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Chapter 1IntroductionSpeci�cation of distributed systems building blocks and development of supporting algo-rithms is one of the main research areas at the Theory of Distributed Systems group (TDS)at the MIT Laboratory for Computer Science. TDS recently de�ned a exible eventually-serializable data service (ESDS) [1]. The de�nition includes a formal speci�cation of thedata service and an abstract distributed algorithm that implements the service. ESDS re-laxes consistency guarantees provided by serializable distributed data services to improvesystem e�ciency and availability. It also provides provable guarantees of long-term consis-tency of the data. An important consideration in the design of ESDS was that it could beemployed in building real systems. In this work we develop a distributed experimental im-plementation of the ESDS algorithm. Using this implementation, we explore the practicalissues associated with using the ESDS speci�cation and abstract algorithm in real systems.1.1 BackgroundAs outlined in [1], replication is used in distributed systems to improve availability and toincrease throughput. The disadvantage of replication is the additional e�ort required tomaintain consistency among replicas when serializing operations submitted by clients. Sev-eral notions of consistency have been de�ned. The strongest notion of consistency is atom-icity, in which replicas emulate a single centralized object. Methods to achieve atomicityinclude write-all/read-one [4], primary copy [5, 6, 7], majority consensus [8], and quorumconsensus [9, 10]. Achieving atomicity often has a high cost, some applications, such as5



directory services, are willing to tolerate some transient inconsistencies. This gives rise todi�erent notions of consistency. Sequential consistency [11], guaranteed by systems such asOrca [12], allows operations to be reordered as long as they remain consistent with the viewof isolated clients. Other systems provide even weaker guarantees to the clients [13, 14, 15]to get better performance.Improving performance by providing weaker consistency guarantees may lead to morecomplicated semantics. While in practice, replicated systems are often incompletely orambiguously speci�ed, it remains very important to provide formal consistency guarantees.Ladin, Liskov, Shrira, and Ghemawat [18] de�ne one highly available replicated data service.They specify general conditions for such a service, and present an algorithm based on lazyreplication, in which operations received by each replica are gossiped in the background.Responses to operations may be out-of-date, not reecting the e�ects of operations thathave not yet been received by a given replica. Building on the work of [18], Fekete et al. [1]specify a exible eventially-serializable data service that we use in this work.1.2 Experimental ESDS ImplementationThe ESDS algorithm is speci�ed as a composition of I/O Automata. I/O Automata [2]are speci�ed as state machines using a declarative description language. To implementESDS, we need to convert the abstract algorithm to a design speci�cation for a distributedprogram. To our knowledge, no general method for converting I/O Automata speci�ca-tions to distributed programs has been published. We develop a framework for convertingI/O Automata-based algorithms to distributed implementations that use message passing.We use the framework in designing the ESDS system. We believe that the techniques inthe framework are general and that they can be used to implement other I/O Automata-speci�ed algorithms.The design of a distributed ESDS system is an important part of our work. The abstractESDS algorithm is speci�ed to be independent of the serial data type of the replicated dataobject. Our implementation of ESDS is built using object-oriented techniques to ensurethat this independence is preserved in the implementation. Our design provides a layer ofabstraction between the objects that implement the ESDS algorithm and the objects thatvary with each speci�c data service application built on top of the ESDS system.6



We implement a functioning ESDS system and build three simple applications on top ofit to demonstrate the viability of our design as a generic building block for real distributeddata services. The implementation relies on a standard message-passing subsystem to ensureportability. Implementation and testing were done on a network of Sun workstations runningthe SunOS 4.1.4 operating system.1.3 Empirical Testing and AnalysisWe instrumented an optimized implementation of ESDS with tools for monitoring inter-esting parts of the state of the data service and collecting information about performancecharacteristics of the system. Characteristics of interest include response time to user re-quests, system throughput, and deviation from strict consistency in system responses.The empirical tests provided data on the behavior of the implementation with varyingnumber of participating replicas and with varying system load. The tests also con�rmed thatESDS represents a tradeo� between consistency and performance, and that it is possible toshift the tradeo� balance in either direction according to the user's needs.1.4 RoadmapThe rest of this thesis is organized as follows. Chapter 2 gives the models and de�nitionsused in other chapters and describes the hardware and software environment in whichthe ESDS prototype was implemented. Chapter 3 describes a framework for converting I/OAutomata-speci�ed algorithms to distributed implementations. Chapter 4 describes how anexperimental ESDS service was implemented using that framework. Chapter 5 discusses theempirical results obtained using the experimental service. Our conclusions and suggestionsfor future work are in Chapter 6.
7



Chapter 2Models, De�nitions, and PlatformsThis chapter gives an overview of the models and terminology that we use throughout therest of the thesis. Section 2.1 gives a brief introduction to the I/O Automata model, whichwas used to specify the ESDS service [1]. Section 2.2 describes the hardware and softwareenvironment and tools used in implementing and testing the ESDS service. Section 2.3de�nes a nomenclature used to identify and distinguish di�erent versions of the ESDSalgorithm speci�cation and corresponding implementations. It also introduces terminologyfor use in later chapters.2.1 Models: An Introduction to I/O AutomataWe now overview a formal model for asynchronous computation, the Input/Output Automa-ton (I/O Automaton) model. This is a general model, suitable for describing distributedalgorithms. The model provides a precise way of describing and reasoning about asyn-chronous interacting components. For a complete description of the I/O Automaton model,the reader is referred to [2] and [3], from which this section is abstracted.An I/O Automaton models a distributed system component that can interact withother system components. It is a state machine in which the transitions are associatedwith named actions. The actions are classi�ed as either input, output or internal actions.The inputs and outputs are used for communication with the automaton's environment,while the internal actions are visible only to the automaton itself. The input actions arenot under the automaton's control, while the automaton itself speci�es what output and8



internal actions should be performed.An Input/Output automaton's \signature" is a description of its input, output andinternal actions. A signature S is a triple consisting of three disjoint sets of actions: theinput actions in(S), the output actions out(S) and the internal actions int(S). The externalactions, ext(S), are in(S) [ out(S), the locally controlled actions, local(S), are out(S) [int(S), and acts(S) are all the actions of S. The external signature, or external interface,extsig(S), is de�ned to be the signature (in(S); out(S); ;).An I/O automaton consists of �ve components:� sig(A), a signature,� states(A), a set of states,� start(A), a nonempty subset of states(A) known as the initial states,� trans(A), a state transition relation, and� tasks(A), a task partition, an abstract description of \threads of control" within theautomaton (not used in the ESDS speci�cation).We call an element (s; �; s0) of trans(A) a transition or step of A. The transition (s; �; s0)is called an input transition, output transition, etc., based on whether the action � is aninput action, output action, etc.If for a particular state s and action �, A has some transition of the form (s; �; s0), thenwe say that � is enabled in s. Since every input action is required to be enabled in everystate, automata are said to be input-enabled.I/O Automata are often described in a precondition-e�ect style. This style groups to-gether all the transitions (s; �n; s0) that involve each particular type of action into a singlepiece of code. The code speci�es the preconditions under which the action is permitted tooccur, as a predicate on s. Then it speci�es the e�ects that occur as a result of applying�n to s. The code in the e�ects clause gets executed atomically.Next, we de�ne (informally) the operation of composition for I/O Automata.The composition operation allows an automaton representing a complex system to beconstructed by composing automata representing individual system components. The com-position identi�es actions with the same name in di�erent component automata. When9



any component automaton performs a step involving �, so do all component automata thathave � in their signatures.We impose certain restrictions on the automata that may be composed. First, sinceinternal actions of an automatonA are intended to be unobservable by any other automatonB, we do not allow A to be composed with B unless the internal actions of A are disjointfrom the actions of B. At most one component automaton \controls" the performance ofany given action; that is, we do not allow A and B to be composed unless the sets of outputactions of A and B are disjoint.When we compose a collection of automata, output actions of the components becomeoutput actions of the composition, internal actions of the components become internalactions of the composition, and actions that are inputs to some components but outputs ofnone become input actions of the composition.The states and start states of the composition automaton are vectors of states and startstates, respectively, of the component automata. The transitions of the composition areobtained by allowing all the component automata that have a particular action � in theirsignature to participate simultaneously in steps involving �, while all the other componentautomata do nothing. Since individual component automata are input-enabled, so is theircomposition. It follows that a composition of several automata is an I/O Automaton.2.2 PlatformsIn this section we describe the hardware and software environment in which the ESDSsystem was developed and tested.2.2.1 Hardware and Operating SystemsThe prototype ESDS service was developed and tested on a network of Sun workstationsrunning SunOS 4.1.4. The MPI (see Section 2.2.2) implementation used with the prototypewas MPICH version 1.0.12 [17]. Three clients for sample ESDS service applications weredeveloped. One client was developed for Win32 and tested under Windows 95 on an IntelPentium machine. Two other clients ran under SunOS 4.1.4.10



