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Université Catholique de Louvain, Belgium,
�
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Abstract— Modeling frameworks such as Probabilistic I/O
Automata (PIOA) and Markov Decision Processes permit both
probabilistic and nondeterministic choices. In order to use such
frameworks to express claims about probabilities of events, one
needs mechanisms for resolving the nondeterministic choices.
For PIOAs, nondeterministic choices have traditionally been
resolved by schedulers that have perfect information about the
past execution. However, such schedulers are too powerful for
certain settings, such as cryptographic protocol analysis, where
information must sometimes be hidden.

Here, we propose a new, less powerful nondeterminism-
resolution mechanism for PIOAs, consisting of tasks and local
schedulers. Tasks are equivalence classes of system actions
that are scheduled by oblivious, global task sequences. Local
schedulers resolve nondeterminism within system components,
based on local information only. The resulting task-PIOA
framework yields simple notions of external behavior and
implementation, and supports simple compositionality results.
We also define a new kind of simulation relation, and show
it to be sound for proving implementation. We illustrate the
potential of the task-PIOA framework by outlining its use in
verifying an Oblivious Transfer protocol.

I. INTRODUCTION

The Probabilistic I/O Automata (PIOA) modeling frame-
work [Seg95], [SL95] is a simple combination of
I/O Automata [LT89] and Markov Decision Processes
(MDP) [Put94]. As demonstrated in [LSS94], [SV99],
[PSL00], PIOAs are well suited for modeling and analyzing
distributed algorithms that use randomness as a computa-
tional primitive. In this setting, distributed processes use
random choices to break symmetry, in solving problems such
as choice coordination [R82] and consensus [B83], [AH90].
Each process is modeled as an automaton with random
transitions, and an entire protocol is modeled as the parallel
composition of process automata and automata representing
communication channels.

This modeling paradigm combines nondeterministic and
probabilistic choices in a natural way. Nondeterminism is
used here for modeling uncertainties in the timing of events
in highly unpredictable distributed environments. It is also
used for modeling distributed algorithms at high levels
of abstraction, leaving many details unspecified. This in
turn facilitates algorithm verification, because results proved
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about nondeterministic algorithms apply automatically to
an entire family of algorithms, obtained by resolving the
nondeterministic choices in particular ways.

In order to formulate and prove probabilistic properties
of distributed algorithms, one needs mechanisms for re-
solving the nondeterministic choices. In the randomized
distributed setting, the most common mechanism is a perfect-
information event scheduler, which has access to local state
and history of all system components and has unlimited com-
putation power. Thus, probabilistic properties of distributed
algorithms are typically asserted with respect to worst-case,
adversarial schedulers who can choose the next event based
on complete knowledge of the past (e.g., [PSL00]).

One would expect that a similar modeling paradigm,
including both probabilistic and nondeterministic choices,
would be similarly useful for modeling cryptographic pro-
tocols. These are special kinds of distributed algorithms,
designed to protect sensitive data when it is transmitted
over unreliable channels. Their correctness typically relies on
computational assumptions, which say that certain problems
cannot be solved by an adversarial entity with bounded
computation resources [Gol01]. However, a major problem
with this extension is that the perfect-information scheduler
mechanism used for distributed algorithms is too powerful
for use in the cryptographic setting. A scheduler that could
see all information about the past would, in particular, see
“secret” information hidden in the states of non-corrupted
protocol participants, and be able to “divulge” this informa-
tion to corrupted participants, e.g., by encoding it in the order
in which it schedules events.

In this paper, we present task-PIOAs, an adaptation of
PIOAs, that has new, less powerful mechanisms for resolving
nondeterminism. Task-PIOAs are suitable for modeling and
analyzing cryptographic protocols; they may also be useful
for other kinds of distributed systems in which the perfect
information assumption is unrealistically strong.

Task-PIOAs: A task-PIOA is simply a PIOA augmented
with a partition of non-input actions into equivalence classes
called tasks. A task is typically a set of related actions, for
example, all the actions of a cryptographic protocol that
send a round 1 message. Tasks are units of scheduling;
they are scheduled by simple oblivious, global task schedule
sequences. We define notions of external behavior and
implementation for task-PIOAs, based on the trace distri-
bution semantics proposed by Segala [Seg95]. We define
parallel composition in the obvious way and show that our
implementation relation is compositional.



We also define a new type of simulation relation, which
incorporates tasks, and prove that it is sound for prov-
ing implementation relationships between task-PIOAs. This
new relation differs from simulation relations studied ear-
lier [SL95], [LSV03], in that it relates probability measures
rather than states. In many cases, including our work on
cryptographic protocols (see below), tasks alone suffice for
resolving nondeterminism. However, for extra expressive
power, we define a second mechanism, local schedulers,
which can be used to resolve nondeterminism within system
components, based on local information only. This mecha-
nism is based on earlier work in [CLSV04].

Cryptographic protocols: In [CC � 06a], we applied the
task-PIOA framework to analyze an Oblivious Transfer (OT)
protocol of Goldreich, et al. [GMW87]. That analysis re-
quired defining extra structure for task-PIOAs, in order to
express issues involving computational limitations. Thus,
we defined notions such as time-bounded task-PIOAs, and
approximate implementation with respect to time-bounded
environments. Details are beyond the scope of this paper,
but we outline our approach in Section IV.

Adversarial scheduling: The standard scheduling mech-
anism in the cryptographic community is an adversarial
scheduler, namely, a resource-bounded algorithmic entity
that determines the next move adaptively, based on its
own view of the computation so far. This is weaker than
the perfect-information scheduler used for distributed al-
gorithms, which have access to local state and history of
all components and have unlimited computation power. Our
task schedule sequences are essentially oblivious schedulers,
which fix the entire schedule of tasks, nondeterministically,
in advance. This formulation does not directly capture the
adaptivity of adversarial schedulers.

