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Abstract

This work presents an implementation of a distributed system building
block that is formally specified as the Eventually-Serializable Data Service
(ESDS) [7] proposed by Fekete et al. ESDS deals with replicated objects that
allow the users of the service to relax consistency requirements in return for
improved responsiveness, while providing guarantees of eventual consistency of
the replicated data. The ESDS paper [7] includes a formal service specification
and an abstract algorithm implementing the service. The algorithm is given in
terms of I/O automata of Lynch and Tuttle [15]. An important consideration
in formulating ESDS was that it could be employed in building real systems.

The work described here makes the following contributions. We develop
an optimized implementation of ESDS and explore its behavior. We combine
the implementation with different data types and clients, thus demonstrating
the utility of the service as a building block suitable for serving as a distributed
operating system component. The implementation has been experimentally
evaluated on a network of workstations. The results confirm that the designed
trade-off between consistency and performance is present in the implemented
service. To make the implementation process less error prone, we develop
and use a framework for mapping algorithms formally specified using I/O
automata to distributed programs. The framework includes a set of conversion
rules and a core set of object common to all target implementations.

1 Introduction

Extant network technology enables the creation of very large distributed plat-
forms. Developing sophisticated distributed applications for such environments still
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2 IMPLEMENTING ESDS AS A BUILDING BLOCK

presents a challenge, despite the availability of distributed middleware packages,
such as DCE [23]. In many cases, middleware provides functions at a lower-level of
abstraction than those required by complex applications. Even when higher-level
functions are available, they often have informal specifications, thus providing only
a modest benefit. In particular, it is often difficult to reason about the properties
of distributed applications that are built using middleware, and about the compo-
sitional semantics of the resulting applications.

Specification of building blocks for sophisticated distributed systems and devel-
opment, of supporting algorithms is an area of active research. However, even when
specifications and algorithms are formally stated, deriving a distributed implemen-
tation from a specification is an error-prone process. It is often difficult to forecast
the behavior patterns of distributed implementations in realistic deployment sce-
narios, especially when the performance bottleneck cannot be readily assessed and
when the scalability of the underlying platforms becomes a limiting factor.

In this paper we present an implementation of a formally specified building block
for a flexible eventually-serializable data service, or ESDS for short, proposed by
Fekete et al. in [7]. The implementation is derived with the help of a framework that
is designed to make the derivation process less error-prone, and to reduce the need to
reimplement common functions when working with I/O automata specifications [16].
We also present, experimental results of exploring the scalability of the service and
its consistency /performance tradeoff.

1.1 Background

Replication is used in distributed systems to improve availability and to increase
throughput. The disadvantage of replication is the additional effort required to
maintain consistency among replicas when serializing client operations. Several no-
tions of consistency have been defined. The strongest notion is atomicity, requiring
that replicas emulate a single centralized object. Methods to achieve atomicity in-
clude write-all/read-one [3], primary copy [1, 18, 17], majority consensus [19], and
quorum consensus [11]. Achieving atomicity often incurs a high cost, while some
applications, such as directory services [20, 21], are willing to tolerate some tran-
sient inconsistencies. This gives rise to different notions of consistency. Sequential
consistency [14], guaranteed by systems such as Orca [2], allows operations to be
reordered as long as they remain consistent with the view of isolated clients.

Improving performance by providing weaker consistency may lead to more com-
plicated semantics. While in practice, replicated systems are often incompletely or
ambiguously specified, it remains important to provide formal consistency guaran-
tees. Ladin, Liskov, Shrira, and Ghemawat [13] define a replicated data service.
They specify general conditions for such a service, and present an algorithm based
on lazy replication, in which operations received by each replica are gossiped in the
background. Building on the work of Ladin et al., Fekete et al. [7] developed a
flexible eventually-serializable data service.

The definition of ESDS includes a specification of the data service and an ab-
stract algorithm that implements it. ESDS relaxes consistency guarantees provided
by serializable data services to improve system efficiency and availability. It also
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provides provable guarantees of long-term consistency of the data. An important
consideration in the design of ESDS has been to make it suitable for employment in
building real systems. In this work we implement and explore an optimized version
of ESDS.

1.2 Owur Contributions

We implement an optimized version of ESDS and explore its behavior in a dis-
tributed setting. We combine the implementation of ESDS with different data
types and clients, thus demonstrating the suitability of the service as a general
building block in a distributed computing environment. The implementation has
been experimentally evaluated on a network of workstations. In this setting, the
implementation scaled well with the number of processors, which reflects a designed
trade-off between consistency and performance.

The ESDS algorithm is specified as a composition of I/O Automata [16]. The
I/O automata notation is a declarative description language used to specify state
machines. To implement ESDS, we need to convert the abstract algorithm to a de-
sign specification for a distributed program. To our knowledge, no general method
for converting I/O automata specifications to distributed programs has been pro-
posed before.

To assist us in the implementation process, we formulate and utilize a framework
for mapping algorithms specified using I/O automata to distributed programs. The
goal of the framework is to streamline the mapping of a specification to a message-
passing implementation, thus reducing the number of errors that might be acciden-
tally introduced. The framework also implements several common functions, thus
eliminating the need to reimplement such functions when working with I/O au-
tomata specifications. We believe that the techniques in the framework are general
and that they can be used to implement many other algorithms specified as I/O
automata.

One of our main design goals was to confirm that the ESDS algorithm is suitable
for implementation as a building block from which concrete applications can be built
with minimal effort. The algorithm is specified to be independent of the serial data
type of the replicated data object to facilitate its use as a building block. Our imple-
mentation of ESDS uses object-oriented techniques to ensure that this independence
is preserved. We build four distinct applications on top of ESDS to demonstrate the
viability of our design as a generic building block for real distributed data services.

The ESDS service has been developed and tested on a network of Sun work-
stations running SunOS 4.1.4. Four clients for sample ESDS service applications
were developed. One client was developed for Win32 and tested under Windows
95 on an Intel Pentium machine. Three other clients ran under SunOS 4.1.4. We
use MPI (Message Passing Interface) Standard [6] to implement communication be-
tween distributed components of the ESDS implementation. In selecting MPI, we
took into account its suitability for implementing I/O automata, the simplicity of
communication semantics, the availability of development tools, and portability.
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We have instrumented an optimized implementation of ESDS with tools for
monitoring interesting parts of the state of the data service and collecting infor-
mation about performance characteristics of the system. Characteristics of interest
include response time to user requests, system throughput, and deviation from strict
consistency in system responses.

The empirical tests have provided data on the behavior of the implementation
with varying number of participating replicas and with varying system load. In
addition, the tests have confirmed that ESDS offers a tradeoff between consistency
and performance, and that it is possible to shift the tradeoff balance in either
direction according to the user’s needs.

The rest of this paper is organized as follows. In Section 2 we overview the
I/0O automata model and introduce names for variants of the ESDS algorithm and
its implementations that we use thereafter. Section 3 describes the framework for
converting I/O automata to distributed implementations. Section 4 describes the
ESDS algorithm. The ESDS implementation is dealt with in Section 5. Section 6
discusses the empirical results. Our conclusions are presented in Section 7, while
Section 8 contains suggestions for future work.

2 Models and Definitions

The Input/Output automaton, or I/O automaton for short [15, 16] is a general model
used for formal descriptions of asynchronous and distributed algorithms. The model
provides a precise way of describing and reasoning about asynchronous interacting
components. We provide a consise description of the model and refer the reader
to [15, 16] for more details.

