A Simulator for the IOA Language
by
Anna E. Chefter

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degrees of

Master of Engineering
and
Bachelor of Science in Computer Science and Engineering
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1998
(© Massachusetts Institute of Technology 1998. All rights reserved.

Author ..
Department of Electrical Engineering and Computer Science
May 22, 1998

Certified Dyt
Stephen J. Garland

Principal Research Scientist

Thesis Supervisor

Certified Dy . ..o
Nancy A. Lynch

Cecil H. Green Professor Of Computer Science and Engineering
Thesis Supervisor

Accepted by ...
Arthur C. Smith
Chairman, Department Committee on Graduate Students

A Simulator for the IOA Language
by
Anna E. Chefter

Submitted to the Department of Electrical Engineering and
Computer Science
on May 22, 1998, in partial fulfillment of the
requirements for the degrees of
Master of Engineering
and
Bachelor of Science in Computer Science and Engineering

Abstract

With current advances in networking, distributed computing is becoming more com-
monplace. Distributed systems are hard to design and reason about, because dis-
tributed actions can exhibit arbitrary interleaving. In order to make it easier to
design and analyze distributed systems, Nancy Lynch and her students have devel-
oped a formal mathematical model, the input/output (I/O) automaton model, for
describing asynchronous concurrent systems. Based on the I/O automaton model,
a new programming language, the IOA language, together with a suite of tools for
testing, verifying, and analyzing distributed algorithms is being developed at MIT.

The topic of this thesis is a simulator for the IOA language. Simulation allows one
to test and debug algorithms, and it can provide insight that is helpful in understand-
ing algorithms and in constructing correctness proofs for them. The simulator can be
used to study the performance of an algorithm under varying conditions. Other con-
tributions of this thesis are the design of an intermediate language that can be used
by other IOA tools and the development of a tool that transforms an IOA program
into the intermediate representation.

Thesis Supervisor: Stephen J. Garland
Title: Principal Research Scientist

Thesis Supervisor: Nancy A. Lynch
Title: Cecil H. Green Professor Of Computer Science and Engineering

Acknowledgments

I could not have asked for better research advisors than Steve Garland and Nancy
Lynch. The IOA system is the result of their vision of the way distributed computing
should be done. I would like to thank them for sharing their insights and perspec-
tive, and for providing direction and encouragement. Nancy’s rigor and attention to
detail and Steve’s desire to spend hours discussing and coding designs with me were
invaluable.

I would like to thank my officemate, David Evans, for many useful technical
discussions as well as interesting diversions; Ulana Legedza for her helpful suggestions
for implementing a simulator; and David Wetherall, a Java guru, who never failed to
answer the most obscure questions about Java programming, debugging, and profiling.
I would like to thank Professor John Guttag and other members of the SDS group at
MIT for making MIT an enjoyable and fun place to do research.

I would like to thank the MIT UROP program for the opportunity to start doing
research while still an undergraduate student; I benefitted from the program enor-
mously! The research was also supported by NSF Grant CCR-9504248 for Automated
Reasoning in Software Engineering.

A lot of my education at MIT came from being with and keeping up with my
friends Pat LoPresti, Kate Dolginova, Mat Hostetter, and Adam Wagman. I would
like to thank them for their emotional and technical support throughout the course

of my stay at MIT.

Contents

Introduction

1.1 Thesis Overview
1.2 Background
1.3 TOA System
1.4 Design Goals

The Input/Output Automaton Model

21 I/OAutomata.
2.2 Composition
2.3 Simulation Relations o0
2.4 Alternative Models

The IOA Language

3.1 Overviewo
3.2 Structure of IOA Programs.
3.3 Example of a Leader Election Algorithm
3.4 TOA Terminology
Simulator

4.1 Overview
4.2 Assumptions
4.3 Determinatorso
4.4 Using the Simulator. o

10
15

18
19
20
22
22

24
24
25
27
32

4.5 Example of Simulating a Leader Election Algorithm
4.6 Performance Analysis oo

4.7 Related Work

5 Implementation
5.1 IOA Tools
5.2 TOA Front End
5.2.1 Term Expansion,
5.2.2 Composition Expansion
5.3 Intermediate Language L.
5.4 Implementation of the Simulator.
5.4.1 Schedulers o
0.42 DataTypes

6 Composer
6.1 Signature of Automaton AExpanded
6.1.1 Output and Internal Actions of Automaton AExpanded
6.1.2 Input Actions of Automaton AExpanded
6.2 States of Automaton AExpanded
6.3 Transitions of Automaton AExpanded

6.4 Tasks of Automaton AExpanded

7 Future Work
7.1 Design Extensionso

7.2 Implementation Extensions
A BNF Grammar for Intermediate Language

B BNF Grammar for Determinator

60
60
61
62
63
63
66
69
70

73
7
76
76
77
79
82

84
84
85

89

93

List of Figures

1-1 IOA system architecture, 12
1-2 TOA design process« o o i 13
1-3 TOA design using successive refinement 16
3-1 TOA description of an adder 26
3-2 Aringof 4 processes 28
3-3 IOA specification of election process 29
3-4 LSL specification for finite ring of processes 30
3-5 TOA description for a reliable communication channel 30
3-6 IOA specification of the LCR algorithm 31
3-7 IOA specification of an invariant for the states of automaton LCR . . . 32
3-8 Dispatching on parameter type 33
4-1 Eliminating existential quantifier in transition definition. 39
4-2 Eliminating universal quantifier in the effect clause 40
4-3 Example of nondeterministic choice of initial value for state variable . 41
4-4 Determinator for the Choice automaton 41
4-5 Determinator for the Adder automaton 43
4-6 Using for variable in determinator specification 43
4-7 Using RAND in a determinator for Adder 44
4-8 Closing the Adder automaton using composition 45
4-9 Determinator for AdderClosed automaton 45
4-10 Numbering several transition definitions 47
4-11 Using the USER function in a determinator 48

4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23

5-1
5-2
5-3

6-1
6-2
6-3
6-4
6-5
6-6

7-1

A sample execution run with user interaction. 48

Specifying weights for a randomized scheduler 49
Specifying time estimates Lo 49
A sample execution run of automaton Adder ol
Modified IOA specification of election process 52
Modified IOA specification of channel automaton 53
IOA specification for LCR algorithm using three processes 53
IOA specification of invariant for states of automaton LCR3 54
Determinator for automaton LCR3 54
A sample execution run of automaton LCR3 55
Determinator with time estimates for automaton LCR3 26
A sample execution run of automaton LCR3 using time-based scheduling 57

Intermediate representation of automaton Adder 65
Intermediate representation of automaton LCR3 67
Pseudocode for simulator’s main loop 68
General input to composer 74
Example of instantiation of type parameters 76
Example of signature of automaton AExpanded 77
Input transition for composite automaton L. 79
Output transition for composite automaton 80
Examples of tasks of automaton AExpanded 83
Rewriting transitions to eliminate term actuals 88

Chapter 1

Introduction

Distributed systems are difficult to design and verify because they must cope with
arbitrary interleaving of processor steps. Formal modeling has been applied to rea-
son about distributed algorithms, state problem specifications, describe algorithms
precisely, and prove correctness. The input/output automaton model, developed by
Nancy Lynch and Mark Tuttle [20], is a formal mathematical model for describing
asynchronous concurrent systems. Recently, Stephen Garland and Nancy Lynch have
developed a formal language for I/O automata, IOA, which enables the construction
of software tools to support the design and analysis of distributed systems.

It is important to have tools for simulating distributed algorithms. First, since
formal proofs of correctness are often long, hard, and tedious to construct and read,
simulation and testing can help reveal errors in algorithms quickly and easily, be-
fore delving into correctness proofs. Second, constructing a correctness proof for an
algorithm requires intuition of how the algorithm works, which can be obtained by
observing its behavior. Third, a better understanding of an algorithm’s behavior can
guide improvement of the algorithm. Fourth, a simulator facilitates the study of the
algorithm performance under varying conditions.

In this thesis, we present the design for a simulator for the IOA language and de-
scribe its construction and use. Another contribution of this thesis is the development

of front end tools for the IOA system.

1.1 Thesis Overview

This thesis is organized as follows. In Chapter 1, we give an introduction to the
IOA language and toolset, a system that provides support for mathematics-based
distributed programming, and we outline the design goals of the IOA system. In
Chapter 2, we review the underlying theoretical model of the IOA system, the in-
put/output automaton model. Chapter 3 introduces the IOA language for describing
distributed algorithms as I/O automata and gives examples of IOA specifications of
distributed algorithms. The main body of the thesis is Chapter 4, where we describe
the usage and give sample runs of the IOA simulator; we end the chapter with a
comparison of the simulator to previous research. In Chapter 5, we discuss the im-
plementation of the IOA system and the simulator. Chapter 6 contains a detailed
description of a composition transformation, an IOA front-end tool developed by the
author. In Chapter 7, we evaluate the design and implementation of the simulator

and discuss possibilities for future work.

1.2 Background

The use of computers is undergoing a revolution, leading to widespread use of dis-
tributed computing. Until the 1980s, computers were large and expensive, and they
operated largely independently of each other. Two major advances in technology
began to change that situation. The first was the development of cheap and pow-
erful microprocessors that had computing power comparable to that of mainframe
computers. The second was the proliferation of local area networks (LANs), which
allowed hundreds of machines to be connected and information to be transferred at
rates of 10-100 million bits per second.

The net result of these two technologies is that a large number of CPUs can be con-
nected by a high-speed network to form a distributed system, in contrast with previous
centralized systems consisting of a single CPU, memory, and peripherals. Tanen-

baum [25] describes the advantages of distributed systems over centralized ones. He

argues that distributed systems are more economical (have higher price/performance
ratios), faster (have more total computing power), more manageable (because com-
puting power can be added in small increments), and more reliable (because if one
machine crashes the system as a whole can still survive) than centralized systems.
Currently, distributed systems are finding applications in such areas as telecommuni-
cation, distributed information processing, scientific computing, and real-time process
control.

Distributed systems need radically different software than do centralized systems.
Unlike sequential algorithms, distributed algorithms must cope with arbitrary inter-
leaving of processor steps. Since a program’s execution can unfold nondeterminis-
tically, designing and reasoning about distributed algorithms is inherently difficult.
Formal modeling has been applied to reason about distributed algorithms.

The input/output (I/O) automaton model was developed by Nancy Lynch and
Mark Tuttle [20] to describe and reason formally about distributed and real-time
systems. Professor Lynch’s book Distributed Algorithms [19] formulates many algo-
rithms in terms of I/O automata and contains proofs of complexity, reliability, safety
and liveness properties of these algorithms. Because of the complicated settings in
which distributed algorithms run, the design and verification of these algorithms can
be an extremely difficult task. Hence, the model supports a rich set of techniques
for proving correctness and other desirable properties of distributed algorithms, in-
cluding invariant assertion methods, forward and backward simulation methods, and
temporal logic methods. Some of the proofs of invariants, simulation relations, and

temporal properties have been carried out using computer-aided verification [24].

1.3 IOA System

The I/O automaton model provides a solid foundation for the development of dis-
tributed algorithms, as shown in [19]. The IOA system is based on the I/O automa-
ton model; the system permits distributed algorithm specification, design, debugging,

analysis, and correctness proofs within a single framework. Such integration not only

10

saves one from translating between different models and languages, but also allows
facts discovered during simulation and debugging to be more easily incorporated into
correctness proofs, as well as properties used in proofs to be checked mechanically
during simulation.

The system provides a language for expressing algorithms as input/output au-
tomata, together with a suite of tools that support the production of high-quality
distributed software. The IOA language is a programming language for distributed
systems that is suitable for both verification and simulation. The toolset provides
a variety of validation methods such as theorem proving, model checking, and sim-
ulation, which can be used to ensure the correctness of an algorithm. The toolset
also supports a development process that starts with a high-level specification, refines
that specification by successively adding more details, and finally generates efficient
distributed programs, thereby providing a formal connection between verified designs
and the corresponding final code.

The high level structure of the IOA system is presented in Figure 1-1. The IOA
system is two-tiered. The first tier consists of the IOA language and its front end
tools: a parser, a syntactic and semantic checker, prettyprinters, and transformation
tools. The second tier consists of the intermediate language and a set of back end
tools: a simulator, interfaces to theorem provers and model checkers, and a code
generator.

The IOA system contains a variety of analytical tools ranging from light-weight
tools, which check the syntax and semantics of an automaton description; to medium-
weight tools, which simulate actions of an automaton or provide interfaces to model
checkers; and to heavier weight tools, which provide support for proving properties
of automata using a theorem prover. Figures 1-2 and 1-3 show how we expect the
IOA system to be used in designing distributed algorithms. First, the user designs an
algorithm and translates it into IOA specifications. He/she then uses one or more of
the verification tools to test, debug, and analyze his/her design. In this process, the
user may discover a need to redesign the specifications and properties of the system

(see Figure 1-2).