Our solution is to separate scheduling concerns into two
parts. We model the adaptive adversarial scheduler as a sys-
tem component, for example, a message delivery service that
can eavesdrop on the communications and control the order
of message delivery. Such a system component has access to
partial information about the execution: it sees information
that other components communicate to it during execution,
but not “secret information” that these components hide.
On the other hand, basic scheduling choices are resolved
by a task schedule sequence, chosen nondeterministically
in advance. These tasks are equivalence classes of actions,
independent of actual choices that are determined during the
execution. We believe this separation is conceptually mean-
ingful: The high-level adversarial scheduler is responsible
for choices that are essential in security analysis, such as
the ordering of message deliveries. The low-level schedule
of tasks resolves inessential choices. For example, in the
OT protocol, both the transmitter and receiver make random
choices, but it is inconsequential which does so first.

Related work: The literature contains numerous models
that combine nondeterministic and probabilistic choices (see
[SdV04] for a survey). However, few tackle the issue of
partial-information scheduling, as we do. Exceptions in-
clude [CH05], which models local-oblivious scheduling,
and [dA99], which uses partitions on the state space to

obtain partial-information schedules. The latter is essen-
tially within the framework of partially observable MDPs
(POMDPs), originally studied in the context of reinforcement
learning [KLA98]. All of these accounts neglect partial
information aspects of (parameterized) actions, therefore are
not suitable in a cryptographic setting. A version of local
schedulers was introduced in [CLSV04].

Our general approach to cryptographic protocol verifica-
tion was directly inspired by the Interactive Turing Machine
(ITM) framework of [Can01]. There, participants in a proto-
col are modeled as ITMs and messages as bit strings written
on input and output tapes. ITMs are purely probabilistic,
and scheduling nondeterminism is resolved using predefined
rules. In principle, this framework could be used to analyze
cryptographic protocols rigorously, including computational
complexity issues. However, complete analysis of protocols
in terms of Turing machines is impractical, because it
involves too many low-level machine details. Indeed, in
the computational cryptography community, protocols are
typically described using an informal high-level language,
and proof sketches are given in terms of the informal protocol
descriptions. We aim to provide a framework in which proofs
in the ITM style can be carried out formally, at a high
level of abstraction. Also, we aim to exploit the benefits of
nondeterminism to a greater extent than the ITM approach.

Several other researchers have added features for com-
putational cryptographic analysis to conventional abstract
concurrency modeling frameworks such as process algebras
and restricted forms of PIOAs [LMMS98], [PW00], [PW01],
[MMS03]. These approaches again use less nondetermin-
ism than we do: individual system components are purely
probabilistic, and scheduling is determined by predefined
rules. For example, in [LMMS98], a uniform distribution
is imposed on the set of possible reductions for each term.
In [MMS03], internal reductions are prioritized over external
communications and several independence properties are
assumed. In [PW01], scheduling is based on a distributed
scheme wherein each system component schedules the next
one, based on its own local information. None of the prior
work separates high-level and low-level nondeterminism
resolution, as we do.

Roadmap: Section II defines task-PIOAs, task schedules,
composition, and implementation, and presents a composi-
tionality result. Section III presents our simulation relation
and its soundness theorem. Section IV summarizes our OT
protocol case study. Section V discusses local schedulers, and
concluding discussions follow in Section VI. Further details
appear in [CC � 06b].

II. TASK-PIOAS

A. Basic PIOAs
We assume our reader is comfortable with basic notions of

probability theory, such as � -fields and (discrete) probability
measures. A summary is provided in [CC � 06b].

A probabilistic I/O automaton (PIOA)
�

is a tuple�����	�
 ���
������������� where: (i)
�

is a countable set of states,
with start state

�
�� �
; (ii)

�
,
�

and
�

are countable
and pairwise disjoint sets of actions, referred to as input,
output and internal actions, respectively; and (iii)

� �



����� � ��� ����� �����	� 
��	� � � �
is a transition relation, where�	� 
�� ��� �

is the set of discrete probability measures on
�

. An
action 
 is enabled in a state 
 if

� 
 � 
 ��� � � � for some
�

.
The set ����� ������� �

is called the action alphabet of
�

.
If
� ��� , then

�
is closed. The set of external actions of

�
is
��� �

and the set of locally controlled actions is
�����

.
We assume that

�
satisfies:� Input enabling: For every state 
�� � and input action
 � � , 
 is enabled in 
 .� Transition determinism: For every 
 � � and 
 � � ,

there is at most one
� � �	� 
�� ��� � such that

� 
 � 
 ��� � ��
. If there is exactly one such

�
, it is denoted by

�����  
,

and we write !�"$#&% ���  for the transition
� 
 � 
 ���'�(�  � .

An execution fragment of
�

is a finite or infinite sequence) � 
+* 
-, 
 ,&
/.�01020 of alternating states and actions, such that
(i) if ) is finite, then it ends with a state; and (ii) for every
non-final 3 , there is a transition

� 
24 � 
 4 � , ��� � � � with 
24 � , �
+5&6&6 �7� �
, where


1586&6 �7� �
denotes the support of

�
. We write9 
 !�#:!<; � ) � for 
 * , and, if ) is finite, we write = 
 !�#:!<; � ) � for

its last state. We use >/"$#@? 
 � � � (resp., >/"$#@? 
�A	� � � ) to denote
the set of all (resp., all finite) execution fragments of

�
. An

execution of
�

is an execution fragment beginning from the
start state

�
 . B8CD; �1
 � � � (resp., B8CD; �+
+A � � � ) denotes the set of
all (resp., finite) executions of

�
.

The trace of an execution fragment ) , written !�"E# � ; � ) � , is
the restriction of ) to the set of external actions of

�
. The

symbol F denotes the prefix relation on sequences, which
applies in particular to execution fragments and traces.