An I/O automaton is a state machine in which the transitions are associated
with named actions. The actions are classified as either input, output or internal.
Roughly speaking, the input and output actions are used for interaction with the
automaton’s environment. The internal actions work on the automaton’s local state.

I/O automata code is given in a precondition-effect style. For each action, the
code specifies the preconditions under which the action is permitted to occur, as
a predicate on the automaton state, and the effects that occur as the result. The
input actions are always enabled (i.e. the precondition clause of an input action is
always true). The code in the effects clause gets executed atomically.

The composition operation allows an automaton representing a complex system
to be constructed by composing automata representing individual system compo-
nents. The composition identifies actions with the same name in different com-
ponent automata. When any component automaton performs a step involving an
action 7, so do all component automata that include the action w. The states and
start states of the composition automaton are vectors of states and start states,
respectively, of the component automata.

When we compose a collection of automata, output actions of the components
become output actions of the composition, internal actions of the components be-
come internal actions of the composition, and actions that are inputs to some com-
ponents but outputs of none become input actions of the composition.
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Figure 1: I/O automata composition and input/output combinations

We now name and briefly describe the different variations of the ESDS algorithm
and its implementations; we also introduce additional terminology that will be used
in describing interactions of automata in a composition.

The component automata in a composition communicate by means of input and
output actions with the same name. We distinguish between two types of actions
in an I/O automata composition.

Let an I/O automaton A be a composition of I/O automata A;, As, ..., Ap. If
there is an output action X € A that occurs as an output action in some A; and
as an input action in some other automaton A; (i # j), we call X an input/output
combination, or I/O combination for short. We call A; the output end with respect
to X, and we call A; the input end with respect to X. Any action Y € A that
appears in one and only one automaton Ay, is called a regular action.

Figure 1 gives an example of an automaton A composed of two component
automata, A; and A,. In the composition, W and X are regular actions, while V'
and Z are I/O combinations.

I/O automata are typically used to specify distributed algorithms involving a
collection of nodes by encapsulating the behavior of each node I as a separate au-
tomaton A;. The entire algorithm is then represented by the composition A of
component automata Ay, As, ..., Ap,. The internal actions of A; represent local
processing at the corresponding node. The I/O combinations represent communi-
cation between the nodes. The input and output actions of each automaton that do
not participate in an I/O combination represent the interaction of the corresponding
node with its external environment. We assume this representation of distributed
algorithms as I/O automata when discussing conversion of such algorithms to dis-
tributed programs in Section 3.

In the rest of the paper, we discuss several variants of the ESDS algorithm ans
its implementations:

ESDSAIg: this refers to the unoptimized abstract algorithm for ESDS (described
in Section 4).

SimpleESDSAlg: this is a simplified version of ESDSAlg that replaces channel
automata with I/O combinations. This version restricts concurrency, but
leads to a simpler implementation.
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ESDSOptAlg: this is an optimized version of ESDSAlg. The optimizations pur-
sued in ESDSOptAlg and a corresponding I/O automata description of them
are presented in Section 4.2.

ESDSImpl, SimpleESDSImpl, and ESDSOptImpl are distributed programs
that implement ESDSAlg, SimpleESDSAlg, and ESDSOptAlg respectively.

3 Converting I/O Automata to Programs

I/0O automata have been effectively used for describing message-passing distributed
algorithms and in proving their correctness properties. We develop a framework for
converting commonly occurring algorithms that are specified using I/O automata
compositions into distributed message-passing implementations using an imperative
language (chosen in this work to be C++).

We call the I/O automata composition being converted the source composition.
We call the algorithm represented by the source composition the source algorithm.
The result of the conversion is the target program.

A key goal for our framework is to facilitate a faithful implementation of the
source algorithm. Also, one must be able to directly relate each part of the target
program to the corresponding parts of the source algorithm. Due to these require-
ments, the techniques discussed here are rather conservative, and they will usually
lead to an overspecification of the algorithm specified using I/O automata. Never-
theless, this would not preclude one from representing a large and interesting subset
of behaviors of the source algorithm in the target implementation.

The conversion rules presented in this sections are intended to help the program-
mer with the implementation task and to eliminate redundant software development
work. Formalizing the rules is a task for future work.

3.1 Overall Approach

In the target program produced from the source composition A, each of A’s com-
ponent automata A; is represented by a sequential process P;'. Each action of the
source composition has a corresponding fragment of code in the target program that
implements the action. The conversion techniques ensure that these code fragments
are atomic with respect to each other.

When dealing with a composition A of I/O automata, we assume that A consists
of component automata Aj,...,A,;,. We further assume that an action named
X belonging to automaton A; has preconditions clause PXA; and effects clause
EXA;. A component automaton A; from composition A will correspond one-to-one
to an implementation process P;. The local state of a component automaton A; is
represented by the local state variables of the corresponding process P;. We do not
make provisions for representing the global state of A2. If A utilizes global state, it

1t is also possible to combine several automata to run as a single process if there is a reason to
do so. For example, the algorithm may be split into automata to make the description modular.
In this case, the component automata may not be meant to run in parallel.

2By global state of A, we mean state that is accessible to more than one component automaton.
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Automaton A; Automaton A;

Output X Input X
Precondition: PXA; Precondition: None
Effects: EXA; Effects: EXA;

U L

Process P;
Process P;

if Enabled(PXAi) if NBReceive(P;, “Initiate X”)
Send(.P{', Initiate X”); Transition(EXA, );
Transition(EXA;); Send(P;, “Done JXZ,,),
Receive(P;, “Done X”); . v k

. endif
endif

Figure 2: Converting an Input/Output Combination to Code

may not be easily implementable as a message-passing distributed program. Global
state must be removed from such algorithms if one wishes to apply these techniques
to them.

3.2 Converting Preconditions Clauses to Procedures

The purpose of the preconditions clause PXA; in an action X is to determine
whether the state transition EXA; is enabled in the current automaton state. The
preconditions clause is converted to a predicate procedure Fnabled that checks the
current state of the automaton and returns true if the action is enabled and false
otherwise.

3.3 Converting Effects Clauses to Procedures

The effects clause EXA; describes the state transition represented by action X. The
effects clause is converted to a procedure named Transition. Transition requires
X to be enabled and the desired state transition to be chosen among all enabled
transitions represented by X. Transition’s effect on the state of P; must correspond
to the effects of EXA; on the state of A;.

3.4 Converting Regular Actions to Procedures

Conversion of a regular action or an input action to code is straightforward. All that
needs to be developed are the Enabled and Transition procedures that implement
the preconditions and effects clauses of the action, respectively (for an input action,
Enabled is the constant ¢rue). The implementation of Transition needs to be atomic
to preserve I/O automata semantics.

3.5 Converting Input/Output Combination Actions to Code

Implementation of an I/O combination is trickier because it must rely on asyn-
chronous messages to implement the combination atomically. We give a technique
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for implementing an I/O combination in the special case when only two automata
participate in the combination. This is sufficient for most existing algorithms that
have been specified as I/O automata.

The rule for converting an I/O combination to code is illustrated in Figure 2.
Here, automata A; and A; correspond to processes (or nodes) P; and P;. The Send()
and Receive() calls in the pseudocode for processes P; and P; stand for sending and
receiving asynchronous messages using MPL. The NBReceive() in the process P; is
a non-blocking receive of a message. If a message of the type “Initiate X” has not
arrived at Pj, then the if block is skipped.