11

C IOA Language >

I0A front end

Gntermedia‘ce Languag}

Simulator Larch Prover Model Checker Code Generator

Figure 1-1: TIOA system architecture

12

Develop description of distributed

system and its properties

Formalize descriptions in IOA

Y

A

Use Verification Tools

Y

Generate Code

Figure 1-2: TOA design process

13

The toolset supports a development process called successive refinement. This
process is depicted in Figure 1-3. The user first develops an abstract description of
a distributed system and its properties. As shown in Figure 1-2, the user formalizes
the description in the IOA language, and uses verification tools to check its desired
properties. The user then models the architecture of the system using IOA, and
proves that this architecture is faithful to the abstract specification by describing a
simulation relation (see Section 2.3) between the two levels of description. In the
proofs, the user may need to supply information about the correspondence between
steps of the high-level and low-level descriptions. The toolset helps users define
step correspondences by modifying code or using a special language for defining step
correspondences. Continuing in this fashion, the programmer specifies progressively
more detailed designs. Once the user reaches low enough level and is confident in the
design and correctness of the system, the code generator can be used to translate the
IOA specifications into Java or C++ programs.

The IOA system provides three complementary approaches to testing and verifying

distributed algorithms:

1. Simulation
The simulator allows the user to observe the run-time behavior of an IOA pro-
gram; it can be used for debugging and testing the correctness and performance

of a distributed algorithm.

2. Model checking
The IOA system will provide an interface to the SPIN [15] model checker. Model
checkers provide a different approach to validating a distributed algorithm. A
model checker performs an exhaustive test of an automaton’s properties in all
reachable states. Model checkers resolve nondeterminism present in IOA speci-
fications by exploring all possible options. Since a model checker automatically
explores all reachable states, it is feasible only for systems that do not have

many states.

14

3. Theorem proving
An TOA interface to the Larch Prover (LP) [7] can be used to prove properties
and invariants of IOA specifications, to prove simulation relations between two
specifications, and to prove validity properties for user input and facts about
the data types manipulated by the programs. The theorem prover interface
submits axioms and goals, translated into the Larch Shared Language (LSL),
to LP. Using algebraic substitution and other logical deductions along with user

guidance, LP tries to prove that the goals follow from the axioms.

The combination of these three tools with the code generator provides the designer
of a distributed system or algorithm with a solid development framework. The toolset
is capable of producing efficient distributed programs whose correctness has been
fully proved subject to stated assumptions about the environment of the system.
The generated code can use specified externally-provided services and underlying
hardware. For example, an IOA channel automaton is implemented by externally-
provided service such as TCP [21] or MPI [12]. The toolset assumes that built-in and
user-supplied sequential code for data type operations is correct; it does not verify

this code, though such verification is within the scope of today’s proof technology.

1.4 Design Goals

In designing any set of software tools, it is important to formulate and adhere to a
set of design principles. The philosophy behind the IOA system is described by the

following design principles.

1. The language and tools must be faithful to the formally defined mathematical
model. For example, it only makes sense to check simulated executions of an
algorithm against the properties asserted by a theorem prover if the semantics
of the simulation match the semantics of the proof. Because successful testing
alone is not sufficient cause to believe that an algorithm is correct, one should

still construct a correctness proof as part of the algorithm development cycle.

15

Y

Y

Develop Develop
high-level low-level
description description

Verify

simulation

relation

-

Develop
low-level
description

Y

Generate Code

Figure 1-3: IOA design using successive refinement

Therefore, it is important that the semantics of the simulation language be

consistent with the formal model of the proof.

To meet this goal, as much of the design, verification, and analysis as possible
should be done within the IOA language, and therefore in terms of the underly-
ing mathematical model. Only at the latest possible moment should a transition

to physical code be made.

. The language and tools should be natural for expressing a large class of dis-
tributed algorithms. However, the main emphasis should be on simplicity and
uniformity: complicated language constructs should be avoided in the interest

of being able to apply powerful tools to simple statements.

. The tools should not depend too much on each other; their design spaces should
be orthogonal. This goal is essential for the maintenance and scalability of
the system. It allows one to use only a subset of the tools, and facilitates

incorporating additional testing and verifying tools into the system.

. The language and tools should encourage experimentation. In general, it should
be easy to modify the algorithm being studied and to use the tools. Often a
researcher does not know exactly where to look for new insights about an al-
gorithm being developed, but discovers them through exploration and experi-
mentation. It is important that the system facilitate this process. For example,
the IOA language should support modular design and decomposition, so that
the user can easily change a single component of an algorithm. Furthermore, to
facilitate experimentation, the time between modifying an algorithm and being

able to use a verifying tool should be short.

17

Chapter 2

The Input/Output Automaton
Model

The Input/Output (I/O) automaton model, developed by Lynch and Tuttle [20],
models components of asynchronous concurrent systems as state transition systems.
The I/O automaton model is general and simple, and its fundamental notions are
mathematical. The execution of an automaton is defined by traces of its external be-
havior. The model supports techniques for modular design and analysis of distributed
systems, including automata composition based on synchronized external actions and
description of levels of abstraction based on trace inclusion. The model also supports
a rich set of proof methods, including invariant assertions, forward and backward sim-
ulation and compositional methods. More details, motivation, examples, and results
can be found in [20] and [19].

Lynch’s book Distributed Algorithms [19] describes many algorithms in terms of
[/O automata and contains many proofs of various properties of these algorithms
and of impossibility results. Careful proofs using the I/O automaton model have
been constructed using a variety of techniques for a wide range of algorithms (for
more examples, see [18] and [23]). The proofs have been applied to verifying practical
distributed systems such as group communication services [6] and distributed shared
memory services [5]. (While verifying [5] using the I/O automaton model, a significant

error was found and repaired.) In this chapter we present an overview of the I/O

18

automaton model adapted from Chapter 8 of [19]. In the course of presenting the
model we highlight those properties that have been represented in the IOA language

and the simulator.

2.1 I/0O Automata

[/O automata are best suited for modeling systems whose components operate asyn-
chronously. Each system component is modeled by an I/O automaton, which is
a nondeterministic (possibly infinite state) automaton with an action labeling each
transition. An automaton’s actions are classified as input, output, or internal. An
automaton can restrict when it will perform an output or internal action, but it is
unable to block the performance of an input action. An automaton is said to be closed
if it has no input actions; closed systems do not interact with their environment.

An automaton’s signature Sis a set of actions partitioned into three disjoint sets:
the input actions, in(S), the output actions, out(S), and the internal actions, int(S).
The external actions, ext(S), are the input and output actions in(S) U out(S); the
locally controlled actions, local(S), are out(S) U int(S). All actions in S are denoted
by acts(S).

Formally, an 1/0 automaton A consists of five components:

e sig(A), a signature of A

e states(A), a (possibly infinite) set of states

e start(A), a nonempty subset of states(A) known as initial states

e trans(A), a state-transition relation, such that
trans(A) C states(A) X acts(sig(A)) x states(A)

and for every state s and every input action 7, there is a transition (s, m,s’) €
trans(A). Informally, trans(A) specifies all transitions that can occur for every

state and every action.

19

e tasks(A), a task partition, which is an equivalence relation on local(sig(A)).

An element (s,m,s') of trans(A) is called a transition or step of A. If (s,m,s’)
is a step of A, then 7 is said to be enabled at state s. Since every input action is
enabled at every state, every automaton is input-enabled (i.e., an automaton is unable
to block its inputs). The equivalence relation tasks(A) is used in the definition of a
fair computation. Each class of the partition may be thought of as a separate process.

[/O automata are often described in a precondition-effect style. This style groups
together all the transitions (s, 7, s') that involve each particular type of action into a
single piece of code. The code also specifies the preconditions under which the action
is permitted to occur, as a predicate on the components of state s. The code specifies
the effects that occur as a result of applying 7 to s. The code in the effects clause
and the precondition predicate are executed as one atomic operation. We will say
more about I/O code and give examples of 1/O automata specifications in the next
chapter.

An execution of automaton A is a finite sequence sg, 71, S1, ..., T, S, Or an infinite
sequence sg, Ty, $1, o, ... of alternating states and actions of A such that sy € start(A)
and (s;, 7, s;11) is a step of A for every i. A state is said to be reachable in A if it is
the final state of a finite execution of A. The trace of an execution a of A, denoted

trace(w), is the subsequence of « consisting of all its external actions.

2.2 Composition

Many interesting I/O automata are defined using the composition operation, which
can be used to describe an automaton in terms of individual system components.
As a special case, a system or an algorithm described by an I/O automaton can be
composed with another automaton that represents an I/O automaton model of the
system’s environment.

An automaton A can be defined as a composition of a number of individual au-
tomata A, As,...,A,. There are two main requirements on the automata being

composed:

20

1. The set of internal actions of A; is disjoint from the set of all actions of A;, for

all j £4,1<4,j <n.
2. The sets of output actions out(A;), out(As), ..., out(4,) are mutually disjoint.

We call automata Aj, Ay, ..., A, compatible if their signatures satisfy conditions 1

and 2. The composite automaton A has the signature:
o int(A) = U<y, int(4;)
o out(A) = Uj<icy, out(4;)
o in(A) = Ui<icy in(A;) — out(A).

The set of states of the composition automaton is the Cartesian product of the

sets of states of the component automata.
o states(A) = Ili<i<, states(A;).

The transitions of a composite automaton are obtained by applying the following
rule: if a particular action 7 is in the signature of more than one of the composed

automata, then all these automata participate simultaneously in steps involving 7.

e trans(A) is the set of triples (s,m,s’) such that, for all ¢ € {1,...,n}, if 7 €

acts(A;), then (s;,m,s}) € trans(A;); otherwise, s; = s/.
The task partition of the composition is the union of the component task partitions.
o tasks(A) = U<, tasks(Ay).

In [19], Lynch defines a composition operation on a countable collections of au-
tomata. We have restated the definition to allow only finite collection of automata
to be composed, since this composition operation is the one supported by the IOA
tools. We will return to this definition in Chapter 6, where we describe the composi-

tion transformation tool of the IOA system front end.

21

2.3 Simulation Relations

The 1I/O automaton model supports levels of abstraction based on trace inclusion.
High-level descriptions of a distributed system as I/O automata model problem re-
quirements; low-level descriptions are closer to the real implementation of the system.
To prove that one automaton implements another, it is enough to define a relationship
between the two automata, showing that for any execution of the low-level automaton
there is a corresponding execution of the higher-level automaton.

Formally, let A and B be two I/O automata with the same external actions.
(A represents the low-level automaton and B represents the high-level automaton.)
Suppose f is a binary relation over states(A) and states(B). Then f is a simulation

relation from A to B provided that the following hold:

1. If s € start(A), then f(s) N start(B) # 0.

2. If s is a reachable state of A, u € f(s) is a reachable state of B, and (s, m,s’) €
trans(A), then there is an execution fragment « of B starting with « and ending

with some u' € f(s") such that trace(a) = trace(r).

The first condition requires that any start state of A have some corresponding start
state of B. The second condition requires that for any step of A and any state of
B corresponding to the initial state of the step, there is a corresponding sequence
of steps of B. In general, this corresponding sequence can consist of none, one, or
more steps of B as long as the correspondence between the states and the external

behavior of the two automata are preserved.

2.4 Alternative Models

The I/O automaton model is only one of a number of formal models that have been
used for reasoning about concurrent systems. A review of alternative models is con-
tained in [20].

Hoare’s Communicating Sequential Processes (CSP) [13] is closely related to the

[/O automaton model. A CSP program consists of a set of processes written as

22

sequential programs. Each program can contain statements that attempt to send
or receive data over channels connected to other processes. The channels are syn-
chronous, i.e., data transfer occurs simultaneously at both ends of the channel, but
only after both the sender and the receiver are at the appropriate points in their
programs. Thus, CSP is not suited for describing systems in which the individual
processes are autonomous, because, unlike [/O automata, a CSP process that is not
prepared to receive data may block a process that is prepared to send data.
Another programming model, UNITY (which stands for Unbounded Nondeter-
ministic Interactive Transformations) [2], uses nondeterministic choice instead of se-
quential control flow. A UNITY program consists of a set of statements that access
a global shared memory. At each step in the (infinite) execution, a statement is se-
lected and executed. Statement schedules are constrained to be fair, meaning that
each statement is executed infinitely often. One may think of each statement as a sep-
arate process, which is given fair turns. Since UNITY programs do not terminate, the
notion of algorithm termination is defined in terms of a fized point in the execution,
after which no statements cause state changes. The UNITY model has a program-
ming logic that is useful for constructing rigorous correctness proofs of algorithms.
To model distributed computation, one declares variables that represent channels and
writes statements for sending and receiving data that update those variables. Since
there is no notion of “input actions” in UNITY, processes must actively read shared
variables in order to become informed of the outputs of other processes. This rules out
synchronous interprocess communication. Modularity is a problem in UNITY, since
the interfaces between program modules use global variables and are not describable

in terms of well-defined sets of actions as in the I/O automaton model.