Nondeterministic choices in
�

are resolved using a sched-
uler, which is a function �G��>/"E#@? 
(A	� � �IHKJMLN5&O/�	� 
P� � � �
such that

� 
 � 
 ��� � � 
+5&6&6 � � � ) � � implies 
 �Q= 
 !�#:!<; � ) � .
Here

LN5&OR�	� 
��	��� �
denotes the set of discrete sub-probability

measures on
�

—that is, the measure of the entire space
�

is required to be FTS . Thus, � decides (probabilistically)
which transition (if any) to take after each finite execution
fragment ) . A scheduler � and a finite execution fragment) generate a measure U�V � W on the � -field X�Y generated by
cones of execution fragments, where each cone Z W8[ is the set
of execution fragments that have )�\ as a prefix. The measure
of a cone, U(V � W � Z W [ � , is defined recursively, as:
1) ] , if )'\_^F ) and )`^F )�\ .
2) S , if )'\ F ) .
3) U V � W � Z W [ [ �<� V&a Wb[ [dc � 
 � 
 � , if )�\ is of the form )�\ \ 
 


and ) F )�\ \ . Here,
� V&a Wb[ [ec � 
 � 
 � is defined to be

� � )�\ \ � � !�"E#&%Df gdhdijhdk a W [ [ cl�  �l� f gdhdijhek a W [ [ cm�  � 
 � , that is, the proba-
bility that � � )�\ \ � chooses a transition labeled by 
 and
that the new state is 
 .

Standard measure theoretic arguments ensure that U V � W is
well-defined. We call the state

9 
 !�#:!<; � ) � the first state ofU V � W and denote it by
9 
 !�#:!<; � U V � W � . If ) consists of the start

state
�
 only, we call U V � W a probabilistic execution of

�
.

Let
�

be a discrete probability measure over >/"E#@? 
+A	� � � .
We denote by U V � n the measure o W � � ) � U V � W and we say
that U V � n is generated by � and

�
. We call the measure U V � n

a generalized probabilistic execution fragment of
�

. If every
execution fragment in


+5&686 �p� �
consists of a single state, then

we call U V � n a probabilistic execution fragment of
�

.
We note that the !�"$# � ; function is a measurable function

from X Y to the � -field generated by cones of traces. Thus,

given a probability measure U on X Y , we define the trace
distribution of U , denoted !�q � 
 ! � U � , to be the image measure
of U under !�"E# � ; . We denote by !�q � 
 ! 
 � � � the set of trace
distributions of (probabilistic executions of)

�
.

Definition 2.1: Two PIOAs
� 4 � ��� 4 � �
24 ��� 4 � � 4 ��� 4 ��� 4 � ,3 �sr S �PtRu , are said to be compatible if � 41v �xw � � 41v ��w �� whenever 3 ^��y . In that case, we define their composition� ,{z � . to be the PIOA

��� , ��� . � � �
 , �	�
 . � � � � , � � . �/| � � , �� . � � � , � � . � � , � � . ��� � , where
�

is the set of triples� � 
 , � 
 . � � 
 ��� , �}� . � such that (i) 
 is enabled in some 
:4 , and
(ii) for every 3 , if 
 � � 4 then

� 
24 � 
 ��� 4 � � � 4 , otherwise� 4 ��~ � 
24 � . This definition can be extended to any finite
number of PIOAs rather than just two.

B. Task-PIOAs
We now augment the PIOA framework with task parti-

tions, our main mechanism for resolving nondeterminism.
Definition 2.2: A task-PIOA is a pair �G� � � �P� �

where
(i)

� � � � �	�
 ��� � ��������� � is a PIOA (satisfying transition
determinism) and (ii)

�
is an equivalence relation on the

locally-controlled actions (
�����

). The equivalence classes
of
�

are called tasks. A task � is enabled in a state 
 if
some 
 � � is enabled in 
 .

Unless otherwise stated, technical notions for task-PIOAs
are inherited from those for PIOAs. Exceptions include the
notions of probabilistic executions and trace distributions.
For now, we impose the following action-determinism as-
sumption, which implies that tasks alone are enough to
resolve all nondeterministic choices. We will remove this as-
sumption when we introduce local schedulers, in Section V.� Action determinism: For every state 
 � �

and task� � � , at most one action 
 � � is enabled in 
 .
A task schedule for � is any finite or infinite sequence� �M� , � . 01020 of tasks in

�
. A task schedule is static

(or oblivious), in the sense that it does not depend on
dynamic information generated during execution. Under the
action-determinism assumption, a task schedule can be used
to generate a unique probabilistic execution, and hence, a
unique trace distribution, of the underlying PIOA

�
. One

can do this by repeatedly scheduling tasks, each of which
determines at most one transition of

�
. Formally, we define

an operation that “applies” a task schedule to a task-PIOA:
Definition 2.3: Let ��� � � ��� �

be an action-deterministic
task-PIOA where

� � � � � �
 ��� � ��������� � . Given
� ��	� 
�� � >/"E#@? 
 A � � � � and a task schedule � , # 6&6 = � �p� � � � is the

probability measure on >/"E#@? 
 � � � defined recursively by:

1) # 6&6 = � �7� �P� � ��� � . (
�

denotes the empty sequence.)
2) For � � � , # 6&6 = � �p� � � � is defined as follows. For every) � >/"$#@? 
(A	� � � , # 6&6 = � �7� � � � � ) � ����� ,�� � . , where:� � , � � � )'\ �<� � 
 � if ) is of the form )�\ 
 
 , where
 � � and

� = 
 !�#:!<; � ) \ � � 
 ��� � � � ; � , ��] otherwise.� ��.�� � � ) � if � is not enabled in = 
 !�#:!<; � ) � ; �N.���]
otherwise.

3) For � of the form �R\ � , � � �
, # 686 = � �p� � � � ���# 686 = � � # 6&6 = � �p� � � \ � � � � .