An I/O combination is always initiated at the process that represents the output
end of the combination (P; in Figure 2). When the call to Enabled(PXA;) returns
true, P; sends a message to P; initiating the combination. Any argument that X
has is passed to P; in the same message. Next P; performs the local state transition
associated with X by invoking the Transition(EXA;) procedure. Then, P; waits
for an acknowledgment message “Done X” from P;. This step “synchronizes” the
execution of X at the two participating processes.

At the input end of the I/O combination, P; watches for requests from P; to
initiate X. While the NBReceive call returns false, P; can continue executing other
actions. When P; receives an “Initiate X” message, it executes its local state
transition for X and then sends the acknowledgment message to P;.

The Transition procedures representing the effects regular actions are atomic
with respect to other actions, since they may affect local variables only and may
not communicate with other processes. Informally, it is easy to see that the code
implementing an input/output combination, as presented in Figure 2, is also atomic.
Atomicity would be violated only if it were possible for some process to observe
that process P; had executed Transition(EXA;) but process P; had not executed
Transition(EXA;), or vice versa. The synchronizing message “Done X” rules out
both possibilities.

In our ESDS implementation it is sufficient to consider I/O combinations that
involve actions of two automata. In the future we plan to extend the the mechanism
of negotiation presented here to the more general case when multiple automata
participate in the I/O combination at the input end. The approach may be as
follows. The initiating process broadcasts “Initiate X” messages to participating
automata, gathers “Done X” messages from all of them, and then broadcasts a
“Proceed X” message to indicate that all of the effects clauses in the combination
have been executed. Upon receiveing the “Proceed X” message, the participants
continue with other actions.

3.5.1 Deadlock Avoidance

As presented, the translation from I/O automata to programs is safe, but suffers
from deadlock. If two automata running concurrently enter the output part of
two different input/output combinations and simultaneously attempt to initiate a
combination with each other, it is possible for them to block at the Receive(A4;,
“Done X”) and Receive(A;, “Done X”) lines, repectively, and wait for each other
indefinitely.
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Figure 3: Reservation Status Finite State Automaton for Process P;

We resolve this deadlock problem by setting up a reservation system for perform-
ing input/output combinations. Each process P; maintains its reservation status in
a state variable. The states of the reservation status at P; are as follows:

free This is the initial state of reservation status. In this state P; is free to initiate
or accept reservation requests.

reserved;, ; # 4 In the reserved; state P; is waiting for process P; to initiate an
I/O combination.

holding-reservation;, j # 4 In the holding-reservation; state P; may initiate an
I/O combination with P;.

negotiating;, j # 4 In the negotiating; state P; is waiting for P; to respond to
a reservation request.

The complete finite state automaton for the reservation status of one process is
depicted in Figure 3.

The reservation system imposes restrictions on processes’ ability to engage in
input/output combinations. Process P; can initiate an input/output combination
with process P; only after P; has obtained a reservation with P;. In order to
obtain the reservation, P; must set its reservation status to holding-reservation;,
and P; must set its reservation status to reserved;. Figure 3 specifies the rules for
requesting and granting reservations.

When a process P; wants to initiate an input/output combination with process
P;, its first step is to send a message to the receiving process P; requesting a
reservation. P; is allowed to do this only when its reservation status is free. After
the request for a reservation is sent to P;, P; enters the negotiating; state and waits
for a response to the request. If the reservation were granted by P;, P; enters the
holding-reservation; state, while P; enters the reserved; state. In this case, F; is
free to initiate an input/output combination as described in Section 3.5. If the
reservation request were rejected, P; “bounces back” to the free state.
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State
channel; ;, a multiset of messages
Actions
Input send; ;(m) Output receive; j(m)
Eff: channel; j < channel; ; U {m} Pre: m € channel; ;

Eff: channel; j < channel; j — {m}
Figure 4: Automaton for channel from process i to process j

Whenever the reservation status of a process is free and there is an incoming
reservation request, the process may grant the request. Although we do not require
that the process grant the reservation every time, it is necessary to grant them for
the system to make progress. Furthermore, reservations should be granted fairly to
prevent starvation.

We informally argue that, under the reservation system, deadlock cannot occur.
The key is Invariant 3.1, which specifies the relationship between the reservation
status values of two processes.

Invariant 3.1 Let P be the set of process identifiers in the target program. Then
for alli,j inP s.t. i # j, P; = holding-reservation; implies P; = reserved;.

We provide a sketch of the proof of Invariant 3.1. Process P; must receive a
reservation acceptance message from P; before it can enter the holding-reservation ;
state. P; must enter the reserved; state to send a reservation acceptance message
to P;. Pj remains in reserved; until it executes an I/O combination with P;. When
executing this combination, P; must leave the holding-reservation; state. It follows
that while P; is in the holding-reservation; state, P; must be in reserved; state.

By Invariant 3.1, process P; cannot initiate an I/O combination when process P;
is in the holding-reservation; state. So when P; initiates an I/O combination with
P;, P; is not blocked but is able to participate. Therefore, the I/O combination
executes successfully.

3.5.2 Optimizing Abstract I/O Channels Away

The reservation system for avoiding deadlock can be costly because it reduces the
potential for concurrency. For algorithms specified using I/O automata that use
channels with asynchronous message delivery for communication between its dis-
tributed components, an implementation that can provide more concurrency is pos-
sible. The I/O automata specification must obey the following restrictions. For
any pair of component automata A; and A; that communicate with each other, the
specification must have explicit asynchronous half-duplex channel automata C; ;
and Cj; between them. C; ; is used for sending messages from A; to A;, and C;;
for sending messages from A; to A;.

A channel from automaton A; to automaton A; is modeled with send;; and

receive; ; actions and a single state variable channel;; representing messages in
transit. The channel has a simple specification (cf. [15]), which is given in Figure 4.
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The send; ; and receive; j actions form I/O combinations with the automata that
wish to communicate via the channel. For instance, C; ; can share a send; ; I/O
combination with A; and a receive; ; I/O combination with A;. In an execution, a
send; ; event and a subsequent receive; ; event model asynchronous messages from
Ai to Aj.

The message passing model used by MPI already contains the asynchronous
channel discipline. An implementation of an algorithm that is specified using chan-
nels can use asynchronous MPI-Send at A; and MPI-Receive at A; instead of im-
plementing explicit channel automata C; ;. This optimization omits a significant
portion of the code generated by the basic conversion framework. Specifically, it
removes two I/O combinations (one at each of the sending and the receiving ends of
the channel C; ;) and a separate process for the channel automaton. Thus, removal
of the I/O combinations provides more concurrency.

3.5.3 Abstract Algorithm Relaxation Through Introduction of I/O Chan-
nels

When appropriate, the algorithm designer can take advantage of the optimization
in Section 3.5.2 by relaxing the abstract algorithm. Whenever algorithm correctness
does not require the synchrony imposed on the system by an I/O combination, the
combination can be replaced with an explicit asynchronous channel. The channel is
then optimized away during conversion of the algorithm to a distributed program.
This approach can lead to a significant performance improvement in the target
program due to added concurrency.

