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Abstra
t

This work presents an implementation of a distributed system building

blo
k that is formally spe
i�ed as the Eventually-Serializable Data Servi
e

(ESDS) [7℄ proposed by Fekete et al. ESDS deals with repli
ated obje
ts that

allow the users of the servi
e to relax 
onsisten
y requirements in return for

improved responsiveness, while providing guarantees of eventual 
onsisten
y of

the repli
ated data. The ESDS paper [7℄ in
ludes a formal servi
e spe
i�
ation

and an abstra
t algorithm implementing the servi
e. The algorithm is given in

terms of I/O automata of Lyn
h and Tuttle [15℄. An important 
onsideration

in formulating ESDS was that it 
ould be employed in building real systems.

The work des
ribed here makes the following 
ontributions. We develop

an optimized implementation of ESDS and explore its behavior. We 
ombine

the implementation with di�erent data types and 
lients, thus demonstrating

the utility of the servi
e as a building blo
k suitable for serving as a distributed

operating system 
omponent. The implementation has been experimentally

evaluated on a network of workstations. The results 
on�rm that the designed

trade-o� between 
onsisten
y and performan
e is present in the implemented

servi
e. To make the implementation pro
ess less error prone, we develop

and use a framework for mapping algorithms formally spe
i�ed using I/O

automata to distributed programs. The framework in
ludes a set of 
onversion

rules and a 
ore set of obje
t 
ommon to all target implementations.

1 Introdu
tion

Extant network te
hnology enables the 
reation of very large distributed plat-

forms. Developing sophisti
ated distributed appli
ations for su
h environments still
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2 IMPLEMENTING ESDS AS A BUILDING BLOCK

presents a 
hallenge, despite the availability of distributed middleware pa
kages,

su
h as DCE [23℄. In many 
ases, middleware provides fun
tions at a lower-level of

abstra
tion than those required by 
omplex appli
ations. Even when higher-level

fun
tions are available, they often have informal spe
i�
ations, thus providing only

a modest bene�t. In parti
ular, it is often diÆ
ult to reason about the properties

of distributed appli
ations that are built using middleware, and about the 
ompo-

sitional semanti
s of the resulting appli
ations.

Spe
i�
ation of building blo
ks for sophisti
ated distributed systems and devel-

opment of supporting algorithms is an area of a
tive resear
h. However, even when

spe
i�
ations and algorithms are formally stated, deriving a distributed implemen-

tation from a spe
i�
ation is an error-prone pro
ess. It is often diÆ
ult to fore
ast

the behavior patterns of distributed implementations in realisti
 deployment s
e-

narios, espe
ially when the performan
e bottlene
k 
annot be readily assessed and

when the s
alability of the underlying platforms be
omes a limiting fa
tor.

In this paper we present an implementation of a formally spe
i�ed building blo
k

for a 
exible eventually-serializable data servi
e, or ESDS for short, proposed by

Fekete et al. in [7℄. The implementation is derived with the help of a framework that

is designed to make the derivation pro
ess less error-prone, and to redu
e the need to

reimplement 
ommon fun
tions when working with I/O automata spe
i�
ations [16℄.

We also present experimental results of exploring the s
alability of the servi
e and

its 
onsisten
y/performan
e tradeo�.

1.1 Ba
kground

Repli
ation is used in distributed systems to improve availability and to in
rease

throughput. The disadvantage of repli
ation is the additional e�ort required to

maintain 
onsisten
y among repli
as when serializing 
lient operations. Several no-

tions of 
onsisten
y have been de�ned. The strongest notion is atomi
ity, requiring

that repli
as emulate a single 
entralized obje
t. Methods to a
hieve atomi
ity in-


lude write-all/read-one [3℄, primary 
opy [1, 18, 17℄, majority 
onsensus [19℄, and

quorum 
onsensus [11℄. A
hieving atomi
ity often in
urs a high 
ost, while some

appli
ations, su
h as dire
tory servi
es [20, 21℄, are willing to tolerate some tran-

sient in
onsisten
ies. This gives rise to di�erent notions of 
onsisten
y. Sequential


onsisten
y [14℄, guaranteed by systems su
h as Or
a [2℄, allows operations to be

reordered as long as they remain 
onsistent with the view of isolated 
lients.

Improving performan
e by providing weaker 
onsisten
y may lead to more 
om-

pli
ated semanti
s. While in pra
ti
e, repli
ated systems are often in
ompletely or

ambiguously spe
i�ed, it remains important to provide formal 
onsisten
y guaran-

tees. Ladin, Liskov, Shrira, and Ghemawat [13℄ de�ne a repli
ated data servi
e.

They spe
ify general 
onditions for su
h a servi
e, and present an algorithm based

on lazy repli
ation, in whi
h operations re
eived by ea
h repli
a are gossiped in the

ba
kground. Building on the work of Ladin et al., Fekete et al. [7℄ developed a


exible eventually-serializable data servi
e.

The de�nition of ESDS in
ludes a spe
i�
ation of the data servi
e and an ab-

stra
t algorithm that implements it. ESDS relaxes 
onsisten
y guarantees provided

by serializable data servi
es to improve system eÆ
ien
y and availability. It also
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provides provable guarantees of long-term 
onsisten
y of the data. An important


onsideration in the design of ESDS has been to make it suitable for employment in

building real systems. In this work we implement and explore an optimized version

of ESDS.

1.2 Our Contributions

We implement an optimized version of ESDS and explore its behavior in a dis-

tributed setting. We 
ombine the implementation of ESDS with di�erent data

types and 
lients, thus demonstrating the suitability of the servi
e as a general

building blo
k in a distributed 
omputing environment. The implementation has

been experimentally evaluated on a network of workstations. In this setting, the

implementation s
aled well with the number of pro
essors, whi
h re
e
ts a designed

trade-o� between 
onsisten
y and performan
e.

The ESDS algorithm is spe
i�ed as a 
omposition of I/O Automata [16℄. The

I/O automata notation is a de
larative des
ription language used to spe
ify state

ma
hines. To implement ESDS, we need to 
onvert the abstra
t algorithm to a de-

sign spe
i�
ation for a distributed program. To our knowledge, no general method

for 
onverting I/O automata spe
i�
ations to distributed programs has been pro-

posed before.

To assist us in the implementation pro
ess, we formulate and utilize a framework

for mapping algorithms spe
i�ed using I/O automata to distributed programs. The

goal of the framework is to streamline the mapping of a spe
i�
ation to a message-

passing implementation, thus redu
ing the number of errors that might be a

iden-

tally introdu
ed. The framework also implements several 
ommon fun
tions, thus

eliminating the need to reimplement su
h fun
tions when working with I/O au-

tomata spe
i�
ations. We believe that the te
hniques in the framework are general

and that they 
an be used to implement many other algorithms spe
i�ed as I/O

automata.

One of our main design goals was to 
on�rm that the ESDS algorithm is suitable

for implementation as a building blo
k from whi
h 
on
rete appli
ations 
an be built

with minimal e�ort. The algorithm is spe
i�ed to be independent of the serial data

type of the repli
ated data obje
t to fa
ilitate its use as a building blo
k. Our imple-

mentation of ESDS uses obje
t-oriented te
hniques to ensure that this independen
e

is preserved. We build four distin
t appli
ations on top of ESDS to demonstrate the

viability of our design as a generi
 building blo
k for real distributed data servi
es.

The ESDS servi
e has been developed and tested on a network of Sun work-

stations running SunOS 4.1.4. Four 
lients for sample ESDS servi
e appli
ations

were developed. One 
lient was developed for Win32 and tested under Windows

95 on an Intel Pentium ma
hine. Three other 
lients ran under SunOS 4.1.4. We

use MPI (Message Passing Interfa
e) Standard [6℄ to implement 
ommuni
ation be-

tween distributed 
omponents of the ESDS implementation. In sele
ting MPI, we

took into a

ount its suitability for implementing I/O automata, the simpli
ity of


ommuni
ation semanti
s, the availability of development tools, and portability.
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We have instrumented an optimized implementation of ESDS with tools for

monitoring interesting parts of the state of the data servi
e and 
olle
ting infor-

mation about performan
e 
hara
teristi
s of the system. Chara
teristi
s of interest

in
lude response time to user requests, system throughput, and deviation from stri
t


onsisten
y in system responses.

The empiri
al tests have provided data on the behavior of the implementation

with varying number of parti
ipating repli
as and with varying system load. In

addition, the tests have 
on�rmed that ESDS o�ers a tradeo� between 
onsisten
y

and performan
e, and that it is possible to shift the tradeo� balan
e in either

dire
tion a

ording to the user's needs.

The rest of this paper is organized as follows. In Se
tion 2 we overview the

I/O automata model and introdu
e names for variants of the ESDS algorithm and

its implementations that we use thereafter. Se
tion 3 des
ribes the framework for


onverting I/O automata to distributed implementations. Se
tion 4 des
ribes the

ESDS algorithm. The ESDS implementation is dealt with in Se
tion 5. Se
tion 6

dis
usses the empiri
al results. Our 
on
lusions are presented in Se
tion 7, while

Se
tion 8 
ontains suggestions for future work.

2 Models and De�nitions

The Input/Output automaton, or I/O automaton for short [15, 16℄ is a general model

used for formal des
riptions of asyn
hronous and distributed algorithms. The model

provides a pre
ise way of des
ribing and reasoning about asyn
hronous intera
ting


omponents. We provide a 
onsise des
ription of the model and refer the reader

to [15, 16℄ for more details.

