an (E(♦AC,LS),
V,NOCF)-consensus algorithm, A, exists. First, we fix two
disjoint and non-empty subsets of I , Pa and Pb. Next, we
define three environments A, B, C as follows: Let A.P = Pa ,
B.P = Pb, and C.P = Pa ∪ Pb. Let A.C D = M AXC DPa

(♦AC), B.C D = M AXC DPb (♦AC), and C.C D =
M AXC DPa∪Pb (♦AC). Let A.C M = M AX L SPa , B.C M =
M AX L SPb , and C.C M = M AX L SPa∪Pb . By definition,
A, B, C ∈ E(♦AC,LS). We next define an execution γ , of
the system (C,A), as follows:

1. Fix the execution such that all processes described by
indices in Pa lose all (and only) messages from processes
described by indices in Pb, and vice versa.

2. Fix the collision detector to satisfy completeness and
accuracy in all rounds.

3. Fix the contention manager to return active only to the
process described by min(Pa).

4. Fix the execution so that all processes described by
indices in Pa start with initial value v, and all processes
described by indices in Pb start with initial value v′,
where v, v′ ∈ V , v �= v′.

It is clear that γ satisfies the constraints of its environment,
as, by definition, the collision detector satisfies complete-
ness and eventual accuracy (in fact, it satisfies accuracy), and
the contention manager stabilizes to a single active process
starting in the first round. Therefore, by the definition of an
(E(♦AC,LS),V ,NOCF)-consensus algorithm, consensus is
solved in γ . Assume all processes decide by round k. Let
x ∈ {v, v′} be the single value decided.

We will now construct an execution α, of the system
(A,A), and an execution β, of the system (B,A), as follows:

1. All processes in α are initialized with v, and all processes
in β are initialized with v′.

123

Consensus and collision detectors in radio networks 79

2. Fix the environments so there is no message loss in either
execution.

3. In α, fix the contention manager to return active only
to the process described by min(Pa), in β, for the first k
rounds, fix the contention manager to return passive to
all processes, and, starting at round k + 1, have it return
active only to the process described by min(Pb).

4. For all i ∈ Pa and r, 1 ≤ r ≤ k, we fix A.C D to return±
to A(i) during round r , if and only if A(i) received a col-
lision notification during round r of γ . We define B.C D
in the same way with respect to Pb. Starting with round
k + 1, we fix the collision detectors, in both executions,
to satisfy completeness and accuracy.

We now validate that α and β satisfy the constraints of their
respective environments. The contention manager in both
executions stabilizes to a single active process (starting in
round 1 in α, and round k + 1 in β). As there is no message
loss, then clearly the collision detector satisfies complete-
ness. Finally, we note note that the detector satisfies eventual
accuracy as, starting with round k + 1, by construction, the
detectors in both executions become accurate.

Next, we note, by construction, for all i in Pa , the execu-
tion γ is indistinguishable from α, with respect to i , through
round k. And for all j in Pb, the execution γ is indistin-
guishable from β, with respect to j , through round k. As
noted above, all processes decide x ∈ {v, v′}, by round k
in γ . Therefore, all processes also decide x in their respec-
tive α or β execution. Assume, without loss of generality,
that x = v. This implies processes decide v in β—violating
uniform validity. A contradiction. ��

9.5 Impossibility of anonymous constant round consensus
with accuracy but without ECF

In this section, we consider the consensus problem with accu-
rate collision detectors but no ECF guarantees. In Sect. 8,
we presented Algorithm 3, an anonymous algorithm which
solves consensus in O(lg |V |) rounds using a collision detec-
tor in 0-AC and no contention manager (i.e., the trivial
N OC M contention manager that returns active to all
processes in all rounds). Here, we show this bound to be opti-
mal by sketching a proof for the necessity of lg |V | rounds for
any anonymous (E(AC,NoCM),V ,NOCF)-consensus algo-
rithm to terminate. Intuitively, this result should not be
surprising. Without the ability to ever successfully deliver
a message, processes are reduced to binary communication
in each round (i.e., silence = 0, collision notification = 1). At
a rate of one bit per round, it will, of course, require lg |V |
rounds to communicate an arbitrary decision value from V .