3.6 Object-Oriented Implementation of the I/O Automata
Framework

We developed a set of C++ objects that encapsulate the functions of the framework
common to all I/O automata. These objects have been designed in accordance with
the conversion techniques we defined, and are intended to be used as a foundation in
converting specific algorithms to programs. The implementation takes advantage of
polymorphism to provide generic service to any converted I/O automata algorithm;
it includes an integral scheduling mechanism using either random or round-robin
discipline, and it incorporates an exponential backoff scheme for avoiding livelock
in the reservation system. The implementation details are given in [5]. We mention
the two most important components here.

IOAutomaton class. This class encapsulates components needed in all implemen-
tations of I/O Automata. It handles scheduling of locally-controlled actions
for execution (subject to them being enabled) and the reservation system for
I/O combinations. IOAutomaton is the superclass of all classes that represent
I/O automata.

IOAction class. IOAction is the superclass of all classes that represent locally-
controlled actions. These classes must implement the Fnabled and Transition
methods, used by the TOAutomaton class to schedule and execute actions.
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State
wait s, a subset of O, initially empty
rept s, a subset of O x V, initially empty
Actions

Input request, (z)
Eff: wait; < wait; U {z}

Output sendy . ((“request”,x))
Pre: = € waity

Input receive, ¢((“response”,z,v))
Eff: if z € waity then rept; < rept; U {(z,v)}

Output response,(op,v)
Pre: (z,v) € repty
T € wait y
Eff: wait; + wait; — {z}
rept ;< reptp — {(x,v") : (z,v") € rept s}

Figure 5: ESDSAlg: Automaton for front end f

4 The ESDS Algorithm

For reference, we provide a description of ESDSAlg component automata. The
description follows that of Fekete et al. [7]. In the algorithm, each process that
maintains a copy of the data objects is modeled as a replica. The replicas maintain
an order on the operations they know about. A known prefix of the order at each
replica is such that it is consistent with the eventual total order on operations.
Replicas periodically exchange their knowledge in gossip messages. Operations can
be strict, which means that the response to such operations must be consistent with
the eventual order, or non-strict, which means that responses may not reflect the
eventual order. Clients may also specify the prev set of operations that must be
executed before the new operation.

4.1 The Frontends and Channels

Clients are represented in the algorithm by frontends. The frontend automaton
is shown in Figure 5. When a client ¢ submits a request (via the request, input
action), its frontend simply relays the request to one or more replicas that maintain
a copy of the data object, and, when it receives a response, relays that back to the
client via the response, action. Frontends use state variables waity and rept; for
this purpose.

Channels (of the type specified in Figure 4) are used for request/response mes-
sages between frontends and replicas and for “gossip” between replicas.

4.2 The Replicas

The replica automaton is given in Figure 6. The automaton is specified for replica
r, and it has a number of state components. The component rcvd, is the set of
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State
pending,., a subset of O; the messages which require a response
rcvd,, a subset of O; all operations that have been received
done,[i] for each replica i, a subset of O; the operations r knows that ¢ has “done”
solid, [i] for each replica 7, a subset of O; the operations that r knows are “stable at 7”
minlabel, : O — L U {oo}; the smallest label r has seen for z € O

Derived from done,[r] and minlabel,: val, : done,[r] — V; the value for = € done,[r] using the
minlabel, order

Actions
Input receivey , ({“request”,x)) Output send,. . ((“gossip”, R, D, L, S))
Eff: pending, < pending, U {z} Pre: R = rcvdy; D = done,[r];
rcvdy < revdy U {z} L = minlabel,; S = solid,[r]
Internal do_it,(z,1) Input receive,s ,.({“gossip”, R, D, L, S))
Pre: = € rcvd, Eff: revd, <+ rcvd, UR
z ¢ doner|r] done,[r'] < done,[r'JUDUS
z.prev C done,[r].id done[r] < doner[r]UDUS
1 > minlabel, (y) for all y € done,[r] done,[i] + done,[i]U S for all i # r,r’
(I € L, equivalently [ # o) minlabel, + min(minlabel,, L)
Eff: done,[r] + done,[r]U {z} solid,[r'] « solid,[r'|U S
minlabel, (x) < 1 solidy[r] « solid,[r]U S U (ﬂl done,[i])

solid, [r] + solid,[r] U ﬂl done[i]

Output send, r((“response”,z,v))
Pre: x € pending,
x € doney|r]
x.strict = x € ﬂl solid. [i]
v = val,(x)
f = frontend(client(z.id))
Eff: pending, < pending, — {z}

Figure 6: ESDSAlg: Automaton for replica r

operation descriptors of all requests that this replica has received, either directly
from a frontend, or else through gossip from other replicas. The component pending,.
is the set of operation descriptors of all requests to which a reply by the replica is
pending. The component done, is an array of sets of operation descriptors, one for
each replica. Each set represents the operations known to have been “done” at the
corresponding replica, that is, the operations for which the replica can compute a
value. The component solid, is also an array of sets of operation descriptors, again
one for each replica. The interpretation of € solid,.[] is that replica r knows that
replica ¢ knows that every replica has x in its done set.

Replicas assign labels uniquely® to operations from a well-ordered set £. Each
replica keeps a function minlabel,: O — L U {oo} that encodes the minimum label
that the replica knows has been assigned to an operation (by any replica), where
l < oo foralll € L. As information is gossiped between replicas, the value of
minlabel . (z) may be reduced when r learns of a lower label for z (however, [7] gives
an invariant stating that once x € solid,[r], no further reduction is possible).

The function minlabel, defines a partial order local_cons, (on operation iden-
tifiers O.id), where local_cons, = {(y.id,z.id) : minlabel,.(y) < minlabel,.(z)}.

3Process identifiers can be used to break ties.
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Figure 7: ESDSImpl Structure

Because labels are assigned uniquely, local_cons, defines a total order for done,[r].
A replica uses this order to compute the value of an operation, val,.(z) = val(z,
done,[r], local_cons,) for x € done,[r].

Replicas use gossip messages to keep each other informed about the operations
issued to other replicas, about the operations received and processed, and the labels
associated with each operation. Hence a gossip message essentially contains the
state of a replica at a given point in time, which will be “merged” with the state of
the receiving replica.

For a complete treatment of the algorithm the reader is referred to [7].

5 Implementation of Experimental ESDS Systems

Using the framework and the classes implementing the I/O automata foundation,
we have created distributed implementations of two versions of the unoptimized
abstract ESDS algorithm, FESDSAlg and SimpleESDSAlg. We have also created
and implemented a more practical optimized version ESDSOptAlg of the abstract
algorithm.

Our implementation of the algorithm is independent of the data object that
implements the serial datatype. A designer can use it as a building block for any
type of data service. It is only necessary to implement the data object and add to it
the few features needed to make it work with ESDS; no modification to ESDS itself
is required. We have implemented several such applications. They are described in
Section 5.5.

Figure 7 depicts the hierarchy of the objects that comprise the system. Arrows in
Figure 7 represent the relationship “is used by.” The objects are divided into three
groups. The generic I/O automata objects are the base IOAutomaton and IOAction
classes. They encapsulate functions shared by all I/O automata. The ESDS-specific
objects implement ESDSAIg (see section 4.2 in [5] for details). These objects are in-
dependent of the particular data service application and do not require modification
when one wishes to implement a new data service. Finally, the application-specific
objects implement a particular data service. Application-specific objects have to be
written for each such service.
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Figure 8: ESDSImpl Processes

5.1 Mapping Component Automata to MPI Nodes

Version 1.1 of the MPI standard does not allow dynamic management of nodes.
The number of available processes is determined statically at invocation and cannot
change during execution. Thus, the application clients in our data service imple-
mentation could not be integrated in the MPI framework because they need to be
created and destroyed dynamically. We used sockets instead of MPI mechanisms
for communication between application clients and ESDS frontends.