An I/O automaton is a state ma
hine in whi
h the transitions are asso
iated

with named a
tions. The a
tions are 
lassi�ed as either input, output or internal.

Roughly speaking, the input and output a
tions are used for intera
tion with the

automaton's environment. The internal a
tions work on the automaton's lo
al state.

I/O automata 
ode is given in a pre
ondition-e�e
t style. For ea
h a
tion, the


ode spe
i�es the pre
onditions under whi
h the a
tion is permitted to o

ur, as

a predi
ate on the automaton state, and the e�e
ts that o

ur as the result. The

input a
tions are always enabled (i.e. the pre
ondition 
lause of an input a
tion is

always true). The 
ode in the e�e
ts 
lause gets exe
uted atomi
ally.

The 
omposition operation allows an automaton representing a 
omplex system

to be 
onstru
ted by 
omposing automata representing individual system 
ompo-

nents. The 
omposition identi�es a
tions with the same name in di�erent 
om-

ponent automata. When any 
omponent automaton performs a step involving an

a
tion �, so do all 
omponent automata that in
lude the a
tion �. The states and

start states of the 
omposition automaton are ve
tors of states and start states,

respe
tively, of the 
omponent automata.

When we 
ompose a 
olle
tion of automata, output a
tions of the 
omponents

be
ome output a
tions of the 
omposition, internal a
tions of the 
omponents be-


ome internal a
tions of the 
omposition, and a
tions that are inputs to some 
om-

ponents but outputs of none be
ome input a
tions of the 
omposition.
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Algorithm A

Automaton A

1

Automaton A

2

State: StA

1

Transitions

Output W

Output Y

Input Z

State: StA

2

Transitions

Internal X

Input Y

Output Z

-

�

Figure 1: I/O automata 
omposition and input/output 
ombinations

We now name and brie
y des
ribe the di�erent variations of the ESDS algorithm

and its implementations; we also introdu
e additional terminology that will be used

in des
ribing intera
tions of automata in a 
omposition.

The 
omponent automata in a 
omposition 
ommuni
ate by means of input and

output a
tions with the same name. We distinguish between two types of a
tions

in an I/O automata 
omposition.

Let an I/O automaton A be a 
omposition of I/O automata A

1

, A

2

, : : :, A

m

. If

there is an output a
tion X 2 A that o

urs as an output a
tion in some A

i

and

as an input a
tion in some other automaton A

j

(i 6= j), we 
all X an input/output


ombination, or I/O 
ombination for short. We 
all A

i

the output end with respe
t

to X , and we 
all A

j

the input end with respe
t to X . Any a
tion Y 2 A that

appears in one and only one automaton A

k

is 
alled a regular a
tion.

Figure 1 gives an example of an automaton A 
omposed of two 
omponent

automata, A

1

and A

2

. In the 
omposition, W and X are regular a
tions, while Y

and Z are I/O 
ombinations.

I/O automata are typi
ally used to spe
ify distributed algorithms involving a


olle
tion of nodes by en
apsulating the behavior of ea
h node I as a separate au-

tomaton A

i

. The entire algorithm is then represented by the 
omposition A of


omponent automata A

1

, A

2

, ..., A

m

. The internal a
tions of A

i

represent lo
al

pro
essing at the 
orresponding node. The I/O 
ombinations represent 
ommuni-


ation between the nodes. The input and output a
tions of ea
h automaton that do

not parti
ipate in an I/O 
ombination represent the intera
tion of the 
orresponding

node with its external environment. We assume this representation of distributed

algorithms as I/O automata when dis
ussing 
onversion of su
h algorithms to dis-

tributed programs in Se
tion 3.

In the rest of the paper, we dis
uss several variants of the ESDS algorithm ans

its implementations:

ESDSAlg: this refers to the unoptimized abstra
t algorithm for ESDS (des
ribed

in Se
tion 4).

SimpleESDSAlg: this is a simpli�ed version of ESDSAlg that repla
es 
hannel

automata with I/O 
ombinations. This version restri
ts 
on
urren
y, but

leads to a simpler implementation.
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ESDSOptAlg: this is an optimized version of ESDSAlg. The optimizations pur-

sued in ESDSOptAlg and a 
orresponding I/O automata des
ription of them

are presented in Se
tion 4.2.

ESDSImpl, SimpleESDSImpl, and ESDSOptImpl are distributed programs

that implement ESDSAlg, SimpleESDSAlg, and ESDSOptAlg respe
tively.

3 Converting I/O Automata to Programs

I/O automata have been e�e
tively used for des
ribing message-passing distributed

algorithms and in proving their 
orre
tness properties. We develop a framework for


onverting 
ommonly o

urring algorithms that are spe
i�ed using I/O automata


ompositions into distributed message-passing implementations using an imperative

language (
hosen in this work to be C++).

We 
all the I/O automata 
omposition being 
onverted the sour
e 
omposition.

We 
all the algorithm represented by the sour
e 
omposition the sour
e algorithm.

The result of the 
onversion is the target program.

A key goal for our framework is to fa
ilitate a faithful implementation of the

sour
e algorithm. Also, one must be able to dire
tly relate ea
h part of the target

program to the 
orresponding parts of the sour
e algorithm. Due to these require-

ments, the te
hniques dis
ussed here are rather 
onservative, and they will usually

lead to an overspe
i�
ation of the algorithm spe
i�ed using I/O automata. Never-

theless, this would not pre
lude one from representing a large and interesting subset

of behaviors of the sour
e algorithm in the target implementation.

The 
onversion rules presented in this se
tions are intended to help the program-

mer with the implementation task and to eliminate redundant software development

work. Formalizing the rules is a task for future work.

3.1 Overall Approa
h

In the target program produ
ed from the sour
e 
omposition A, ea
h of A's 
om-

ponent automata A

i

is represented by a sequential pro
ess P

i

1

. Ea
h a
tion of the

sour
e 
omposition has a 
orresponding fragment of 
ode in the target program that

implements the a
tion. The 
onversion te
hniques ensure that these 
ode fragments

are atomi
 with respe
t to ea
h other.

When dealing with a 
omposition A of I/O automata, we assume that A 
onsists

of 
omponent automata A

1

; : : : ; A

m

. We further assume that an a
tion named

X belonging to automaton A

i

has pre
onditions 
lause PXA

i

and e�e
ts 
lause

EXA

i

. A 
omponent automaton A

i

from 
omposition A will 
orrespond one-to-one

to an implementation pro
ess P

i

. The lo
al state of a 
omponent automaton A

i

is

represented by the lo
al state variables of the 
orresponding pro
ess P

i

. We do not

make provisions for representing the global state of A

2

. If A utilizes global state, it

1

It is also possible to 
ombine several automata to run as a single pro
ess if there is a reason to

do so. For example, the algorithm may be split into automata to make the des
ription modular.

In this 
ase, the 
omponent automata may not be meant to run in parallel.

2

By global state of A, we mean state that is a

essible to more than one 
omponent automaton.
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Automaton A

i

Output X

Pre
ondition: PXA

i

E�e
ts: EXA

i

Automaton A

j

Input X

Pre
ondition: None

E�e
ts: EXA

j

b

b

"

"

b

b

"

"

Pro
ess P

i

if Enabled(PXA

i

)

Send(P

j

, \Initiate X");

Transition(EXA

i

);

Re
eive(P

j

, \Done X");

endif

Pro
ess P

j

if NBRe
eive(P

i

, \Initiate X")

Transition(EXA

j

);

Send(P

i

, \Done X");

endif

Figure 2: Converting an Input/Output Combination to Code

may not be easily implementable as a message-passing distributed program. Global

state must be removed from su
h algorithms if one wishes to apply these te
hniques

to them.

3.2 Converting Pre
onditions Clauses to Pro
edures

The purpose of the pre
onditions 
lause PXA

i

in an a
tion X is to determine

whether the state transition EXA

i

is enabled in the 
urrent automaton state. The

pre
onditions 
lause is 
onverted to a predi
ate pro
edure Enabled that 
he
ks the


urrent state of the automaton and returns true if the a
tion is enabled and false

otherwise.

3.3 Converting E�e
ts Clauses to Pro
edures

The e�e
ts 
lause EXA

i

des
ribes the state transition represented by a
tion X . The

e�e
ts 
lause is 
onverted to a pro
edure named Transition. Transition requires

X to be enabled and the desired state transition to be 
hosen among all enabled

transitions represented by X . Transition's e�e
t on the state of P

i

must 
orrespond

to the e�e
ts of EXA

i

on the state of A

i

.

3.4 Converting Regular A
tions to Pro
edures

Conversion of a regular a
tion or an input a
tion to 
ode is straightforward. All that

needs to be developed are the Enabled and Transition pro
edures that implement

the pre
onditions and e�e
ts 
lauses of the a
tion, respe
tively (for an input a
tion,

Enabled is the 
onstant true). The implementation of Transition needs to be atomi


to preserve I/O automata semanti
s.

3.5 Converting Input/Output Combination A
tions to Code

Implementation of an I/O 
ombination is tri
kier be
ause it must rely on asyn-


hronous messages to implement the 
ombination atomi
ally. We give a te
hnique
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for implementing an I/O 
ombination in the spe
ial 
ase when only two automata

parti
ipate in the 
ombination. This is suÆ
ient for most existing algorithms that

have been spe
i�ed as I/O automata.