Theorem 9 Let V be a value set such that |V | > 1, and let
n be an integer such that 1 < n ≤ �|I |2 �. For any anonymous

(E(AC,NoCM),V ,NOCF)-consensus algorithm, A, there
exists an environment E ∈ En(AC,NoCM), and an execu-
tion α of the system (E,A), where some process in α does
not decide until after round lg |V | − 1

Proof (Sketch) With no unique identifiers or meaningful con-
tention manager advice to break the symmetry, if we start all
processes with the same initial value, and fix the execution
such that all messages are lost (except, of course, for senders
receiving their own message), then the processes will behave
identically. That is, in each round, either all processes broad-
cast the same message, or all processes are silent.

For a given n value, 1 < n ≤ �|I |2 �, and v ∈ V , let
β(v) be such an execution containing n processes. Let the
binary broadcast sequence of execution β(v) be the infinite
binary sequence defined such that position r is 1 if and only
if processes broadcast in round r of β(v).

For simplicity, assume |V | is a power of 2. By a sim-
ple counting argument (i.e., as we saw in Lemma 20), we can
show that there must exist two values,v, v′ ∈ V (v �= v′) such
that β(v) and β(v′) have the same binary broadcast sequence
through round lg |V | − 1. Specifically, there are 2k differ-
ent binary broadcast count sequences of length k. Therefore,
for k = lg |V | − 1 there are 2lg |V |−1 = |V |/2 different
sequences. Because we have |V | different β executions, one
for each value in V , by the pigeon-hole principle at least
two such executions must have the same binary broadcast
count sequence through round k. We obtain our needed result
through the expected indistinguishability argument (i.e., in
the style of the Pasting Lemma). If we compose these two β

executions into a larger execution γ , processes cannot dis-
tinguish this composition until after round lg |V |−1. Before
this point, there is never a round in which processes from one
partition are broadcasting while processes from the other are
silent. Therefore, it cannot be the case that processes decide
in both β executions by round k, as they would then decide
the same values in γ —violating agreement. ��

Making the bound tight This bound is matched by Algo-
rithm 3, which is an anonymous (E(0-AC,NoCM),V ,NOCF)-
consensus algorithm that terminates by round Θ(lg |V |).6

The non-anonymous case It remains an interesting open
question to prove a bound for the case where processes have
access to IDs and/or a leader election service. Both cases
break the symmetry that forms the core of the simple argu-

6 This upper bound holds after failures cease. Because, however, there
are no failures in the executions considered in our above proof, it
matches the lower bound. It remains an interesting open question to
see if either: (1) one can construct an (E(0-AC,NoCM),V ,NOCF)-
consensus algorithm that terminates in Θ(lg |V |) rounds regardless of
failure behavior; or (2) one can refine the previous bound to account for
delays caused by failures.

123

80 G. Chockler et al.

ment presented above. Intuitively, however, this extra infor-
mation should not help the processes decide faster. Without
guaranteed message delivery, they are still reduced to, essen-
tially, binary communication. Even if we explicitly provided
each process with P for the system, this still would not cir-
cumvent the need for some process to spell out its initial
value, bit by bit—therefore requiring lg |V | rounds.

10 Conclusion

In this study, we investigated the fault-tolerant consensus
problem in a single-hop wireless network. In a novel break
from previous work, we considered a realistic communica-
tion model in which any arbitrary subset of broadcast mes-
sages can be lost at any receiver. To help cope with this
unreliability, we introduced (potentially weak) receiver-side
collision detectors and defined a new classification scheme
to precisely capture their power. We considered, separately,
devices that have unique identifiers, and those that do not,
as well as executions that allow messages to be delivered if
there is a single broadcaster, and executions that do not.