4) For � infinite, # 686 = � �p� � � � �����e�d� 4d��� � # 6&6 = � �p� � �&4 � � ,
where �/4 denotes the length- 3 prefix of � .

In Case (2) above, � , represents the probability that ) is
executed when applying task � at the end of )�\ . Because of



transition-determinism and action-determinism, the transition� = 
 !�#:!<; � )'\ � � 
 ��� � is unique, and so � , is well-defined. The
term � . represents the original probability

� � ) � , which is
relevant if � is not enabled after ) . It is routine to check
that the limit in Case (4) is well-defined. The other two cases
are straightforward.

Next, we show that # 6&6 = � �7� � � � is a generalized probabilis-
tic execution fragment generated by

�
and a scheduler for�

, in the usual sense. Thus, a task schedule for a task-PIOA
is a special case of a scheduler for the underlying PIOA.

Theorem 2.4: Let �G� � � �P� �
be an action-deterministic

task-PIOA. For each measure
�

on >/"$#@? 
 A � � � and task
schedule � , there is scheduler � for

�
such that # 6&6 = � �7� � � �

is the generalized probabilistic execution fragment U V � n .
Any such # 6&6 = � �7� � � � is said to be a generalized prob-

abilistic execution fragment of � . Probabilistic execution
fragments and probabilistic executions are then defined by
making the same restrictions as for basic PIOAs. We write!�q � 
 ! �p� � � � as shorthand for !�q � 
 ! � # 686 = � �p� � � ��� , the trace dis-
tribution obtained by applying task schedule � starting from
the measure

�
on execution fragments. We write !�q � 
 ! � � �

for !�q � 
 ! � # 6&6 = � � ~ � �
 � � � � � the trace distribution obtained by
applying � from the unique start state. (Recall that the Dirac
measure for an element � , ~ � � � , is the discrete probability
measure that assigns probability S to r � u .) A trace distribu-
tion of � is any !�q � 
 ! � � � . We use !�q � 
 ! 
 � � � to denote the setr !�q � 
 ! � � � � � is a task schedule for � u . Finally, we define
composition of task-PIOAs:

Definition 2.5: Two task-PIOAs � 4 � � � 4 �P� 4 � , 3 � r S �PtRu ,
are said to be compatible provided the underlying PIOAs are
compatible. In this case, we define their composition � ,{z � .
to be the task-PIOA

� � , z � . �P� , �I� . � .
It is easy to see that � ,8z � . is in fact a task-PIOA. In

particular, since compatibility ensures disjoint sets of locally-
controlled actions,

� , ��� . is an equivalence relation on
the locally-controlled actions of � ,bz � . . It is also easy to
see that action determinism is preserved under composition.
Note that, when two task-PIOAs are composed, no new
mechanisms are required to schedule actions of the two
components—the tasks alone are enough.

C. Implementation
We now define the notion of external behavior for a task-

PIOA and the induced implementation relation between task-
PIOAs. Unlike previous definitions of external behavior, the
one we use here is not simply a set of trace distributions.
Rather, it is a mapping that specifies, for every possible
“environment”

�
for the given task-PIOA � , the set of trace

distributions that can arise when � is composed with
�

.
Definition 2.6: Let � be any task-PIOA and

�
be an

action-deterministic task-PIOA. We say that
�

is an envi-
ronment for � if (i)

�
is compatible with � and (ii) the

composition � z � is closed. Note that
�

may have output
actions that are not in the signature of � .

Definition 2.7: The external behavior of � , denoted by;�C@! O ;�� � � � , is the total function that maps each environment�
to the set of trace distributions !�q � 
 ! 
 � � z � � .
Thus, for each environment, we consider the set of trace

distributions that arise from all task schedules. Note that
these traces may include new output actions of

�
, in addition

to the external actions already present in � . Our definition of
implementation is influenced by common notions in the secu-
rity literature (e.g., [LMMS98], [Can01], [PW01]). Namely,
the implementation must “look like” the specification from
the perspective of every possible environment. The precise
notion of implementation is formulated in terms of inclusion
of sets of trace distributions for each environment automaton.
An advantage of this style of definition is that it yields simple
compositionality results (Theorem 2.9).

Definition 2.8: Let � , and � . be comparable action-
deterministic task-PIOAs, that is,

� , � � . and
� , � � . .

We say that � , implements � . , written � , F * � . , if;�C@! O ;�� � � , � � � � � ;�C@! O ;�� � � . � � � � for every environment
�

for
both � , and � . . In other words, we require !�q � 
 ! 
 � � ,���� � � �!�q � 
 ! 
 � � .���� � � for every

�
.

The subscript ] in the relation symbol F * refers to the
requirement that every trace distribution in !�q � 
 ! 
 � �N, ��� � �
must have an identical match in !�q � 
 ! 
 � � . ��� � � . For security
analysis, we also define another relation F	��
�� � 
�� , which
allows “negligible” discrepancies between matching trace
distributions [CC � 06a].

D. Compositionality
Because external behavior and implementation are defined

in terms of mappings from environments to sets of trace
distributions, a compositionality result for F * follows easily:

Theorem 2.9: Let � , , �R. be comparable action-
deterministic task-PIOAs such that �N, F * �R. , and let��� be an action-deterministic task-PIOA compatible with
each of ��, and �R. . Then � , z ����F * �R. z ��� .