2.2.2 Interprocess CommunicationsThis section describes MPI, our choice of the method of communication between distributedcomponents of the ESDS implementation. It explains its advantages and disadvantages.In selecting a method for communication, we took into account� Suitability for implementing I/O Automata,� Simplicity of communication semantics,� Availability of development tools, and� PortabilityWe chose to use the Message Passing Interface (MPI) Standard [16] in implementingESDS. MPI is a practical and portable message passing system. It contains a large set ofcommunication primitives, and it makes it possible to write message passing applicationsusing only a few primitives. This has the advantage of simplifying programs and making iteasier to reason about their behavior.Main reasons for choosing MPI are as follows:� Simpli�ed mapping of I/O Automata to message-passing code,� MPI message-passing primitives have simple semantics,� MPI is implemented on many distributed platforms, together with development tools.An MPI program is a collection of MPI nodes. Each node is a sequential thread ofcontrol with a private memory space. MPI nodes are speci�ed to execute concurrently andasynchronously.We used a small set of MPI features in our implementation. The message passingprimitives we used are:MPI-Send Sends a point-to-point message from one MPI node to another. MPI-Sendoperates in three di�erent modes of communication. In standard mode, MPI is freeto decide whether to bu�er the message and return from MPI-Send immediately orwait until a matching MPI-Recv has been posted. A bu�ered mode send operation11
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we use later.Two de�nitions needed in the description of a framework for converting I/O Automatato distributed implementations relate to composition of I/O Automata. As describedin Section 2.1, individual automata in a composition communicate among each other bymeans of input and output actions with the same name. We distinguish between two typesof actions in an I/O Automata composition.De�nition 2.3.1 Let an I/O Automaton A be a composition of I/O AutomataA1, A2, : : : ,Am. If there is an output action X 2 A that occurs as an output action in some Ai and asan input action in some Aj (i 6= j), we call such action in A an Input/Output combination,or I/O combination for short. We call Ai the output end with respect to X and we call Ajthe input end with respect to X . Any action Y 2 A that appears in one and only one Akis called a regular action.Figure 2.1 gives an example of an automaton A composed of two component automata,A1 and A2. In the composition, W and X are regular actions and Y and Z are I/Ocombinations.The following names identify abstract ESDS algorithms and their implementations:ESDSAlg refers to the unoptimized abstract algorithm for ESDS [1].SimpleESDSAlg is a simpli�ed version of ESDSAlg that replaces channel automata withI/O combinations. This is done in two steps. The �rst step is removing channelautomata from the composition. The second is substituting an I/O combinationfor each pair of channel connection points of the form Output send i;j(<\msgtype",arg1; arg2; : : : >) and Input receivei;j(<\msgtype", arg1; arg2; : : : >). The substi-tuted I/O combination is named msgtypei;j(< arg1; arg2; : : : >) at both ends.ESDSOptAlg is an optimized version of ESDSAlg. The optimizations included in ESDS-OptAlg and an I/O Automata description of the optimizations are presented in Sec-tion 4.3.1.ESDSImpl, SimpleESDSImpl, and ESDSOptImpl are distributed programs (written inC++ using MPI) that implement ESDSAlg, SimpleESDSAlg, and ESDSOptAlg re-spectively. 13



Chapter 3A Framework for Converting I/OAutomata to Distributed ProgramsI/O Automata have been e�ectively used for describing message-passing distributed algo-rithms and in proving correctness properties of the algorithms. In this chapter we present aframework for converting such commonly occurring algorithms speci�ed with I/O Automatacompositions into distributed implementations using an imperative language (we used C++in our work).The source I/O Automata composition being converted is called the source composition.We also call the algorithm represented by the source composition the source algorithm. Theresult of the conversion is a program. We call it the target program.It is important to be able to reason that the target program is an accurate implemen-tation of the source algorithm speci�cation. Because of this, the techniques discussed hereare conservative and will usually lead to an overspeci�cation of the I/O Automata-speci�edalgorithm, but they still allow for a large and interesting subset of behaviors to be reectedin the target implementation.3.1 Overall ApproachI/O Automata notation can be used to specify distributed algorithms involving a collectionof communicating nodes. This is normally done by encapsulating the behavior of each nodeI as a separate automaton Ai. The entire algorithm is represented by the composition A of14



component automata A1, A2, ..., Am. The internal actions of each component automatonAi represent local processing at the corresponding node. The Input/Output combinationsrepresent communication between the nodes. The input and output actions of each au-tomaton that do not participate in an Input/Output combination represent the interactionof the corresponding node with its external environment.In the target program produced from the source composition A, each of A's componentautomata Ai is represented by a sequential process Pi. (It is also possible to combineseveral automata to run as a single process if there is a reason to do so.) Note that if thecomposition does not model a distributed system, the techniques presented in this chaptercan still be applied to convert it to an imperative language program, but of course this willnot yield a distributed implementation of A.Each action of the source composition will have a corresponding fragment of code in thetarget program that implements the action. The conversion techniques ensure that eachsuch fragment of code appears to be atomic.The rest of this chapter describes the procedures to be followed for converting a compo-sition A of I/O Automata to a distributed program. A is assumed to consist of componentautomata A1; : : : ; Am. An action with the name X belonging to automaton Ai is de�nedto have preconditions clause PXAi and e�ects clause EXAi. A component automaton Aiwill correspond one-to-one with an implementation process Pi.Section 3.2 describes how to represent the state of A's component automata in the targetprogram's processes. Section 3.3 describes how to convert precondition-e�ect style actionsto code. Section 3.4 presents our implementation of these techniques in C++.3.2 Representing Component I/O Automaton StateThe local state of a component automaton Ai is represented by the state variables local tothe corresponding process Pi. We do not make provisions for representing global state ofA. If A utilizes global state, it may not be easily implementable as a distributed program.Global state must be removed from such algorithms if one wishes to apply these techniquesto them. 15



3.3 Converting Individual Actions to CodeIn this section we describe the procedures to be used to convert individual actions to se-quential code.3.3.1 Converting Preconditions Clauses into ProceduresThe purpose of the preconditions clause PXAi in an action X is to determine whether thestate transition EXAi is enabled in the current automaton state. The preconditions clauseshould be converted to a predicate procedure Enabled that checks the current state of theautomaton and returns true if the action is enabled and false otherwise.An actionX may represent in�nitely many state transitions of the automaton containingit, one per each instantiation of its arguments. More than one of these transitions may beenabled simultaneously. If that is the case, we require the predicate Enabled to return truefor action X , but we leave it to the programmer to specify means for selecting the statetransition. In our framework, the selection must be made at the time of execution of Enabled.This is done by choosing values for X 's local variables such that the preconditions clauseis satis�ed. The chosen values are then used in the execution of the Transition procedurethat implements the e�ects clause EXAi (see Section 3.3.2). It is up to the programmerto ensure that the algorithm used in selecting the state transition gives all enabled statetransitions a chance to execute.3.3.2 Converting E�ects Clauses into ProceduresThe e�ects clause EXAi describes the state transition(s) represented by action X . Thee�ects clause is converted to a procedure named Transition. Transition requires X tobe enabled and the desired state transition to be chosen among all enabled transitionsrepresented by X (see Section 3.3.1). Transition's e�ect on the state of Pi must correspondto the e�ects of EXAi on the state of Ai.3.3.3 Converting Regular Actions to CodeConversion of a regular action or an input action to code is straightforward. All that needs tobe developed are the Enabled and Transition procedures that implement the preconditions16



Automaton Ai

Output X
    Preconditions: PXA i

    Effects: EXA i

Automaton Aj

Input X
    Preconditions: None
    Effects: EXA j

Process Pi

IF Enabled(PXA i)
    Send(Pj, “ Initiate X” );
    Transition(EXA i);
    Receive(Pj, “Done X”);
ENDIF

Process Pj

IF NBReceive(Pi, “ Initiate X” );
    Transition(EXA j);
    Send(Pj, “Done X”);
ENDIFFigure 3.1: Converting an Input/Output Combination to Codeand e�ects clauses of the action (in the case of an input action, the Enabled procedure willalways return true and have no side e�ects). (We have already described the techniques forcreating Enabled and Transition procedures in Sections 3.3.1 and 3.3.2.)3.3.4 Converting Input/Output Combination Actions to CodeImplementation of an I/O combination is trickier because it must rely on asynchronousmessages to implement the combination atomically. We give a technique for implementingan I/O combination in the special case when only two automata participate in the com-bination. This is su�cient for most existing I/O Automata algorithms. The general I/OAutomata model allows multiple automata to participate in one such combination. Themechanism of negotiation presented here should be extensible to the more general case, butwe do not address this here.The rule for converting an I/O combination to code is illustrated in Figure 3.1. Hereautomata Ai and Aj correspond to processes (or nodes) Pi and Pj . The Send() and Re-ceive() calls in the pseudocode for processes Pi and Pj stand for sending and receiving17