For each combination of these properties—collision
detector, identifiers, and message delivery behavior—we
explored whether or not the consensus problem is solvable,
and, if it was, we proved a lower bound on the round com-
plexity. In all relevant cases, matching upper bounds were
also provided. Our results produced the following observa-
tions regarding the consensus problem in a realistic wireless
network model:

• Consensus cannot be solved in a realistic wireless net-
work model without some collision detection capability.

• Consensus can be solved efficiently (i.e., in a constant
number of rounds) if devices are equipped with receiver-
side collision detectors that can detect the loss of half or
more of the messages broadcast during the round.

• For small value spaces (e.g., deciding to commit or abort),
consensus can still be solved efficiently even with a very
weak receiver-side collision detector that can only detect
the loss of all messages broadcast during the round.

• Collision detectors that produce false positives are toler-
able so long as they stabilize to behaving properly and the
network eventually allows a message to be transmitted if
there is only a single broadcaster.

• In the adversarial case of a network that never guarantees
to transmit a message, consensus can still be solved so
long as devices have collision detectors that never pro-
duce false positives.

• Perfect collision detection—a detector that detects all
message loss—does not provide significant advantages
over “pretty good” detection—a detector that detects if

half or or more of the messages are lost—for solving
consensus.

• Unique identifiers do not facilitate consensus unless the
space of possible identifiers is smaller than the set of
values being decided.

There are, of course, many interesting open questions moti-
vated by this research direction. For example, what proper-
ties, besides the six completeness and accuracy properties
described here, might also be useful for defining a colli-
sion detector? Similarly, the zero complete detector seems,
intuitively, to be the “weakest” useful detector for solving
consensus. Is this true? Are there weaker properties that are
still powerful enough to solve this problem? It might also
be interesting to consider occasionally well-behaved detec-
tors. For example, a collision detector that is always zero
complete and occasionally fully complete. Given such a ser-
vice, could we design a consensus algorithm that terminates
efficiently during the periods where the detector happens to
behave well? Such a result would be appealing as this def-
inition of a detector matches what we might expect in the
real world (i.e., a device that can usually detect any lost mes-
sage, but, occasionally—for example, under periods of heavy
message traffic—it cannot do better than the detection of all
messages being lost).

Another interesting question concerns our assumption
that processes start during the same round. If we remove this
constraint, can we devise algorithms that still solve consen-
sus? Will this introduce a fundamental complexity gap?

We plan to extend our formal model to describe a mul-
tihop network. We are interested in exploring the consensus
problem in this new environment, as well as reconsidering
already well-studied problems, such as reliable broadcast,
and seeing if we can replicate, extend, or improve existing
results within this framework.

In conclusion, we note that much of the early work on
wireless ad hoc networks did not use detailed communication
models. This was sufficient for obtaining the best-effort guar-
antees needed for many first-generation applications, such as
data aggregation. In the future, however, as more and more
demanding applications are deployed in this context, there
will be an increased need for stronger safety properties. These
stronger properties require models that better capture the real-
ity of communication on a wireless medium. As we show
in this study, in such models, collision detection is needed
to solve even basic coordination problems. Accordingly, we
contend that as this field matures, the concept of collision
detection should be more widely studied and employed by
both theoreticians and practitioners.

Acknowledgments We thank the three anonymous reviewers for their
insightful and comprehensive editorial suggestions. The resulting paper
is much stronger due to their efforts. We also thank Vassos Hadzilacos

123

Consensus and collision detectors in radio networks 81

for his helpful commentary and assistance in guiding this work through
the refereeing process. We additionally acknowledge Rachid Guerraoui
for his crucial feedback on the original conference version of this work
and his discussions on the potential connection between our formalisms
and failure detectors. Finally, we salute Michael Bender for sharing his
expertise on back-off protocols.

Appendix A: Detailed definitions

Here, we described the detailed definitions and properties
that were omitted, for the sake of concision, from the main
body of the paper.
Helper definitions related to executions

• A state assignment for E .P is a mapping S from E .P to⋃
i∈E .P statesA(i), such that for every i ∈ E .P , S(i) ∈

statesA(i).
It will be used, in the context of an execution, to describe,
for a single round, the current state of each process in the
system.