The mapping of ESDS components to system processes is depicted in Figure 8.
In the figure ESDS replicas and frontends run inside the MPI environment, and the
application clients connect to the system from outside the MPT environment. At the
invocation of the program the ESDS system administrator specifies the number of
MPI nodes that will participate in the execution. Three MPI nodes are reserved for
system use (they are not depicted in Figure 8). The rest are divided between ESDS
replicas and frontends. The administrator specifies how many nodes to allocate for
each purpose.

After the invocation the number of replicas and frontends remains static through-
out the execution. Replicas use MPI messages to receive requests from frontends,
send gossip message to each other, and send responses back to the frontends. Client
processes are dynamically created and destroyed by users. Clients use sockets to
connect to one of the frontends. Once the connection is established, the client
submits an operation to the frontend and waits for the response.

5.2 Communication Between Clients, FrontEnds, and Repli-
cas

As we have already stated, ESDSAlg uses asynchronous channel automata for com-
munication between replicas and frontends and for gossip among replicas. We im-
plemented two different systems of communication among frontends and replicas.

15
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The first version (Simple ESDSImpl) was produced using our scheme for converting
I/O combinations to distributed programs (see Section 3.5).

The second version (ESDSImpl) takes advantage of the fact that ESDSAlg relies
on asynchronous channels for communication among frontends and replicas. It uses
reliable FIFO channels implemented by MPI, as discussed in Section 3.5.3. ESD-
SImpl is a more efficient implementation of ESDS than SimpleESDSImpl because it
avoids the overhead of synchronizing communications among frontends and replicas.

Integration of this approach into ESDSImpl implementation is straightforward.
Instead of negotiating with the receiving automaton for synchronized execution,
each automaton is free to send an asynchronous request, gossip, or response mes-
sage and continue executing normally. The pending messages accumulate in the
MPI subsystem, which implements reliable FIFO channels and thereby relieves the
programmer of that responsibility. In this implementation, the system takes advan-
tage of the distributed nature of the application.

Different methods of interprocess communication constitute the only difference
between ESDSImpl and SimpleESDSImpl. For convenience, both implementations
are combined into a single program. The desired method of communication can be
set with a switch in the program’s configuration file.

5.3 Optimizing ESDS: ESDSOptImpl

In addition to implementing FSDSAlg, we implemented some of the optimizations
suggested in [7]. In this section we describe the optimizations. We also present an
I/O automaton for the optimized ESDS replica.

We make several algorithmic contributions. The optimized algorithm ESDSOp-
tAlg contains a new gossiping scheme. It also caches current stable state at each
replica. These modifications reduce unnecessary exchange of information between
replicas and the amount of work needed to compute values for new requests. These
optimizations make the ESDS algorithm more practical.

The complete ESDSOptAlg replica automaton is shown in Figure 9.

5.3.1 Incremental Gossip

ESDSAlg is composed of identical replicas. Each replica r periodically sends infor-
mation about all operations it has seen to other replicas in gossip messages (Fig. 6).
Thus, a typical gossip message contains a lot of information that has been gossiped
previously between the same two replicas. Furthermore, the amount of redundant
gossip increases linearly with the number of new operations. ESDSImpl, as a faith-
ful implementation of ESDSAlg, requires gossip messages of unbounded size, and
thus cannot be used continuously for long time periods without exhausting system
resources or leading to unacceptable deterioration of system performance.

If we assume that replicas do not fail and that replicas communicate via re-
liable FIFO channels (as is the case with ESDSImpl), we can modify the replica
automaton to send only the incremental gossip updates. Each replica keeps track of
changes in its state and gossips only new information. This change improves system
performance, but reduces the system’s ability to tolerate lost gossip messages.
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Data types
P ={1,...,n}, the set of replica IDs
State

pending,., a subset of O; the messages which require a response

rcvd,, a subset of O; all operations that have been received

done,[i] for each replica i, a subset of O; the operations r knows that ¢ has “done”
solid, [i] for each replica 7, a subset of O; the operations that r knows are “stable at i”
gossip,.[i] for each replica i, a subset of O; the operations that r needs to gossip to ¢
minlabel,: O — L U {oco}; the smallest label r has seen for z € O

Derived from solid,[r] and minlabel,:
minlabel, (maz-stable,) > minlabel,(y)

maz-stable,

€ solid-[r] st. Yy € solid,[r],

stable-state, € %, initially o¢; the state resulting from doing all the operations up to and including

max-stable,

stable-value,: solid,[r] — V, initially empty; the values of the stable operations in the eventual

total order

Derived from done,[r] and minlabel,: val,: done,[r] — V; the value for z € done,[r] using the

minlabel, order

Actions
Input receivey ,((“request”,x))
Eff: pending, < pending, U {z}
revd, + revd, U {z}
for all 4 :
gossip,.[i] + gossip,.[i| U {z}

Internal do_it,(z,1)
Pre: z € rcvd, — done,[r]
x.prev C done[r].id
for all y € doney[r] :
1 > minlabel, (y)
doner[r] < done,[r]U {z}
minlabel, (x) « 1
for all 7 :
gossip,.[i] < gossip,[i| U {z}

Eff:

Output send, ¢((“response”,z,v))
Pre: z € pending; N done,[r]
x.strict =« € ﬂl solid 7]

stable-value, (z) if x € solid,[r]
v= .

valr(x) otherwise

f = frontend(client(x.id))
Eff: pending, < pending, — {z}

Output send, . ({“gossip”, R, D, L, S))
Pre: R = rcvd, N gossip,[r];
D = doner[r] N gossip,.[r];
S = solid,[r] N gossip,[r];
L = minlabel,; r # 1’
Eff: gossip,[r] < {}

Internal solidify,
Pre: |[P| =1
Eff: solid,[r] + solid,[r]U (ﬂl doney[i])
for y s.t. minlabel,(y)
< minlabel,(maz-stable,)
and stable-value,(y) is undefined,
in minlabel, order:
(stable-state,, stable-value, (y)) +
f(stable-state,,y.op)

Input receive,: ,({“gossip”, R, D, L, S))
Eff: for all ¢ : gossip,[t] < gossip,[i]
U(R — revd,)U
(S — (), dome- [3)U
U(S — (solid,[r] N solid - [r]))U
U(D — (done,[r] N done,[r]))U
U{z : minlabel,(z) > L(z)}
revd, < rcvd, UR
doner[r'] < done,[r'JUDUS
done,[r] < doner[r]UDUS
done,[i] « done,[i]U S for all 4 # r,r’
manlabel . < min(minlabel,, L)
solid,[r'] + solid,[r']US
for all i : gossip,[i] < gossip,[i|U
U((ﬂj doner[j]) — solid.[r])
solid,[r] + solid,[r]U S U (ml doner[i])
for y s.t. minlabel,(y)
< minlabel,(maz-stable,)
and stable-value,(y) is undefined,
in minlabel, order:
(stable-stater, stable-value, (y)) +
f(stable-stater,y.op)

Figure 9: Automaton for optimized replica r
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The optimized replica automaton has a new state component gossip,, which is
an array of sets of operation descriptors, one set for each replica. Each gossip,.[i]
set contains operations that replica r needs to send to replica ¢ in the next gossip
message. An operation enters all gossip,.[i] sets whenever the replica learns new
information about the operation. Set gossip,.[i] is emptied every time replica r
sends a gossip message to replica .