asynchronous messages. They are implemented by MPI-Send and MPI-Recv, respectively.The NBRecieve() in the process Pj is a non-blocking receive of a message, implementedby calling MPI-Iprobe and then calling MPI-Recv if there is a pending message of type\Initiate X" from Pi. If a message of the type \Initiate X" has not arrived at Pj , then theIF block is skipped.An I/O combination is always initiated at the process that represents the output end ofthe combination (Pi in Figure 3.1). When the call to Enabled(PXAi) returns true, Pi sendsa message to Pj initiating the combination. Any argument that X may have is passed toPj in the same message. Next Pi performs the local state transition associated with X byinvoking the Transition(EXAi) procedure. Pi then waits for an acknowledgment message\Done X" from Pj . This step synchronizes the execution of X at the two participatingprocesses.At the input end of the I/O combination, Pj watches for requests from Pi to initiate X .While the NBReceive call returns false, Pj can continue executing other actions. When Pjreceives an \Initiate X" message, it executes its local state transition for X and then sendsthe acknowledgment message to Pi.In a distributed implementation that follows this design, the e�ects of multiple actionsand Input/Output combinations can be executed concurrently. For a regular action, thee�ects will be local to the automaton executing it. For an I/O combination (like the one inFigure 3.1), both e�ects clauses will �nish executing before either participating automatonis able to continue with other actions. Therefore, only the state local to the participatingautomata can be changed by the e�ects clauses. It follows that the procedures representingregular actions and Input/Output combinations are atomic.3.3.5 Deadlock AvoidanceAs presented, the design is safe, but it su�ers from deadlock. If two automata runningconcurrently enter the output part of two di�erent Input/Output combinations and simul-taneously attempt to initiate a combination with each other, it is possible for them to blockat the Receive(Aj , \Done X") line and wait for each other inde�nitely.The deadlock problem can be resolved by setting up a reservation system for performingInput/Output combinations. Each process Pi maintains its reservation status in a state18
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variable. The states of the reservation status are: free, reserved j, holding reservationj andnegotiatingj, where j is the process number of another process (i 6= j). Reservation status'sinitial state is free. In this state the process is free to initiate or accept reservation requests.In the reserved j state Pi is waiting for process Pj to initiate an I/O combination. In theholding-reservationj state Pi may initiate an I/O combination with Pj . In the negotiatingjstate Pi is waiting for Pj to respond to a reservation request. The complete �nite stateautomaton for the reservation status of one process is depicted in Figure 3.2.The reservation system imposes the following restrictions on the execution of Pi. Pican initiate an Input/Output combination with Pj only if its reservation status is holding-reservationj . Pi can participate in an Input/Output combination initiated by Pj only ifits reservation status is reserved j. The rules for obtaining and granting of reservations arespeci�ed in Figure 3.2.When a process Pi wants to initiate an Input/Output combination with process Pj , its�rst step is to send a message to the receiving process Pj requesting a reservation. Pi isallowed to do this only when its reservation status is free. After the request for a reservationis sent to Pj , Pi enters negotiatingj reservation status and waits for a response to the request.If the reservation was granted by Pj , Pi enters holding-reservationj and Pj enters reserved j.Pi is then free to initiate an Input/Output combination as described in Section 3.3.4. If thereservation request was rejected, Pi bounces back to free reservation status.Whenever a process is in free reservation status and there is an incoming reservationrequest, the process may grant the request. Although we do not require that the processgrant the reservation every time, it is necessary to accept them for the system to makeprogress.It should be possible to prove that under the reservation system deadlock cannot occur.We informally argue why that is so.The key is Invariant 3.3.1.Invariant 3.3.1 Let P be the set of process identi�ers in the target program. Then 8i; j 2P s.t. i 6= j, Pi is in holding-reservationj ) Pj is in reserved i.Invariant 3.3.1 holds because process Pi must receive a reservation acceptance messagefrom Pj before it can enter the holding-reservationj state. Pj must enter the reserved i stateto send a reservation acceptance message to Pi. Pj remains in reserved i until it executes20



an I/O combination with Pi. When executing this combination, Pi must leave the holding-reservationj state. It follows that while Pi is in the holding-reservationj state, Pj must bein reserved i state.Because of Invariant 3.3.1, process Pj cannot initiate an I/O combination when processPi is in the holding-reservationj state. So when Pi initiates an I/O combination with Pj ,Pj is not blocked and is able to participate. Therefore, the I/O combination executessuccessfully.3.3.6 Optimizing Abstract I/O Channels AwayThe proposed mechanism for avoiding deadlock is costly, as it reduces potential concurrencyin the system. For better performance it is desirable to avoid such a mechanism. For I/OAutomata-speci�ed algorithms that use channels with asynchronous message delivery forcommunication between its distributed components, an implementation that can preservemore concurrency is possible.This is done by taking advantage of the fact that the message passing model used byMPI already implements the asynchronous channel discipline. The implementation of analgorithm that is speci�ed using channels can use the message passing library instead ofexplicit channel automata. This removes a signi�cant portion of the code that otherwisewould have to be executed every time the algorithm interacts with a channel. Speci�cally,this optimization removes two I/O combinations (one at each the sending and the receivingend of the channel) and a separate process for the channel automaton. Since a channel-based composition of I/O automata uses I/O combinations only at the points where thechannel connects to the sender and the receiver, the optimized implementation would notneed to execute any (expensive) I/O combinations.ESDSAlg uses asynchronous channels for communication among frontend and replicaautomata and thus can bene�t from this optimization.3.3.7 Abstract AlgorithmRelaxation Through Introduction of I/O Chan-nelsSome abstract algorithms that need to be converted to a distributed programs do useI/O combinations (e.g. when the atomic property of I/O combinations is needed to prove21



algorithm properties). While the atomic property is useful in proving correctness, it mayhave a severe performance penalty. When the algorithm is converted using the frameworkpresented in this chapter, the performance of the target program may be adversely a�ecteddue to the costs imposed by the synchronization of communications needed to preserveatomicity (Section 3.3.4) and the overhead of the reservation system (Section 3.3.5).When appropriate, we can relax the abstract algorithm by replacing I/O combinationswith asynchronous channels. The channels are then optimized away during conversion ofthe algorithm to a distributed program (as in Section 3.3.6). This approach can lead toa signi�cant performance improvement in the target program due to more concurrency.At the same time, the program would no longer be an implementation of the originalalgorithm, but instead will implement the relaxed channel-based version that may not havethe same provable properties. In applications that remain correct under such relaxation,this optimization can be bene�cial.3.4 Object-Oriented Implementation of the I/O AutomataFrameworkIn the previous sections of this chapter we presented a framework that is useful in convertingabstract algorithms to distributed implementations. We designed a set of C++ objectsto complement the framework. The objects encapsulate the common functions of I/OAutomata. They have been designed in accordance with the conversion techniques describedin Sections 3.2 and 3.3 and are intended to be used as a foundation in converting speci�calgorithms to programs. This section briey describes their design.3.4.1 Components of the Framework ImplementationThe overall design goal was to minimize redundant work in converting di�erent I/O Auto-mata-speci�ed algorithms to distributed programs. The design includes four categories ofobjects:The base IOAutomaton class This class encapsulates components needed in all imple-mentations of I/O Automata. In our implementation this class handles scheduling22



actions for execution (subject to them being enabled) and the reservation system forI/O combinations.The base IOAction class IOAction encapsulates components needed in implementingany locally-controlled I/O Automaton action. We decided to create a separate classto represent such actions rather than encapsulate them in the class that represents anentire automaton. The need for having separate objects representing locally-controlledactions arises from the fact that locally-controlled action scheduling is handled in theIOAutomaton class. To schedule actions for execution, IOAutomaton needs to be ableto test the Enabled predicate of the action and call Transition to execute the e�ectsclause, knowing nothing about speci�cs of the I/O Automaton that is built on top ofit. IOAutomaton works exclusively with the base class representing locally-controlledactions, IOAction. In an implementation of a speci�c I/O Automata-based algorithmthe classes for all locally-controlled actions are derived from the base IOAction class.C++ polymorphic capabilities (virtual functions) ensure that the IOAutomaton classcalls the correct Enabled and Transition code at runtime.To perform its scheduling task, IOAutomaton class requires that IOAction class andall speci�c action classes derived from IOAction support the two procedures alreadyfamiliar to us from Section 3.3.1:Enabled This method returns a boolean value that indicates whether the action iscurrently enabled, i.e. if its preconditions are satis�ed. If the method returnstrue, it is required to provide its IOAutomaton class with local variable valuesthat unambiguously identify the state transition to be performed.Transition This method executes the e�ects clause of the local action, using localvariable values provided by an earlier call to Enabled. Note that Transitionshould never be called without a call to Enabled immediately preceding it.The argument to both methods is the object representing the automaton containingthe action. This argument is needed so that the action object has access to its automa-ton's state variables, plus (in the case of Transition) the values for the local variablesthat have been selected by Enabled. The scheduler contained in the base IOAutoma-ton class checks the preconditions clause by calling Enabled and, if all preconditions23



are satis�ed, executes the e�ects clause by calling Transition.The derived I/O Automaton class A speci�c I/O Automaton is represented by a classderived from the base IOAutomaton class. The state of the derived class consistsof a representation of the automaton state and an instance of each locally-controlledaction. The derived class handles initialization of the automaton state, processes inputactions, and calls the base class's scheduler to invoke locally-controlled actions.Recall that input actions are not under control of the I/O Automaton containingthem. As such, they are not controlled by the base IOAutomaton class's scheduler.It follows that the base IOAutomaton class does not need to know anything aboutthe input actions. So in our design the derived I/O Automaton object representinga speci�c automaton takes care of processing its input actions directly by calling amethod that implements the input action's e�ects clause.The derived I/O Action class This class overrides IOAction's base versions of Enabledand Transition for every action with new versions that do processing speci�c to aparticular action. As we mentioned before, C++ polymorphic features ensure that thecorrect version of the method gets called by the base IOAutomaton class at runtime.3.4.2 Execution SchedulingThe target program process running a component automaton handles locally-controlledactions by calling the base class scheduler to execute them. It also looks for incomingmessages from other automata and from the external environment. When such a messagearrives, the process dispatches it to the appropriate input action procedure.We implemented a random action scheduler and a round-robin action scheduler for theIOAutomaton class. If the source algorithm requires more sophisticated scheduling seman-tics, the scheduler can be re-implemented in the derived I/O Automaton class. Receipt ofmessages initiating input actions is always scheduled in the derived I/O Automaton class.3.4.3 Notes on Implementing Deadlock AvoidanceIn the deadlock avoidance scheme in Section 3.3.5 processes cannot grant reservations whenthey are waiting for a response to their own reservation request. This can lead to contention24



among system processes and result in livelock: processes would repeatedly request reserva-tions and get rejected by other processes, who are also waiting for responses to reservationrequests.To deal with livelock resulting from contention, we used an exponential backo� sche-me [19]. Process Pi maintains a variable qi;j , an interval of time that Pi waits betweensending reservation requests to process Pj (i 6= j). Pi doubles the value of qi;j after eachrejected reservation request to Pj , and adds a random term from a �xed range to qi;j .Exponential backo� reduces contention by reducing the time Pi spends trying to get areservation from busy processes. This makes Pi available to grant more reservation requestsitself.
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Chapter 4Design and Implementation ofExperimental ESDS SystemsUsing the framework and the classes implementing the I/O Automata foundation fromChapter 3, we created distributed implementations of two versions of the unoptimized ab-stract ESDS algorithm, ESDSAlg [1] and SimpleESDSAlg. We also created and implementedan optimized version ESDSOptAlg of the abstract algorithm that incorporates some of theoptimizations necessary to produce a more practical implementation of ESDS.For reference, we provide a description of ESDSAlg component automata from the ESDSpaper [1] in Figures 4.1 and 4.2. To avoid a complete restatement, we refer the reader tothe paper for a detailed description of the algorithm.This chapter describes the design of our implementations ESDSImpl, SimpleESDSImpl,and ESDSOptImpl. Section 4.1 gives an overview of the major design goals and meth-ods used to achieve them. ESDSImpl and SimpleESDSImpl are described in Section 4.2(their designs are similar). Section 4.3 deals with the optimized implementation ESDSOp-tAlg. Finally, three speci�c data service applications that were built on top of the ESDSimplementation are described in Section 4.4.4.1 OverviewThe main design goal was to make ESDSImpl completely independent of the data objectthat implements the serial datatype. The design carries through the idea presented in [1]26