The rule for 
onverting an I/O 
ombination to 
ode is illustrated in Figure 2.

Here, automataA

i

and A

j


orrespond to pro
esses (or nodes) P

i

and P

j

. The Send()

and Re
eive() 
alls in the pseudo
ode for pro
esses P

i

and P

j

stand for sending and

re
eiving asyn
hronous messages using MPI. The NBRe
eive() in the pro
ess P

j

is

a non-blo
king re
eive of a message. If a message of the type \Initiate X" has not

arrived at P

j

, then the if blo
k is skipped.

An I/O 
ombination is always initiated at the pro
ess that represents the output

end of the 
ombination (P

i

in Figure 2). When the 
all to Enabled(PXA

i

) returns

true, P

i

sends a message to P

j

initiating the 
ombination. Any argument that X

has is passed to P

j

in the same message. Next P

i

performs the lo
al state transition

asso
iated with X by invoking the Transition(EXA

i

) pro
edure. Then, P

i

waits

for an a
knowledgment message \Done X" from P

j

. This step \syn
hronizes" the

exe
ution of X at the two parti
ipating pro
esses.

At the input end of the I/O 
ombination, P

j

wat
hes for requests from P

i

to

initiate X . While the NBRe
eive 
all returns false, P

j


an 
ontinue exe
uting other

a
tions. When P

j

re
eives an \Initiate X" message, it exe
utes its lo
al state

transition for X and then sends the a
knowledgment message to P

i

.

The Transition pro
edures representing the e�e
ts regular a
tions are atomi


with respe
t to other a
tions, sin
e they may a�e
t lo
al variables only and may

not 
ommuni
ate with other pro
esses. Informally, it is easy to see that the 
ode

implementing an input/output 
ombination, as presented in Figure 2, is also atomi
.

Atomi
ity would be violated only if it were possible for some pro
ess to observe

that pro
ess P

i

had exe
uted Transition(EXA

i

) but pro
ess P

j

had not exe
uted

Transition(EXA

j

), or vi
e versa. The syn
hronizing message \Done X" rules out

both possibilities.

In our ESDS implementation it is suÆ
ient to 
onsider I/O 
ombinations that

involve a
tions of two automata. In the future we plan to extend the the me
hanism

of negotiation presented here to the more general 
ase when multiple automata

parti
ipate in the I/O 
ombination at the input end. The approa
h may be as

follows. The initiating pro
ess broad
asts \Initiate X" messages to parti
ipating

automata, gathers \Done X" messages from all of them, and then broad
asts a

\Pro
eed X" message to indi
ate that all of the e�e
ts 
lauses in the 
ombination

have been exe
uted. Upon re
eiveing the \Pro
eed X" message, the parti
ipants


ontinue with other a
tions.

3.5.1 Deadlo
k Avoidan
e

As presented, the translation from I/O automata to programs is safe, but su�ers

from deadlo
k. If two automata running 
on
urrently enter the output part of

two di�erent input/output 
ombinations and simultaneously attempt to initiate a


ombination with ea
h other, it is possible for them to blo
k at the Re
eive(A

i

,

\Done X") and Re
eive(A

j

, \Done X") lines, repe
tively, and wait for ea
h other

inde�nitely.
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free negotiatingj

reservedj

request

reservationj

receive

reservation

rejection

holding

reservationj

receive

reservation

acceptanceaccept

reservationj

execute I/O

combination

i → jexecute I/O

combination
j → i

Figure 3: Reservation Status Finite State Automaton for Pro
ess P

i

We resolve this deadlo
k problem by setting up a reservation system for perform-

ing input/output 
ombinations. Ea
h pro
ess P

i

maintains its reservation status in

a state variable. The states of the reservation status at P

i

are as follows:

free This is the initial state of reservation status. In this state P

i

is free to initiate

or a

ept reservation requests.

reserved

j

, j 6= i In the reserved

j

state P

i

is waiting for pro
ess P

j

to initiate an

I/O 
ombination.

holding-reservation

j

, j 6= i In the holding-reservation

j

state P

i

may initiate an

I/O 
ombination with P

j

.

negotiating

j

, j 6= i In the negotiating

j

state P

i

is waiting for P

j

to respond to

a reservation request.

The 
omplete �nite state automaton for the reservation status of one pro
ess is

depi
ted in Figure 3.

The reservation system imposes restri
tions on pro
esses' ability to engage in

input/output 
ombinations. Pro
ess P

i


an initiate an input/output 
ombination

with pro
ess P

j

only after P

i

has obtained a reservation with P

j

. In order to

obtain the reservation, P

i

must set its reservation status to holding-reservation

j

,

and P

j

must set its reservation status to reserved

j

. Figure 3 spe
i�es the rules for

requesting and granting reservations.

When a pro
ess P

i

wants to initiate an input/output 
ombination with pro
ess

P

j

, its �rst step is to send a message to the re
eiving pro
ess P

j

requesting a

reservation. P

i

is allowed to do this only when its reservation status is free. After

the request for a reservation is sent to P

j

, P

i

enters the negotiating

j

state and waits

for a response to the request. If the reservation were granted by P

j

, P

i

enters the

holding-reservation

j

state, while P

j

enters the reserved

j

state. In this 
ase, P

i

is

free to initiate an input/output 
ombination as des
ribed in Se
tion 3.5. If the

reservation request were reje
ted, P

i

\boun
es ba
k" to the free state.
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State


hannel

i;j

, a multiset of messages

A
tions

Input send

i;j

(m)

E�: 
hannel

i;j

 
hannel

i;j

[ fmg

Output re
eive

i;j

(m)

Pre: m 2 
hannel

i;j

E�: 
hannel

i;j

 
hannel

i;j

� fmg

Figure 4: Automaton for 
hannel from pro
ess i to pro
ess j

Whenever the reservation status of a pro
ess is free and there is an in
oming

reservation request, the pro
ess may grant the request. Although we do not require

that the pro
ess grant the reservation every time, it is ne
essary to grant them for

the system to make progress. Furthermore, reservations should be granted fairly to

prevent starvation.

We informally argue that, under the reservation system, deadlo
k 
annot o

ur.

The key is Invariant 3.1, whi
h spe
i�es the relationship between the reservation

status values of two pro
esses.

Invariant 3.1 Let P be the set of pro
ess identi�ers in the target program. Then

for all i; j in P s.t. i 6= j, P

i

= holding-reservation

j

implies P

j

= reserved

i

.

We provide a sket
h of the proof of Invariant 3.1. Pro
ess P

i

must re
eive a

reservation a

eptan
e message from P

j

before it 
an enter the holding-reservation

j

state. P

j

must enter the reserved

i

state to send a reservation a

eptan
e message

to P

i

. P

j

remains in reserved

i

until it exe
utes an I/O 
ombination with P

i

. When

exe
uting this 
ombination, P

i

must leave the holding-reservation

j

state. It follows

that while P

i

is in the holding-reservation

j

state, P

j

must be in reserved

i

state.

By Invariant 3.1, pro
ess P

j


annot initiate an I/O 
ombination when pro
ess P

i

is in the holding-reservation

j

state. So when P

i

initiates an I/O 
ombination with

P

j

, P

j

is not blo
ked but is able to parti
ipate. Therefore, the I/O 
ombination

exe
utes su

essfully.

3.5.2 Optimizing Abstra
t I/O Channels Away

The reservation system for avoiding deadlo
k 
an be 
ostly be
ause it redu
es the

potential for 
on
urren
y. For algorithms spe
i�ed using I/O automata that use


hannels with asyn
hronous message delivery for 
ommuni
ation between its dis-

tributed 
omponents, an implementation that 
an provide more 
on
urren
y is pos-

sible. The I/O automata spe
i�
ation must obey the following restri
tions. For

any pair of 
omponent automata A

i

and A

j

that 
ommuni
ate with ea
h other, the

spe
i�
ation must have expli
it asyn
hronous half-duplex 
hannel automata C

i;j

and C

j;i

between them. C

i;j

is used for sending messages from A

i

to A

j

, and C

j;i

for sending messages from A

j

to A

i

.

A 
hannel from automaton A

i

to automaton A

j

is modeled with send

i;j

and

re
eive

i;j

a
tions and a single state variable 
hannel

i;j

representing messages in

transit. The 
hannel has a simple spe
i�
ation (
f. [15℄), whi
h is given in Figure 4.
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The send

i;j

and re
eive

i;j

a
tions form I/O 
ombinations with the automata that

wish to 
ommuni
ate via the 
hannel. For instan
e, C

i;j


an share a send

i;j

I/O


ombination with A

i

and a re
eive

i;j

I/O 
ombination with A

j

. In an exe
ution, a

send

i;j

event and a subsequent re
eive

i;j

event model asyn
hronous messages from

A

i

to A

j

.

The message passing model used by MPI already 
ontains the asyn
hronous


hannel dis
ipline. An implementation of an algorithm that is spe
i�ed using 
han-

nels 
an use asyn
hronous MPI-Send at A

i

and MPI-Re
eive at A

j

instead of im-

plementing expli
it 
hannel automata C

i;j

. This optimization omits a signi�
ant

portion of the 
ode generated by the basi
 
onversion framework. Spe
i�
ally, it

removes two I/O 
ombinations (one at ea
h of the sending and the re
eiving ends of

the 
hannel C

i;j

) and a separate pro
ess for the 
hannel automaton. Thus, removal

of the I/O 
ombinations provides more 
on
urren
y.