23

Chapter 3

The IOA Language

This chapter introduces the IOA language and gives examples of IOA programs. The
IOA language is based on the I/O automaton model discussed in the previous chapter.
IOA uses an axiomatic language, the Larch Shared Language (LSL) [14], for defining
abstract data types. Part of the discussion of the IOA language is adopted from the
IOA manual [9]. For a more thorough presentation of the IOA language, the reader
is referred to that document. At the end of this chapter, we discuss a leader election
distributed algorithm, describe this algorithm using the I/O automaton model, and
give its IOA specification. We will present several simulation runs of this algorithm

in the next chapter.

3.1 Overview

IOA is a precise language for describing input/output automata and for stating their
properties. It was developed by Garland and Lynch as an extension and formalization
of the notation used in the Distributed Algorithms book [19] and in [20] and [18]. The
language is based on the formal, mathematical I/O automaton state machine model.
IOA uses the Larch Shared Language [14] to define the semantics of abstract data
types.

Since the I/O automaton model is a reactive system model rather than a sequential

programming model, the IOA language cannot simply be a standard sequential pro-

24

gramming language with some constructs for concurrency and interprocess commu-
nication. Instead, the language must be suitable for both verification and simulation.
Such a language is hard to design, since for verification an axiomatic language with
nondeterministic constructs is preferable, while a deterministic operational language
is easier to simulate and translate into real code. In the current design for IOA, data
types are defined using the axiomatic Larch Shared Language, while IOA specifica-
tion of transition definitions include assignment, conditional, iteration, and choose
operations.

The language supports two main techniques for building distributed systems out
of components. First, the language supports the construction of a system in terms
of smaller systems. This technique conforms to the semantics of the composition
operation of the I/O automaton model described in Section 2.2. Second, the IOA
language supports developing a system design using levels of abstraction. The system
is first described at a high level, capturing the essential ideas of an algorithm, and
then this specification is successively refined. This technique is based on the formal

notion of a simulation relation described in Section 2.3.

3.2 Structure of IOA Programs

In the IOA language, the description of an I/O automaton has four main parts:
the action signature, the states, the transitions, and the tasks of the automaton.
An automaton’s actions are declared in the signature part. States are described
by combinations of values for typed ‘state’ variables. The transitions are given in
precondition-effect style (see Section 2.1). Each transition definition has a precondition
(pre) which describes a condition on the state that should hold before the transition
can be executed, and an effect (eff) which describes how the state changes when the
transition is executed. If pre is not specified, then it is assumed to always evaluate to
true. The eff part of a transition definition can consist of assignment, conditional,
loop, or nondeterministic choice operations. Nondeterminism is useful for generality

in high level algorithm design; it is included in the language in the form of choose

25

operations. An optional task part describes the task partition. If a task partition
is not specified, then it consists of a single task containing all internal and output
actions of the automaton.

Figure 3-1 contains a simple IOA description for an automaton, Adder, which gets
two integers as input and then outputs their sum. The first line declares the name of
the automaton. The signature of the automaton Adder consists of two parameterized
actions: add(i, j) and result(k). The types Int and Bool, representing integer

and boolean types respectively, are built-in types in IOA.

automaton Adder
signature

input add(i, j: Int)

output result(k: Int)
states

value: Int,

ready: Bool := false

transitions
input add(i, j)
eff value := 1 + j;
ready := true

output result(k)
pre k = value A ready
eff ready := false

Figure 3-1: IOA description of an adder

It is possible to place constraints on the values of parameters of an action in the
signature using the keyword where followed by a predicate. Such constraints restrict

the set of actions denoted by the signature. For example, the signature

signature
input add(i, j: Int) where i >0 A j >0

output result(k: Int) where k > 1

could have been used to restrict the values of the input parameters to positive integers
and the value of the output parameter to integers greater than 1.
The automaton Adder has two state variables: value, an integer to hold the

current sum, and ready, a boolean flag that indicates whether the sum has been

26

computed. The initial value of value is arbitrary, since it is not set in the description
of the state variables; ready is initialized to false.

The input action add(i, j) has no precondition (i.e., its precondition always
evaluates to true). Since I/O automata are input-enabled, every input action is
always enabled and has no precondition. The effect of transition add(i, j) sets
value to the sum of i and j and ready to true. The output action result(k) can
occur only when it is enabled, i.e., when ready is set to true and the parameter k
is equal to value. Its effect is to reset ready back to false. A trace of Adder is a

sequence of external actions such as
add(3, 2), result(5), add(1l, 2), add(-1, 1), result(0),

that starts with an add action, and in which every result action is parameterized
by the sum computed by the last add action. Successive result actions must be

separated by one or more add actions.

3.3 Example of a Leader Election Algorithm

In this section we describe a distributed algorithm that solves the leader election prob-
lem in networks with a ring topology. We give an IOA description of the algorithm
as a composition of I/O process and channel automata, and we state an invariant for
the algorithm.

The problem of electing a unique leader process from among the processes in
a network originally arose in the study of local area token ring networks, where a
single token circulates around the network, giving its current owner permission to
initiate communication. Sometimes, however, the token may be lost, and it becomes
necessary to elect the “leader” process that will regenerate the lost token. We consider
the LeLann-Chang-Roberts (LCR) leader election algorithm that solves the problem
in ring networks. We assume that the network digraph G is a ring consisting of
n nodes. Figure 3-2 gives an example of a ring network with 4 processes. The

processes associated with the nodes of G do not know their indices, nor those of their

27

—_

w

Figure 3-2: A ring of 4 processes

neighbors. Instead, processes are distinguished by a unique identifier (uid). In the
LCR algorithm, each process sends its identifier around the ring. When a process
receives an incoming identifier, it compares that identifier with its own uid. If the
incoming uid is greater than its own, then the process passes the identifier on; if it is
equal to its own uid, then the process declares itself a leader. In this algorithm, the
process with the largest uid is elected as the leader, since the largest uid is the only
one that will pass all the way around the ring.

The IOA description of the process automaton is presented in Figure 3-3. Au-
tomaton Process is parameterized by the type I of the process indices and by the
process index i. The assumes clause identifies an auxiliary specification, RingIndex
(Figure 3-4), that imposes restrictions on the type I. This specification is written in
the Larch Shared Language; it requires that there be a ring structure on I induced by
operators first, right, and left, and that the operator uid provide a one-to-one
mapping from indices of type I to uids of type String. The type declaration on the
second line of Figure 3-3 declares Status to be an enumeration of the values waiting,
elected, and announced.

The automaton Process(I, i) has two state variables: pending is a multiset

of Strings, and status has type Status. Initially, pending is set to {uid(i)} and

28

automaton Process(I: type, i: I)
assumes RingIndex(I, String)
type Status = enumeration of waiting, elected, announced
signature
input receive(m: String, const left(i), const i)
output send(m: String, const i, const right(i)),
leader(m: String, const i)
states
pending: Mset[String] := {uid(i)},
status: Status := waiting
transitions
input receive(m, j, i)
eff if m > uid(i) then pending := insert(m, pending)
elseif m = uid(i) then status := elected
fi
output send(m, i, j)
pre m € pending
eff pending := delete(m, pending)
output leader(m, i)
pre status = elected A m = uid(i)
eff status := announced
tasks
{send(m, j, right(j)) for m: String, j: I};
{leader(m, j) for m: String, j: I}

Figure 3-3: IOA specification of election process

status to waiting. The input action receive(m, left(i), i) compares m, the uid
received from the automaton Process (I, left(i)) to the left of Process(I, i) in
the ring, with the uid of the automaton itself. If m is greater than the process’s uid,
then m is inserted into pending and is sent to the next process in the ring. If m is
less than i’s uid, then nothing is done. If m equals to i’s uid, then Process(I, i)
is declared the leader. There are two output actions: send(m, i, right(i)), which
simply sends a message in pending to the automaton Process(right(i)) on the
right in the ring, and leader (m, i), which announces a successful election. The two
kinds of output actions are placed in separate tasks, so that a Process automaton
whose status is elected must eventually perform a leader action.

Automaton Channel, described in Figure 3-5, represents a reliable communication

channel, which neither loses nor reorders messages in transit. The automaton is

29

RingIndex (I, J): trait

introduces
first: — I
left, right: I — I
uid: I — J

asserts with i, j: I
sort I generated by first, right;
3 i (right(i) = first);
right(i) = right(j) & i = j;
left(right(i)) = i;
uid(i) = wid(j) & i = j

Figure 3-4: LSL specification for finite ring of processes

automaton Channel(M, Index: type, i, j: Index)
signature
input send(m: M, const i, const j)
output receive(m: M, const i, const j)
states
buffer: Seq[M] := {}
transitions
input send(m, i, j)
eff buffer := buffer + m
output receive(m, i, j)
pre buffer # {} A m = head(buffer)
eff buffer := tail(buffer)

Figure 3-5: IOA description for a reliable communication channel

30

parameterized by a type M of messages, by a type Index of process indices, and by
two indices i and j, which represent indices of processes that use the channel. The
state of automaton Channel consists of a sequence of messages, buffer, which is
initially empty. The input action send(m, i, j) has the effect of appending m to
buffer. The output action receive(m, i, j) is enabled when buffer is not empty
and starts with message m. The effect of this action is to remove the head element

from buffer.

automaton LCR(I: type)
assumes RingIndex(I, String)
compose
Process(type I, i) for i: I;
Channel(type String, type I, i, right(i)) for i: I

Figure 3-6: IOA specification of the LCR algorithm

The full LCR leader election algorithm is described in Figure 3-6 as a composition
of a set of process automata connected in a ring by reliable communication channels.
The assumes statement on the first line repeats the assumption about the type I of
process indices in Figure 3-3. The list of automata following the keyword compose
describe the composition. This composition consists of one Process automaton and
one Channel automaton for each element of type I. The type parameters M and Index
for the Channel automata (Figure 3-5) are instantiated by the actual types String
and I of messages and process indices, and the parameters i and j are instantiated by
the values i and right (i), so that each channel connects a process to its right neigh-
bor. In the composition, the input actions receive(m, left(i), i) of the automa-
ton Process(I, i) are identified with the output actions receive(m, left(i), i)
of the automaton Channel(String, I, left(i), i). Likewise, the input actions
send(m, i, right(i)) of the automaton Channel(String, I, i, right(i)) are
identified with the output actions of the automaton Process(I, i). Since all input
actions of the channel and process subautomata are identified with output actions of
other subautomata, the composite automaton contains only output actions.

Figure 3-7 presents an IOA specification of an invariant for the LCR automaton.

31

invariant of LCR:
Vi: IV j: I (Process(type I, i).status = elected
A Process(type I, j).status = elected = i = j)

Figure 3-7: IOA specification of an invariant for the states of automaton LCR

The invariant states that at most one process is ever elected as the leader.

3.4 10A Terminology

In this section we collect some definitions used to describe the parts of IOA specifi-
cations of automata.

Definition 1 A primitive I0OA automaton description is an [OA program without
the compose operator.

An example of a primitive IOA automaton description is the IOA specification for
the Adder automaton in Section 3.2.

Definition 2 An action headeris an entry in one of the three (input, output, internal)
action lists in the signature of an automaton.

An action can have input, output, or internal action type, depending on whether

the action is in the input, output, or internal action list of the automaton’s signature.
Definition 3 An action pattern is a name and a sequence of types for the formal
parameters of an action.
Example: input blah(i:Int, s:String) has action pattern blah(Int, String).
Definition 4 Two action headers, a; € sig(A;) and ay € sig(Ay), match iff their
patterns match, i.e., iff a; and ay have the same names, and the same number, types,
and order of the formal parameters.

IOA requires that (see the semantic checks section of the IOA manual [9]):
1. Each automaton has at most one action pattern with a particular name.

2. Each action pattern occurs at most once in each of the input/output/internal

action lists of the signature of an automaton. Thus, an action pattern can occur

32

at most three times in a signature definition — once in each action list.

Thus, the following signature is illegal

signature

input name(i: Int) where P1(i)

output name(s: String) where P2(s),

because it defines two different action patterns, name (Int) and name (String), with
the same name.

If the user wants to have a formal parameter that can be either of type Int or of
type String, the user must define the corresponding union type. Figure 3-8 provides

an example of using a union type for Int and String.

type IntString = union of int: Int, str: String
signature
output name(x: IntString)
where if tag(x) = int then P1(x.int) else P2(x.str)

states
n: Int
s: String

transitions

output name(x: IntString) where tag(x) = int
pre x.int = n
eff ...

output name(x: IntString) where tag(x) = str
pre x.str = s
eff ...