Statewaitf , a subset of O, initially emptyreptf , a subset of O � V , initially emptyActionsInput requestc(x)E�: waitf  waitf [ fxgOutput sendf;r(h\request"; xi)Pre: x 2 waitfInput receiver;f (h\response"; x; vi)E�: if x 2 waitf then reptf  reptf [ f(x; v)gOutput responsec(op; v)Pre: (x; v) 2 reptfx 2 waitfE�: waitf  waitf � fxgreptf  reptf � f(x; v0) : (x; v0) 2 reptfgFigure 4.1: ESDSAlg : Automaton for frontend fStatependingr , a subset of O; the messages which require a responsercvdr, a subset of O; all operations that have been receiveddoner[i] for each replica i, a subset of O; the operations r knows that i has \done"solidr[i] for each replica i, a subset of O; the operations that r knows are \stable at i"minlabelr : O ! L [ f1g; the smallest label r has seen for x 2 ODerived from doner[r] and minlabelr: valr : doner[r]! V ; the value for x 2 doner[r] using the minlabelrorderActionsInput receivef;r(h\request"; xi)E�: pendingr  pendingr [ fxgrcvdr  rcvdr [ fxgInternal do itr(x; l)Pre: x 2 rcvdrx =2 doner[r]x:prev � doner[r]:idl > minlabelr(y) for all y 2 doner [r](l 2 L, equivalently l 6=1)E�: doner [r] doner [r] [ fxgminlabelr(x) lsolidr [r] solidr[r] [Ti doner[i]Output sendr;f (h\response"; x; vi)Pre: x 2 pendingrx 2 doner[r]x:strict =) x 2 Ti solidr[i]v = valr(x)f = frontend(client(x:id))E�: pendingr  pendingr � fxg
Output sendr;r0 (h\gossip"; R;D;L; Si)Pre: R = rcvdr ; D = doner[r];L = minlabelr; S = solidr[r]Input receiver0 ;r(h\gossip"; R;D;L; Si)E�: rcvdr  rcvdr [Rdoner[r0] doner [r0] [D [ Sdoner[r] doner[r] [D [ Sdoner[i] doner[i] [ S for all i 6= r; r0minlabelr = min(minlabelr ; L)solidr[r0] solidr [r0] [ Ssolidr[r] solidr[r] [ S [ (Ti doner[i])

Figure 4.2: ESDSAlg : Automaton for replica r27



*HQHULF�'LVWULEXWHG
,�2�$XWRPDWD

2EMHFWV

(6'6�6SHFLILF
,�2�$XWRPDWD�2EMHFWV

*HQHULF�(6'6
'DWD�2EMHFWV

$SSOLFDWLRQ�6SHFLILF
(6'6�'DWD�2EMHFWV

$SSOLFDWLRQ�
6SHFLILF�(6'6
8VHU�&OLHQW

$SSOLFDWLRQ�6SHFLILF
(6'6�6HUYHU

$SSOLFDWLRQ�6SHFLILF�2EMHFWV
(6'6�6SHFLILF�2EMHFWV

*HQHULF�,�2�$XWRPDWD�2EMHFWVFigure 4.3: ESDSImpl Structure
28



that the ESDS components need to be designed and implemented only once. ESDSImpl 'sESDS components can be used by an application programmer as building blocks for anytype of data service. All that is required of the programmer is to implement the data objectand add to it the few methods needed to make it work with ESDS.Figure 4.3 depicts the hierarchy of the objects that comprise the system. Arrows inFigure 4.3 represents the relationship \is used by." The objects are divided into three groups.The generic I/O Automata objects are the base IOAutomaton and IOAction classes. Theyencapsulate functions shared by all I/O Automata, as described in Section 3.4. The ESDS-speci�c objects implement ESDSAlg [1]. These objects are independent of the particulardata service application and do not require modi�cation when one wishes to implementa new data service. Finally, the application-speci�c objects implement a particular dataservice. Application-speci�c objects have to be written for each such service.Figure 4.4 illustrates the mapping of distributed components of ESDS to system pro-cesses. In the �gure MPI nodes are represented by circles. Each MPI node runs as asingle system process. Non-MPI processes are represented by rectangles. A more detaileddiscussion of the mapping is found in Section 4.2.6.4.2 Implementing ESDS: ESDSImpl and SimpleESDSImplIn this section we present the high-level design considerations and key low-level details ofESDSImpl and SimpleESDSImpl. The main design goal was to demonstrate that the ESDSalgorithm is suitable for implementation as a building block from which a variety of concreteapplications can be build with minimal e�ort. We now give low-level details about the C++structure of the ESDSImpl program, ESDS-speci�c and application-speci�c objects datarepresentation, ESDSImpl -speci�c scheduler, and the ESDSImpl runtime environment.An abstraction layer is required to separate ESDS-speci�c code from application code.The application object supports a standard interface that forms this abstraction bound-ary. We used the round-robin algorithm to schedule locally-controlled and input actions inESDSImpl.Top level design of ESDSImpl has four major components: application object, ESDSoperation, replica automaton, and the frontend automaton.29



5HSOLFDWHG�'DWD
Repl

Repl Repl

Front
End

Front
End

Front
End

8VHU�)URQW�(QGV

03,��Static Number of Processes

8VHU
&OLHQW

8VHU
&OLHQW

8VHU
&OLHQW

8VHU
&OLHQW

8VHU
&OLHQW

gossip

Figure 4.4: ESDSImpl Processes30



4.2.1 Application ObjectESDSAlg does not place any restrictions on the serial data type of the application object.An implementation of the application data type object needs to support a special interfaceto be compatible with ESDSImpl. We do not publish the details of the interface in thiswork, but describe it informally below.The prototype provides three base classes from which the application classes are derived:ESDSApplicationState, ESDSApplicationOp, and ESDSApplicationValue. An application-speci�c class derived from ESDSApplicationState represents the application state main-tained by the data service. ESDSApplicationState provides routines for instance construc-tion and destruction, and for packing and unpacking the object into binary representations.The packing and unpacking procedures are called when the application state needs to becommunicated to other processes in the distributed environment.An application-speci�c class derived from ESDSApplicationOp represents all operationsthat the application datatype supports. It must support the same methods as the ESDS-ApplicationState-derived class, plus an Apply method that takes the application state objectas an argument and changes its state according to the semantics of the operation. The Applymethod must generate and return a value for the operation, in the form of an ESDSAppli-cationValue-derived object.An application-speci�c class derived from ESDSApplicationValue represents the range(or the set of return values) of the application operations. It must support the same methodsas the ESDSApplicationState-derived class. ESDSImpl returns a value for a submittedoperation as an instance of ESDSApplicationValue.4.2.2 ESDS Operation ObjectAn ESDS operation object represents a single request submitted by the user to the system.The object encapsulates all the information about the user request and all the bookkeepinginformation about the operation's status in the system. Below is a description of the ESDSoperation object's state components.Operation Descriptor The operation descriptor corresponds to the operation descriptorspeci�ed in [1]. The descriptor has the following components:31



� an operation identi�er id that is unique for the current invocation of the system.In ESDSAlg the identi�er contains a reference to the frontend that originatedthe operation. We implement this by including a separate component sender inthe descriptor. Sender identi�es the originating frontend for the operation.� a set prev of operation identi�ers that indicates which operations must precedethe owner of the descriptor in the order of application to data object state.� a boolean ag strict that speci�es whether the responses to the operation mustbe consistent with the eventually established serialization.� an object appl that contains application-speci�c information about the opera-tion. The information includes the operator that must be applied to the currentdata object, along with supporting parameters and data for the operator. Theapplication programmer derives the class of appl from ESDSApplicationOp.The id, prev, and strict descriptor components represent identically named descriptorcomponents in ESDSAlg. The appl descriptor component represents the op descriptorcomponent in ESDSAlg.When deciding on the choice of representation for operation identi�ers, we lookedat several considerations. Since ESDSAlg devolves the responsibility of assigningoperation identi�ers and ensuring their uniqueness on the clients of the system, thereneeded to be a way to do this without consulting the rest of the system, and thereforewithout any a priori knowledge of the identi�ers that have already been used for otheroperations. Another consideration is the size of the identi�er, which a�ects the size ofgossip messages and memory requirements in ESDSImpl. We settled on the 128-bituniversally unique identi�er (UUID) scheme de�ned by OSF/DCE [20]. This schemeallows the client application to pick an identi�er using only the resources availableon the local machine. The identi�er was implemented in an object-oriented mannerto allow other representations to be substituted. In particular, for the purposes ofrunning empirical tests we implemented identi�ers as integers issued in sequence.Operation Minlabel ESDSAlg represents the order in which user operations are appliedby a function minlabel from the set of all operations O to some well-ordered set L.The minlabel function is implemented by assigning a minlabel state component toeach operation. 32