3.5.3 Abstra
t AlgorithmRelaxation Through Introdu
tion of I/O Chan-

nels

When appropriate, the algorithm designer 
an take advantage of the optimization

in Se
tion 3.5.2 by relaxing the abstra
t algorithm. Whenever algorithm 
orre
tness

does not require the syn
hrony imposed on the system by an I/O 
ombination, the


ombination 
an be repla
ed with an expli
it asyn
hronous 
hannel. The 
hannel is

then optimized away during 
onversion of the algorithm to a distributed program.

This approa
h 
an lead to a signi�
ant performan
e improvement in the target

program due to added 
on
urren
y.

3.6 Obje
t-Oriented Implementation of the I/O Automata

Framework

We developed a set of C++ obje
ts that en
apsulate the fun
tions of the framework


ommon to all I/O automata. These obje
ts have been designed in a

ordan
e with

the 
onversion te
hniques we de�ned, and are intended to be used as a foundation in


onverting spe
i�
 algorithms to programs. The implementation takes advantage of

polymorphism to provide generi
 servi
e to any 
onverted I/O automata algorithm;

it in
ludes an integral s
heduling me
hanism using either random or round-robin

dis
ipline, and it in
orporates an exponential ba
ko� s
heme for avoiding livelo
k

in the reservation system. The implementation details are given in [5℄. We mention

the two most important 
omponents here.

IOAutomaton 
lass. This 
lass en
apsulates 
omponents needed in all implemen-

tations of I/O Automata. It handles s
heduling of lo
ally-
ontrolled a
tions

for exe
ution (subje
t to them being enabled) and the reservation system for

I/O 
ombinations. IOAutomaton is the super
lass of all 
lasses that represent

I/O automata.

IOA
tion 
lass. IOA
tion is the super
lass of all 
lasses that represent lo
ally-


ontrolled a
tions. These 
lasses must implement the Enabled and Transition

methods, used by the IOAutomaton 
lass to s
hedule and exe
ute a
tions.
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State

wait

f

, a subset of O, initially empty

rept

f

, a subset of O � V , initially empty

A
tions

Input request




(x)

E�: wait

f

 wait

f

[ fxg

Output send

f;r

(h\request"; xi)

Pre: x 2 wait

f

Input re
eive

r;f

(h\response"; x; vi)

E�: if x 2 wait

f

then rept

f

 rept

f

[ f(x; v)g

Output response




(op ; v)

Pre: (x; v) 2 rept

f

x 2 wait

f

E�: wait

f

 wait

f

� fxg

rept

f

 rept

f

� f(x; v

0

) : (x; v

0

) 2 rept

f

g

Figure 5: ESDSAlg : Automaton for front end f

4 The ESDS Algorithm

For referen
e, we provide a des
ription of ESDSAlg 
omponent automata. The

des
ription follows that of Fekete et al. [7℄. In the algorithm, ea
h pro
ess that

maintains a 
opy of the data obje
ts is modeled as a repli
a. The repli
as maintain

an order on the operations they know about. A known pre�x of the order at ea
h

repli
a is su
h that it is 
onsistent with the eventual total order on operations.

Repli
as periodi
ally ex
hange their knowledge in gossip messages. Operations 
an

be stri
t, whi
h means that the response to su
h operations must be 
onsistent with

the eventual order, or non-stri
t, whi
h means that responses may not re
e
t the

eventual order. Clients may also spe
ify the prev set of operations that must be

exe
uted before the new operation.

4.1 The Frontends and Channels

Clients are represented in the algorithm by frontends. The frontend automaton

is shown in Figure 5. When a 
lient 
 submits a request (via the request




input

a
tion), its frontend simply relays the request to one or more repli
as that maintain

a 
opy of the data obje
t, and, when it re
eives a response, relays that ba
k to the


lient via the response




a
tion. Frontends use state variables wait

f

and rept

f

for

this purpose.

Channels (of the type spe
i�ed in Figure 4) are used for request/response mes-

sages between frontends and repli
as and for \gossip" between repli
as.

4.2 The Repli
as

The repli
a automaton is given in Figure 6. The automaton is spe
i�ed for repli
a

r, and it has a number of state 
omponents. The 
omponent r
vd

r

is the set of
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State

pending

r

, a subset of O; the messages whi
h require a response

r
vd

r

, a subset of O; all operations that have been re
eived

done

r

[i℄ for ea
h repli
a i, a subset of O; the operations r knows that i has \done"

solid

r

[i℄ for ea
h repli
a i, a subset of O; the operations that r knows are \stable at i"

minlabel

r

: O ! L[ f1g; the smallest label r has seen for x 2 O

Derived from done

r

[r℄ and minlabel

r

: val

r

: done

r

[r℄! V ; the value for x 2 done

r

[r℄ using the

minlabel

r

order

A
tions

Input re
eive

f;r

(h\request"; xi)

E�: pending

r

 pending

r

[ fxg

r
vd

r

 r
vd

r

[ fxg

Internal do it

r

(x; l)

Pre: x 2 r
vd

r

x =2 done

r

[r℄

x:prev � done

r

[r℄:id

l > minlabel

r

(y) for all y 2 done

r

[r℄

(l 2 L, equivalently l 6=1)

E�: done

r

[r℄ done

r

[r℄ [ fxg

minlabel

r

(x) l

solid

r

[r℄ solid

r

[r℄ [

T

i

done

r

[i℄

Output send

r;f

(h\response"; x; vi)

Pre: x 2 pending

r

x 2 done

r

[r℄

x:stri
t ) x 2

T

i

solid

r

[i℄

v = val

r

(x)

f = frontend(
lient(x:id))

E�: pending

r

 pending

r

� fxg

Output send

r;r

0(h\gossip"; R;D;L; Si)

Pre: R = r
vd

r

; D = done

r

[r℄;

L = minlabel

r

; S = solid

r

[r℄

Input re
eive

r

0

;r

(h\gossip"; R;D;L; Si)

E�: r
vd

r

 r
vd

r

[ R

done

r

[r

0

℄ done

r

[r

0

℄ [D [ S

done

r

[r℄ done

r

[r℄ [D [ S

done

r

[i℄ done

r

[i℄ [ S for all i 6= r; r

0

minlabel

r

 min(minlabel

r

; L)

solid

r

[r

0

℄ solid

r

[r

0

℄ [ S

solid

r

[r℄ solid

r

[r℄ [ S [ (

T

i

done

r

[i℄)

Figure 6: ESDSAlg : Automaton for repli
a r

operation des
riptors of all requests that this repli
a has re
eived, either dire
tly

from a frontend, or else through gossip from other repli
as. The 
omponent pending

r

is the set of operation des
riptors of all requests to whi
h a reply by the repli
a is

pending. The 
omponent done

r

is an array of sets of operation des
riptors, one for

ea
h repli
a. Ea
h set represents the operations known to have been \done" at the


orresponding repli
a, that is, the operations for whi
h the repli
a 
an 
ompute a

value. The 
omponent solid

r

is also an array of sets of operation des
riptors, again

one for ea
h repli
a. The interpretation of x 2 solid

r

[i℄ is that repli
a r knows that

repli
a i knows that every repli
a has x in its done set.

Repli
as assign labels uniquely

3

to operations from a well-ordered set L. Ea
h

repli
a keeps a fun
tion minlabel

r

:O ! L [ f1g that en
odes the minimum label

that the repli
a knows has been assigned to an operation (by any repli
a), where

l < 1 for all l 2 L. As information is gossiped between repli
as, the value of

minlabel

r

(x) may be redu
ed when r learns of a lower label for x (however, [7℄ gives

an invariant stating that on
e x 2 solid

r

[r℄, no further redu
tion is possible).

The fun
tion minlabel

r

de�nes a partial order lo
al 
ons

r

(on operation iden-

ti�ers O:id), where lo
al 
ons

r

= f(y :id ; x :id) : minlabel

r

(y) < minlabel

r

(x )g.

3

Pro
ess identi�ers 
an be used to break ties.
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Appli
ation-spe
i�


ESDS data obje
ts

Appli
ation-spe
i�


ESDS user 
lient

Appli
ation-spe
i�
 ESDS Server
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i�
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i�
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�
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i�


obje
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Generi
 I/O

Automata obje
ts

Figure 7: ESDSImpl Stru
ture

Be
ause labels are assigned uniquely, lo
al 
ons

r

de�nes a total order for done

r

[r℄.

A repli
a uses this order to 
ompute the value of an operation, val

r

(x) = val(x;

done

r

[r℄; lo
al 
ons

r

) for x 2 done

r

[r℄.

Repli
as use gossip messages to keep ea
h other informed about the operations

issued to other repli
as, about the operations re
eived and pro
essed, and the labels

asso
iated with ea
h operation. Hen
e a gossip message essentially 
ontains the

state of a repli
a at a given point in time, whi
h will be \merged" with the state of

the re
eiving repli
a.

For a 
omplete treatment of the algorithm the reader is referred to [7℄.

5 Implementation of Experimental ESDS Systems

Using the framework and the 
lasses implementing the I/O automata foundation,

we have 
reated distributed implementations of two versions of the unoptimized

abstra
t ESDS algorithm, ESDSAlg and SimpleESDSAlg. We have also 
reated

and implemented a more pra
ti
al optimized version ESDSOptAlg of the abstra
t

algorithm.