• A message assignment for E .P is a mapping from E .P to
M∪{null}. It will be used, in the context of an execution,
to describe, for a single round, the message broadcast (if
any) by each process in the system.

• A message set assignment for E .P is a mapping from
E .P to Multi(M). It will be used, in the context of an
execution, to describe, for a single round, the messages
received (if any) by each process in the system.

• A collision advice assignment for E .P is a mapping from
E .P to {null,±}. It will be used, in the context of an
execution, to describe, for a single round, the collision
detector advice returned to each process in the system.

• A contention advice assignment for E .P is a mapping
from E .P to {active, passive}. It will be used, in the
context of an execution, to describe, for a single round,
the contention manager advice returned to each process
in the system.

• Given an infinite sequence β, of the form C0, M1, N1, D1,
W1, C1, M2, N2, D2, W2, C2, ..., where each Cr is a state
assignment for E .P , each Mr is a message assignment
for E .P , each Nr is a message set assignment for E .P ,
each Dr is a collision advice assignment for E .P , and
each Wr is a contention advice assignment for E .P , we
define:
– tT (β) to be the E .P-transmission trace (c1, T1),

(c2, T2), ... where for all i > 0: ci = |{ j | j ∈ E .P and
Mi [j] �= null}|; and, for all i > 0 and j ∈ E .P:
Ti [j] = |Ni [j]|. That is, tT (β) is the unique E .P-
transmission trace described by the message assign-
ments in β.

– tC D(β) to be the E .P-CD trace C D1, C D2, ... where
for all i > 0 and for all j ∈ E P: C Di [j] = Di [j].

That is, tC D(β) is the unique E .P-CD trace described
by the collision advice assignments in β.

– tC M (β) to be the E .P-CM trace C M1, C M2, ... where
for all i > 0 and for all j ∈ E .P: C Mi [j] = Wi [j].
That is, tC M (β) is the unique E .P-CM trace described
by the contention advice assignments in β.

– tC (β) to be the set { j | j ∈ E .P and ∀i ≥ 0, Ci [j] �=
f ailA}. That is, TC (β) is the set of processes that
never enter the f ail state.

We can now provide the following formal definition of an
execution:

Definition 19 (Execution) An execution α of a system
(E,A) is an infinite sequence

C0, M1, N1, D1, W1, C1, M2, N2, D2, W2, C2, ...

where each Cr is a state assignment for E .P , each Mr is
a message assignment for E .P , each Nr is a message set
assignment for E .P , each Dr is a collision advice assignment
for E .P , and each Wr is a contention advice assignment for
E .P . We assume the following constraints:

1. For all i ∈ E .P: C0[i] ∈ startA(i).
2. For all i ∈ E .P and r > 0: either Cr [i] =

transA(i)(Cr−1[i], Nr [i], Dr [i], Wr [i]) or Cr [i] =
f ailA(i).

3. For all i ∈ E .P and r > 0: Mr [i] =
msgA(i)(Cr−1[i], Wr [i]).

4. Nr [i] ⊆⋃
j∈E .P M S({Mr [j]} − {null}).

5. If Mr [i] �= null, then Mr [i] ∈ Nr [i].
6. tC D(α) ∈ E .C D(tT (α)).
7. tC M (α) ∈ E .C M(tC (α)).

Informally speaking, Cr represents the system state after r
rounds, while Mr and Nr represent the messages that are sent
and received at round r , respectively. Dr describes the advice
returned from the collision detector to each process in round
r , and Wr describes the advice returned from the contention
manager to each process in round r .

Constraints 19.1 and 19.2 require that each process start
from an initial state and subsequently evolve its state accord-
ing to its transition function. Notice, in constraint 19.2 it is
possible for a process to instead enter its fail state. Once
here, by the constraints of our process definition, it can never
leave this state or broadcast messages for the remainder of
an execution. We use this to model crash failures.

Constraint 19.3 requires that processes broadcast
according to their message transition function. Constraint
19.4 requires the receive behavior to uphold integrity and
no-duplication, as it specifies that the receive set of a process
for a given round must be a sub-multiset of the multiset
defined by the union of all messages broadcast that round.