Minlabels are represented as pairs of integers (counter-value, rid). The rid componentis the unique numerical identi�er of the replica that created the minlabel. Eachreplica keeps a counter value which it assigns to the �rst component of newly createdminlabels. The counter is incremented each time the replica creates a new minlabel,ensuring uniqueness of minlabels. The order on minlabels is the same as the order oftheir counter-value component, with ties broken by the order of the rid component.Operation Value This is an application-speci�c object used to represent the value thatESDSImpl returns to the user after the operation is completed. The type of theobject is a class derived from ESDSApplicationValue. When a replica performs theuser operation, it computes this value and passes it along with the operation identi�erto the frontend. The frontend stores the value until it is ready to give the response tothe user who submitted the operation.Sets of Operations The frontend automaton and the replica automaton in ESDSAlggroup user operations into sets as speci�ed by the algorithm. The majority of ES-DSAlg 's actions deal with a single operation. We represent the sets of operations inESDSAlg as doubly-linked lists. The links reside inside the operation objects them-selves. This arrangement has advantages over explicit set representation with respectto the operations most frequently performed by the algorithm.Remark: When the program obtains a reference to an operation, inserting, deleting,and testing for membership in a set requires O(1) time with respect to all sets that theoperation might belong to. The initial search for an operation in a set still requiresO(n) time in the doubly-linked list set representation, so the design is open to thepossibility of replacing linked lists with more e�cient data structures. However, wedid not attempt to optimize this data structure, since simplicity of the implementationwas an important factor in our work.In addition to representing algorithm state components, ESDSImpl maintains book-keeping information.Front End bookkeeping Front ends maintain counters for each operation that indicatehow many times the operation was sent to each replica. In ESDSAlg frontend isallowed to send an operation to (nondeterministically chosen) targets arbitrarily many33



times until it receives a response. In a practical system it is desirable to limit thenumber of such requests to reduce the amount of unnecessary communication. Thislimit depends on a number of factors. If the system is under light load and replicascan provide fast responses to an operation, it may be su�cient for a front end tosubmit each operation only once. If the system is under heavier loads, or if somereplicas are slow to respond, the frontend can bene�t by submitting the operation toseveral replicas in hope of a faster response. Another factor a�ecting the submissionpattern is communication reliability. In a reliable network that guarantees deliveryof messages, it is unnecessary to submit the operation more than once to any singlereplica. However, in an unreliable system more than one submission may be necessarybefore a replica receives the operation.The prototype design allows us to experiment with all of these behaviors. (see Sec-tion 6.3 for future work suggestions).4.2.3 Replica Automaton DesignThe class representing a replica automaton is built on the IOAutomaton class discussedin Section 3.4.1. In ESDSImpl the replica implementation corresponds to the automatonpresented in [1]. The replicas are numbered from 0 to N � 1, with N replicas participatingin the system. The state of each replica includes this number as the replica identi�er.Each of the pendingr, rcvd r, doner(i), and solidr(i) sets in ESDSAlg is implemented bylinking all operations belonging to one set into a circular doubly-linked list.Replicas assign unique minlabels to operations as follows. Each replica keeps a countervariable lbl-counter r. When replica r does an operation, it assigns minlabel (lbl-counter r, r)to the operation. Using replica identi�ers guarantees system-wide uniqueness of minlabels.In ESDSAlg a gossip message from replica r consists of the minlabelr function and theentire sets rcvd r, doner[r], and solidr[r]. In ESDSImpl the corresponding gossip messageconsists of all the operations in the rcvdr set. A gossip message includes boolean ags thatindicate which sets each operation belongs to.Otherwise, the basic implementation of a replica corresponds to the ESDSAlg replicaautomaton code [1]. 34



4.2.4 FrontEnd Automaton DesignThe implementation of the frontend automaton in ESDSImpl follows the frontend automa-ton code in ESDSAlg [1].4.2.5 Application ClientsIn ESDSAlg system users interacting with the data service frontends are represented asapplication clients. The application programmer is free to choose how the client should beimplemented. Our design of ESDSImpl speci�es only the mechanism for communicationbetween clients and frontends and the protocol that the clients use to submit operationsand receive responses from frontends. Section 4.2.7 discusses the choice of communicationmechanism for ESDSImpl clients.4.2.6 Mapping Component Automata to System ProcessesESDSImpl and the other ESDS implementations run on a network of Sun workstationsusing the MPICH implementation of MPI [17]. The prototype is based on MPI Standard1.1 [21].There is a de�ciency in the MPI standard version 1.1 and the MPICH library thatlimited implementation choices. This version of the standard does not allow dynamic man-agement of processing nodes. The number of available processes is determined staticallyat invocation and cannot change during execution. For the purposes of a distributed dataservice, this means that application clients, which need to be created and destroyed dy-namically, cannot be integrated in the MPI framework. ESDSImpl sidesteps this issue byusing Berkeley Sockets instead of MPI mechanisms for communication between applicationclients and ESDS frontends. At the time of this writing, the work on the next version of theMPI standard and the MPICH implementation includes the dynamic process managementcapability. It is not known whether this capability in the next version of MPI can be usedwith ESDSImpl.The limitations of the current MPI standard dictated the mapping of ESDS componentsto system processes depicted in Figure 4.4. In the �gure ESDS replicas and frontends runinside the MPI environment, and the application clients connect to the system from outsidethe MPI environment. At the invocation of the program the ESDS system administrator35



speci�es the number of MPI nodes that will participate in the execution. Three MPI nodesare reserved for system use (they are not depicted in Figure 4.4). The rest are dividedbetween ESDS replicas and frontends. The administrator speci�es how many nodes toallocate for each use.After the invocation the number of replicas and frontends remains static throughoutthe execution. Replicas use MPI messages to receive requests from frontends, send gossipmessage to each other, and send responses back to the frontends. Client processes aredynamically created and destroyed by system users. Clients use sockets to connect to oneof the frontends. When the connection is established, the client can submit an operation tothe frontend and receive a response when it is available.4.2.7 Communication Between Clients, FrontEnds, and ReplicasAs we have already stated, ESDSAlg uses asynchronous channel automata for communica-tion between replicas and frontends and for gossip among replicas. Application clients andfrontends communicate via I/O combinations.We implemented two di�erent systems of communication among frontends and replicas.The �rst version implements communications in SimpleESDSImpl. It is produced using thetechniques for converting I/O combinations to distributed programs (see Section 3.3.4).The second version implements communications in ESDSImpl. This version takes ad-vantage of the fact that ESDSAlg relies on asynchronous channels for communication amongfrontends and replicas. It uses reliable FIFO channels implemented by MPI, as discussedin Section 3.3.7. ESDSImpl is a more e�cient implementation of ESDS than SimpleES-DSImpl because it avoids the overhead of synchronizing communications among frontendsand replicas.Integration of this approach into ESDSImpl implementation is straightforward. Insteadof negotiating with the receiving automaton for synchronized execution, each automaton isfree to send an asynchronous request, gossip, or response message and continue executingnormally. The pending messages accumulate in the MPI subsystem, which implementsreliable FIFO channels and thereby relieves the programmer of that responsibility. In thisimplementation, the system is free to execute asynchronously, thus taking advantage of thedistributed nature of the application. 36



Di�erent methods of interprocess communication constitute the only di�erence betweenESDSImpl and SimpleESDSImpl. For convenience, both implementations are combinedinto a single program. The desired method of communication can be set with a switch inprogram's con�guration �le.4.3 Implementing ESDS: ESDSOptImplIn addition to implementing ESDSAlg, we implemented some of the optimizations suggestedin the ESDS paper [1]. In this section we describe the implementation of the optimizations.We also present an I/O Automaton for the optimized ESDS replica.Section 4.3.1 presents abstract descriptions of the optimizations that have been appliedto ESDSAlg to produce ESDSOptAlg. At the end of the section we present the updatedreplica I/O Automaton. Most ESDSOptImpl 's design is identical to ESDSImpl, and the im-plementation of the di�erences is straightforward and lacks interesting features. Therefore,we do not present design details for ESDSOptImpl, as we did for ESDSImpl.4.3.1 Abstract Description of OptimizationsWe describe the optimizations to ESDSAlg included in ESDSOptAlg and present the revisedreplica automaton.Incremental GossipESDSAlg is speci�ed in terms of identical servers, each of which contains an object replica.Replica r periodically sends entire doner[r] and solidr[r] sets to other replicas in gossipmessages (Fig. 4.2). Thus, a typical gossip message contains a lot of information that hasbeen gossiped previously between the same two replicas. Furthermore, the amount of suchredundant information increases linearly with the number of new operations. ESDSImpl,as an implementation of ESDSAlg, requires gossip messages of unbounded size, and thuscannot be used continuously for long time periods without exhausting system resources orleading to unacceptable deterioration of system performance.If we assume that replicas do not fail and that replicas communicate via reliable FIFOchannels (as is the case with ESDSImpl), we can modify the replica automaton to send only37