Our implementation of the algorithm is independent of the data obje
t that

implements the serial datatype. A designer 
an use it as a building blo
k for any

type of data servi
e. It is only ne
essary to implement the data obje
t and add to it

the few features needed to make it work with ESDS; no modi�
ation to ESDS itself

is required. We have implemented several su
h appli
ations. They are des
ribed in

Se
tion 5.5.

Figure 7 depi
ts the hierar
hy of the obje
ts that 
omprise the system. Arrows in

Figure 7 represent the relationship \is used by." The obje
ts are divided into three

groups. The generi
 I/O automata obje
ts are the base IOAutomaton and IOA
tion


lasses. They en
apsulate fun
tions shared by all I/O automata. The ESDS-spe
i�


obje
ts implement ESDSAlg (see se
tion 4.2 in [5℄ for details). These obje
ts are in-

dependent of the parti
ular data servi
e appli
ation and do not require modi�
ation

when one wishes to implement a new data servi
e. Finally, the appli
ation-spe
i�


obje
ts implement a parti
ular data servi
e. Appli
ation-spe
i�
 obje
ts have to be

written for ea
h su
h servi
e.
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Figure 8: ESDSImpl Pro
esses

5.1 Mapping Component Automata to MPI Nodes

Version 1.1 of the MPI standard does not allow dynami
 management of nodes.

The number of available pro
esses is determined stati
ally at invo
ation and 
annot


hange during exe
ution. Thus, the appli
ation 
lients in our data servi
e imple-

mentation 
ould not be integrated in the MPI framework be
ause they need to be


reated and destroyed dynami
ally. We used so
kets instead of MPI me
hanisms

for 
ommuni
ation between appli
ation 
lients and ESDS frontends.

The mapping of ESDS 
omponents to system pro
esses is depi
ted in Figure 8.

In the �gure ESDS repli
as and frontends run inside the MPI environment, and the

appli
ation 
lients 
onne
t to the system from outside the MPI environment. At the

invo
ation of the program the ESDS system administrator spe
i�es the number of

MPI nodes that will parti
ipate in the exe
ution. Three MPI nodes are reserved for

system use (they are not depi
ted in Figure 8). The rest are divided between ESDS

repli
as and frontends. The administrator spe
i�es how many nodes to allo
ate for

ea
h purpose.

After the invo
ation the number of repli
as and frontends remains stati
 through-

out the exe
ution. Repli
as use MPI messages to re
eive requests from frontends,

send gossip message to ea
h other, and send responses ba
k to the frontends. Client

pro
esses are dynami
ally 
reated and destroyed by users. Clients use so
kets to


onne
t to one of the frontends. On
e the 
onne
tion is established, the 
lient

submits an operation to the frontend and waits for the response.

5.2 Communi
ation Between Clients, FrontEnds, and Repli-


as

As we have already stated, ESDSAlg uses asyn
hronous 
hannel automata for 
om-

muni
ation between repli
as and frontends and for gossip among repli
as. We im-

plemented two di�erent systems of 
ommuni
ation among frontends and repli
as.
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The �rst version (SimpleESDSImpl) was produ
ed using our s
heme for 
onverting

I/O 
ombinations to distributed programs (see Se
tion 3.5).

The se
ond version (ESDSImpl) takes advantage of the fa
t that ESDSAlg relies

on asyn
hronous 
hannels for 
ommuni
ation among frontends and repli
as. It uses

reliable FIFO 
hannels implemented by MPI, as dis
ussed in Se
tion 3.5.3. ESD-

SImpl is a more eÆ
ient implementation of ESDS than SimpleESDSImpl be
ause it

avoids the overhead of syn
hronizing 
ommuni
ations among frontends and repli
as.

Integration of this approa
h into ESDSImpl implementation is straightforward.

Instead of negotiating with the re
eiving automaton for syn
hronized exe
ution,

ea
h automaton is free to send an asyn
hronous request, gossip, or response mes-

sage and 
ontinue exe
uting normally. The pending messages a

umulate in the

MPI subsystem, whi
h implements reliable FIFO 
hannels and thereby relieves the

programmer of that responsibility. In this implementation, the system takes advan-

tage of the distributed nature of the appli
ation.

Di�erent methods of interpro
ess 
ommuni
ation 
onstitute the only di�eren
e

between ESDSImpl and SimpleESDSImpl. For 
onvenien
e, both implementations

are 
ombined into a single program. The desired method of 
ommuni
ation 
an be

set with a swit
h in the program's 
on�guration �le.

5.3 Optimizing ESDS: ESDSOptImpl

In addition to implementing ESDSAlg, we implemented some of the optimizations

suggested in [7℄. In this se
tion we des
ribe the optimizations. We also present an

I/O automaton for the optimized ESDS repli
a.

We make several algorithmi
 
ontributions. The optimized algorithm ESDSOp-

tAlg 
ontains a new gossiping s
heme. It also 
a
hes 
urrent stable state at ea
h

repli
a. These modi�
ations redu
e unne
essary ex
hange of information between

repli
as and the amount of work needed to 
ompute values for new requests. These

optimizations make the ESDS algorithm more pra
ti
al.

The 
omplete ESDSOptAlg repli
a automaton is shown in Figure 9.

5.3.1 In
remental Gossip

ESDSAlg is 
omposed of identi
al repli
as. Ea
h repli
a r periodi
ally sends infor-

mation about all operations it has seen to other repli
as in gossip messages (Fig. 6).

Thus, a typi
al gossip message 
ontains a lot of information that has been gossiped

previously between the same two repli
as. Furthermore, the amount of redundant

gossip in
reases linearly with the number of new operations. ESDSImpl, as a faith-

ful implementation of ESDSAlg, requires gossip messages of unbounded size, and

thus 
annot be used 
ontinuously for long time periods without exhausting system

resour
es or leading to una

eptable deterioration of system performan
e.

If we assume that repli
as do not fail and that repli
as 
ommuni
ate via re-

liable FIFO 
hannels (as is the 
ase with ESDSImpl), we 
an modify the repli
a

automaton to send only the in
remental gossip updates. Ea
h repli
a keeps tra
k of


hanges in its state and gossips only new information. This 
hange improves system

performan
e, but redu
es the system's ability to tolerate lost gossip messages.
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Data types

P = f1; : : : ; ng, the set of repli
a IDs

State

pending

r

, a subset of O; the messages whi
h require a response

r
vd

r

, a subset of O; all operations that have been re
eived

done

r

[i℄ for ea
h repli
a i, a subset of O; the operations r knows that i has \done"

solid

r

[i℄ for ea
h repli
a i, a subset of O; the operations that r knows are \stable at i"

gossip

r

[i℄ for ea
h repli
a i, a subset of O; the operations that r needs to gossip to i

minlabel

r

:O ! L[ f1g; the smallest label r has seen for x 2 O

Derived from solid

r

[r℄ and minlabel

r

: max-stable

r

2 solid

r

[r℄ s.t. 8y 2 solid

r

[r℄,

minlabel

r

(max-stable

r

) � minlabel

r

(y)

stable-state

r

2 �, initially �

0

; the state resulting from doing all the operations up to and in
luding

max-stable

r

stable-value

r

: solid

r

[r℄! V , initially empty; the values of the stable operations in the eventual

total order

Derived from done

r

[r℄ and minlabel

r

: val

r

: done

r

[r℄ ! V ; the value for x 2 done

r

[r℄ using the

minlabel

r

order

A
tions

Input re
eive

f;r

(h\request"; xi)

E�: pending

r

 pending

r

[ fxg

r
vd

r

 r
vd

r

[ fxg

for all i :

gossip

r

[i℄ gossip

r

[i℄ [ fxg

Internal do it

r

(x; l)

Pre: x 2 r
vd

r

� done

r

[r℄

x:prev � done

r

[r℄:id

for all y 2 done

r

[r℄ :

l > minlabel

r

(y)

E�: done

r

[r℄ done

r

[r℄ [ fxg

minlabel

r

(x) l

for all i :

gossip

r

[i℄ gossip

r

[i℄ [ fxg

Output send

r;f

(h\response"; x; vi)

Pre: x 2 pending

i

\ done

r

[r℄

x:stri
t ) x 2

T

i

solid

r

[i℄

v =

n

stable-value

r

(x) if x 2 solid

r

[r℄

val

r

(x) otherwise

f = frontend(
lient(x:id))

E�: pending

r

 pending

r

� fxg

Output send

r;r

0(h\gossip"; R;D;L; Si)

Pre: R = r
vd

r

\ gossip

r

[r℄;

D = done

r

[r℄\ gossip

r

[r℄;

S = solid

r

[r℄ \ gossip

r

[r℄;

L = minlabel

r

; r 6= r

0

E�: gossip

r

[r℄ fg

Internal solidify

r

Pre: jP j = 1

E�: solid

r

[r℄ solid

r

[r℄[ (

T

i

done

r

[i℄)

for y s.t. minlabel

r

(y)

� minlabel

r

(max-stable

r

)

and stable-value

r

(y) is unde�ned,

in minlabel

r

order:

(stable-state

r

; stable-value

r

(y)) 

f(stable-state

r

; y:op)

Input re
eive

r

0

;r

(h\gossip"; R;D;L; Si)