Figure 3-8: Dispatching on parameter type

The same action pattern can occur in different action types, but the user has the
proof obligation that the where clauses for these action types do not overlap. For
example, the following signature is legal

signature

input name(i:Int) where P(i)

output name(i:Int) where Q(i),

provided the predicate P(i) A Q(i) is false for every i.

33

Chapter 4

Simulator

The simulator runs selected executions of an [OA program on a single machine. The
simulator checks proposed invariants in the selected executions, generates logs of
execution traces, and displays state information upon the user’s request.

In order to simulate an I/O automaton, the user has to resolve all nondetermin-
ism present in its specification. IOA specifications can contain two kinds of nonde-
terminism: ezplicit nondeterminism introduced by choose statements and choose
parameters, and implicit nondeterminism introduced when more than one transition
is enabled at a particular state. The user selects which executions are run by writing
stmulation configurations, known as determinators, for the automaton. The deter-
minator mechanism provides three general resolution techniques for nondeterminism:
specifying sets of deterministic alternatives to resolve nondeterministic choices, pick-
ing random elements from sets of choices, and prompting the user for input at a
point of computation when nondeterminism arises. The simulator provides a choice
of scheduling options to resolve implicit nondeterminism, when more than one action
is selected for execution.

An important part of the simulator design is the separation of the IOA definition
of an automaton and its determinators. As the result of this decision, the user can
experiment with a given algorithm in a variety of different simulations.

We start this chapter with an overview of the simulator. In Section 4.2, we state

the assumptions on the automata that can be simulated, since the simulator is not

34

capable of simulating an arbitrary IOA program. Section 4.3 discusses the determi-
nator, the mechanism that helps the user of the simulator resolve the nondeterminism
of IOA programs, and gives examples of the determinator’s use. Section 4.4 describes
the usage of the simulator and gives examples of executions of a simple automaton. In
Section 4.5, we restate the LCR algorithm in a form acceptable to the simulator and
present several determinators for it. We give two sample executions for the algorithm
that were obtained using different scheduling policies and analyze the performance
of the simulator. We conclude the chapter by comparing the simulator to previous

related projects.

4.1 Overview

The biggest problem faced by a simulator of distributed algorithms is resolving non-
determinism. There are several sources of nondeterminism in the IOA language; we
distinguish two. FExplicit nondeterminism arises from choose statements in the effect
clauses of transition definitions, choose parameters of transition definitions, choose
expressions in the initialization of the state variables, and in non-initialized variables
with and without so that constraints. Implicit nondeterminism involves the schedul-
ing of enabled actions. If more than one action is enabled in a particular state, then
the simulator has to decide which transition, with what parameter values, to schedule
for execution.

The input to the simulator consists of the IOA description of an automaton and
a determinator for the automaton. The determinator resolves all nondeterminism in
the specification for the automaton, including how the automaton’s transitions are
scheduled and how values are chosen for choose operators and parameters. A simple
language for the determinator provides the user of the simulator with a mechanism
for expressing algorithm-specific scheduling rules, randomization over a set of possible
parameter values, and halting the simulation for the user’s input at a specified point
of simulation. The determinator language is described in detail in Section 4.3.

The IOA specification of an automaton together with a determinator for it specifies

35

a set of deterministic executions, which is parameterized by randomization parameters
for the simulation. The IOA definition of an automaton and the determinator for it
are written separately; thus, users can experiment with a given algorithm in a variety
of different simulation configurations.

At every step of the simulation, the set of possible transitions and their parameter
values is determined by the specifications given by the user in the determinator. If
more than one transition is specified in a given state, then the scheduler picks one
of them according to the scheduling policy selected by the user before the simulation

began. The simulator provides the user with several scheduling options.

4.2 Assumptions

The simulator is not capable of simulating an arbitrary IOA program. The following
are the restrictions imposed on the IOA programs being simulated (see Section 7.2

for a discussion of removing or relaxing some of these assumptions).

1. I0A Language Restrictions

e The automaton must be well formed; for example, constraints on transition
parameters and state variables should be satisfied, and the components of

a composite automaton should be compatible.
2. Simulator Restrictions

e All quantified variables must be bounded, that is, have a finite set of

possible values.

e The simulator must have an implementation for every operator used in the
definition of the automaton. The simulator has a library of implementa-
tions for the data types and operators built into the IOA language. If the
IOA specification of the automaton uses a non-built-in data type, then the
user must provide an implementation for this data type, as described in
Section 5.4.2. In this case, the user is responsible for the correctness of the

code.

36

e The number of component automata must be finite. Thus the following is

not a valid input to the simulator (but is a valid IOA specification):

automaton A

compose B(i) for i:Int.
3. Restrictions of the Current Implementation

e The use of quantified variables in the IOA description of the automaton is
not allowed. The user must rewrite the program to eliminate quantifiers.
For example, some existential quantifiers used in transition definitions can
be translated using choose parameters, as shown on Figure 4-1. Some
universal quantifiers in the effect clause of transition definitions can be
translated using the for operator, as shown on Figure 4-2. In this example,

P is a predicate testing an element of enumeration type Color.

e Only variables and simple constants are allowed as parameters to the tran-
sition definitions of the automaton. It is possible to translate a transition
with an expression as a parameter to one that has only variables as its
parameters using a choose parameter. This transformation is described

in Section 7.2 in Figure 7-1.

e The parameterized components of composite automata cannot be instan-
tiated with constrained variables. This restriction is imposed because of
a difficulty in naming states of the resulting automaton (see Section 6.2).
Thus, the simulator does not accept the following examples.

automaton A

compose B(i) for i: Int where 1 < i A i < 3.

type Color = enumeration of white, red, black
automaton C

compose D(i) for i: Color.

Instead, these examples must be rewritten as follows:

37

automaton A

compose B(1); B(2); B(3).

type Color = enumeration of white, red, black
automaton C

compose D(white); D(red); D(black).

e Only one automaton can be simulated at a time. Simulating several au-
tomata could be useful when the user wants to test a simulation relation
(see Section 2.3). We give suggestions on how to implement this kind of

coupled simulation in Section 7.2.

e The user must rewrite the specification of the automaton so that all choose
variables have different names. This is necessary because the determinator

uses a global naming scheme for all choose variables of an automaton.

The simulator has a predefined initialization value for every built-in type. These
values are used for every non-initialized state variable; therefore, the user does not
have to resolve the nondeterminism involved in the initialization of state variables.
The user can also specify a set of initial values for a state variable, and the simulator

will pick one of the specified values at random.

4.3 Determinators

As mentioned in Section 4.1, the simulator needs to resolve all nondeterminism present
in IOA specifications. An I/O automaton to be simulated is transformed using a
determinator into a particular deterministic version of the automaton.

The language for describing determinators is designed so that the user can assist
the simulator in resolving nondeterminism present in the specification of automata.
It provides a mechanism for expressing algorithm-specific scheduling rules, such as “if
any automaton has more than fifty messages in its buffer, then give it priority to take

a step.” It also enables users to specify which transition definitions and parameter

38

automaton Square

signature

output result(i: Int)
states

done: Bool := false
transitions

output result(i)
pre d k: Int i = kxk
eff done := true

automaton Square

signature

output result(i: Int)
states

done: Bool := false
transitions

output result(i)

choose k: Int where i = kx*k
pre i = kxk

eff done := true

Figure 4-1: Eliminating existential quantifier in transition definition

values should be chosen at each state. Determinators are written separately from
automaton specifications.

A determinator has two parts. The first resolves all choose operators and choose
parameters in the automaton’s definition'; it is introduced by the keyword choose.
The second resolves nondeterminism in action scheduling; it is introduced by the
keyword transitions. Appendix B gives a BNF grammar for the determinator
language. In the rest of this section we argue for the necessity of the two parts of the
determinator language, give examples of each part, and describe their usage.

In the choose section, the user must resolve every choose parameter and every
choose operator used in the specification of the automaton by specifying a finite set
of possibilities. The user must also rewrite the specification of the automaton so
that all choose variables have different names. This is necessary because a global

naming scheme is used in the choose section of the determinator. When the simulator

!The implementation of this part of the determinator is not complete yet.

39

automaton TestColor
type Color = enumeration of white, red, black

signature

output report(b: Bool)
states

done: Bool := false
transitions

output report(b)
pre b = done
eff done := V ¢: Color P(c)

automaton TestColor
type Color = enumeration of white, red, black

signature

output report(b: Bool)
states

done: Bool := false
transitions

output report(b)
pre b = done
eff done := true
for c: Color in Color do
done := done A P(c)
od

Figure 4-2: Eliminating universal quantifier in the effect clause

40

encounters a choose variable, it picks a random element in the finite multiset of values
for this variable specified in the choose section of the determinator. Currently, the
simulator uses a uniform distribution for selecting this random element; if the user
wants value v; to be selected twice as frequently as value vy, then the number of
occurrences of vy in the multiset should be twice that of v,.

Consider the automaton Choice defined in Figure 4-3. The state variable num
is initialized nondeterministically to some value of the variable n that satisfies the
predicate 1 < n A n < 3, that is, to one of the three values 1, 2, or 3. Figure 4-
4 contains a determinator for the automaton Choice. The choose section in the
determinator shown in Figure 4-4 instructs the simulator to pick this value in the set
{1, 2, 3}. The transitions section specifies scheduling information and is described

later in this section.

automaton Choice

signature
output result(i: Int)
states
num: Int := choose n where 1 < n A n < 3,
done: Bool := false
transitions
output result(i)
pre —done A i = num
eff done := true

Figure 4-3: Example of nondeterministic choice of initial value for state variable

simulate Choice
choose n: Int in {1, 2, 3}
transitions
if —done then
result (num)

Figure 4-4: Determinator for the Choice automaton

Any so that or where constraint on the initial state or on the post state of a

transition is checked after initialization or execution of the transition, respectively.

41

For example, the where clause in the Choice automaton in Figure 4-3 is checked
after the initialization of its state variables. The user can use the theorem prover to
check that the provided choices satisfy any required constraints (expressed by where
clauses, preconditions, or so that predicates). If any of the constraints are violated,
the simulator informs the user and stops the simulation.

The simulator must also resolve implicit nondeterminism. If more than one action
is enabled in a particular state, then the simulator must decide which one to execute.
Moreover, since an action header may contain action parameters, every parameterized
action can be viewed as an additional source of nondeterminism for the scheduler. The
user must explicitly resolve nondeterminism by specifying which transition definition
should be executed in each state, and with which parameter values. The user writes
this information in the transitions part of a determinator.

In the transitions sections, the user provides a list of conditional clauses that
specify the set of selected transitions and their parameter values. The form of each
clause is either if <test> then <setl> or if <test> then <setl> else <set2>,
where <test> is a predicate on state variables of the automaton, and <set1> and
<set2> are finite sets of transitions with parameter values for these transitions. If
<test> evaluates to true in a particular state, then <set1> is the set of transitions
and parameter values for them that are selected for execution at this state, otherwise
<set2> is the selected set.

At each step of the simulation, the simulator determines the set of selected tran-
sitions by evaluating the list of if statements in the transitions section of the
determinator. The set of all selected transitions and parameter values for them at a
state is the union of the results of evaluating each if statement at this state. The
scheduler chooses one of the specified transitions according to the scheduling policy
selected by the user before the simulation began. If there are no transitions specified
for a state, then the simulator informs the user and stops the simulation. Possible
scheduling policies for transitions are discussed in Section 5.4.1.

Consider again the determinator for the automaton Choice given on Figure 4-4.

The transitions section of the determinator specifies that if state variable done is

42

false, then the set of selected transitions consists of a single transition result with
parameter value num; otherwise, no transitions are selected.

Figure 4-5 gives an example of a determinator for simulating the automaton Adder.

simulate Adder
transitions
if ready then
result(value), add(value, value+1)
else
add(1, 2)

Figure 4-5: Determinator for the Adder automaton

(The TIOA specification for Adder appears in Figure 3-1.) This determinator speci-
fies that, when ready is true, one of the two transition definitions, result(value)
and add(value, value+1), can be scheduled for execution. In all other states, the
add (1, 2) transition should be executed.

The expressions that specify parameter values for transitions can use only state
variables of the automaton. The user can also introduce a for variable to parameterize
the finite set of selected transitions, as illustrated in Figure 4-6. This determinator
for automaton Adder specifies that if state variable ready is false, then the set of

selected transitions is add (1, 1), add(2, 1), and add(3, 1).

simulate Adder
transitions
if ready then
result(value)
else
add(i, 1) for i: Int in {1, 2, 3}

Figure 4-6: Using for variable in determinator specification

The determinator language has two special functions, RAND and USER. These func-
tions can be applied to the primitive data types (i.e., Bool, Int, Nat, and Real)
supported by the simulator. They can be used in both the choose and transitions

parts of a determinator.