Remark: Explicit sequencing of gossip messages combined with retransmission
and removal of duplicates is sufficient to make the optimization work with unreliable
channels that allow message losses, duplicate messages, and out of order delivery.
We may consider this enhancement in the future.

5.3.2 Removal of Self-Gossip

ESDSAlg assumes that each replica sends gossip messages to itself as well as to
other replicas. This behavior is inefficient in a practical implementation, but if we
removed it from the ESDSAlg replica automaton, its behavior would be incorrect
when there is only one replica in the system. The reason is that ESDSAlg updates
a replica’s set of operations that it knows to be stable only during receipt of gossip
messages. In a one-replica system execution without self-gossip messages the op-
erations would never stabilize, violating the requirement of eventual serializability.
This optimization adds another action solidify, to the replica automaton to pre-
serve correctness. The new action detects one-replica executions and updates the
set of stable operations independently from gossip actions.

5.3.3 Memoizing Stable State

ESDSAlg ignores the cost of local computation at the replicas. A replica r gets the
current, value the value for operation op,, from the initial state oy by re-computing
it as f* (0o, (0py, 0Py, -- ., 0p,)) for opy, 0p,, ..., op, in minlabel, order (the func-
tion f* applies opy,0ps,...,0p,, in that order, to oo [7]). ESDSImpl faithfully
implements the same inefficient behavior. Testing ESDSImpl under heavy opera-
tion load confirmed that the time consumed by recomputation can be significant.
In addition, the algorithm requires all operations to stay in memory indefinitely
to enable recomputation. These problems make the naive implementation of the
algorithm unsuitable for practical applications.

In [7], an optimization is suggested that involves memoizing stable state at each
replica. Here we specify a more aggressive variation of this optimization. We apply
operations to the stable state of a replica as soon as they have stabilized at that
replica, whereas in [7], it is suggested to wait until the operation stabilizes globally
before applying it. Our version of the optimization results in faster stabilization of
operations and a corresponding increase in performance.

We add a state component stable-state, to each replica that keeps track of the
stable state, which is the result of applying all operations, whose total order has
been fixed at all replicas, to the initial state. To compute the current state, replica
r needs only to apply all operations in done,[r] that have not yet stabilized to the
stable state.
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The computation of the new stable state takes place every time replicas receive
gossip messages (see Fig. 9). Among all operations that have not yet entered the sta-
ble state, replica r finds one with the highest minlabel that has entered the solid,.[r]
set. Call this operation maz-stable,. All operations with minlabels lower than that
of max-stable, are guaranteed to never change minlabels again, and no operation
with a lower minlabel can be received later. This means that the order of operations
up to and including maz-stable, can never be altered again at replica . Thus, the
replica applies all operations with minlabels lower than that of maz-stable, to the
old stable state to compute the new stable state.

Remark: Combined with the multipart timestamp optimization (see next sec-
tion), this optimization makes it possible to discard almost all information about
operations as soon as they enter the stable state. We have not implemented this.

5.3.4 Multipart Timestamps

In ESDSAlg, an operation may be causally dependent on other operations previ-
ously processed by the system. To represent this dependence, the operation’s state
contains a prev component, which is a set of operation ids that must be executed
before it. We substituted a more efficient method for tracking causal dependencies
between operations in place of prev sets. Our approach is based on a technique
called multipart timestamps.

A multipart timestamp ¢ is a n-tuple (¢1,...,%,) of nonnegative integer counters.
In the context of ESDS, n is the number of replicas. A partial order is defined on
multipart timestamps: ¢ < s iff ¢; < s; for j € [1..n]. Two multipart timestamps
are merged by taking their component-wise maximum.

In this optimization we remove prev sets from operation state and redefine the
protocol for keeping track of dependencies between operations with multipart times-
tamps.

In the new protocol the state of operation j includes two multipart timestamps,
prev-ts and op-ts (op-ts is initialized to all zeros). Replica state also gets two
multipart timestamps, val-ts and rep-ts, both initially all zeros. The meanings of
these new state components are as follows:

e op-ts is assigned to each new operation by the receiving replica in the manner
described below. Op-ts is guaranteed to be unique for each operation.

e prev-ts plays the same role for an operation j that the prev set played in
the unoptimized version. It specifies that any other operation with an op-ts
smaller than j’s prev-ts must be done before j. In other words, for each pair
of operations ¢ and j, j.op-ts < i.prev-ts implies that j is in i’s prev set.

e val-ts is the merge of op-ts timestamps of all operations done at the replica.

e rep-ts is the current replica timestamp, used to assign values to op-ts of newly
submitted operations in the protocol below.

The protocol works as follows:
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1. When replica r receives a new operation i from a front end, it increments
r.rep-ts[r], assigns r.rep-ts to i.op-ts, and sends the value of i.op-ts to the
front end. The front end then forwards i.op-ts to the client.

2. When a client wants to specify that operations iy, ...,7; must precede op-
eration j, it merges i1.0p-ts,...,i;.op-ts and assigns the result to j.prev-ts.
This method of specifying causal constraints restricts the kinds of constraints
that the client can specify. In particular, it requires that all operations with
op-ts < j.prev-ts must be done before j, not just iq,...,7;. Thus, multipart
timestamps trade off flexibility for efficiency.

3. When replica r does operation i (i.e., moves it into done,[r]), it merges i.op-ts
into r.val-ts.

4. Gossip messages from replica r to replica r’ contain r.rep-ts. Upon receipt of
the gossip message, replica r' merges r.rep-ts into r'.rep-ts. For all operations
i, € done,[r] included in the gossip message, r' merges i.op-ts into r'.val-ts.

5. When replica r wants to do operation ¢ and needs to check that i’s dependen-
cies have been satisfied, it checks that i.prev-ts < r.val-ts.

The multipart timestamp optimization does not introduce any changes to the
abstract description of the optimized replica automaton in Figure 9. The optimiza-
tion only changes the way the precondition z.prev C done,[r].id of the do_it, action
is implemented in ESDSOptIimpl.

Remark: To complete the multipart timestamp implementation, it is necessary
to take care of the case when a client submits an operation to more than one replica
simultaneously and gets different op-ts values for the operation. This has been
relegated to future work, as it is not essential to our goal of implementing a working
timestamp prototype.

5.4 Fault Tolerance in ESDS

We have already remarked on how to make our implementation able to cope with
unreliable channels by introducing gossip message sequencing, retransmission and
removal of duplicates.

Our implementation also includes some ad-hoc fault tolerance mechanisms for
handling fail-stop faults and restarts of replicas. These mechanisms make strong
timing assumptions about the environment. In particular, they rely on time bounds
on communication latency. We are in the process of relaxing these assumtions and
specifying these fault tolerance mechanisms formally.