E�: for all i : gossip

r

[i℄ gossip

r

[i℄

[(R� r
vd

r

)[

[(S � (

T

j

done

r

[j℄))[

[(S � (solid

r

[r℄ \ solid

r

[r℄))[

[(D � (done

r

[r℄ \ done

r

[r℄))[

[fx : minlabel

r

(x) > L(x)g

r
vd

r

 r
vd

r

[ R

done

r

[r

0

℄ done

r

[r

0

℄ [D [ S

done

r

[r℄ done

r

[r℄ [D [ S

done

r

[i℄ done

r

[i℄ [ S for all i 6= r; r

0

minlabel

r

 min(minlabel

r

; L)

solid

r

[r

0

℄ solid

r

[r

0

℄ [ S

for all i : gossip

r

[i℄ gossip

r

[i℄[

[((

T

j

done

r

[j℄)� solid

r

[r℄)

solid

r

[r℄ solid

r

[r℄[ S [ (

T

i

done

r

[i℄)

for y s.t. minlabel

r

(y)

� minlabel

r

(max-stable

r

)

and stable-value

r

(y) is unde�ned,

in minlabel

r

order:

(stable-state

r

; stable-value

r

(y)) 

f(stable-state

r

; y:op)

Figure 9: Automaton for optimized repli
a r
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The optimized repli
a automaton has a new state 
omponent gossip

r

, whi
h is

an array of sets of operation des
riptors, one set for ea
h repli
a. Ea
h gossip

r

[i℄

set 
ontains operations that repli
a r needs to send to repli
a i in the next gossip

message. An operation enters all gossip

r

[i℄ sets whenever the repli
a learns new

information about the operation. Set gossip

r

[i℄ is emptied every time repli
a r

sends a gossip message to repli
a i.

Remark: Expli
it sequen
ing of gossip messages 
ombined with retransmission

and removal of dupli
ates is suÆ
ient to make the optimization work with unreliable


hannels that allow message losses, dupli
ate messages, and out of order delivery.

We may 
onsider this enhan
ement in the future.

5.3.2 Removal of Self-Gossip

ESDSAlg assumes that ea
h repli
a sends gossip messages to itself as well as to

other repli
as. This behavior is ineÆ
ient in a pra
ti
al implementation, but if we

removed it from the ESDSAlg repli
a automaton, its behavior would be in
orre
t

when there is only one repli
a in the system. The reason is that ESDSAlg updates

a repli
a's set of operations that it knows to be stable only during re
eipt of gossip

messages. In a one-repli
a system exe
ution without self-gossip messages the op-

erations would never stabilize, violating the requirement of eventual serializability.

This optimization adds another a
tion solidify

r

to the repli
a automaton to pre-

serve 
orre
tness. The new a
tion dete
ts one-repli
a exe
utions and updates the

set of stable operations independently from gossip a
tions.

5.3.3 Memoizing Stable State

ESDSAlg ignores the 
ost of lo
al 
omputation at the repli
as. A repli
a r gets the


urrent value the value for operation op

n

from the initial state �

0

by re-
omputing

it as f

+

(�

0

; hop

1

; op

2

; : : : ; op

n

i) for op

1

; op

2

; : : : ; op

n

in minlabel

r

order (the fun
-

tion f

+

applies op

1

; op

2

; : : : ; op

n

, in that order, to �

0

[7℄). ESDSImpl faithfully

implements the same ineÆ
ient behavior. Testing ESDSImpl under heavy opera-

tion load 
on�rmed that the time 
onsumed by re
omputation 
an be signi�
ant.

In addition, the algorithm requires all operations to stay in memory inde�nitely

to enable re
omputation. These problems make the na��ve implementation of the

algorithm unsuitable for pra
ti
al appli
ations.

In [7℄, an optimization is suggested that involves memoizing stable state at ea
h

repli
a. Here we spe
ify a more aggressive variation of this optimization. We apply

operations to the stable state of a repli
a as soon as they have stabilized at that

repli
a, whereas in [7℄, it is suggested to wait until the operation stabilizes globally

before applying it. Our version of the optimization results in faster stabilization of

operations and a 
orresponding in
rease in performan
e.

We add a state 
omponent stable-state

r

to ea
h repli
a that keeps tra
k of the

stable state, whi
h is the result of applying all operations, whose total order has

been �xed at all repli
as, to the initial state. To 
ompute the 
urrent state, repli
a

r needs only to apply all operations in done

r

[r℄ that have not yet stabilized to the

stable state.
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The 
omputation of the new stable state takes pla
e every time repli
as re
eive

gossip messages (see Fig. 9). Among all operations that have not yet entered the sta-

ble state, repli
a r �nds one with the highest minlabel that has entered the solid

r

[r℄

set. Call this operation max-stable

r

. All operations with minlabels lower than that

of max-stable

r

are guaranteed to never 
hange minlabels again, and no operation

with a lower minlabel 
an be re
eived later. This means that the order of operations

up to and in
luding max-stable

r


an never be altered again at repli
a r. Thus, the

repli
a applies all operations with minlabels lower than that of max-stable

r

to the

old stable state to 
ompute the new stable state.

Remark: Combined with the multipart timestamp optimization (see next se
-

tion), this optimization makes it possible to dis
ard almost all information about

operations as soon as they enter the stable state. We have not implemented this.

5.3.4 Multipart Timestamps

In ESDSAlg, an operation may be 
ausally dependent on other operations previ-

ously pro
essed by the system. To represent this dependen
e, the operation's state


ontains a prev 
omponent, whi
h is a set of operation ids that must be exe
uted

before it. We substituted a more eÆ
ient method for tra
king 
ausal dependen
ies

between operations in pla
e of prev sets. Our approa
h is based on a te
hnique


alled multipart timestamps.

A multipart timestamp t is a n-tuple (t

1

; : : : ; t

n

) of nonnegative integer 
ounters.

In the 
ontext of ESDS, n is the number of repli
as. A partial order is de�ned on

multipart timestamps: t � s i� t

j

� s

j

for j 2 [1::n℄. Two multipart timestamps

are merged by taking their 
omponent-wise maximum.

In this optimization we remove prev sets from operation state and rede�ne the

proto
ol for keeping tra
k of dependen
ies between operations with multipart times-

tamps.

In the new proto
ol the state of operation j in
ludes two multipart timestamps,

prev-ts and op-ts (op-ts is initialized to all zeros). Repli
a state also gets two

multipart timestamps, val-ts and rep-ts, both initially all zeros. The meanings of

these new state 
omponents are as follows:

� op-ts is assigned to ea
h new operation by the re
eiving repli
a in the manner

des
ribed below. Op-ts is guaranteed to be unique for ea
h operation.

� prev-ts plays the same role for an operation j that the prev set played in

the unoptimized version. It spe
i�es that any other operation with an op-ts

smaller than j's prev-ts must be done before j. In other words, for ea
h pair

of operations i and j, j.op-ts < i.prev-ts implies that j is in i's prev set.

� val-ts is the merge of op-ts timestamps of all operations done at the repli
a.

� rep-ts is the 
urrent repli
a timestamp, used to assign values to op-ts of newly

submitted operations in the proto
ol below.

The proto
ol works as follows:
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1. When repli
a r re
eives a new operation i from a front end, it in
rements

r.rep-ts[r℄, assigns r.rep-ts to i.op-ts, and sends the value of i.op-ts to the

front end. The front end then forwards i.op-ts to the 
lient.

2. When a 
lient wants to spe
ify that operations i

1

; : : : ; i

k

must pre
ede op-

eration j, it merges i

1

.op-ts ; : : : ; i

k

.op-ts and assigns the result to j.prev-ts.

This method of spe
ifying 
ausal 
onstraints restri
ts the kinds of 
onstraints

that the 
lient 
an spe
ify. In parti
ular, it requires that all operations with

op-ts � j.prev-ts must be done before j, not just i

1

; : : : ; i

k

. Thus, multipart

timestamps trade o� 
exibility for eÆ
ien
y.

3. When repli
a r does operation i (i.e., moves it into done

r

[r℄), it merges i.op-ts

into r.val-ts.

4. Gossip messages from repli
a r to repli
a r

0


ontain r.rep-ts. Upon re
eipt of

the gossip message, repli
a r

0

merges r.rep-ts into r

0

.rep-ts. For all operations

i

k

2 done

r

[r℄ in
luded in the gossip message, r

0

merges i

k

.op-ts into r

0

.val-ts.

5. When repli
a r wants to do operation i and needs to 
he
k that i's dependen-


ies have been satis�ed, it 
he
ks that i.prev-ts � r.val-ts.

The multipart timestamp optimization does not introdu
e any 
hanges to the

abstra
t des
ription of the optimized repli
a automaton in Figure 9. The optimiza-

tion only 
hanges the way the pre
ondition x:prev � done

r

[r℄:id of the do it

r

a
tion

is implemented in ESDSOptImpl.

Remark: To 
omplete the multipart timestamp implementation, it is ne
essary

to take 
are of the 
ase when a 
lient submits an operation to more than one repli
a

simultaneously and gets di�erent op-ts values for the operation. This has been

relegated to future work, as it is not essential to our goal of implementing a working

timestamp prototype.

5.4 Fault Toleran
e in ESDS

We have already remarked on how to make our implementation able to 
ope with

unreliable 
hannels by introdu
ing gossip message sequen
ing, retransmission and

removal of dupli
ates.