43

A call to the RAND function applied to a primitive built-in type returns a random

value of this type. Figure 4-7 demonstrates the use of the RAND function in another

simulate Adder
transitions
if ready then
result(value)
else
add (RAND(Int), RAND(Int))

Figure 4-7: Using RAND in a determinator for Adder

determinator for Adder. If the state variable ready is true, then a transition for
result is simulated with its parameter set to the current value of the state variable
value. Otherwise, the transition add is executed with its parameters set to the values
supplied by the RAND function.

The use of the USER function is similar to that of RAND. When a call to the USER
function applied to a primitive built-in type, T, is encountered during a simulation,
the user is prompted to enter the value of this type. The simulator parses the input
and uses the resulting value of type T.

As an alternative to using a determinator, it is possible to resolve some of the
implicit nondeterminism by modifying the specifications of the simulated automaton.
For example, the user can augment the automaton with new state variables contain-
ing scheduling information, can add extra constraints involving the new scheduling
variables to the preconditions of transitions, and can add extra statements to the
effects of transitions to maintain the scheduling variables. This conversion must be
done manually, without the help of the determinator mechanism. The advantage of
doing the conversion manually is that the same deterministic IOA specifications can
be reused with the theorem prover, the simulator, and the code generator, while the
determinator can be used only with the simulator and the code generator.

Figure 4-8 gives an example of resolving some of the implicit nondeterminism in
automaton Adder in this fashion. This example defines an “environment automaton”

AdderEnv to supply inputs for the automaton Adder and uses the composition op-

44

eration to construct a deterministic system to simulate. The automaton AdderEnv
uses two state variables, nums and next, to provide parameters for the output action
add(i, j). The precondition for the transition definition add(i, j) constrains the
values of i and j in the terms of these state variables, and the effect clause causes

new values to be used when the action is simulated again.

automaton AdderEnv

signature
output add(i, j: Int)
states
nums: Array[Int] := {1, 2, 3, 4},
next: Int := 1
transitions
output add(i, j)
pre i = nums[next] A j = nums[next+l] A next < 4
eff next := next + 2

automaton AdderClosed
compose Adder; AdderEnv

Figure 4-8: Closing the Adder automaton using composition

simulate AdderClosed
transitions
if ready then
result(value)
else
add (nums [next] , nums[next+1])

Figure 4-9: Determinator for AdderClosed automaton

Figure 4-9 gives an example of a determinator for the composite automaton
AdderClosed. This determinator removes the remaining nondeterminism by explic-
itly specifying a transition definition and its parameters for each state, using a simple
function applied to the new variables. Thus, even when all nondeterminism is re-
moved in an IOA specification, the simulator still needs help from a determinator in

identifying just which transition is enabled in a state and for which parameter values.

45

The simulator can simulate both input and output actions; thus, the simulated
automaton does not have to be closed (restricted to have only output and internal
actions). The determinator in a way “closes” the automaton, so that all simulated
input actions can be thought of as output actions.

Finally, determinator language provides support for distinguishing transition def-
initions with the same action header. The IOA language allows the user to specify
several transition definitions for a particular action header; however, the simulator
needs to know which one of them to execute. If there are several transition definitions
for a particular action, then the intermediate representation of the automaton num-
bers them in the order of their appearance (see Section 5.3 for details). In writing
a determinator specification for a transition with multiple transition definitions for
its action header, one appends the number of the transition definition to the action

header of the transition as shown in Figure 4-10.

4.4 Using the Simulator

In this section we describe how the simulator is used and give sample execution runs
of a simple automaton. More interesting examples are given in Section 4.5.

The user invokes the simulator by a command line and then responds to any
prompts for inputs. The simulation is run for a specified number of steps or until
no transitions are selected. If an invariant for automaton or any constraint on state
variables or transition parameters is violated, the simulation is stopped and the user
is informed about the failure. If the determinator for a simulated automaton contains
the USER function, then the simulation will be halted at the point where the call to the
USER function is encountered. For example, consider the simulation of the automaton
Adder using the determinator given in Figure 4-11. A sample execution run of the
automaton Adder with this determinator is given in Figure 4-12. The simulator was

invoked using the following command line:

java larch.simulator -rand -step 2 -acts 1 < Adder.il
The command java indicates that the simulator is written in the Java program-

46

automaton AdderCountZero

signature

input add(i, j: Int)
output result(k: Int), zero_reported(k: Int)

states
value: Int,
ready: Bool := false,
count: Int := 0
transitions
input add(i, j)
eff value := i + j;
ready := true
output result(k)
pre k = value A ready where k = 0
eff count := count + 1
ready := false

output result(k)
pre k = value A ready where k # 0

eff ready := false
output zero_reported(k: Int)

pre k = count

simulate AdderCountZero

transitions
if ready A value = O then
result(value): [1], zero_reported(count)

if ready A value # O then
result(value) : [2], zero_reported(count)

else
add(value, value+l), zero_reported(count)

Figure 4-10: Numbering several transition definitions

47

ming language; it invokes the Java interpreter for larch.simulator, the simulator
program. The file Adder.il contains the intermediate representations of the IOA de-

scription of automaton Adder and the determinator in Figure 4-11 (see Section 5.3).

simulate Adder
transitions
if ready then
result(value)
else
add (USER(Int), 1)

Figure 4-11: Using the USER function in a determinator

Simulation of automaton Adder
states:
ready = false

value = 0

actions:
enter the 1st parameter of type Int for transition add
1
add(1, 1)
states:
ready = true
value = 2
actions: result(2)
states:
ready = false
value = 2

simulation stopped: executed 2 transitions

Figure 4-12: A sample execution run with user interaction

There are three optional command flags to the simulator. The first indicates
the scheduling policy, the second indicates the number of steps in the execution to
be simulated, and the third indicates the number of steps between two consecutive
reports of state information.

The first command flag of the simulator is used for selecting a scheduling policy.
The scheduler for the automaton is controlled by the determinator and the user-
selected scheduling policy. The user can select one of three scheduling policies by using

the following command line flags: rand for the randomized scheduler, round for the

48

round robin scheduler, and time for a scheduler with time estimates. The randomized
scheduler with equal weights is used by default. If a randomized scheduler is selected,
then the user can specify an integer weight for each transition in the determinator.

Figure 4-13 gives and example of a determinator that specifies weights for transitions

simulate Adder
transitions
if ready then
result(value)
else
add(1, 2) weight 1,
add(2, 3) weight 2

Figure 4-13: Specifying weights for a randomized scheduler

when more than one transition is selected. This determinator specifies that if ready is
false, then transition add (2, 3) should be selected twice as frequently as transition
add(1, 2). If a time-based scheduler is selected, then the user must specify the

time estimates for transitions when more than one transition is selected. An example

simulate Adder
transitions
if ready then
result(value)
else
add(1, 2) time 1,
add(2, 3) time 2

Figure 4-14: Specifying time estimates

of a determinator with time estimates is given in Figure 4-14. This determinator
specifies that transition add (2, 3) take twice the time of transition add(1, 2); thus,
transition add (1, 2) should be selected twice as frequently as transition add(2, 3).
The reader is referred to Section 5.4.1 for a detailed discussion of how these schedulers
work.

The simulator produces a log that contains a description of the initial state of the

simulated automaton and a trace of the executed actions. The user is able to specify

49

the name of a log file by using the standard UNIX input/output redirection. If a
name for a log file is not specified, then the simulator writes the log to the standard
output.

The user can also specify the total number of actions performed during the sim-
ulation using the step flag followed by the number of simulation steps. The number
of actions performed between two consecutive dumps of state information can be
specified using acts flag followed by the number.

Figure 4-15 gives an example of an execution trace of automaton Adder from
Figure 3-1 with the determinator in Figure 4-5. The simulation was run for five
steps and the state information was recorded after every transition. The randomized
scheduler with equal weights was used. The simulator was invoked using the following

command line:

java larch.simulator -rand -step 5 -acts 1 < Adder.il > Log.sim.

4.5 Example of Simulating a Leader Election Al-
gorithm

In this section we simulate a distributed algorithm that solves the leader election
problem in networks with a ring topology (the algorithm was described in Section 3.3).
We give a modified IOA description of the algorithm as an explicit composition of I/O
process and channel automata, we state an invariant for the algorithm, and present
a determinator and sample execution runs for the algorithm.

There are several difficulties in simulating the automaton LCR as given on Fig-
ure 3-6. The first difficulty is in determining and scheduling enabled transitions at
each step of the simulation. The determinator is used to solve this problem. Second,
we need to provide an implementation for the non-built-in data type RingIndex used
in the description of automaton LCR, giving a particular implementation for the op-
erators uid, first, right, and left. Instead of implementing the RingIndex data

type, we modify the specification for LCR to use Int for the Index data type, and

20

Simulation of automaton Adder
states:

ready = false

value = 0
actions: add(1, 2)
states:

ready = true

value = 3
actions: add(3, 4)
states:

ready = true

value = 7
actions: result(7)
states:

ready = false

value = 7

actions: add(7, 8)

states:

ready = true

value = 15
actions: add(15, 16)
states:

ready = true
value = 31
simulation stopped: executed 5 transitions

Figure 4-15: A sample execution run of automaton Adder

ol

we parameterize the Process automaton with n, the number of processes in the ring.
This enables us to count modulo n in order to impose a ring structure on process in-
dices. We also provide a uid to the Process automaton as a parameter, rather than
using a fixed function from indices to uids, in order to be able to experiment with
different distributions of process uids in the ring, resulting in different communication
patterns during the simulation of the LCR algorithm. Third, we need to instantiate
the Process and Channel automata with particular indices. As described in Sec-
tion 4.2, the current implementation of the simulator requires that each automaton
be instantiated separately. Therefore, in the description of the automaton LCR3, we

instantiate each Process and Channel without using parameterized composition.

automaton Process(i, uid, n: Int)
type Status = enumeration of waiting, elected, announced
signature
input receive(m: Int, const mod(i - 1, n), const i)
output send(m: Int, const i, const mod(i+l, n)),
leader(m: Int, const i)
states
pending: Mset[Int] := {uid},
status: Status := waiting
transitions
input receive(m, j, i)
eff if m > uid then pending := insert(m, pending)
elseif m = uid then status := elected
fi
output send(m, i, j)
pre m € pending
eff pending := delete(m, pending)
output leader(m, i)
pre status = elected A m = uid
eff status := announced
tasks
{send(m, j, mod(j+1, n)) for m, j: Intl};
{leader(m, j) for m, j: Int}

Figure 4-16: Modified IOA specification of election process

The modified IOA description of the process automata is presented in Figure 4-

16. The automaton Process has three integer parameters. Parameter i is the index

22

of the process in the ring graph G, and parameter n is the number of processes in
the ring G. The parameter uid indicates the unique identifier of process i. We use
mod(i-1, n) instead of left(i) and mod(i+1, n) instead of right(i). Channel
automata are the same as in Figure 3-5, except that they do not have the parameter

indicating the type of process indices, and the indices i and j are integers.

automaton Channel(i, j: Int)
signature
input send(m: Int, const i, const j)
output receive(m: Int, const i, const j)
states
buffer: Seq[Int] := {}
transitions
input send(m, i, j)
eff buffer := buffer + m
output receive(m, i, j)
pre buffer # {} A m = head(buffer)
eff buffer := tail(buffer)

Figure 4-17: Modified IOA specification of channel automaton

automaton LCR3

compose
Process(0, 11, 3); Process(l, 8, 3); Process(2, 15, 3);
Channel (0, 1); Channel(1l, 2); Channel(2, 0)

Figure 4-18: IOA specification for LCR algorithm using three processes

Figure 4-18 presents an automaton, LCR3, which is describes the algorithm in
a ring of three processes as a composition of process and channel I/O automata.
Figure 4-19 restates the invariant shown in Figure 3-7 for automaton LCR3, in order
to eliminate the use of the universal quantifiers.

Figure 4-20 gives an example of a determinator for automaton LCR3. Since LCR3
does not have choose variables, there is no choose part in the determinator. The
transitions part specifies the scheduling of transitions during simulation of LCR3.
This simulation configuration specifies every enabled action and its parameters at

every state.