123

82 G. Chockler et al.

Constraint 19.5 requires broadcasters to always receive their
own message. Notice, however, that message loss is other-
wise un-constrained. Any process can lose any arbitrary sub-
set of messages sent by other processes during any round.
Similarly, we never force message loss. Even if every process
in the system broadcasts, it is still possible that all processes
will receive all messages. Finally, constraints 19.6 and 19.7
require the collision advice and contention advice to conform
to the definitions of the environments collision detector and
contention manager, respectively.
We use the terminology k-round execution prefix to describe
a prefix of an execution sequence that describes only the first
k rounds (i.e., the sequence through Ck).
The following definitions also prove useful:

Definition 20 (Indistinguishability) Let α and α′ be two
executions, defined over systems (E,A) and (E ′,A),
respectively—that is, the same algorithm in possibly differ-
ent environments. For a given i ∈ E .P ∩ E ′.P , we say α is
indistinguishable from α′, with respect to i , through round
r , if C0[i] is the same in both executions, and, for all k,
1 ≤ k ≤ r , the state (Ck[i]), message (Mk[i]), message
set (Nk[i]), collision advice (Dk[i]), and contention advice
(Wk[i]) assignment values for round k and index i are also the
same in both. That is, in α and α′, A(i) has the same sequence
of states, the same sequence of outgoing messages, the same
sequence of incoming messages, and the same sequence of
collision detector and contention manager advice up to the
end of round r .

Definition 21 (Correct) Let α be an execution of system
(E,A). For a given i ∈ E .P , we say process A(i) is correct
in α if and only if for all Cr ∈ α, Cr [i] �= f ailA(i). That is,
A(i) never enters its fail state during α.

Property 1 (Eventual Collision Freedom) Let α be an exe-
cution of system (E,A). We say α satisfies the eventual col-
lision freedom property if there exists a round rcf such that
for all r ≥ rcf and all i ∈ E .P: if tT (α)(r) = (c, T) and
c = 1, then T (i) = 1. That is, there exists a round rcf such
that for any round greater than or equal to rcf , if only a single
process broadcasts then all processes receive its message.

Property 2 (Wake-up Service) A given P-contention man-
ager, SC M , is a wake-up service if for every A, where A is
a non-empty subset of P , and for every P-CM trace tC M ∈
SC M (A) there exists a round rwake such that for all r ≥ rwake:
|{i |i ∈ A and tC M (r)(i) = active}| = 1. That is, for all
rounds greater than or equal to rwake, only a single correct
process is told to be active.

Property 3 (Leader Election Service) A given P-contention
manager, SC M , is a leader election service if for every A,
where A is a non-empty subset of P , for every P-CM trace
tC M ∈ SC M (A), there exists a round rlead such that for all

r ≥ rlead, |{i |i ∈ A and tC M (r)(i) = active}| = 1, and for
all r > rlead , if tC M (r)(i) = active, then tC M (r − 1)(i) =
active. That is, for all rounds greater than or equal to rlead,
the same single correct process is told to be active.

Definition 22 (M AX L SP) Let P be any non-empty subset
of I , and let C MP be the set of all P-contention managers that
are leader election services. M AX L SP is the P-contention
manager described by the set {tC M |∃S ∈ C MP s.t. tC M ∈ S}.

Property 4 (Completeness) A given P-collision detector, Q,
satisfies completeness if and only if for all pairs (tT , tC D)—
where tT is an P-transmission trace, tC D is an P-CD trace,
and tC D ∈ Q(tT)—and for all r > 0 and i ∈ P , the following
holds: if tT (r) = (c, T) and T (i) < c, then tC D(r)(i) = ±.
That is, if a process loses any message then that process
detects a collision.