Our implementation also in
ludes some ad-ho
 fault toleran
e me
hanisms for

handling fail-stop faults and restarts of repli
as. These me
hanisms make strong

timing assumptions about the environment. In parti
ular, they rely on time bounds

on 
ommuni
ation laten
y. We are in the pro
ess of relaxing these assumtions and

spe
ifying these fault toleran
e me
hanisms formally.

5.5 Appli
ations Using ESDS as a Generi
 Building Blo
k

In order to test our implementations and to provide a proof-of-
on
ept of the suit-

ability of our implementation as a generi
 building blo
k, we have implemented four

data servi
e appli
ations that use ESDS.
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5.5.1 String Con
atenation Servi
e

The String Con
atenation Servi
e is a simple data servi
e appli
ation. The data

obje
t is a single string that supports two operations, Read and Con
atenate. The

Read operation gives the 
urrent value of the string. The Con
atenate operation

appends its argument to the string and gives ba
k the new value. Be
ause of

its simpli
ity, the String Con
atenation Servi
e was used for testing ESDSImpl

and ESDSOptImpl during development and for running empiri
al measurements of

ESDSOptImpl performan
e.

5.5.2 Counter Servi
e

The Counter Servi
e is another simple data servi
e appli
ation, similar to String

Con
atenation in its level of sophisti
ation. The data obje
t is a integer 
ounter

variable that supports two operations, Read and Add. The Read operation gives

the 
urrent value of the variable. The Add operation adds an integer argument to

the 
urrent 
ounter value and gives ba
k the new 
ounter value.

The Counter Servi
e di�ers from the String Con
atenation Servi
e in one po-

tentially important respe
t. Its update operation Add 
ommutes with other Adds,

whereas the Con
atenate operation of the String Con
atenation Servi
e does not


ommute with other Con
atenate operations (unless one of them has the empty

string as an argument). The Counter Servi
e was 
reated with the purpose of test-

ing whether 
ommutative update operations like Add lead to a smaller per
entage

of in
onsistent responses than non-
ommutative update operations like Con
atenate

(as we will see in Se
tion 6, it does not).

5.5.3 Distributed Spreadsheets

The purpose of 
reating a third, more sophisti
ated 
lient has been to demonstrate

the viability of ESDS as a platform for 
reating diverse and 
apable data servi
e

appli
ations. The Distributed Spreadsheets 
lient 
reates an environment where

several people 
an simultaneously enter spreadsheet data into the same Mi
rosoft

Ex
el workbook. Their additions are sent to ESDS repli
as, whi
h maintain the


urrent state of the workbook and 
an refresh ea
h user's 
opy on demand. A

possible use of this 
ombination of Ex
el and ESDS is to allow multiple users to

enter disjoint data into a single Ex
el �le 
on
urrently, see the updates of others

automati
ally, and not worry about overwriting other user's additions with their

own.

5.5.4 A More Extensive ESDS Appli
ation: Bank A

ounts

The original work on lazy repli
ation and ESDS [7℄ suggests that dire
tory and

information servi
es (and similar appli
ations) are the most suitable 
andidates for

ESDS-based implementation be
ause immediate 
onsisten
y is not important to

users of su
h systems. To show that ESDS 
ould potentially be used for a wider

variety of appli
ations, we have implemented an ESDS appli
ation that keeps tra
k

of bank a

ounts. The bank appli
ation demonstrates how ESDS-based servi
es
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an utilize stri
t and non-stri
t operations and multipart timestamp-based depen-

den
ies.

The servi
e maintains a database of 
ustomer a

ounts in a bank, implemented

as an appli
ation layer on top of ESDS. Bran
hes of the bank are assumed to be

lo
ated at physi
ally di�erent sites. At least one repli
a node resides at ea
h bran
h.

Operations submitted at a parti
ular bran
h are forwarded to the lo
al front end.

During normal operation, the front end submits these operations to the lo
al repli
a.

However, if that repli
a happens to be down, the bran
h 
an 
ontinue to fun
tion

by having the front end submit the operations to repli
as at remote bran
hes.

The database maintains a set of data tuples in the form of (name, amount). In

addition to opening a new a

ount and 
losing an established one, there are three

basi
 operation whi
h 
an be 
arried out on an a

ount. The operations with their


orresponding ESDS spe
i�
ations are as follows: (1) Withdrawal : stri
t = true,

prev-ts = full

r

, (2) Deposit : stri
t = false, prev-ts = empty, (3) Balan
e:

� Lo
al, Hurried: stri
t = false, prev-ts = empty

� Lo
al, Qui
k: stri
t = false, prev-ts = lo
al-full

r

� Global, Prompt: stri
t = false, prev-ts = full

r

By empty, lo
al-full

r

, and full

r

values of prev-ts we mean the following. As-

sume that the last operation submitted to repli
a r had been assigned timestamp

(t

1

; : : : ; t

n

). Then empty = (0; : : : ; 0), lo
al-full

r

= (0; : : : ; 0; t

r

; 0; :::; 0), and full

r

=

(t

1

; : : : ; t

n

). The interpretations of these values of prev-ts as prev sets are as follows.

An empty value means that the prev set 
ontains no operations. A lo
al-full

r

value

means that the prev set in
ludes all operations previously submitted at repli
a r

(but no others), and a full

r

value means that the prev set in
ludes all previously

submitted operations at all repli
as that repli
a r knows about.

A Deposit operation always su

eeds, and it is independent of its ordering rel-

ative to other operations on the same a

ount. Thus, Deposit is spe
i�ed without

any dependen
y 
onstraints. On the other hand, a Withdrawal of amount m 
an

result in di�erent answers to the 
lient, depending on whether the a

ount has suÆ-


ient funds. If the 
ase when it does not, the Withdrawal operation does not 
hange

the amount in the a

ount and returns an error message. Otherwise, it de
reases

the amount in the a

ount by m. Permitting two Withdrawal operations on the

same a

ount to o

ur 
on
urrently at di�erent repli
as would allow the 
lient to

withdraw money she does not have. Therefore, we have implemented Withdrawal

as a stri
t operation.

It is up to the 
ustomer to determine what level of in
onsisten
y she 
an tolerate

in a Balan
e operation in ex
hange for lower laten
y. Using the Hurried option,

there is no guarantee that previously submitted operations for the a

ount will be

visible by the Balan
e lookup. With Qui
k Balan
e lookup, all previously submitted

operations at the lo
al bran
h will be visible, but there is no guarantee with respe
t

to operations submitted at other bran
hes. Using Prompt Balan
e lookup, all

operations on the a

ount known at the lo
al repli
a will be visible, but there is

no guarantee that deposit operations 
arried out at other bran
hes and not yet

gossiped to the lo
al bran
h will be visible.
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6 Empiri
al Testing and Analysis

We have evaluated our implementation on a network of workstations. All tests were

done on a 10 Mbps Ethernet LAN of 12 Sun workstations running SunOS 4.1.4

using the ESDSOptImpl implementation. The workstations were not dedi
ated to

this proje
t, and their loads 
u
tuated. To a

ount for this varian
e, we performed

ea
h test 10 times and averaged the results. We ran some tests with over 20 repli
as;

however, for performan
e testing we used 10 repli
as only, so that ea
h repli
a ran

on a separate pro
essor. Ea
h test run 
onsisted of three hundred operations. We

measured two performan
e 
hara
teristi
s of the prototype, average response time,

and average throughput, whi
h we now de�ne.

The response time for an operation is the elapsed time between submission of

the operation to a repli
a and response from the repli
a in a given exe
ution of the

implementation.

The average throughput is the number of operations the system pro
esses per

unit time in a given exe
ution of the implementation.

We would also like to know how the per
entage of stri
t operations among all

operations submitted to the system a�e
ts performan
e and the degree of \in
on-

sisten
y" in responses. For a given exe
ution of the implementation, we say that

a response to an operation x is in
onsistent if the value returned to the user for x

di�ers from the value of x in the eventual total order of operations. More formally,

let response

r

(x; v

x

) be a response sent by repli
a r to a front end. Let val

to

(x) be

the value of x in the eventual total order of all operations. Then response

r

(x; v

x

) is

in
onsistent if v

x

6= val

to

(x). In a �nite exe
ution of an implementation, the degree

of in
onsisten
y is the per
entage of in
onsistent responses among all responses to

user operations returned by the system during the exe
ution.

We have 
ondu
ted three series of tests using ESDSOptImpl. The �rst series was

designed to test the 
exibility of the software, regardless of the underlying hardware.

The se
ond series was used to determine how system performan
e, 
hara
terized

by response time and throughput, depends on the number of repli
as. For the

�rst two series, we used the String Con
atenation Servi
e with empty strings; the

datatype and 
ontent of the appli
ation data were irrelevant for these experiments.

All operations in these tests were non-stri
t.

The third series measured the 
hanges in system performan
e and degree of

in
onsisten
y in response to varying the per
entage of the submitted stri
t opera-

tions. We used the Counter Servi
e and the Add operation for our test setup to

�nd out whether 
ommutative update operations like Add a�e
t the per
entage of

in
onsistent responses when 
ompared to non-
ommutative update operations.

Three quantities were measured for ea
h run: (1) the average time T

fe

from the

submission of an operation by front end f to one of the repli
as until the re
eipt of

repli
a response by f , (2) the average time T

r

from the re
eipt of operation x by

repli
a r till the response from r with a value for x, and (3) the total time � for the

system to pro
ess and respond to all three hundred operations.