23

invariant of LCR3:
Process(0, 11, 3).status = elected =

(Process(1, 8, 3).status # elected

A Process(2, 15, 3).status # elected)
A Process(1, 8, 3).status = elected =

(Process(0, 11, 3).status # elected

A Process(2, 15, 3).status # elected)
A Process(2, 15, 3).status = elected =

(Process(1, 8, 3).status # elected

A Process(0, 11, 3).status # elected)

Figure 4-19: IOA specification of invariant for states of automaton LCR3

simulate LCR3
transitions
if Channel(0, 1) .buffer = {} then
send(i, 0, 1) for i: Int in Process(0, 11, 3).pending
else receive(head(Channel(0, 1) .buffer), 0, 1)
if Channel(1, 2).buffer = {} then
send(i, 1, 2) for i: Int in Process(l, 8, 3).pending
else receive(head(Channel(1, 2).buffer), 1, 2)
if Channel(2, 0).buffer = {} then
send(i, 2, 0) for i: Int in Process(2, 15, 3).pending
else receive(head(Channel(2, 0).buffer), 2, 0)
if Process(0, 11, 3).status = elected then leader(i1l, 0)
if Process(1, 8, 3).status = elected then leader(8, 1)
if Process(2, 15, 3).status = elected then leader (15, 2)

Figure 4-20: Determinator for automaton LCR3

o4

Simulation of automaton LCR3
states:
Process(0, 11, 3).pending = Mset: {11}

Process(0, 11, 3).status = waiting
Process(1, 8, 3).pending = Mset: {8}
Process(1, 8, 3).status = waiting
Process(2, 15, 3).pending = Mset: {15}
Process(2, 15, 3).status = waiting
Channel (0, 1).buffer = Seq:{}
Channel(1l, 2).buffer = Seq:{}

Channel(2, 0).buffer = Seq:{}
actions:
send(8, 1, 2), receive(8, 1, 2), send(11, 0, 1), receive(l1l, 0, 1),

send(11, 1, 2)
states:
Process(0, 11, 3).pending = Mset: {}

Process(0, 11, 3).status = waiting
Process(1, 8, 3).pending = Mset: {1}
Process(1, 8, 3).status = waiting
Process(2, 15, 3).pending = Mset: {15}
Process(2, 15, 3).status = waiting
Channel (0, 1).buffer = Seq:{}
Channel(1l, 2).buffer = Seq:{11}

Channel(2, 0).buffer = Seq:{}
actions:
receive(11l, 0, 1), send(11, 1, 2), send(15, 2, 0), receive(1l, 1, 2),

receive(15, 2, 0)
states:
Process(0, 11, 3).pending = Mset: {}

Process(0, 11, 3).status = waiting
Process(1, 8, 3).pending = Mset: {15}
Process(1, 8, 3).status = waiting
Process(2, 15, 3).pending = Mset: {}
Process(2, 15, 3).status = waiting
Channel(0, 1).buffer = Seq:{}
Channel (1, 2).buffer = Seq:{}

Channel (2, 0).buffer = Seq:{}
actions:
send(15, 1, 2), receive(15, 1, 2), leader(15, 2)

simulation stopped: no enabled actions

Figure 4-21: A sample execution run of automaton LCR3

95

simulate LCR3
transitions
if Channel(0, 1).buffer = {} then
send(i, O, 1) for i: Int in Process(0, 11, 3).pending time 3
else receive(head(Channel(0, 1).buffer), 0, 1) time 3
if Channel(1, 2).buffer = {} then
send(i, 1, 2) for i: Int in Process(l, 8, 3).pending time 1
else receive(head(Channel(1l, 2).buffer), 1, 2) time = 1
if Channel(2, 0).buffer = {} then
send(i, 2, 0) for i: Int in Process(2, 15, 3).pending time 10
else receive(head(Channel(2, 0).buffer), 2, 0) time = 10
if Process(0, 11, 3).status = elected then leader(11l, 0) time 3
if Process(1, 8, 3).status = elected then leader(8, 1) time 1
if Process(2, 15, 3).status = elected then leader(15, 2) time 10

Figure 4-22: Determinator with time estimates for automaton LCR3

Figure 4-21 presents a sample execution run of automaton LCR3. In this run the
simulator was asked to report state information after executing every five actions.
Since the specification for the automaton LCR3 contains an invariant, the invariant
was checked at every step. An equal weight randomized scheduling algorithm was
used for scheduling action executions. The simulation stopped when no actions were
enabled, that is, after the maxim uid traveled around the ring and the process with
the maximum uid executed the leader action.

Figure 4-22 presents a determinator that uses a timed scheduling algorithm, to
be described in Section 5.4.1. This configuration is the same as the one in Fig-
ure 4-20, but contains timing estimates for the send and receive actions, making
Channel(2, 0) slow and Channel(1, 2) fast. Figure 4-23 gives a sample execution
of automaton LCR3 using the time-based scheduling. In this execution several pileups

occurred in the channel, since some uids traveled faster then others.

4.6 Performance Analysis

Table 4.1 presents information about the simulation of the LCR algorithm with 3, 5,

10, and 20 processes and channels. The table gives the number of lines of the source

26

Simulation of automaton LCR3
states:
Process(0, 11, 3).pending = Mset: {11}

Process(0, 11, 3).status = waiting
Process(1, 8, 3).pending = Mset: {8}
Process(1, 8, 3).status = waiting
Process(2, 15, 3).pending = Mset: {15}
Process(2, 15, 3).status = waiting
Channel (0, 1).buffer = Seq:{}
Channel(1l, 2).buffer = Seq:{}

Channel(2, 0).buffer = Seq:{}
actions:
send(11, 0, 1), send(15, 2, 0), send(8, 1, 2), receive(15, 2, 0),

send (15, 0, 1)
states:
Process(0, 11, 3).pending = Mset: {}

Process(0, 11, 3).status = waiting
Process(1, 8, 3).pending = Mset: {1}
Process(1, 8, 3).status = waiting
Process(2, 15, 3).pending = Mset: {}
Process(2, 15, 3).status = waiting
Channel (0, 1).buffer = Seq:{11, 15}
Channel (1, 2).buffer = Seq:{8}

Channel(2, 0).buffer = Seq:{}
actions:
receive(11l, 0, 1), send(11, 1, 2), receive(15, 0, 1), send(15, 1, 2),

receive(8, 1, 2)
states:
Process(0, 11, 3).pending = Mset: {}

Process(0, 11, 3).status = waiting
Process(1, 8, 3).pending = Mset: {1}
Process(1, 8, 3).status = waiting
Process(2, 15, 3).pending = Mset: {}
Process(2, 15, 3).status = waiting
Channel (0, 1) .buffer = Seq:{}
Channel (1, 2).buffer = Seq:{11, 15}

Channel (2, 0).buffer = Seq:{}
actions:
receive(11l, 1, 2), receive(15, 1, 2), leader(15, 2)

simulation stopped: no enabled actions

Figure 4-23: A sample execution run of automaton LCR3 using time-based scheduling

57

Table 4.1: Simulator’s performance for LCR algorithm

No. of processes 3 5) 10 | 20
No. of lines in intermediate spec | 298 | 316 | 348 | 392
Simulation Time(msec) 120 | 150 | 190 | 230

files for the intermediate representation and the simulation time for each automaton.
The source files for the intermediate representation are large because they include the
symbol table for all operations of all data types used by the automata (see Section
5.3). The simulation was done on a PC with a 200 MHz Pentium Pro processor
running the Red Hat 4.2 version of UNIX OS. The LCR algorithm with 20 processes

was simulated in less than half a second.

4.7 Related Work

The IOA language has evolved from earlier work in Professor Lynch’s research group
on describing distributed algorithms in the form of pseudocode. Goldman in his Ph.D.
thesis on the Spectrum system defined a programming language with preconditions
and effects, but without any nondeterministic constructs. He designed a simple sim-
ulator for that language. In the Spectrum language, the design was specifically tuned
for the simulator: for example, each transition definition had a SEL field, where the
user had to specify transition parameters for the simulation. In contrast, the IOA
system isolates the process of automaton definition from the process of simulating
an automaton. In addition, the Spectrum language did not have constructs for ran-
domization and user definition of parameters (although the Spectrum user interface
allowed some of this functionality), while the IOA simulator has the RAND and USER
functions in its determinator language.

Goldman’s more recent work on the Programmers’ Playground [11] includes soft-
ware support and formal semantics in terms of the I/O automaton model for design-
ing distributed applications; however, it has no facilities for simulation and proofs.

Instead, the Programmer’s Playground provides support for debugging distributed

o8

applications by monitoring so called “published” variables. Cheiner and Shvartsman
[3] gave some suggestions on general strategies for resolving nondeterminism in I/O
automata using levels of abstractions; their work, however, concerned code generation

and not simulation.

29

Chapter 5

Implementation

Since the simulator is a part of the IOA system, the design and implementation of
the whole IOA system and the simulator for the IOA language are interdependent.
We start this chapter by describing the IOA toolset architecture. We then discuss the
IOA front-end tools for transforming IOA programs into an intermediate form, which
is used by the IOA back-end tools. We present the design and implementation of the
intermediate language. Finally, we describe the implementation of the simulator and

the libraries of scheduling policies and basic data types supported by the simulator.

5.1 I0OA Tools

As described in Section 1.2, the IOA system provides a variety of tools for the produc-
tion of high-quality distributed software. The user is provided with a combination of
analytical tools, which are designed to complement each other in verification and de-
bugging. IOA specifications can also be translated automatically into corresponding
Java or C++ code.

An interface to a theorem prover can be used to prove invariants, simulation
relations, and the validity of systems described using IOA.

An interface to a model checker can be used to exhaustively test an automaton’s
properties in all reachable states, provided the number of states is finite and suffi-

ciently small.

60

The simulator allows the user to observe the run-time behavior of an IOA pro-
gram; it can be used for debugging and testing the correctness and performance of
a distributed algorithm. The design and implementation of the simulation tool are
described in detail in Section 5.4.

A code generator generates real code for a distributed system. The code generator
and the simulator need to resolve many similar issues when converting axiomatic
description into running code. In order to resolve nondeterminism of IOA programs,
the code generator can use the determinator described in Section 4.3. It can also

reuse the library of basic data types described in Section 5.4.2.

5.2 10A Front End

The TOA front end tools consist of a parser, syntactic and semantic checker, pret-
typrinters, and transformation tools.

The IOA parser parses, reports syntax errors, and constructs an internal rep-
resentation for IOA specifications. The parser is written using the Java CUP [17]
LALR parser generator and is implemented using standard compiler techniques (see
[1]). The grammar together with the static semantic checks for IOA are described in
[9]. One prettyprinter indents the code consistently and breaks long lines; another
translates IOA specifications into IXTEX format.

In order to be used as input to some of the IOA tools, IOA programs are first
converted into a simplified intermediate representation. The IOA front end provides a
tool to transform IOA programs into the intermediate language, which serves as input
language to the IOA toolset and drives the second tier of the [OA system architecture
(see Figure 1-1).

Two transformations that occur in the translation into the intermediate repre-
sentation are composition and term expansion. Composition expansion transforms
the definition of a composite automaton into a single I/O automaton definition with-
out the compose operator. This transformation is performed in the front-end, and

composite automata do not appear in the intermediate language, to avoid duplicate

61

effort in the back-end tools. Term expansion is applied to actions in the automa-
ton’s signature; it replaces action parameters written as expressions by fresh vari-
ables constrained by where clauses. This transformation is needed because, in the
intermediate language, action parameters in the automaton’s signature are required
to be variables in order to combine the where constraints for the same action header
in different component automata. In generating the intermediate representation for
an IOA description of an automaton, the term expansion transformation is applied
before composition expansion. We describe term and composition expansions in Sec-

tions 5.2.1 and 5.2.2.

5.2.1 Term Expansion

In the IOA specification of an automaton’s signature, an action parameter can be
specified as either a variable or a term. However, in the intermediate language all
action parameters in the signature are required to be variables.

Thus, during translation into the intermediate language, whenever an action pa-
rameter is represented as a term, term expansion is applied. This transformation is
done on the parameters of an action in the automaton’s signature. A corresponding
transformation on the parameters of the automaton’s transitions is more complicated.
It is discussed in Section 7.2 and is not currently implemented. Term expansion trans-
forms action parameters specified as terms into fresh variables and corresponding
restrictions on these variables.

When specifying the signature of an automaton in IOA, the const operator can
be used to indicate that the value of an action parameter is fixed by the value of
a given term (see Section 2 of the IOA manual [9]). The operator const provides
syntactic sugar for a where clause. The transformation is done by rewriting const
clauses in the IOA source code as the corresponding where clauses using the following

desugaring function D:

D[{actionName)(const t)] = (actionName)(f : T') where f =1t.

62

Here <actionName> stands for the name of an action in the automaton’s signature, T is
the type of the term t and £ is a fresh variable of type T. For example, blah(const 2)

is expanded to blah(i:Int) where i = 2.

5.2.2 Composition Expansion

The IOA language allows a finite collection of I/O automata to be composed into
one automaton using a compose operation. We decided that the IOA intermediate
language should not include this composition operation. If we had included a compo-
sition operator in the intermediate language instead of implementing the composition
transformation, each IOA tool would have to perform a variant of the composition
transformation. We chose to do the composition transformation at the IOA language
level to insure that all tools use the same notion of composition.