the incremental gossip updates. Each replica keeps track of changes in its state and gossiponly new information. This change improves system performance, but reduces the system'sability to tolerate lost gossip messages.Remark: Explicit sequencing of gossip messages combined with retransmission andremoval of duplicates is needed to make the optimization work with unreliable channelsthat allow message losses, duplicate messages, and out of order delivery.Removal of Self-GossipESDSAlg assumes that each replica sends gossip messages to itself as well as to otherreplicas. This behavior is ine�cient in a practical implementation, but if we removed itfrom the ESDSAlg replica automaton, its behavior would be incorrect when there is onlyone replica in the system. The reason is that ESDSAlg updates a replica's set of operationsthat it knows to be stable only during receipt of gossip messages. In a one-replica systemexecution without self-gossip messages the operations would never stabilize, thus violatingthe requirement of eventual serializability. This optimization adds another action to thereplica automaton to preserve correctness. The new action detects one-replica executionsand updates the set of stable operations independently from gossip actions.Memoizing Stable StateESDSAlg ignores the cost of local computation at the replicas. A replica r gets the cur-rent value the value for operation opn from the initial state �0 by re-computing it asf+(�0; hop1; op2; : : : ; opni) for op1; op2; : : : ; opn in minlabelr order (the function f+ ap-plies op1; op2; : : : ; opn, in that order, to �0 [1]). ESDSImpl faithfully implements the sameine�cient behavior. Testing ESDSImpl under heavy operation load con�rmed that the timeconsumed by recomputation can be signi�cant. In addition, the algorithm requires all op-erations to stay in memory inde�nitely to enable recomputation. These problems make thena��ve implementation of the algorithm unsuitable for practical applications.Our optimized implementation uses a variation of the stable-state optimization sug-gested in the ESDS paper [1]. It adds a state component to each replica that keeps trackof the stable state, which is the result of applying all completely ordered operations to theinitial state. To compute the current state, replica r needs only to apply all operations38



in doner[r] that have not yet stabilized to the stable state. This optimization is a part ofESDSOptImpl.The computation of the new stable state takes place every time replicas receive gossipmessages (see Fig. 4.5). Among all operations that have not yet entered the stable state,replica r �nds one with the highest minlabel that has entered the solidr[r] set. Call thisoperation max-stabler. All operations with minlabels lower than max-stabler's minlabel areguaranteed to never change minlabels again, and no operation with a lower minlabel can bereceived later. This means that the order of operations up to and including max-stabler cannever be altered again at replica r. Thus, the replica applies all operations with minlabelslower than max-stabler's minlabel to the old stable state to compute the new stable state.Note that our version of the stable state optimization di�ers from the scheme presentedin the ESDS paper [1]. We apply operations to the stable state of a replica as soon as theyhave stabilized at that replica, whereas the ESDS paper version of the optimization waitsuntil the operation stabilizes globally before applying it. We conjecture that our version ofthe optimization results in faster stabilization of operations and a corresponding increasein performance.Remark: This optimization makes it possible to discard almost all information aboutthe operations as soon as they enter the stable state. In ESDSOptImpl operation identi�ersare kept around forever because they may enter the prev sets of future operations. However,if this optimization is combined with the multipart timestamp optimization (see Section 6.1),even the operation identi�ers may be discarded. We have not implemented this.4.3.2 Optimized Replica I/O AutomatonThis section formalizes the optimizations discussed in the previous section. It presentsa modi�ed version of the ESDSAlg replica automaton [1], reecting the optimizations inSection 4.3.1. The optimized replica automaton is presented in Figure 4.5.The modi�ed replica automaton r maintains a gossipr[i] state variable in addition toother state variables from the ESDSAlg replica automaton. The sendr;r0(h\gossip"; R;D;-L; Si) action that sends a gossip message from replica r to replica r0 is enabled only if thegossipr[r0] set is non-empty. When it is enabled, only the operations in the gossipr[r0] setare gossiped. Thus, an operation x needs to be added to the gossipr[i] set for all i whenever39



Data typesP = f1; : : : ; ng, the set of replica IDsStatependingr , a subset of O; the messages which require a responsercvdr, a subset of O; all operations that have been receiveddoner[i] for each replica i, a subset of O; the operations r knows that i has \done"solidr[i] for each replica i, a subset of O; the operations that r knows are \stable at i"gossipr[i] for each replica i, a subset of O; the operations that r needs to gossip to iminlabelr : O ! L [ f1g; the smallest label r has seen for x 2 ODerived from solidr [r] and minlabelr: max-stabler 2 solidr[r] s.t. 8y 2 solidr [r], minlabelr(max-stabler) �minlabelr(y)stable-stater 2 �, initially �0; the state resulting from doing all the operations up to and includingmax-stablerstable-valuer : solidr[r]! V , initially empty; the values of the stable operations in the eventual total orderDerived from doner[r] and minlabelr: valr : doner[r] ! V ; the value for x 2 doner[r] using the minlabelrorderActionsInput receivef;r(h\request"; xi)E�: pendingr  pendingr [ fxgrcvdr  rcvdr [ fxggossipr [i] gossipr[i] [ fxg for all iInternal do itr(x; l)Pre: x 2 rcvdr � doner[r]x:prev � doner[r]:idl > minlabelr(y) for all y 2 doner[r]E�: doner [r] doner [r] [ fxgminlabelr(x) lgossipr [i] gossipr[i] [ fxg for all iOutput sendr;f (h\response"; x; vi)Pre: x 2 pendingi \ doner [r]x:strict =) x 2 Ti solidr[i]v = (stable-valuer(x) if x 2 solidr[r]valr(x) otherwisef = frontend(client(x:id))E�: pendingr  pendingr � fxgOutput sendr;r0 (h\gossip"; R;D;L; Si)Pre: R = rcvdr \ gossipr[r];D = doner[r] \ gossipr[r];S = solidr[r] \ gossipr[r];L = minlabelr ; r 6= r0E�: gossipr [r] fg
Internal solidifyrPre: jP j = 1E�: solidr [r] solidr [r] [ (Ti doner[i])for y s.t. minlabelr(y) � minlabelr(max-stabler)and stable-valuer(y) is unde�ned,in minlabelr order:(stable-stater; stable-valuer(y)) f(stable-stater; y:op)Input receiver0;r(h\gossip"; R;D;L; Si)E�: gossipr [i] gossipr [i] [ (R� rcvdr)[[(S � (Tj doner[j]))[[(S � (solidr[r] \ solidr[r]))[[(D� (doner [r] \ doner [r]))[[fx : minlabelr(x) > L(x)gfor all ircvdr  rcvdr [Rdoner [r0] doner[r0] [D [ Sdoner [r] doner [r] [D [ Sdoner [i] doner[i] [ S for all i 6= r; r0minlabelr = min(minlabelr; L)solidr [r0] solidr[r0] [ Sgossipr [i] gossipr [i][[((Tj doner [j])� solidr[r]) for all isolidr [r] solidr [r] [ S [ (Ti doner [i])for y s.t. minlabelr(y) � minlabelr(max-stabler)and stable-valuer(y) is unde�ned,in minlabelr order:(stable-stater; stable-valuer(y)) f(stable-stater; y:op)Figure 4.5: ESDSOptAlg : Automaton for optimized replica r40



replica r has new information about x. The gossipr[i] state variables get updated insidereceivef;r(h\request"; xi), do it r(x; l), and receiver;r(h\gossip"; R;D; L;Si) actions.Since a replica r can update its solidr[r] set only when receiving a gossip message, thealgorithm behaves incorrectly in the case when there is only one replica if we remove self-gossip messages. As we want to compare single-replica performance with multiple-replicaperformance in the empirical tests, the single-replica execution of ESDSOptImpl must becorrect. We add a new internal action solidifyr, which corrects the problem by makingupdates to the solidr[r] set independently from gossip actions (see Figure 4.5). We omitperforming the solidifyr action whenever there are two or more replicas. This optimizationis worthwhile since it restricts the need for potentially costly set operations required by thesolidifyr action.The optimized automaton contains memoization of stable state. Three new state compo-nents are added to the replica automaton. The stable-stater and stable-valuer componentsrepresent, respectively, the current stable state of the automaton and the stable values ofthe operations that enter stable-stater. These state components are identical in function tothe same components in the stable state memoization code presented in the ESDS paper.The signi�cance of the third new state component, max-stabler, and the procedures formaintaining stable-stater and stable-valuer were described in Section 4.3.1.As explained in Section 4.3.1, our version of the stable state memoization optimization isdi�erent from the one presented in the ESDS paper. The complete code given in Figure 4.5.4.4 ApplicationsThis section describes the three data service applications that were implemented.String Concatenation ServiceThe String Concatenation Service is a simple data service application. The data object isa single string that supports two operations: Read and Concatenate. The Read operationgives the current value of the string. The Concatenate operation appends its argument tothe string and gives back the new value.The advantage of the String Concatenation Service is the simplicity of its implemen-41



tation. It was used for testing ESDSImpl and ESDSOptImpl during development and forrunning empirical measurements of ESDSOptImpl performance.Counter ServiceThe Counter Service is another simple data service application, similar to String Concatena-tion in its level of sophistication. The data object is a integer counter variable that supportstwo operations: Read and Add. The Read operation gives the current value of the variable.The Add operation adds an integer argument to the current counter value and gives backthe new counter value.The Counter Service di�ers from the String Concatenation Service in one importantrespect. Its update operation Add commutes with other Adds, whereas the Concatenateoperation of the String Concatenation Service does not commute with other Concatenateoperations (unless one of them has the empty string as an argument. The Counter Ser-vice was created with the purpose of testing whether commutative update operations likeAdd lead to a smaller percentage of inconsistent responses than non-commutative updateoperations like Concatenate (as we will see in the next chapter, it does not).Distributed SpreadsheetsThe purpose of creating a third, more sophisticated client was to demonstrate the viabilityof ESDS as a platform for creating diverse and capable data service applications. This ap-plication was constructed as a proof-of-concept. The Distributed Spreadsheets client makesuse of ESDS capabilities to create an environment where several people can simultaneouslyenter spreadsheet data into the same Microsoft Excel workbook. Their additions get sentto ESDS replicas, which maintain the current state of the workbook and can refresh eachuser's copy on demand. One use of this combination of Excel and ESDS is to allow multipleusers to enter disjoint data into a single Excel �le concurrently, see the updates of othersautomatically, and not worry about overwriting other people's additions with your own.42