From these data, we obtained two di�erent measures of the response time AT

fe

and AT

r

, and one measure of system throughput AP , as follows. For ea
h number

of repli
as from N = 1 to N = 10, we averaged T

fe

over 10 runs to get the average



24 IMPLEMENTING ESDS AS A BUILDING BLOCK

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Number of Replicas

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Figure 10: System Throughput AP (submission rate is 330 operations/se
)

time AT

fe

it took a front end to re
eive a response from a repli
a after it sent the

request message. The average of T

r

over 10 runs produ
ed the average time AT

r

it

took a repli
a to pro
ess a request and send ba
k a response. Finally, the average

value of 300=� over 10 runs gives the average system throughput AP .

We determined experimentally that a single repli
a 
an keep up with requests

if ea
h 
omes approximately on
e in 30 millise
onds. If this frequen
y in
reases, a

single repli
a 
annot keep up and messages a

umulate in the MPI message queues.

Therefore, in our testing, we ranged the frequen
y of requests from one every 30

millise
onds to approximately one every 30 times N millise
onds, where N is the

number of repli
as.

The 
omplete results are presented in [5℄. Some key observations follow.
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Figure 11: System Throughput AP (sub-

mission rate is 33*N operations/se
,N =

Number of repli
as)

Figure 12: Response Time at the Repli-


as AT

r

(submission rate is 33 opera-

tions/se
)
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Figure 13: Tradeo� Between Response

Time and Consisten
y (4 Repli
as)

Figure 14: Tradeo� Between Response

Time and Consisten
y (6 Repli
as)

We ran tests in whi
h the number of repli
as ex
eeded the number of available

pro
essors. This demonstrated the 
exibility of our implementation to run in a

variety of settings. The test in
reased the number of repli
as from N = 1 to

N = 20, while operations were submitted at the 
onstant rate of 330 operations/se
.

The 
olle
ted data are plotted in Figure 10. The system throughput in
reases

with the number of repli
as parti
ipating in the system and performing submitted

operations. However, the throughput drops o� when the system runs out of physi
al

pro
esses (atN = 10). The overhead of 
ontext swit
hes and the for
ed serialization

of 
ommuni
ations between repli
as sharing a pro
essor adversely impa
t system

performan
e. In all other examples, we have limited the number of repli
as to the

number of available pro
essors.

We now des
ribe how system throughput AP and response time at repli
as

AT

r

depend on the number of repli
as and the rate of operation submission. Fig-

ure 11 shows that throughput rises (nearly linearly) by adding new repli
as when

the frequen
y of requests starts at thirty three operations/se
 for one repli
a and

is in
reased proportionally to the number of repli
as. However, throughput does

not 
ome 
lose to the estimated limit of three hundred and thirty operations per

se
ond. This might be justi�ed by the in
reasing gossip overhead.

Figure 12 shows response time for a 
onstant, low frequen
y of requests and with

in
reasing number of repli
as. This frequen
y is just short of saturating one repli
a.

Not surprisingly, the best response time shows up in a one-repli
a exe
ution: the

repli
a 
an keep up with the submissions, there is no gossip, and all operations

stabilize immediately. As the number of repli
as grows, operations take longer

to stabilize (re
all that all repli
as must perform the operation before it stabilizes);

moreover, the time spent on gossip pro
essing is also in
reased. Ea
h repli
a is busy

re-applying non-stable operations and gossiping some of the time. As a 
onsequen
e,

we observe an in
rease in AT

r

for N = 1 through N = 4. However, the system

rea
hes a steady state for N � 4. After that point, the load on individual repli
as

is suÆ
iently low, and they 
an keep up with both gossip and new operations

simultaneously.
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Finally, we performed a test to observe the trade-o� between the response time

and 
onsisten
y when the number of required stri
tly 
onsistent responses in
reases.

This test was 
ondu
ted using the Counter Servi
e appli
ation, using Add opera-

tions. The results for four and six repli
as are summarized in Figures 13 and 14,

respe
tively.

The per
entage of in
onsistent responses goes down linearly as the per
entage

of stri
t operations 
limbs. On the other hand, sin
e stri
t operations require the

system to stabilize the operation's value at all repli
as before responding, the laten
y

of responses to stri
t operations is signi�
antly higher than to non-stri
t operations.

This di�eren
e between stri
t and non-stri
t operation laten
ies is re
e
ted in the

linear in
reases of average laten
y with per
entage of stri
t operations in Figures 13

and 14. The 
oeÆ
ient of the linear in
rease is higher for the larger number of

repli
as (6), possibly be
ause the time required to syn
hronize all repli
as with

respe
t to a parti
ular operation in
reases with the number of repli
as.

The trade-o� between 
onsisten
y and performan
e is 
learly demonstrated by

these results. Users willing to tolerate transient in
onsisten
ies in system responses


an submit primarily non-stri
t operations. For these users the system will fun
tion

in the region on the left side of Figures 13 and 14, where transient in
onsisten
y is

high but response laten
y is low. Conversely, users who require stri
t 
onsisten
y

in responses to some or all of their operations will pay the 
ost of higher response

laten
y.

We have run the same experiment using the String Con
atenation servi
e in

pla
e of the Counter servi
e and found that the results did not di�er from those

shown in Figures 13 and 14. Thus, we found no eviden
e that 
ommuting operations

like Counter servi
e's Add substantially 
hange the per
entage of in
onsistent re-

sponses 
ompared to non-
ommuting operations like String Con
atenation servi
e's

Con
atenate.

7 Con
lusions

We have de�ned a set of te
hniques for 
onverting sour
e algorithms spe
i�ed as I/O

automata 
ompositions into target distributed programs written in an imperative

language. We demonstrated that the te
hniques support obje
t-oriented design for

target programs by implementing a set of C++ obje
ts that en
apsulate 
ommon

properties of I/O automata and 
an be used in designing the target program. Our

te
hniques are appli
able to 
ommonly o

urring algorithms that use asyn
hronous


hannels or input/output 
ombinations that involve two automata for 
ommuni
a-

tions between distributed 
omponents.

Using our 
onversion te
hniques, we implemented the abstra
t ESDS algorithm

ESDSAlg as a distributed program ESDSImpl. The modular design of ESDSImpl

allowed us to 
reate modules spe
i�
 for ESDS only on
e and then build several

distin
t data servi
es without any need to further modify these modules. In this way,

we show how ESDSAlg 
an be used as a building blo
k for distributed data servi
e

implementations. A data servi
e built on top of ESDS inherits its 
hara
teristi
s.

Stri
t 
onsisten
y in su
h a servi
e may be relaxed by spe
ifying operations as non-

stri
t and requiring only the expli
itly stated 
ausal relations between individual
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operations (given by prev sets) to be preserved. The bene�t of su
h relaxation is

improved system performan
e. At the same time, the system is assured of rea
hing

a globally 
onsistent state, as spe
i�ed and proven in [7℄. This is a property of

ESDSImpl that di�erentiates it from the implementation in [13℄, in whi
h additional

measures must be taken by an appli
ation designer to ensure that repli
a states do

not diverge irrevo
ably.

We have added several optimizations to ESDSAlg, produ
ing an optimized ab-

stra
t algorithm ESDSOptAlg and a 
orresponding ESDSOptImpl implementation.

ESDSOptImpl �xes some ineÆ
ien
ies of ESDSImpl and makes ESDS a more pra
-

ti
al system. Some 
urrent and future work on other optimizations to ESDS is

dis
ussed in the next se
tion.

The empiri
al tests on ESDSOptImpl show how its performan
e, 
hara
terized

by response time and throughput, is a�e
ted by 
hanging the number of repli
as

parti
ipating in the exe
ution and by 
hanging the system load. The data also


on�rm that ESDS performan
e re
e
ts an inherent tradeo� between performan
e

and 
onsisten
y.

8 Ongoing and Future Work

Several theoreti
al and pra
ti
al aspe
ts of our work are open for further explo-

ration. On the theoreti
al side, it remains to be shown that ESDSImpl (as well as

ESDSOptImpl and ESDSOptAlg) implement ESDSAlg (in the mathemati
al sense).

This requires formalization of our framework for 
onverting I/O automata to dis-

tributed programs. More ambitiously, it would be interesting to develop a frame-

work for showing that a pra
ti
al implementation of an algorithm, derived with

our te
hniques and treated as a mathemati
al obje
t, 
orre
tly implements the I/O

automata spe
i�
ation of the original algorithm.

As we have remarked, the me
hanism for 
onverting I/O 
ombinations to 
ode

(Se
tion 3.5) needs to be extended to the more general 
ase when multiple automata

parti
ipate in the 
ombination. Se
tion 5.3.4 
ontains suggestions for further work

on the multipart timestamp optimization.

A possible appli
ation of ESDS is a wide-area network data servi
e. To be

useful in pra
ti
e as a WAN servi
e, ESDS must a

omodate dynami
 
hanges in

the number of repli
as and tolerate server and 
ommuni
ation failures. We are


urrently experimenting with a version of ESDS that tolerates simulated fail-stop


rashes of repli
as and allows 
rashed repli
as to rejoin the system after re
overy.

Finally, our implementation 
an be viewed as a proof-of-
on
ept of ESDS as a

generi
 
omponent of distributed operating systems. Serious appli
ations that 
an

bene�t from su
h servi
e in
lude dire
tory servi
es and distributed type repositories

useful for distributed obje
t systems. It would be interesting to formalize ESDS as

a distributed operating system servi
e and use it in implementing a real appli
ation.
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