The front-end tool that implements the composition expansion, the composer, is

described in detail in Chapter 6.

5.3 Intermediate Language

The intermediate language is the input language to the IOA toolset (see Figure 1-1).
It is a simplified variant of the IOA language.

Appendix A includes the BNF grammar for the intermediate language. The inter-
mediate representation of an IOA specification contains two parts: a global symbol
table and a list of intermediate forms for primitive automata specification (see Sec-
tion 3.4). The global symbol table consists of types and operators that are used by
all automata in the specifications. It does not contain variables, since IOA has no
global variables.

An automaton’s invariants are a part of the intermediate specification for the
automaton. Each automaton is defined by its symbol table and an S-expression
for the automaton definition, with resolved references for all variables, types, and
operators. The symbol table defines all variables, types, and operators that are used

in the automaton’s definition, but not declared in the global symbol table. In the

63

global and automaton’s symbol tables, each variable, type, or operator is assigned
a unique internal name for ease of reference. The symbol table also contains an
external name, that is, the name used in the original IOA specification, for each
variable, type, or operator. This design is simple and efficient: it significantly reduces
the type checking of an automaton definition, while allowing the user of an IOA tool
to refer to automaton variables, types, and operators by their original names.

Figure 5-1 gives an example of the intermediate representation of the automaton
Adder defined in Figure 3-1. A variable declaration starts with the keyword var
followed by a unique identifier for its internal name, and the external name and the
type of the variable. A type declaration is indicated by the keyword sort followed
by the internal and external names of the type. The keyword LITERAL in a type
declaration indicates that the type is a literal type (that is, decimal literals are the
constructors of the type). An operator declaration is indicated by the keyword op
followed by the operator’s internal name, its external name, and its signature. The
internal names for variables, types, and operators are used in the description of the
automaton’s actions, states, transitions, and tasks.

If the IOA specification for an automaton uses the compose operator, then its
intermediate representation is that of the primitive automaton description obtained
from applying the composition expansion (see Section 5.2.2) to the IOA specification.
In this representation, variables are described using references to state variables in
the component automata. A reference to an automaton’s state variable consists of

the following three components:

1. A sequence of names for the component automata in which this state variable
is defined, called a sequence of defining automata. If S = S51,S,,...,5, is a
sequence of defining automata for a state variable x, then automaton S,, should
have a primitive automaton description, and for all < € {2,...,n} automaton S;

should be a component of the composite automaton S;_1.

2. A sequence of actual parameters for every parameterized automaton in the

defining sequence.

64

(/*top-level scopex/
(sort sl "Bool")
(op o1t "
(op o7 "false" s1)
(op 012 "true" si)

V__" s1 s1 s1)

(op 02 "if" s1 sO sO sO)

(automaton Adder

/*scope for automaton Adderx*/
(sort s3 "Int" LITERAL)

(var
(var
(var
(var
(var
(var
(var
(var

v4
vb
v2
vO
v7
v3
v6
vl

(op 033
(op 031

(op 037

"ready" sl1)
llill S3)
llkll SS)
llill S3)
llkll SS)
"value" s3)
njn 83)
lljll SS)

"max" s3 s3 s3)
"mod" s3 s3 s3)

"__>__" 83 83 s1)

/*description of automaton Adderx*/

(action input add vO v1)

(action output result v2)

(state v3)

(state v4 o7)

(transition input add (actuals v5 v6)
(eff ((assign v3 (023 vb5 v6)) (assign v4 012))))

(transition output result (actuals v7) (pre (06 (0294 v7 v3) v4))
(eff ((assign v4 o7))))

)

Figure 5-1: Intermediate representation of automaton Adder

65

3. A name of a state variable.

For example, the reference C(1) .B(3, true).A.x tells that x is a state variable
in automaton A, which is a component of automaton B instantiated with actual pa-
rameters 3 and true, which in turn is a component of automaton C instantiated
with actual parameter 1. In the intermediate language, a reference to state variable
C.B(2).A(3, 5).xis represented as (2, 3, 5) C.B(Int).A(Int, Int) "x".

Figure 5-2 gives an example of the intermediate representation of the composite
automaton LCR3 defined in Figure 4-18.

If there are several transition definitions for a particular action, the intermediate
representation of the automaton numbers them in the order of their appearance.

The parser and static semantic checker for the intermediate language are simple
and are implemented using JavaCC [16], a recursive descent parser generator. Since
the symbol table for a specification is constructed before parsing the specification,

type checking is easy.

5.4 Implementation of the Simulator

The input to the simulator consists of the intermediate representation for an automa-
ton and a determinator. The simulator provides the user with scheduling options.
By default, the simulator uses randomized scheduling with equal probabilities for all
selected actions. At every step of the simulation, the set of possible transitions and
their parameter values is given by the determinator. If more than one transition is
possible, the scheduler picks one according to the scheduling policy selected by the
user before the simulation began. If both the precondition clause and the where con-
straint of the chosen transition definition and its parameter values evaluate to true
in the latest simulated state, then the effect is executed; otherwise, a failure message
is logged into the execution trace and the user is informed about the failure. After
execution of the chosen transition, the state invariants are checked, and the execu-
tion trace is updated. Figure 5-3 presents the pseudocode for the main loop of the

simulator.

66

(/*top-level scopex/
(sort s1 "Bool")

(op 02 "if" s1 sO sO s0)
(op o7 "false" s1)

(automaton LCR3

/*scope for automaton LCR3*/
(sort s24 "Status")
(sort s3 "Int" LITERAL)
(sort s27 "Mset" s3)
(sort s23 "Seq" s3)

(var v25 "Process(1l, 8, 3).pending" s27)
(var v37 "Process(2, 15, 3).status" s24)

(op 0402 "last" 23 s3)
(op 30 "__*__" s3 s3 s3)
/*description of automaton LCR3x*/
(action output receive v3 v26 v31 (where
(o011
(011 (06 (0406 v39 0:s3) (0406 v40 1:s83))
(06 (0406 v26 1:s3) (0406 v31 2:83)))

(06 (0406 v26 2:53) (0406 v31 0:s83)))))

(state v48 (0345 11:83))
(state v37 0318)

(transition input receive (actuals v10 v23 v25)
(eff
((if ((o6 (0406 v23 (031 (028 2:83 1:s83) 3:83))
(0406 v25 2:83))
((if ((036 v10 15:s3)
((assign (018 2:s3 15:83 3:s53))
(0341 v10 (0103 2:83 15:83 3:83))

Figure 5-2: Intermediate representation of automaton LCR3

67

while true {
determine the set of enabled actions using the determinator
if this set is not empty then
get next transition definition from scheduler
if both precondition and where clause of
selected transition evaluate to true
then assign values to choose parameters of selected transition
execute effect clause of selected transition
check invariants
report and log executed transition and current state
else report and log failure message and exit
else stop simulation and exit

}

Figure 5-3: Pseudocode for simulator’s main loop

We decided to both write the simulator in Java and generate Java code for IOA,
because Java is portable and relatively easy to code and debug. We considered two
alternatives to Java: C and C++. The main advantage of C and C++ would be
the speed of the simulator and the generated code; efficiency is an important design
goal for a simulator. However, in view of the current development of efficient Java
compilers and Java processors!, we decided that the difference in code efficiency would
not be significant. The simulator and the parser for the intermediate language are
implemented in less than 6,000 lines of Java code. The code for the simulator can be

found in
http://www.sds.lcs.mit.edu/"achefter/Simulator.

Profiling tests of the simulator show that most of the time is spent in the Java system
routines for memory garbage collection. Since JavaSoft is now implementing more

efficient garbage collectors, the simulator will also become faster.

!For example, Cygnus is writing an optimized Java front end for gcc, and Sun has designed a
highly efficient Java processor, JavaChip.

68

5.4.1 Schedulers

The job of the scheduler is to select the next transition to be executed based on the
current state and the determinator, which specifies the set of actions that can be
performed. The scheduler does not determine all enabled actions; only the actions
specified by the determinator are considered for execution. If the determinator spec-
ifies more than one action in a state, then the scheduler selects one according to a
scheduling policy specified by the user before the simulation began. The user has a
choice of three scheduling policies: randomized, round robin, and one based on time
estimates for each action. Since the design of the simulator is modular, it should not
be difficult to add another scheduler.

The randomized scheduler makes use of weights on transitions (see Section 4.4).
It computes the total ¢ of the weights of all specified transitions, and at each step
of the execution selects a transition with weight w with probability w/¢t. The round
robin scheduler keeps count of the number of times a transition was specified but not
selected for execution and maintains a queue of these counts. It always selects the
transition with the greatest count. The count is reset to zero after the transition is
executed.

The system provides assistance in coming up with probabilities for each action,
by allowing the user to provide a time estimate for each action (see Section 4.4).
The time estimate for an action can be used to schedule the action according to the
speed of the processor on which it is intended to run. The time estimates can also
be used to account for computation latency or the rate at which an environment
generates actions. The smaller the time estimate, the faster the processor, and the
higher the probability that the action will get scheduled. Thus, actions running on
a fast processor will get executed more frequently. The scheduler determines the
probabilities based on the user-specified time estimates, with actions with low time
estimates having correspondingly high probabilities. Specifically, if times for n actions
are given by n integers timey, timey, ... , time,_;, then the scheduler determines

which of the n actions to perform by the following procedure:

69

1. Find the least common multiple (lem), m, for the set {time; : 0 <i <n — 1}.

2. Assign a weight to each selected action as follows:

weight; = (m/time;) | X7=3 (m/time;).

3. Apply the general weighted-random scheduler to the collection of actions with
weights {weight; : 0 < i < n — 1}. That is, divide the interval [0..1] into n parts
[0..weighty], [weighty..weighty + weight,], ..., [E?;gweightj..l] and schedule the
next action be performed to be action 7 if the random number is in the range

[Sizbweight;...Si_qweight;).

This scheduler assigns weights m/time; that are inversely proportional to the times
estimate for the actions. The lcm, m, is used to avoid floating point computation and

to reduce the round-off errors.

5.4.2 Data Types

Data types are defined axiomatically in IOA, but in order to simulate data type op-
erations, the simulator needs actual code for those operations. The simulator has a
library of data type definitions written in Java. Several IOA built-in data types trans-
late straightforwardly into corresponding Java data types and operations on them:
booleans (Bool), integers (Int), natural numbers (Nat), real numbers (Real), charac-
ters (Char), and strings (String). The IOA built-in type constructors for one dimen-
sional arrays (Array[typel), sets (Set[typel), multisets (Mset[typel), sequences
(Seq[typel), and mappings (Map[typel) are implemented using Java Objects. The
simulator also supports data types that are defined using LSL enumeration, tuple, or
union.

We have written a suite for all built-in operators. This code is written in accor-
dance with the LSL specification for the corresponding trait defined in [14]. If the
IOA specification of an automaton description uses a non-built-in data type, then

in order to be able to simulate this automaton the user must provide a Java imple-

70

mentation for this data type. The implementation of all operators for a non-built-in
data type should be supplied in a class named by the name of the data type. For
example, if the user wants to use a positive integer type, Pos, in an IOA specification,
then he/she writes an LSL trait for the Pos type. If the user wants to simulate this
automaton, he/she must provide implementations for all the operators for type Pos.
The simulator dynamically loads the implementations of all data types used in a given
automaton. If an implementation for a data type is not found, then the simulator
informs the user of the failure and stops the simulation.

The simulator stops the simulation if one of the following run-time errors is en-

countered:
1. Division by zero.

2. The succ function is applied to the last element in a sequence. For example, the

following IOA specification will generate this run-time error during simulation:

type Color = enumeration of white, red, black
automaton A
signature output foo
states c¢: Color := black
transitions
output foo

eff ¢ := succ(c)

3. Attempt to iterate over a set with a so that constraint, since, in general, the
simulator cannot determine the set and/or the set can be infinite. For example,

the following IOA specification will generate a run-time error during simulation:

71

automaton A
signature output foo
states x: Array[Int]
transitions
output foo
eff for i: Int so that i > 0 do
x[i] (= 1

od

72

Chapter 6

Composer

In this chapter, we describe the composer, an IOA front end tool that, given an
IOA description of a composite automaton, constructs an equivalent primitive IOA
automaton description for the automaton. The semantics of this composition trans-
formation conforms to that of the composition operation described in Section 2.2.
The composer is used for translating IOA descriptions of composite automata into
the intermediate language. If any of the components are composite automata, then
the composition transformation is applied recursively to these components.

We describe the composition transformation by showing its effects on a general
automaton specification A, shown in Figure 6-1. Its component automata Ai are
assumed to have primitive IOA automaton descriptions. If a component automaton
Ai has formal parameters, then the formals of Ai are replaced by the actuals provided
in the definition of the composite automaton A.