Chapter 5Empirical Testing and Analysis5.1 Test System Con�gurationAll performance tests were done on a 10 Mbps Ethernet LAN of 12 Sun workstations runningSunOS 4.1.4. The tests were performed using the ESDSOptImpl implementation.The workstations we used were not dedicated to this project, and their loads uctuatedwith time. To account for the variance in test results due to this factor, we performed eachtest 10 times and averaged the results to minimize the variance due to other tasks runningconcurrently with the tests. In testing our implementation, we ran it with over 20 replicas.However, for performance testing we used up to 10 replicas only. This allowed us to runperformance tests in a setting where a replica corresponded to a networked processor. Dueto limited time available for testing, we limited the number of operations submitted to thesystem to 300 for each test run.5.2 De�nitionsWe measured two performance characteristics of the prototype: (1) average response time,and (2) average throughput.De�nition 1: The response time for an operation is the elapsed time between submis-sion of the operation to a replica and response from the replica.De�nition 2: The system throughput is the number of operations the system processesper unit time in a given execution of the implementation43



We also wanted to know how the percentage of strict operations among all operationssubmitted to the system a�ects performance and the degree of inconsistency in responses.For a given execution of the implementation, a response to a user operation is inconsis-tent if its value di�ers from the value of the same operation in the eventual total order ofoperations. Formally,De�nition 3: Let responser(x; vx) be a response sent by replica r to a front end.Let valto(x) be the value of x in the eventual total order to of all operations. Thenresponser(x; vx) is inconsistent i� vx 6= valto(x).De�nition 4: In a �nite execution of the implementation, the degree of inconsistencyis the percentage of inconsistent responses among all responses to user operations returnedby the system during the execution.5.3 Test SetupWe conducted three series of tests. The purpose of the �rst series was simply to ensure thatESDSOptImpl can, if necessary, run more than one replica on a single processor and stillshow decent performance. The purpose of the second series was to determine how systemperformance, characterized by response time and throughput, depends on the number ofreplicas participating in the computation. Our third series of tests measured the changesin system performance and degree of inconsistency in response to changing percentage ofstrict operations among the operations submitted to the system.The �rst and second series were set up as follows. A total of 12 workstations were avail-able for the testing. One workstation ran the master process. This process was responsiblefor initializing the system, setting up the test parameters, and submitting a �xed number ofnon-strict operations to the system. Another workstation ran a front end that distributedthe operations to available replicas in a balanced fashion. Ten other workstations ran repli-cas, with more than one replica per machine if the number of replicas in the executionexceeded 10.The test software measured three quantities for each run:1. Average time Tfe from the submission of an operation by the frontend to one of thereplicas to the receipt of replica response by the frontend44



2. Average time Tr from the receipt of an operation by a replica to the replica sendingback a response for that operation3. Total time � it took the system to process and respond to all 300 operations.From these measurements we obtained two di�erent measures of response time and onemeasure of system throughput as follows. For each number of replicas from N = 1 toN = 10, we averaged the results of 10 runs and computed the average time ATfe it took afrontend to receive a response from a replica after it sent the request message, the averagetime ATr it took a replica to process a request after the replica received it, and the averagesystem throughput AP = 300=� .In preliminary testing we determined that a single replica can keep up with the userrequests if they come approximately once in 30 milliseconds. If the rate of request submissionis faster, a single replica gets overwhelmed and cannot keep up. Incoming requests pile upin the MPI message queue, waiting to be processed by the replica. In this case, the averageresponse time to an operation at frontends, Tfe, su�ers dramatically because the responsetime depends on how long the operation has to wait in the MPI queue before being receivedby a replica.Our third series of tests measured the changes in system performance and degree ofinconsistency in response to changing percentage of strict operations. The tests used thesame workstation con�guration as in the �rst two series of tests. One workstation ran afront end distributing 300 operations to a constant number of replicas as the percentage ofstrict operations varied from 0 to 100 in 10% increments.In the next three sections we present the results of the tests. In analyzing the test results,we are primarily concerned with the performance trends exhibited by ESDSOptImpl. Wedid not seek to minimize the absolute performance numbers. In particular, we made noattempt to run the tests on faster processors, or to use faster networks.5.4 Test Series 1: Virtual ReplicasThis purpose of this test is to demonstrate that it is possible to run ESDSOptImpl on asystem where the number of available physical processors was smaller than the number ofdistributed system components. The test increased the number of replicas from N = 145
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Figure 5.1: System Throughput (submission rate is 330 operations/second)to N = 20 and submitted operations to the system at the constant rate of 330 opera-tions/second. It measured system throughput for each number of replicas. The collecteddata is plotted in Figure 5.1.The system's throughput rises as the number of replicas participating in the system andperforming submitted operations increases. However, the throughput drops o� again at thepoint where the system runs out of physical processes for replicas (this happens at N = 10)and puts additional replicas on processors that already run other replicas. The overhead ofcontext switches and the forced serialization of communications between replicas that sharea single processor has an adverse impact on system performance. Therefore, in all othertests we limit the number of replicas to the number of available processors.5.5 Test Series 2: System PerformanceIn this section we examine how average system throughput and average response time atreplicas (ATr) and frontends (ATfe) are a�ected by varying number of replicas and varyingrate of submission of new operations. 46
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Figure 5.2: System Throughput (submission rate is 33 operations/second)5.5.1 System ThroughputWe expect the following factors to a�ect system throughput:� The rate of submission of new operations. This rate is the upper bound on systemthroughput.� The number of participating replicas. Each additional replica should increase the totalthroughput by adding its own capacity to the total capacity. However, the magnitudeof the increase in throughput is expected to be adversely a�ected by the amount ofgossiping that replicas need to do.To verify our hypotheses, we ran the throughput test with three di�erent rates of sub-mission of new requests, each time varying the number of replicas from 1 to 10.At �rst the rate of submission was set to one operation every 30 milliseconds, or approx-imately 33 operations per second. As explained in Section 5.3, at this rate one replica isable to keep up and process all incoming requests without adverse queuing e�ects. There-fore, we expected that additional replicas would not increase the throughput. The empiricalresults shown in Figure 5.2 con�rm the expectation. The system throughput is close to its47
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Figure 5.3: System Throughput (submission rate is 33 � N operations/second, N is thenumber of replicas)theoretical limit of 33 operations per second, and it actually declines slightly as the numberof replicas is increased. The decline may be attributable to the increasing gossip overhead.In the next test setup the rate of submission was set to start at 33 operations/secondagain for one replica and increase proportionally with the number of replicas, topping out at330 operations per second for 10 replicas. In this setup we expected the system throughputto rise with the number of replicas. The empirical results are shown in Figure 5.3. Thethroughput rises nearly linearly with the number of replicas, although it does not comeclose to reaching its theoretical limit of 330 operations per second. This result suggeststhat all replicas are working at full capacity and are still unable to keep up with the rateof submission. This might be explained by the increasing gossip overhead.In the �nal test of system throughput we set the rate of submission constant again, thistime at 330 operations/second. At this point we already know that throughout this testall replicas are working at full capacity. Therefore, we expect an increase in throughput asmore replicas join the e�ort. The empirical results in Figure 5.4 con�rm the expectation.Unlike the previous graphs, this time there are secondary e�ects in the trend. We do nothave an explanation, but this could be due to the uctuating load on the test workstations.48
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Figure 5.4: System Throughput (submission rate is 330 operations/second)5.5.2 Response TimeResponse Time at Replicas (ATr)In ESDSOptImpl the scheduling algorithm for replica actions is such that after receiving anon-strict operation from a frontend, a replica immediately applies the operation and sendsback a response. The replica does not send or receive gossip messages in the meantime.Based on this fact, we expect the following factors to a�ect average response time ATrat replicas:� The number of non-stable operations that the replica needs to re-apply to get thevalue for the new operation (re-application takes a non-negligible amount of time).� The number of participating replicas. When a small number of replicas are running,operations stabilize faster, decreasing the number of operations that need to be re-applied to get the value of a new operation. With a large number of replicas, actionstake a long time to stabilize, since a replica needs every other replica to tell it that theoperations is done there before stabilization can occur. Therefore, we expect higherresponse times as the number of replicas increases.49
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Figure 5.5: Response Time at the Replicas (submission rate is 33 operations/second)To verify our hypotheses, we tested the average response time at replicas in ESDS-OptImpl with three di�erent setups, each time varying the number of replicas from 1 to10. In the �rst test setup the rate of submission of new requests was set at 33 opera-tions/second. Our hypotheses explain the experimental results in Figure 5.5. The responsetime is small when only one replica is running, since in ESDSOptmpl all new operationsimmediately stabilize through the solidifyr action, meaning that no re-application of oldoperations takes place when the replica computes the value for the new operation. As thenumber of replicas increases, operations take longer to stabilize. This increases the numberof re-applications of old operations and drives the response time up. The response timelevels o� at N = 4, which means that for N � 4 virtually no operations manage to stabilizebefore the end of the test run, meaning that almost all of them need to be re-applied whencomputing the value of new operations for N � 4.For the second test, the setup was identical to the second test in Section 5.5.1. Therate of submission started at 33 operations/second and increased proportionally with thenumber of replicas. Since we do not identify the rate of submission as having a signi�cant50
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Figure 5.6: Response Time at the Replicas (submission rate is 33 �N operations/second,N is the number of replicas)
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Figure 5.7: Response Time at the Replicas (submission rate is 33 �N operations/second,N is the number of replicas, gossip is disabled)impact on the response time at replicas, the trend for this test was expected to remain thesame as it was for the �rst test in this section. The empirical results in Figure 5.6 con�rmthat this is so. Together with the second test in Section 5.5.1, this test demonstrates that forlarger numbers of replicas it is possible to increase the rate of submission for new operationsand achieve better throughput without incurring a penalty in the form of a higher responsetime at replicas.The �nal test in this section duplicates the setup of the second test, except the gossipmessages have been disabled. Without gossip, replicas only know about the operations thatwere sent to them directly by the front end. In this setup, we expect the response time togo up at �rst as in the previous two tests, but then drop as the number of operations thatindividual replicas know about and have to re-apply goes down. The empirical results in5.9 bear out this hypothesis. 52