Proof. Let ��� � � � � �P� � � be any environment (action-
deterministic) task-PIOA for both �N, z ��� and �R. z ��� . Fix
any task schedule � , for

� � , z ��� � z � � . Let � be the trace
distribution of

� ��, z ��� � z � � generated by � , . It suffices to
show that � is also generated by some task schedule � .
for

� �R. z ��� � z � � . Note that � , is also a task schedule for� ,{z � � �/z ��� � , and that � , generates the same trace distribution� in the composed task-PIOA � ,bz � � �/z ��� � .
Now, � �&z ��� is an (action-deterministic) environment task-

PIOA for each of � , and � . . Since, by assumption, � , F * � . ,
we infer the existence of a task schedule � . for �R. z � ��� z � � �
such that � . generates trace distribution � in the task-PIOA�R. z � ��� z � � � . Since � . is also a task schedule for

� �-. z ��� � z � �
and � . generates � , this suffices. �

III. SIMULATION RELATIONS

We define a new simulation relation notion for closed,
action-deterministic task-PIOAs, and show that it is sound
for proving F * . Our definition is based on three operations
involving probability measures: flattening, lifting, and expan-
sion. These have been previously defined, e.g., in [LSV03].

A. Flattening, lifting, and expansion
The flattening operation takes a discrete probability mea-

sure over probability measures and “flattens” it into a single
probability measure. Formally, let

�
be a discrete probability

measure on
�	� 
��	��� �

. Then the flattening of
�

, denoted by� #:!l!<;{% �p� � , is the discrete probability measure on
�

defined
by

� #:!l!<;b% �p� � ��o n������ g�� a�� c � �7� �l� .
The lifting operation takes a relation

�
between two

domains
�

and  and “lifts” it to a relation between discrete



measures over
�

and  . Informally speaking, a measure
� ,

on
�

is related to a measure
� . on  if

� . can be obtained
by “redistributing” the probability masses assigned by

� , , in
such a way that the relation

�
is respected. Formally, the

lifting of
�

, denoted by � �7� � , is a relation from
�	� 
�� � � �

to�	� 
�� �  � defined by:
� , � � � ��� . iff there exists a weighting

function ��� ���  J���� *
such that

1) For each � � �
and � �  , � � � � � ��� ] implies � � � .

2) For each � � �
, o
	�� � � � � � � � , � � � .

3) For each � �  , o
� � � � � � � � � . � � � .
Finally, the expansion operation takes a relation between

discrete measures on two domains and returns a relation of
the same kind that relates two measures whenever they can
be decomposed into two � �7� � -related measures. Formally,
let
�

be a relation from
�	� 
�� ��� �

to
�	� 
P�	�  � . The expansion

of
�

, written
� � � �

, is a relation from
�	� 
�� ��� �

to
�	� 
��	�  �

defined by:
� , � � � ��� . iff there exist two discrete measures� , and

� . on
�	� 
�� � � �

and
�	� 
�� �  � , respectively, such that� , � � #:!l!<;{% �7� , � , � . � � #:!l!<;{% �7� . � , and

� ,�� � � ��� . .
We use expansions directly in our definition of simulation.

Informally,
� , � � . means that it is possible to simulate

from
� . anything that can happen from

� , . Furthermore,� \ , � � � �}� \. means that we can decompose
� \ , and

� \. into
pieces that can simulate each other, and so we can say that
it is also possible to simulate from

� \. anything that can
happen from

� \ , . This intuition is at the base of the proof of
our soundness result (cf. Theorem 3.5).

B. Simulation relation definition
We need two more auxiliary definitions. The first expresses

consistency between a probability measure over finite execu-
tions and a task schedule: informally, a measure U over finite
executions is said to be consistent with a task schedule � if
it assigns non-zero probability only to those executions that
are possible under the task schedule � . We use this condition
in order to avoid useless proof obligations in our definition
of simulation relation.

Definition 3.1: Let � � � � ��� �
be a closed, action-

deterministic task-PIOA, U a discrete probability measure
over finite executions of

�
, and � a finite task schedule

for � . Then U is consistent with � provided that

1586&6 � U � �
+5&6&6 � # 686 = � � ~ � �
 � � � � � , where

�
 is the start state of
�

.
For the second definition, suppose we have a mapping

�
that, given a finite task schedule � and a task � of a task-
PIOA � , , yields a task schedule of another task-PIOA � . .
The idea is that

� � � � � � describes how � . matches task � ,
given that it has already matched the task schedule � . Using�
, we define a new function

9 5 =�= � � � that, given a task schedule� , iterates
�

on all the elements of � , thus producing a “full”
task schedule of �-. that matches all of � .

Definition 3.2: Let ��, � � � , ��� , � and �R.�� � � . �P� . �
be two task-PIOAs, and let

� � �7� , A ��� , � J � . A be a
function that assigns a finite task schedule of � . to each
finite task schedule of ��, and task of ��, . Define

9 5 =�= � � � �� , A J � . A recursively as follows:
9 5 =�= � � � �j�
� ��� �

, and9 5 =�= � � � � � � � ��� 9 5 =�= � � � � � ��� � � � � � � (the concatenation of9 5 =�= � � � � � � and
� � � � � � ).

We can now define our new notion of simulation for task-
PIOAs and establish its soundness with respect to the F *
relation. Note that our simulation relations do not just relate

states to states, but rather, probability measures on executions
to probability measures on executions.1 The use of measures
on executions here rather than just executions is motivated by
certain cases that arise in our OT protocol proof, e.g., cases
where related random choices are made at different points
in the low-level and high-level models (see Section III-D).

Definition 3.3: Let � , � � � , ��� , � and � . � � � . �P� . � be
two comparable closed action-deterministic task-PIOAs. Let�

be a relation from
�	� 
�� � B8C@; �+
 A � � , ��� to

�	� 
��	� B8CD; �+
 A � � . � � ,
such that, if U1, � U(. , then !�q � 
 ! � U+, � ��!�q � 
 ! � U(. � . Then

�
is

a simulation from ��, to �R. if there exists
� � �7� , A � � , �_J� . A such that the following properties hold:

1) Start condition: ~ � �
 , ��� ~ � �
 . � .
2) Step condition: If U1, � U(. , � , � � , A , U+, is consistent

with � , , U(. is consistent with
9 5 =�= � � � � � , � , and � � � , ,

then U \ , � � � � U \. where U \ , � # 6&6 = � � U�, � � � and U \. �# 686 = � � U(. � � � � , � � � � .
C. Soundness

Lemma 3.4: Let � , and � . be comparable closed action-
deterministic task-PIOAs,

�
a simulation from � , to � . .