Property 5 (Majority completeness) A given P-collision
detector, Q, satisfies majority completeness if and only if
for all pairs (tT , tC D)—where tT is an P-transmission trace,
tC D is a P-CD trace, and tC D ∈ Q(tT)—and for all r > 0
and i ∈ P , the following holds: if tT (r) = (c, T) and c > 0
and T (i)/c ≤ 0.5, then tC D(r)(i) = ±. That is, if a process
loses half or more of the messages then that process detects
a collision.

Property 6 (Half completeness) A given P-collision detec-
tor, Q, satisfies half completeness if and only if for all pairs
(tT , tC D)—where tT is an P-transmission trace, tC D is a
P-CD trace, and tC D ∈ Q(tT)—and for all r > 0 and
i ∈ P , the following holds: if tT (r) = (c, T) and c > 0
and T (i)/c < 0.5, then tC D(r)(i) = ±. That is, if a process
loses more than half of the messages then that process detects
a collision.

Property 7 (Zero completeness) A given P-collision detec-
tor Q, satisfies zero completeness if and only if for all pairs
(tT , tC D)—where tT is an P-transmission trace, tC D is an P-
CD trace, and tC D ∈ Q(tT)—and for all r > 0 and i ∈ P , the
following holds: if tT (r) = (c, T) and c > 0 and T (i) = 0,
then tC D(r)(i) = ±. That is, if a process loses every message
then that process detects a collision.

Property 8 (Accuracy) A given P-collision detector, Q, sat-
isfies accuracy if and only if for all pairs (tT , tC D)—where tT
is an P-transmission trace, tC D is an P-CD trace, and tC D ∈
Q(tT)—and for all r > 0 and i ∈ P , the following holds: if
tT (r) = (c, T) and T (i) = c, then tC D(r)(i) = null. That
is, if a process receives all messages then that process does
not detect a collision.

Property 9 (Eventual accuracy) A given P-collision detec-
tor Q, satisfies eventual accuracy if and only if there exists

123

Consensus and collision detectors in radio networks 83

a round racc such that for all pairs (tT , tC D)—where tT is an
P-transmission trace, tC D is a P-CD trace, and tC D ∈
Q(tT)—and for all r > 0 and i ∈ P , the following holds: if
tT (r) = (c, T) and r ≥ racc and T (i) = c, then tC D(r)(i) =
null. That is, starting at some round racc, if a process receives
all messages than that process does not detect a collision.

Definition 23 (M AXC DP (C)) Let P be any non-empty
subset of I , and let C be a set of collision detectors that
includes at least one P-collision detector. Then MAXCDP (C)

is a P-collision detector defined as follows: For any P-trans
mission trace t , M AXC DP (C)(t) = ⋃

Q∈C,Q is a P−C D
Q(t).

References

1. IEEE 802.11. Wireless lan mac and physical layer specifications,
June 1999

2. Abramson, N.: Development of the alohanet. IEEE Tran. Inform.
Theor 31, 119–123 (1985)

3. Aspnes, J., Fich, F., Ruppert, E.: Relationships between broadcast
and shared memory in reliable anonymous distributed systems.
In: 18th International Symposium on Distributed Computing, pp.
260–274 (2004)

4. Bender, M.A., Farach-Colton, M., He, S., Kuszmaul, B.C.,
Leiserson, C.E.: Adversarial contention resolution for simple
channels. In: Proceedings of the 17th ACM Symposium on Par-
allelism in Algorithms and Architectures (SPAA), pp. 325–332
(2005)

5. Bharghavan, V., Demers, A., Shenker, S., Zhang, L.:
Macaw: A media access protocol for wireless lans. In:
Proceedings of the ACM SIGCOMM ’94 Conference on
Communications Architectures, Protocols, and Applications
(1994)

6. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225–267 (1996)

7. Bogdan, S.C., Dariusz, R.K., Mariusz, A.R.: Adversarial queuing
on the multiple-access channel. In: PODC ’06: Proceedings of the
Twenty-fifth Annual ACM Symposium on Principles of Distrib-
uted Computing, pp. 92–101. ACM Press, New York (2006)