5.5 Applications Using ESDS as a Generic Building Block

In order to test our implementations and to provide a proof-of-concept of the suit-
ability of our implementation as a generic building block, we have implemented four
data service applications that use ESDS.
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5.5.1 String Concatenation Service

The String Concatenation Service is a simple data service application. The data
object is a single string that supports two operations, Read and Concatenate. The
Read operation gives the current value of the string. The Concatenate operation
appends its argument to the string and gives back the new value. Because of
its simplicity, the String Concatenation Service was used for testing FESDSImpl
and ESDSOptImpl during development and for running empirical measurements of
ESDSOptImpl performance.

5.5.2 Counter Service

The Counter Service is another simple data service application, similar to String
Concatenation in its level of sophistication. The data object is a integer counter
variable that supports two operations, Read and Add. The Read operation gives
the current value of the variable. The Add operation adds an integer argument to
the current counter value and gives back the new counter value.

The Counter Service differs from the String Concatenation Service in one po-
tentially important respect. Its update operation Add commutes with other Adds,
whereas the Concatenate operation of the String Concatenation Service does not
commute with other Concatenate operations (unless one of them has the empty
string as an argument). The Counter Service was created with the purpose of test-
ing whether commutative update operations like Add lead to a smaller percentage
of inconsistent responses than non-commutative update operations like Concatenate
(as we will see in Section 6, it does not).

5.5.3 Distributed Spreadsheets

The purpose of creating a third, more sophisticated client has been to demonstrate
the viability of ESDS as a platform for creating diverse and capable data service
applications. The Distributed Spreadsheets client creates an environment where
several people can simultaneously enter spreadsheet data into the same Microsoft
Excel workbook. Their additions are sent to ESDS replicas, which maintain the
current state of the workbook and can refresh each user’s copy on demand. A
possible use of this combination of Excel and ESDS is to allow multiple users to
enter disjoint data into a single Excel file concurrently, see the updates of others
automatically, and not worry about overwriting other user’s additions with their
own.

5.5.4 A More Extensive ESDS Application: Bank Accounts

The original work on lazy replication and ESDS [7] suggests that directory and
information services (and similar applications) are the most suitable candidates for
ESDS-based implementation because immediate consistency is not important to
users of such systems. To show that ESDS could potentially be used for a wider
variety of applications, we have implemented an ESDS application that keeps track
of bank accounts. The bank application demonstrates how ESDS-based services
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can utilize strict and non-strict operations and multipart timestamp-based depen-
dencies.

The service maintains a database of customer accounts in a bank, implemented
as an application layer on top of ESDS. Branches of the bank are assumed to be
located at physically different sites. At least one replica node resides at each branch.
Operations submitted at a particular branch are forwarded to the local front end.
During normal operation, the front end submits these operations to the local replica.
However, if that replica happens to be down, the branch can continue to function
by having the front end submit the operations to replicas at remote branches.

The database maintains a set of data tuples in the form of (name, amount). In
addition to opening a new account and closing an established one, there are three
basic operation which can be carried out on an account. The operations with their
corresponding ESDS specifications are as follows: (1) Withdrawal: strict = true,
prev-ts = full,., (2) Deposit: strict = false, prev-ts = empty, (3) Balance:

e Local, Hurried: strict = false, prev-ts = empty
e Local, Quick: strict = false, prev-ts = local-full,

e Global, Prompt: strict = false, prev-ts = full,

By empty, local-full,., and full, values of prev-ts we mean the following. As-
sume that the last operation submitted to replica r had been assigned timestamp
(t1,.-.,tn). Then empty = (0,...,0), local-full . = (0,...,0,t.,0,...,0), and full, =
(t1,.-.,tn). The interpretations of these values of prev-ts as prev sets are as follows.
An empty value means that the prev set contains no operations. A local-full . value
means that the prev set includes all operations previously submitted at replica r
(but no others), and a full, value means that the prev set includes all previously
submitted operations at all replicas that replica r knows about.

A Deposit operation always succeeds, and it is independent of its ordering rel-
ative to other operations on the same account. Thus, Deposit is specified without
any dependency constraints. On the other hand, a Withdrawal of amount m can
result in different answers to the client, depending on whether the account has suffi-
cient funds. If the case when it does not, the Withdrawal operation does not change
the amount in the account and returns an error message. Otherwise, it decreases
the amount in the account by m. Permitting two Withdrawal operations on the
same account to occur concurrently at different replicas would allow the client to
withdraw money she does not have. Therefore, we have implemented Withdrawal
as a strict operation.

It is up to the customer to determine what level of inconsistency she can tolerate
in a Balance operation in exchange for lower latency. Using the Hurried option,
there is no guarantee that previously submitted operations for the account will be
visible by the Balance lookup. With Quick Balance lookup, all previously submitted
operations at the local branch will be visible, but there is no guarantee with respect
to operations submitted at other branches. Using Prompt Balance lookup, all
operations on the account known at the local replica will be visible, but there is
no guarantee that deposit operations carried out at other branches and not yet
gossiped to the local branch will be visible.
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6 Empirical Testing and Analysis

We have evaluated our implementation on a network of workstations. All tests were
done on a 10 Mbps Ethernet LAN of 12 Sun workstations running SunOS 4.1.4
using the ESDSOptImpl implementation. The workstations were not dedicated to
this project, and their loads fluctuated. To account for this variance, we performed
each test 10 times and averaged the results. We ran some tests with over 20 replicas;
however, for performance testing we used 10 replicas only, so that each replica ran
on a separate processor. Fach test run consisted of three hundred operations. We
measured two performance characteristics of the prototype, average response time,
and average throughput, which we now define.

The response time for an operation is the elapsed time between submission of
the operation to a replica and response from the replica in a given execution of the
implementation.

The average throughput is the number of operations the system processes per
unit time in a given execution of the implementation.

We would also like to know how the percentage of strict operations among all
operations submitted to the system affects performance and the degree of “incon-
sistency” in responses. For a given execution of the implementation, we say that
a response to an operation z is inconsistent if the value returned to the user for x
differs from the value of x in the eventual total order of operations. More formally,
let response,(z,v,) be a response sent by replica r to a front end. Let vals,(z) be
the value of x in the eventual total order of all operations. Then response,(z,v,) is
inconsistent if v, # valy,(x). In a finite execution of an implementation, the degree
of inconsistency is the percentage of inconsistent responses among all responses to
user operations returned by the system during the execution.

We have conducted three series of tests using ESDSOptImpl. The first series was
designed to test the flexibility of the software, regardless of the underlying hardware.
The second series was used to determine how system performance, characterized
by response time and throughput, depends on the number of replicas. For the
first two series, we used the String Concatenation Service with empty strings; the
datatype and content of the application data were irrelevant for these experiments.
All operations in these tests were non-strict.

The third series measured the changes in system performance and degree of
inconsistency in response to varying the percentage of the submitted strict opera-
tions. We used the Counter Service and the Add operation for our test setup to
find out whether commutative update operations like Add affect the percentage of
inconsistent responses when compared to non-commutative update operations.

Three quantities were measured for each run: (1) the average time Ty, from the
submission of an operation by front end f to one of the replicas until the receipt of
replica response by f, (2) the average time T, from the receipt of operation x by
replica r till the response from r with a value for z, and (3) the total time 7 for the
system to process and respond to all three hundred operations.

From these data, we obtained two different measures of the response time AT,

and AT, and one measure of system throughput AP, as follows. For each number
of replicas from N =1 to N = 10, we averaged T, over 10 runs to get the average
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Figure 10: System Throughput AP (submission rate is 330 operations/sec)

time ATy, it took a front end to receive a response from a replica after it sent the
request message. The average of T over 10 runs produced the average time AT, it
took a replica to process a request and send back a response. Finally, the average
value of 300/7 over 10 runs gives the average system throughput AP.