Let U , and U . be discrete probability measures over finite
executions of � , and � . , respectively, such that U , � � � � U . .
Then !�q � 
 ! � U , � � !�q � 
 ! � U . � .

The following theorem says that, for closed task-PIOAs,
the existence of a simulation relation implies inclusion of
sets of trace distributions. Our main soundness result for (not
necessarily closed) task-PIOAs then follows as a corollary.

Theorem 3.5: Let ��, and �-. be comparable closed action-
deterministic task-PIOAs. If there exists a simulation relation
from � , to �R. , then !�q � 
 ! 
 � ��, � � !�q � 
 ! 
 � �R. � .

Proof. Let
�

be the assumed simulation relation from �K,
to � . . Let U , be the probabilistic execution of � , generated
by

�
 , and a (finite or infinite) task schedule, � , � � . ������� . For
each 3 � ] , define �/4 to be

� � � , ����� � 4�� , � � 4 � . Let U . be the
probabilistic execution generated by

�
 . and � , � . ����� . We
claim that !�q � 
 ! � U , � ��!�q � 
 ! � U . � , which suffices.

For each y�� ] , let U , � w �M# 686 = � � �
 , � � , ����� � w � , andU . � w �T# 6&6 = � � �
 . � � , ����� � w � . Then for each y���] , U , � w FU , � w � , and U . � w F U . � w � , ; moreover, �e�d� w �x� U , � w �U , and �d�e� w �x� U . � w � U . . Also, for every y�� ] ,# 6&6 = � � U+, � w � � w � , � � U+, � w � , and # 6&6 = � � U(. � w � � w � , � � U(. � w � , .
Observe that U1, � * �`~ � �
 , � and U(. � * ��~ � �
 . � . The start condi-
tion for a simulation relation and a trivial expansion imply
that U+, � * � �7� � U(. � * . Then by induction, using the definition
of a simulation relation in proving the inductive step (this
uses a series of lemmas; see [CC � 06b] for details), we show
that, for each y���] , U , � w � �7� � U . � w . Then, by Lemma 3.4,
for each y�� ] , !�q � 
 ! � U , � w � � !�q � 
 ! � U . � w � . Now, !�q � 
 ! � U , � ��d�e� w ��� !�q � 
 ! � U , � w � , and !�q � 
 ! � U . � � �d�d� w �x� !�q � 
 ! � U . � w � .
Since for each y���] , !�q � 
 ! � U , � w � ��!�q � 
 ! � U . � w � , we conclude
that !�q � 
 ! � U , � ��!�q � 
 ! � U . � , as needed. �

Corollary 3.6: Let � , and � . be two comparable action-
deterministic task-PIOAs. Suppose that, for every environ-
ment

�
for both � , and � . , there exists a simulation relation�

from ��, z � to �R. z � . Then � ,�F * �R. .
1It would be nice to simplify this definition so that it involves measures

on states instead of measures on executions, but we don’t yet know how to
do this.



D. Example: ���D
:� ����� � vs.
� 
�� �

The following example, from our OT proof, was a key
motivation for generalizing prior notions of simulation rela-
tions. We consider two closed task-PIOAs, ���D
:� ����� � and� 
�� � .

� 
�� � chooses a number randomly and outputs it.���D
:� ����� � , on the other hand, first chooses a random number,
then applies a known permutation � to the chosen number,
and then outputs the result. (The name ���D
:� ����� � refers to
the type of permutation � that is used in the OT protocol.)

More precisely,
� 
�� � has output actions �	�P� � ��
 �
� � , � �� ���x� r S � 01020 � � u and internal action ��� ����� � . It has tasks� �P� � �	
 � r ���P� � �	
 ��� � � � � � ��� u , and Z�� ����� � � r ��� ����� � u .

Its state contains one variable ���/
�� , which assumes values
in

� ��� � r�� u , initially � . The ��� ����� � action is enabled when
���&
���� � , and has the effect of setting ���/
�� to a number
in

� ��� , chosen uniformly at random. The ����� � �	
 ��� � action is
enabled when ���/
���� �

, and has no effect on the state (so
it may happen repeatedly). See Figure 1.

z = 1

z = n

z = 2

choose

report(1)

report(2)

report(n)

Fig. 1. Task-PIOA �! #"�$
���D
2� ����� � has the same actions as

� 
�� � , plus internal
action � �	% �'&(
)� . It has the same tasks as

� 
�� � , plus the
task Z �	% �'&(
)��� r � �	% �'&(
)� u . ���D
:� ����� � ’s state contains
two variables, � and � , each of which takes on values in� ��� � r�� u , initially � . The ��� ����� � action is enabled when
�I� � , and sets � to a number in

� ��� , chosen uniformly at
random. The � �	% �*&*
)� action is enabled when � ^� � and
� � � , and sets �s���+� � � � . The ���P� � �	
 ��� � action behaves
exactly as in

� 
�� � . See Figure 2.

choose

y = 1

y = 2

y = n

compute

compute

compute

z = f (1)

z = f (2)

z = f (n)

report(f (1))

report(f (2))

report(f (n))

Fig. 2. Task-PIOA ,.-/ 10�$�2323-
We wanted to use a simulation relation to prove that!�q � 
 ! 
 � ���D
2� ����� � � � !�q � 
 ! 
 �7� 
�� ���	% � . In doing so, we

decided that the steps that define � should correspond in
the two automata, which meant that the ��� ����� � steps of���D
:� ����� � , which define � , should map to no steps of

� 
�� � .
Then, between the ��� ����� � and � �	% �*&*
)� in ���D
:� ����� � , a
randomly-chosen value would appear in the � component
of ���D
:� ����� � ’s state, but no such value would appear in
the corresponding state of

� 
�� � . Therefore, the simulation
relation would have to relate a probability measure on states
of �4�@
:� ����� � to a single state of

� 
�� � .
We were able to express this correspondence using a

simulation relation of our new kind: If U , and U . are dis-

crete measures over finite execution fragments of ���D
:� ����� �
and

� 
�� � , respectively, then we defined
� U , � U . � � � ex-

actly if the following conditions hold: (i) For every
� �
+5&6&6 � = 
 !�#:!<; � U , � � and & � 
1586&6 � = 
 !�#:!<; � U . ��� , � 0 � �5&�0 � .