Response Time at FrontEnds ATfeThe response time for an operation at a frontend is the sum of the response time for theoperation at a replica, the time the request message spends in the MPI channel from thefrontend to the replica, and the time the response message spends in the MPI channel fromthe replica to the frontend.We therefore expect the factors that were shown to a�ect the response time at replicasin Section 5.5.2 to also a�ect the response time at frontends. In addition, the followingfactors may a�ect average response time ATfe at frontends:� The load of replicas and frontends. If the replicas or frontends cannot keep up withincoming messages, the messages lose time waiting in the MPI queue to be receivedby the process. This increases ATfe.� The roundtrip time between frontends and replicas. This factor should be negligiblein our testing because the network connections between test workstations are fast.To verify our hypotheses, we tested the average response time at frontends ATfe inESDSOptImpl with the same setups that were used in Section 5.5.2 to test the responsetime at replicas.For the �rst test with the rate of submission of new requests at 33 operations/secondwe expect ATr to grow with the number of replicas because of the results in Section 5.5.2and the average time spent by new request in the MPI channel from frontends to replicasto grow because replicas become busier with a growing number of gossip messages. As aconsequence, ATfe should grow with the number of replicas as well. The results in Figure 5.8con�rm these expectations.The same considerations apply to the second test, where the rate of submission growsproportionally with the number of replicas. In this case the replicas should be even busierthan in the �rst test, and we would expect even longer response times at frontends. Theempirical evidence in Figure 5.9 con�rms this, but show that ATfe does not exhibit theexpected steady upward trend in the response time. The best we can say is that theevidence warrants further exploration to determine additional factors that inuence ATfein this setting. However, the next test indicates that gossip plays a large role in determiningATfe. 53
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Figure 5.8: Response Time at the FrontEnd (submission rate is 33 operations/second)
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Figure 5.9: Response Time at the FrontEnd (submission rate is 33 �N operations/second,N is the number of replicas) 54
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Figure 5.10: Response Time at the FrontEnd (submission rate is 33 �N operations/second,N is the number of replicas, gossip is disabled)
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Figure 5.11: Response Time at the FrontEnd (submission rate is 330 operations/second)The third test has the same setting as the second, except gossip messages are disabled.The results are presented in Figure 5.10. It is evident that without gossip Tfe is muchsmaller than it was when gossip was enabled. In the �rst part of this graph Tfe's trendis the same as Tr's trend in Figure 5.9: a jump in the beginning, followed by a steadydecline. For larger numbers of replicas an upward trend takes over. This trend is due to theincreasing rate of submission of new requests, which leads to busy replicas and long queuewaits for new requests.Finally, we run the system with the rate of submission of new requests at 330 oper-ations/second. The results are presented in Figure 5.11. At this high rate replicas areoverwhelmed when there are only a few of them. Messages with new requests wait a verylong time in the MPI queue before the replicas receive them. Consequently, the responsetime is very high when the number of replicas is low, but it drops down as more replicasjoin the system and assume some of the load.56
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Figure 5.12: Tradeo� Between Response Time and Consistency (2 Replicas)
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Figure 5.13: Tradeo� Between Response Time and Consistency (4 Replicas)57
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Figure 5.14: Tradeo� Between Response Time and Consistency (6 Replicas)5.6 Test Series 3: Performance/Consistency Tradeo�This test was conducted using the Counter Service application, using Add operations. Theresults for 2, 4, and 6 replicas are summarized in Figures 5.12, 5.13, and 5.14.Predictably, the percentage of inconsistent responses goes down linearly as the per-centage of strict operations climbs. However, since strict operations require the system tostabilize the operation's value at all replicas before responding, the latency of responses tostrict operations is dramatically higher than the latency of responses to non-strict opera-tions. This is reected in the linear increases of average latency with percentage of strictoperations in Figures 5.12, 5.13, and 5.14. The coe�cient of the linear increase is higher fora larger number of replicas, since the time required to synchronize all replicas with respectto a particular operation increases with the number of replicas participating in the system.The trade-o� between consistency and performance is clearly demonstrated by these results.We also conducted this test using the String Concatenation Service application, usingConcatenate operations. We did not observe substantial di�erences in the results. Thissuggests that the percentage of inconsistent responses to non-strict commutative operationssuch as Add is not substantially lower than the percentage of inconsistent responses to58



non-commutative operations such as Concatenate.
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Chapter 6Conclusions and Future WorkWe de�ned a set of techniques for converting source algorithms speci�ed as I/O Automatacompositions into target distributed programs written in an imperative language. Wedemonstrated that the techniques support object-oriented design for target programs byimplementing a set of C++ objects that encapsulate common properties of I/O Automataand can be used in designing the target program. Our techniques are applicable to com-monly occurring algorithms that use asynchronous channels or Input/Output combinationsinvolving two automata for communications between distributed components. An interest-ing topic for future work is to generalize these techniques to cover all types of I/O Automatacompositions.Using our techniques, we implemented the abstract ESDS algorithm ESDSAlg [1] as adistributed program ESDSImpl. The modular design of ESDSImpl allowed us to write codespeci�c to the ESDS service once and then create several distinct data services withoutmodifying this code. In this way we showed that ESDSAlg can be e�ectively used as abuilding block for distributed systems.We strove to create a faithful implementation of ESDSAlg and its derivatives, but itremains to be shown that ESDSImpl does in fact implement ESDSAlg. More ambitiously,it would be interesting to develop a framework for showing that a practical implementation,treated as a mathematical object, correctly implements a formal speci�cation of an abstractalgorithm.After implementing ESDSAlg, we implemented several optimizations suggested in theESDS paper [1] and produced an optimized abstract algorithm ESDSOptAlg. We then60



introduced the optimizations to ESDSImpl to produce ESDSOptImpl, which implementsESDSOptAlg. By producing ESDSOptImpl we �xed some ine�ciencies of ESDSImpl andmoved our implementation of ESDS closer to being a practical system. Much work remainsto be done in this area. One important optimization that could be applied to ESDSOptImplis discussed in Section 6.1.We conducted empirical tests on ESDSOptImpl and learned how its performance, char-acterized by response time and throughput, is a�ected by changing the number of replicasparticipating in the execution and by the system load. We also obtained empirical evidencecon�rming that ESDS performance reects a tradeo� between performance and consistency.The balance can be shifted toward consistency and away from performance by increasingthe number of strict operations submitted to the system, and vice versa. Future work inempirical evaluation of ESDS is discussed in Section 6.4.6.1 Future Optimizations: Multipart TimestampsAlthough the prev sets used by ESDS to identify dependencies between operations are veryintuitive from the point of view of the ESDS developer, they do not give the user of adata service based on ESDS a manageable way of specifying those dependencies. Users ofa practical ESDS-based system are not aware of operation identi�ers and could not specifylong dependency arrays. Furthermore, prev sets are memory-ine�cient. A prev set mayinclude any operations that have been previously submitted to the system, and therefore theupper bound on the size of prev sets grows linearly with the number of operations submittedto the system. As discussed in Section 4.3.1, the system is not able to take advantage ofstabilization of old operations and discard their identi�ers because the identi�ers may laterappear in a new operation's prev set.The goal of the multipart timestamp optimization is to remove the ine�ciencies thatresult from using prev sets. This optimization utilizes the multipart timestamp techniquein place of prev sets to keep track of system dependencies. The approach is similar to thetimestamp-based implementation in [18]. 61



6.2 Dealing with Unreliable ChannelsExplicit sequencing of gossip messages combined with retransmission and removal of dupli-cates is needed to make the incremental gossip optimization work with unreliable channelsthat allow message losses, duplicate messages, and out of order delivery.6.3 Formally De�ning ESDSImpl BehaviorsThe goal of this project was to create a faithful implementation of ESDSAlg and its deriva-tives, but it remains to be shown that ESDSImpl does in fact implement ESDSAlg. Moreambitiously, it would be interesting to develop a framework for showing that a practical im-plementation, treated as a mathematical object, correctly implements a formal speci�cationof an abstract algorithm.6.4 Future Empirical InvestigationThe empirical results presented in Chapter 5 cannot answer whether it is possible to createan implementation of ESDS the can be e�ectively used as a practical data service. Thenext step toward answering this question is to create a complete and useful distributeddata service based on the ESDS algorithm and run it with real-world users.Acknowledgments: I thank Alex Shvartsman for overseeing all phases of this project andgiving his support and encouragement and Nancy Lynch for suggesting the topic. I alsothank Victor Luchangco for valuable suggestions.I presented parts of this work at a TDS seminar. I am grateful to the members of theTDS group for their feedback that helped me improve the quality of this thesis.62
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