We determined experimentally that a single replica can keep up with requests
if each comes approximately once in 30 milliseconds. If this frequency increases, a
single replica cannot keep up and messages accumulate in the MPI message queues.
Therefore, in our testing, we ranged the frequency of requests from one every 30
milliseconds to approximately one every 30 times N milliseconds, where N is the
number of replicas.

The complete results are presented in [5]. Some key observations follow.

|

Throughput (ops/sec)
8 3 3
Replica Response Latency (msec)

N
8

o

Number of Replicas Number of Replicas

Figure 11: System Throughput AP (sub- Figure 12: Response Time at the Repli-
mission rate is 33* NV operations/sec, N = cas AT, (submission rate is 33 opera-
Number of replicas) tions/sec)
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Time and Consistency (4 Replicas) Time and Consistency (6 Replicas)

We ran tests in which the number of replicas exceeded the number of available
processors. This demonstrated the flexibility of our implementation to run in a
variety of settings. The test increased the number of replicas from N = 1 to
N = 20, while operations were submitted at the constant rate of 330 operations/sec.
The collected data are plotted in Figure 10. The system throughput increases
with the number of replicas participating in the system and performing submitted
operations. However, the throughput drops off when the system runs out of physical
processes (at N = 10). The overhead of context switches and the forced serialization
of communications between replicas sharing a processor adversely impact system
performance. In all other examples, we have limited the number of replicas to the
number of available processors.

We now describe how system throughput AP and response time at replicas
AT, depend on the number of replicas and the rate of operation submission. Fig-
ure 11 shows that throughput rises (nearly linearly) by adding new replicas when
the frequency of requests starts at thirty three operations/sec for one replica and
is increased proportionally to the number of replicas. However, throughput does
not come close to the estimated limit of three hundred and thirty operations per
second. This might be justified by the increasing gossip overhead.

Figure 12 shows response time for a constant, low frequency of requests and with
increasing number of replicas. This frequency is just short of saturating one replica.
Not surprisingly, the best response time shows up in a one-replica execution: the
replica can keep up with the submissions, there is no gossip, and all operations
stabilize immediately. As the number of replicas grows, operations take longer
to stabilize (recall that all replicas must perform the operation before it stabilizes);
moreover, the time spent on gossip processing is also increased. Each replica is busy
re-applying non-stable operations and gossiping some of the time. As a consequence,
we observe an increase in AT, for N = 1 through N = 4. However, the system
reaches a steady state for N > 4. After that point, the load on individual replicas
is sufficiently low, and they can keep up with both gossip and new operations
simultaneously.
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Finally, we performed a test to observe the trade-off between the response time
and consistency when the number of required strictly consistent responses increases.
This test was conducted using the Counter Service application, using Add opera-
tions. The results for four and six replicas are summarized in Figures 13 and 14,
respectively.

The percentage of inconsistent responses goes down linearly as the percentage
of strict operations climbs. On the other hand, since strict operations require the
system to stabilize the operation’s value at all replicas before responding, the latency
of responses to strict operations is significantly higher than to non-strict operations.
This difference between strict and non-strict operation latencies is reflected in the
linear increases of average latency with percentage of strict operations in Figures 13
and 14. The coefficient of the linear increase is higher for the larger number of
replicas (6), possibly because the time required to synchronize all replicas with
respect to a particular operation increases with the number of replicas.

The trade-off between consistency and performance is clearly demonstrated by
these results. Users willing to tolerate transient inconsistencies in system responses
can submit primarily non-strict operations. For these users the system will function
in the region on the left side of Figures 13 and 14, where transient inconsistency is
high but response latency is low. Conversely, users who require strict consistency
in responses to some or all of their operations will pay the cost of higher response
latency.

We have run the same experiment using the String Concatenation service in
place of the Counter service and found that the results did not differ from those
shown in Figures 13 and 14. Thus, we found no evidence that commuting operations
like Counter service’s Add substantially change the percentage of inconsistent re-
sponses compared to non-commuting operations like String Concatenation service’s
Concatenate.

7 Conclusions

We have defined a set of techniques for converting source algorithms specified as I/O
automata compositions into target distributed programs written in an imperative
language. We demonstrated that the techniques support object-oriented design for
target programs by implementing a set of C++ objects that encapsulate common
properties of I/O automata and can be used in designing the target program. Our
techniques are applicable to commonly occurring algorithms that use asynchronous
channels or input/output combinations that involve two automata for communica-
tions between distributed components.

Using our conversion techniques, we implemented the abstract ESDS algorithm
ESDSAlg as a distributed program ESDSImpl. The modular design of ESDSImpl
allowed us to create modules specific for ESDS only once and then build several
distinct data services without any need to further modify these modules. In this way,
we show how ESDSAlg can be used as a building block for distributed data service
implementations. A data service built on top of ESDS inherits its characteristics.
Strict consistency in such a service may be relaxed by specifying operations as non-
strict and requiring only the explicitly stated causal relations between individual
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operations (given by prev sets) to be preserved. The benefit of such relaxation is
improved system performance. At the same time, the system is assured of reaching
a globally consistent state, as specified and proven in [7]. This is a property of
ESDSImpl that differentiates it from the implementation in [13], in which additional
measures must be taken by an application designer to ensure that replica states do
not diverge irrevocably.

We have added several optimizations to ESDSAlg, producing an optimized ab-
stract algorithm ESDSOptAlg and a corresponding ESDSOptImpl implementation.
ESDSOptImpl fixes some inefficiencies of ESDSImpl and makes ESDS a more prac-
tical system. Some current and future work on other optimizations to ESDS is
discussed in the next section.

The empirical tests on ESDSOptImpl show how its performance, characterized
by response time and throughput, is affected by changing the number of replicas
participating in the execution and by changing the system load. The data also
confirm that ESDS performance reflects an inherent tradeoff between performance
and consistency.

8 Ongoing and Future Work

Several theoretical and practical aspects of our work are open for further explo-
ration. On the theoretical side, it remains to be shown that ESDSImpl (as well as
ESDSOptImpl and ESDSOptAlg) implement ESDSAlg (in the mathematical sense).
This requires formalization of our framework for converting I/O automata to dis-
tributed programs. More ambitiously, it would be interesting to develop a frame-
work for showing that a practical implementation of an algorithm, derived with
our techniques and treated as a mathematical object, correctly implements the I/O
automata specification of the original algorithm.

As we have remarked, the mechanism for converting I/O combinations to code
(Section 3.5) needs to be extended to the more general case when multiple automata
participate in the combination. Section 5.3.4 contains suggestions for further work
on the multipart timestamp optimization.

A possible application of ESDS is a wide-area network data service. To be
useful in practice as a WAN service, ESDS must accomodate dynamic changes in
the number of replicas and tolerate server and communication failures. We are
currently experimenting with a version of ESDS that tolerates simulated fail-stop
crashes of replicas and allows crashed replicas to rejoin the system after recovery.

Finally, our implementation can be viewed as a proof-of-concept of ESDS as a
generic component of distributed operating systems. Serious applications that can
benefit from such service include directory services and distributed type repositories
useful for distributed object systems. It would be interesting to formalize ESDS as
a distributed operating system service and use it in implementing a real application.
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