(ii) For every & � 
1586&6 � = 
 !�#:!<; � U . � � , if &�0 � � � then either= 
 !�#:!<; � U , � 0 � is everywhere undefined or else it is the uniform
distribution on

� ��� . The task correspondence mapping � is
defined by: � � � � Z�� ����� � � � �

, � � � � Z �	% �'&(
)� � � Z�� ����� � ,
� � � �P� �P� � ��
 � � � �P� � �	
 .

IV. APPLICATION TO SECURITY PROTOCOLS

In [CC � 06a], we use the task-PIOAs of this paper to
model and analyze the Oblivious Transfer (OT) protocol
of Goldreich et al. [GMW87]. In the OT problem, two
input bits

� � * � � , � are submitted to a Transmitter �4�@
�� �
and a single input bit 3 to a Receiver

� �	� . After engaging
in an OT protocol,

� �	� should output only the single bit� 4 . � �	� should not learn the other bit � , �N4 , and ���D
�� �
should not learn 3 ; moreover, an eavesdropping adversary
should not, by observing the protocol messages, be able
to learn anything about the inputs or the progress of the
protocol. OT has been shown to be “complete” for multi-
party secure computation, in the sense that, using OT as the
only cryptographic primitive, one can construct protocols for
securely realizing any functionality.

The protocol of [GMW87] uses trap-door permutations
(and hard-core predicates) as an underlying cryptographic
primitive. It uses three rounds of communication: First,���D
�� � chooses a random trap-door permutation � and sends
it to

� �	� . Second,
� �	� chooses two random numbers

� � * � �&, �
and sends

� � * � � , � to ���D
�� � , where � 4 for the input index3 is � � � 4 � and � , �K4 � � , �K4 . Third, ���D
�� � applies the
same transformation to each of � * and � , and sends the
results back as

��6 * �76 , � Finally,
� ��� decodes and outputs

the correct bit. The protocol uses cryptographic primitives
and computational hardness in an essential way. Its security
is inherently only computational, so its analysis requires
modeling computational assumptions.

Our analysis follows the trusted party paradigm
of [GMW87], with a formalization that is close in spirit
to [PW00], [Can01]. We first define task-PIOAs representing
the real system (RS) (the protocol) and the ideal system (IS)
(the requirements). In

��8
, typical tasks include “choose

random
� � * � �/, � ”, “send round 1 message”, and “deliver

round 1 message”, as well as arbitrary tasks of incompletely-
specified environment and adversary automata. Note that
these tasks do not specify exactly what transition occurs;
e.g., the send task does not specify the message contents—
these are chosen by ���D
�� � , based on its own internal state.

Then we prove that
��8

implements
��8

. The proof consists
of four cases, depending on which parties are corrupted.2. In
the two cases where ���D
�� � is corrupted, we can show that��8

implements
��8

unconditionally, using F * . In the cases
where ���D
�� � is not corrupted, we can show implementation
only in a “computational” sense, namely, (i) for resource-
bounded adversaries, (ii) up to negligible differences, and

2Actually, in [CC 9 06a], we prove only one case—when only � is
corrupted. We prove all four cases in [CC 9 05], but using a less general
definition of task-PIOAs than the one used here and in [CC 9 06a], and with
non-branching adversaries.



(iii) under computational hardness assumptions. Modeling
these aspects requires additions to the task-PIOA framework
of this paper, namely, defining a time-bounded version of
task-PIOAs, and defining a variation, F	��
�� � 
�� , on the F *
relation, which describes approximate implementation with
respect to polynomial-time-bounded environments. Similar
relations were defined in [LMMS98], [PW01]. Our simula-
tion relations are also sound with respect to F � 
�� � 
 � . We also
provide models for the cryptographic primitives (trap-door
functions and hard-core predicates). Part of the specification
for such primitives is that their behavior should look “ap-
proximately random” to outside observers; we formalize this
in terms of F ��
�� � 
�� .

The correctness proofs proceed by levels of abstraction, re-
lating each pair of models at successive levels using F ��
�� � 
�� .
In the case where only

� �	� is corrupted, all but one of
the relationships between levels are proved using simulation
relations as defined in this paper (and so, they guarantee F * ).
The only exception relates a level in which the cryptographic
primitive is used, with a higher level in which the use of
the primitive is replaced by a random choice. Showing this
correspondence relies on our F � 
�� � 
 � -based definitions of the
cryptographic primitive, and on composition results for time-
bounded task-PIOAs. Since this type of reasoning is isolated
to one correspondence, the methods of this paper in fact
suffice to accomplish most of the work of verifying OT.

Each of our system models, at each level, includes an
explicit adversary component automaton, which acts as a
message delivery service that can eavesdrop on communica-
tions and control the order of message delivery. The behavior
of this adversary is arbitrary, subject to general constraints on
its capabilities. In our models, the adversary is the same at all
levels, so our simulation relations relate the adversary states
at consecutive levels directly, using the identity function.
This treatment allows us to consider arbitrary adversaries
without examining their structure in detail (they can do
anything, but must do the same thing at all levels).