8. Chockler, G., Demirbas, M., Gilbert, S., Lynch, N., Newport, C.,
Nolte, T.: Reconciling the theory and practice of (un)reliable wire-
less broadcast. International Workshop on Assurance in Distrib-
uted Systems and Networks (ADSN) (to appear) (2005)

9. Chockler, G., Demirbas, M., Gilbert, S., Newport, C.: A mid-
dleware framework for robust applications in wireless ad hoc
networks. In: Proceedings of the 43rd Allerton Conference on
Communication, Control, and Computing (2005)

10. Chockler, G., Demirbas, M., Gilbert, S., Newport, C., Nolte, T:
Consensus and collision detectors in wireless ad hoc networks.
In: PODC ’05: Proceedings of the Twenty-fourth Annual ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, pp. 197–206. ACM Press, New York (2005)

11. Chockler, G., Demirbas, M., Gilbert, S., Newport, C., Nolte, T.:
Consensus and collision detectors in wireless ad hoc networks.
In: Proceedings of the Twenty-fourth Annual ACM Symposium
on Principles of Distributed Computing. ACM Press, New York
(2005)

12. Clementi, A.E.F., Monti, A., Silvestri, R.: Selective fami-
lies, superimposed codes, and broadcasting on unknown radio

networks. In: Proceedings of the Twelfth Annual ACM-SIAM
Symposium on Discrete Algorithms, pp. 709–718. Society for
Industrial and Applied Mathematics, Philadelphia (2001)

13. Deng, J., Varshney, P.K., Haas, Z.J.: A new backoff algorithm for
the IEEE 802.11 distributed coordination function. In: Commu-
nication Networks and Distributed Systems Modeling and Simu-
lation (CNDS ’04) (2004)

14. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence
of partial synchrony. J. ACM 35(2), 288–323 (1988)

15. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower
bounds for clear transmissions in radio networks. In: Proceedings
of the 7th Latin American Symposium on Theoretical Informatics
(LATIN), pp. 447–454 (2006)

16. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of dis-
tributed consensus with one faulty process. J. ACM 32(2), 374–
382 (1985)

17. Ganesan, D., Krishnamachari, B., Woo, A., Culler, D., Estrin, D.,
Wicker, S.: Complex behavior at scale: an experimental study of
low-power wireless sensor networks. UCLA Computer Science
Technical Report UCLA/CSD-TR (2003)

18. Goldberg, L.A., Jerrum, M., Kannan, S., Paterson, M.: A bound
on the capacity of backoff and acknowledgment-based proto-
cols. SIAM J. Comput. 33(2), 313–331 (2004)

19. Goldberg, L.A., Mackenzie, P.D., Paterson, M., Srinivasan,
A.: Contention resolution with constant expected delay. J.
ACM 47(6), 1048–1096 (2000)

20. Haas, Z.J., Deng, J.: Dual busy tone multiple access (dbtma)-a
multiple access control scheme for ad hoc networks. IEEE Trans.
Comm. 50(6), 975–985 (2002)

21. Haringstad, J., Leighton, T., Rogoff, B.: Analysis of backoff proto-
cols for mulitiple access channels. SIAM J. Comput. 25(4), 740–
774 (1996)

22. Jurdzinski, T., Stachowiak, G.: Probabilistic algorithms for the
wake-up problem in single-hop radio networks. Theor. Comput.
Syst. 38(3), 347–367 (2005)

23. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine
adversarial behavior. ACM Symposium on Principles of Distrib-
uted Computing (PODC), pp. 275–282 (2004)

24. Kotz, D., Newport, C., Gray, R.S., Liu, J., Yuan, Y., Elliott, C.:
Experimental evaluation of wireless simulation assumptions. In:
Proceedings of the 7th ACM International Symposium on Mod-
eling, Analysis and Simulation of Wireless and Mobile Systems,
pp. 78–82 (2004)

25. Kowalski, D.R.: On selection problem in radio networks. In: Pro-
ceedings of the Twenty-fourth Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing, pp. 158–
166, ACM Press, New York (2005)

26. Kumar, M.: A consensus protocol for wireless sensor networks.
Master’s thesis, Wayne State University (2003)

27. Lamport, L.: Paxos made simple. ACM SIGACT News 32(4), 18–
25 (2001)

28. Lynch, N.: Distributed Algorithms. Morgan Kaufman, San
Francisco (1996)

29. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switch-
ing for local computer networks. Commun. ACM 19(7), 395–
404 (1976)

30. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in
radio networks. In: Proceedings of the 24th Annual ACM Sym-
posium on Principles of Distributed Computing (PODC), pp. 148–
157, ACM, New York (2005)

31. Newport, C.: Consensus and Collision Detectors in Wireless Ad
Hoc Networks. Master’s thesis, MIT, Cambridge (2006)

32. Polastre, J., Culler, D.: Versatile low power media access for wire-
less sensor networks. The Second ACM Conference on Embedded
Networked Sensor Systems (SENSYS), pp. 95–107 (2004)

123

84 G. Chockler et al.

33. Raghavan, P., Upfal, E.: Stochastic contention resolution with
short delays. SIAM J. Comput. 28(2), 709–719 (1999)

34. Santoro, N., Widmayer, P.: Time is not a healer. In: Proceedings of
the 6th Annual Symposium on Theoretical Aspects of Computer
Science, pp. 304–313. Springer, Heidelberg (1989)

35. Santoro, N., Widmayer, P.: Distributed function evaluation in pres-
ence of transmission faults. In: Proceedings of International Sym-
posium on Algorithms (SIGAL), pp. 358–367 (1990)

36. van Dam, T., Langendoen, K.: An adaptive energy-efficient MAC
protocol for wireless sensor networks. The First ACM Conference
on Embedded Networked Sensor Systems (SENSYS), pp. 171–
180 (2003)

37. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of
multihop routing in sensor networks. The First ACM Conference
on Embedded Networked Sensor Systems (SENSYS), pp. 14–27
(2003)

38. Woo, A., Whitehouse, K., Jiang, F., Polastre, J., Culler, D.:
Exploiting the capture effect for collision detection and recov-
ery. In: Proceedings of the 2nd IEEE Workshop on Embedded
Networked Sensors, pp. 45–52 (2005)

39. Ye, W., Heidemann, J., Estrin, D.: An energy-efficient mac pro-
tocol for wireless sensor networks. In: Proceedings of the 21st
International Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM) (2002)

40. Zhao, J., Govindan, R.: Understanding packet delivery perfor-
mance in dense wireless sensor networks. The First ACM Con-
ference on Embedded Networked Sensor Systems (SENSYS), pp.
1–13 (2003)

123

	Consensus and collision detectors in radio networks
	Abstract
	Introduction
	Network model overview
	Upper bounds overview
	Lower bounds overview
	Related work
	Practical implementations of collision detectorsand contention managers
	Consensus in wireless networks
	Preliminaries
	The system model
	Executions and indistinguishability
	Process failures and message loss
	Contention managers
	The wake-up and leader election services
	Contention manager classes
	The maximal leader election service
	Collision detectors
	Completeness properties
	Accuracy properties
	Collision detector classes
	Maximal collision detectors
	The noise lemma
	The consensus problem and related definitions
	Consensus algorithms
	Anonymous consensus with ECF and collision detectors in maj-AC
	Anonymous consensus with ECF and collision detectors in 0-AC
	Non-anonymous consensus with ECF and collision detectors in 0-AC
	Anonymous consensus with NOCF and collision detectors in 0-AC
	Lower bounds
	Impossibility of consensus with no collision detection
	Impossibility of consensus with no accuracy guarantees
	Impossibility of constant round consensus with ECF and half-AC
	Definitions
	Key lemmas
	Impossibility of constant round consensus withan anonymous (E(half-AC,LS),V,ECF)-consensus algorithm
	Impossibility of constant round consensus with a non-anonymous (E(half-AC,LS),V,ECF)-consensus algorithm
	Impossibility of consensus with eventual accuracybut without ECF
	Impossibility of anonymous constant round consensus with accuracy but without ECF
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