Certain patterns that arise in our simulation relation
proofs led us to extend earlier definitions of simulation rela-
tions [SL95], [LSV03], by adding the expansion capability
and by corresponding measures to measures: (i) We often
correspond random choices at two levels of abstraction—for
instance, when the adversary makes a random choice, from
the same state, at both levels. We would like our simulation
relation to relate the individual outcomes of the choices at
the two levels, matching up the states in which the same
result is obtained. Modeling this correspondence uses the
expansion feature. (ii) The ���D
:� ����� � vs.

� 
�� � example
described in Section III occurs in our OT proof. Here, the
low-level system chooses a random � and then computes
�x� � � � � using a trap-door permutation � . The higher level
system simply chooses the value of � randomly, without
using value � or permutation � . This correspondence relates
measures to measures and uses expansion. (iii) In another
case, a lower-level system chooses a random value � and then
computes a new value by XOR’ing � with an input value. The
higher level system just chooses a random value. However,
XOR’ing any value with a random value yields the same
result as just choosing a random value. This correspondence
relates measures to measures and uses expansion.

V. LOCAL SCHEDULERS

With the action-determinism assumption, our task mech-
anism is enough to resolve all nondeterminism. However,
action determinism limits expressive power. Now we remove
this assumption and add a second mechanism for resolving
the resulting additional nondeterminism, namely, a local
scheduler for each component task-PIOA. A local scheduler
for a given component can be used to resolve nondetermin-
istic choices among actions in the same task, using only
information about the past history of that component. Here,
we define one type of local scheduler, which uses only the
current state, and indicate how our results for the action-
deterministic case carry over to this setting.

Our notion of local scheduler is simply a “sub-automaton”:
We say that task-PIOA � \ � � � \ �P� \ � is a sub-task-PIOA
of task-PIOA � � � � ��� �

provided that all components
are identical except that

� \ � �
, where

�
and

� \ are
the sets of discrete transitions of

�
and

� \ , respectively.
Thus, the only difference is that � \ may have a smaller
set of transitions. A local scheduler for a task-PIOA � is
any action-deterministic sub-task-PIOA of � . A probabilistic
system is a pair

� � � � ��� � , where � is a task-PIOA and
�

is a set of local schedulers for � . A probabilistic execution
of a probabilistic system

� � � � ��� � is defined to be any
probabilistic execution of any task-PIOA

8 � �
.

If
� , � � � , ��� , � and

� . � � � . ��� . � are two prob-
abilistic systems, and � , and � . are compatible, then their
composition

� ,{z � . is the probabilistic system
� � ,8z � . ��� � ,

where
�

is the set of local schedulers for � ,{z � . of the form8 ,bz 8 . , for some
8 , � � , and

8 . � � . .
If
� � � � ��� � is a probabilistic system, then an environ-

ment for
�

is any environment (action-deterministic task-
PIOA) for � . If

� � � � ��� � is a probabilistic system, then
the external behavior of

�
, ;�C@! O ;�� � � �

, is the total function
that maps each environment task-PIOA

�
for

�
to the set��� �	� !�q � 
 ! 
 �
8 z � � . Thus, for each environment, we consider

the set of trace distributions that arise from two choices: of
a local scheduler of

�
and of a global task schedule � .

If
� , � � � , ��� , � and

� . � � � . ��� . � are comparable
probabilistic systems (i.e., � , and � . are comparable), then� , implements

� . , written
� , F * � . , provided that;�C@! O ;�� � � , � � � � � ;+C:! O ;�� � � . � � � � for every environment

(action-deterministic) task-PIOA
�

for both
� , and

� . .
We obtain a sufficient condition for implementation of prob-
abilistic systems, in which each local scheduler for the low-
level system always corresponds to the same local scheduler
of the high-level system.

Theorem 5.1: Let
� , � � � , ��� , � and

� . � � � . ��� . � be
two comparable probabilistic systems. Suppose that � is a
total function from

� , to
� . such that, for every

8 , � � , ,8 ,�F * � �
8 , � . Then
� ,�F * � . .

We also obtain a compositionality result for probabilistic
systems. The proof is similar to that of Theorem 2.9, for the
action-deterministic case.

Theorem 5.2: Let
� , , � . be comparable probabilistic

systems such that
� , F * � . , and let

� � be a proba-
bilistic system compatible with each of

� , and
� . . Then� ,{z � � F * � .8z � � .



VI. CONCLUSIONS

We have extended the traditional PIOA model with a task
mechanism, which provides a systematic way of resolving
nondeterministic scheduling choices without using informa-
tion about past history. We have provided basic machinery
for using the resulting task-PIOA framework for verification,
including a compositional trace-based semantics and a new
kind of simulation relation. We have proposed extending the
framework to allow additional nondeterminism, resolved by
schedulers that use only local information. We have illus-
trated the utility of these tools with a case study involving
analysis of an Oblivious Transfer cryptographic protocol.

Although our development was motivated by concerns of
cryptographic protocol analysis, partial-information schedul-
ing is interesting in other settings. For example, some dis-
tributed algorithms work with partial-information adversarial
schedulers, althrough the problems they solve are provably
unsolvable with perfect-information adversaries [Cha96],
[Asp03]. Also, partial-information scheduling is realistic for
modeling large distributed systems, in which basic schedul-
ing decisions are made locally, and not by any centralized
mechanism.

Many questions remain in our study of task-PIOAs: Our
notion of implementation, F * , is defined by considering all
environments; can we characterize F * using a small subclass
of environments? Can our simulation relation notion be sim-
plified without sacrificing soundness or applicability? Also,
our notion of local schedulers needs further development.

It remains to consider more applications of task-PIOAs, for
cryptographic protocol analysis and for other applications. A
next step in cryptographic protocol analysis is to formulate
and prove protocol composition results like those of [PW00],
[Can01] in terms of task-PIOAs. Finally, we would like to
model perfect-information schedulers, as used for analyzing
randomized distributed algorithms, using task-PIOAs.
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