For the automata Ai to be compatible the where clauses should satisfy the prop-
erty that for all values of the parameters i1, ..., ik at most one of the Qi is true.

To guarantee that no transition is defined twice, it must be true that

for all i € {1, ..., n}
for all ji, j2 € {1, ..., 1_i}
Pi,j1 (i1, ..., ik) A Pi,j2(i1, ..., ik) = j1 = j2

and

73

automaton Ai(pl: T1,

signature

input name(il: I1,

output name(il: I1i,

states
sl: S1,

sp: Sp
so that Si(s1,
transitions
input name(il,
eff ...

input name(il,
eff ...
output name(il,
pre Ri,1

eff ...

output name(il,
pre Ri,m_i
eff ...
tasks
{name (i1,

automaton A

compose Al(al,l ,
A2(a2,1 ,

b

An(an,1 ,

., in)

., pv_i: Tv_i)

., ik: Ik) where Pi(il,
., ik: Ik) where Qi(il,

., sp)

*

*

*

*

for i1: I1,

ik) where Pi,1(il,

ik) where Pi,1_i(il,

ik) where Qi,1(i1,

ik) where Qi,m_i(i1,

., al,v_1);
., a2,v_2);

., an,v_n)

74

., ik: Ik}

., ik)

., ik)

., ik)

., ik)

., ik),
., ik),

Figure 6-1: General input to composer

for all i € {1, ..., n}
for all ji, j2 € {1, ..., m_i}

Qi,j1 (i1, ..., ik) A Qi,j2(i1, ..., ik) = j1 = j2.

To guarantee that all transitions are defined, we need to know that

for all i € {1, ..., n}
for all i1, ..., ik

Pi(il, ..., ik) = 33 € {1, ..., 1_i} Pi,j(i1, ..., ik)

and

for all i € {1, ..., n}
for all i1, ..., ik

Qi(i1, ..., ik) = 3 j € {1, ..., m_i} Qi,j(i1, ..., ik).

In the following sections we describe a specification for a primitive automaton
description AExpanded that corresponds to the IOA specification of the composite
automaton A. The state variables of the automaton AExpanded, as described in Sec-
tion 6.2, cannot be parsed by the IOA parser and are used only for describing the
composition rule. This is not a problem because these state variables have a repre-

sentation in the IOA intermediate language, as described in Section 5.3.

6.1 Signature of Automaton AExpanded

If a component automaton Ai has formal parameters, then in the signature of

AExpanded the formals of Ai are replaced by the actuals provided in the compose
clause in the definition of the composite automaton A. For example, in Figure 6-2 the
automaton Al has a formal type parameter T. In the definition of the composition
automaton A, Al has been instantiated as A1(String). Therefore, in the signature of
AExpanded, all occurrences of T in Al’s signature are replaced by String, resulting in

the action header input foo(m: String).

)

automaton A1(T: type)
signature

input foo(m: T)
states

value: T
transitions

input foo(m)

eff value :=m

automaton A
compose Al(type String);

Figure 6-2: Example of instantiation of type parameters

6.1.1 Output and Internal Actions of Automaton AExpanded

An action header name(i1:I1, ..., ik:Ik) where P(il, ..., ik) isincluded in
the output (or internal) action list in the signature of AExpanded provided that the
pattern name (I1, ..., Ik) appears in at least one of Ai’s output (internal) action

lists and

P=(P1L VP2V ..).

Here, the Pi are the where clauses of the action headers with pattern
name (I1, ..., Ik) thatappearin the output (internal) action lists in the component
automata.

If one of the action headers of Ai’s output (internal) action lists does not have a
where clause, i.e., if one of the Pi is always true, then the where clause for the cor-
responding action header in the signature of AExpanded is omitted (since P simplifies

to true). See Figure 6-3 for examples of the signature of automaton AExpanded.

6.1.2 Input Actions of Automaton AExpanded

An action header name (i1:I1, ..., ik:Ik) where P(il, ..., ik) isincluded in
the input action list in the signature of AExpanded provided that an action header
with action pattern name(I1, ..., Ik) appears in at least one of the Ai’s input

action lists and

76

P= (1L VP2V ...) AN-(@Q VQQ2 V...).

Here, the Pi are the where clauses of the action headers with the pattern

name (I1, ..., Ik) that appear in input action lists in the component automata,

and the Qi are the where clauses of the action headers with the pattern

name(I1, ..., Ik) that appear in output action lists in the component automata.
If one of the matched output action headers does not have a where clause, i.e.,

some Qi is always true, then the signature of the composite automaton does not

include the matched action as an input action (since the where clause simplifies to

false). Figure 6-3 gives an example of the described rule.

automaton Al

signature
input foo(i: Int) where 1 < i < 10
output blah(j: Int)

automaton A2

signature
input blah(i: Int) where P(i)
output foo(j: Int) where j < 3

automaton A
compose Al; A2

automaton AExpanded
signature
input foo(i: Int) where 1 < i < 10 A = (1 < 3)
output foo(i: Int) where i < 3,
blah(j: Int)

Figure 6-3: Example of signature of automaton AExpanded

6.2 States of Automaton AExpanded

The state variables of AExpanded contain those of each of Ai with the state reference

(see Section 5.3) modified as follows:

77

1. The name of the automaton Ai is prepended to the sequence of defining au-

tomata.

2. The actual parameters of Ai are prepended to the sequence of actual parameters

for the state reference in Ai.

The expressions describing the initial values of the state variables for Ai are mod-
ified by replacing the formal parameters of Ai with the corresponding actual param-
eters.

If some Ai has a so that restriction on its state’s initial values, then a so that
clause for the state variables of the automaton AExpanded is constructed by expanding
and forming the conjunction of the so that clauses for the state variables of Ai. Thus,

the so that predicate S of automaton AExpanded can be expressed as

S =951 ANS82 A ... AN Sn,

where the Si are the so that clauses for the state variables of the component au-
tomata, modified by expanding the state names used in their definition and by replac-

ing Ai’s formal parameters with the corresponding actual parameters. For example,

automaton B(i: Int)
signature ...

states n: Int

so that n > i

transitions ...

automaton A

compose B(1); B(2)

becomes
automaton AExpanded
signature ...
states B(1).n: Int,
B(2).n: Int
so that B(1).n > 1 A B(2).n > 2

transitions ...

78

In systems that are described using several applications of the composition oper-
ation, this technique of prefixing variable names with automaton names can lead to

long prefixes. IOA allows such prefixes to be abbreviated if there is no ambiguity.

6.3 Transitions of Automaton AExpanded

Automaton AExpanded has a single input transition definition and a single output
transition definition for each action header name (i1, ..., ik) asshown in Figures 6-
4 and 6-5. To avoid cluttering up the notation, we abbreviate (i1, ..., ik) as (j)

in those figures.

input name(j)
eff
if P1,1(§j) A P1(j) then

[effects of Al’s transition definition 1 for input name(j)]
fi;

if P1,1_1(j) A P1(j) then
[effects of Al’s transition definition 1_1 for input name(j)]
fi;

if Pn,1(j) A Pn(j) then
[effects of An’s transition definition 1 for input name(j)]
fi;

if Pn,1_n(j) A Pn(j) then
[effects of An’s transition definition 1_n for input name(j)]
fi;

Figure 6-4: Input transition for composite automaton

The transition for action header name (i1, ..., ik) in the composition is formed
by grouping together all transitions for name (i1, ..., ik) of the component au-
tomata. Thus, an input transition definition for the composition consists of a list of
conditional statements. Each conditional statement corresponds to an input transi-
tion definition in a component automaton; its condition is the where constraint and

its consequence is the effects of that input transition. The input transition in the

79

output name (j)

pre
if Q1,1(3) A Q1(j) then
R1,1

elseif ...

elseif Q1,m_1(j) A Q1(j) then
Ri,m_1

elseif Qn,1(j) A Qn(j) then
Rn,1
elseif
elseif Qn,m_n(j) A Qn(j) then
Rn,m_n
eff
if Q1,1(3) A Q1(j) then
[effects of Al’s transition definition 1 for output name(j)]
fi;

if Q1,m_1(j) A Q1(j) then
[effects of Al’s transition definition m_1 for output name(j)];
fi;

if Qn,1(j) A Qu(j) then
[effects of An’s transition definition 1 for output name(j)]
fi;

if Qn,m_n(j) A Qn(j) then
[effects of An’s transition definition m_n for output name(j)];
fi;
if P1,1(j) A P1(j) then
[effects of Al’s transition definition 1 for input name(j)]
fi;

if P1,1_1(j) A P1(j) then
[effects of Al’s transition definition 1_1 for input name(j)]
fi;

if Pn,1(j) A Pn(j) then

[effects of An’s transition definition 1 for input name(j)]
fi;
if Pn,1_n(j) A Pn(j) then

[effects of An’s transition definition 1_n for input name(j)]
fi

Figure 6-5: Output transition for composite automaton

80

composition also inherits the where clause

(P1(3) V P2(j) V ... V Pn(j)) A —=(@@Q1(§) V Q2(3) V ... V Qu(j))

from the signature of automaton AExpanded, as described in Section 6.1.2.

A similar procedure is applied to construct an output transition definition for
the composition. Since output actions can have preconditions, the output transition
definition of the composition incorporates the preconditions of the components.

The order of conditional statements in the transitions of automaton AExpanded
does not matter, because the component automata are compatible and because there
is at most one transition definition for each action in a component automaton. For
the output transition definition, the compatibility assumption says that at most one
condition is true, and thus only one effect of an output transition definition is exe-
cuted.

Currently, the definition of IOA language requires that there be at most one transi-
tion definition for every action header and set of values for its parameters (as explained
at the beginning of this chapter). If this requirement is relaxed to allow a nondeter-
ministic choice of transition definition, then we would need to rewrite the if...then
statements in the input and output transition definitions as if...then...else...
statements and introduce a choose parameter for determining which one branch of
the if...then...else statements is picked for execution.

The IOA language requires that each action pattern occur only once in each of the
input/output/internal action lists; therefore, in the signature of AExpanded, we com-
bine the where constraints of the component automata to construct the constraint
for an action of the composite automaton. The where predicates of individual tran-
sition definitions are treated as constraints to be added to those already present in

the corresponding where predicate in the signature. We write

if P1,1(j) A P1(j) then

[effects of Al’s transition definition 1 for input name(j)]

in the Figures 6-4 and 6-5, instead of

81

if P1,1(j) then

[effects of Al’s transition definition 1 for input name(j)]

because P1,1(j) A P1(j) is the specified constraint on the action

name(il, ..., ik) in the component automaton Ai.

6.4 Tasks of Automaton AExpanded

The set of tasks for AExpanded is the union of the sets of tasks of A1, A2, ..., An.
If any of the component automata does not have a set of tasks explicitly specified,
then its set of tasks is assumed to contain the single set of all its output and internal
actions. Figure 6-6 gives an example. The first task of the automaton AExpanded is
the set of locally controlled (that is, output and internal) actions of automaton A1l.

The second and third tasks are those of automaton A2.

82

automaton Al

signature
input AlInput(i: Int) where 1 < i < 10
output A1Output(j: Int)
internal AlInternal(k: Int) where R(k)

automaton A2

signature
input AlOutput(i: Int) where P(i)
output AlInput(j: Int) where j < 3
internal A2Internal(b: Bool)

tasks
{A1Input(i) for i: Int where j < 3};
{A2Internal(b)} for b: Bool

automaton A
compose Al; A2

automaton AExpanded
signature
input AlInput(i: Int) where 1 < i < 10 A - (1 < 3)
output AlQutput(i: Int), AlInput(i: Int) where i < 3
internal AlInternal(k: Int) where R(k),
A2Internal(b: Bool)
tasks
{A10utput (i), AllInternal(k) for i: Int,
k: Int where R(k)};
{A1Input(i) for i: Int where j < 3};
{A2Internal(b)} for b: Bool

Figure 6-6: Examples of tasks of automaton AExpanded

83

Chapter 7

Future Work

In this chapter we discuss the design and implementation of the simulator and give
suggestions for future work. We consider extensions to both the major functionality

and the current implementation of the simulator.

7.1 Design Extensions

A useful extension to the simulator would be to provide support for a coupled simula-
tion of two automata, one representing a high-level description of a distributed system
and the other representing an implementation of the system. In order to run a cou-
pled simulation, the user will have to provide a simulation relation (see Section 2.3)
and the step correspondence in addition to IOA descriptions of the automata and a
determinator for the lower-level automaton. The simulator will check the simulation
relation between the two automata in every reachable state of the lower-level automa-
ton, using the step correspondence to generate the corresponding reachable state of
the higher-level automaton.

It is also possible to extend the simulator with timing information. For example,
the simulator can use the timed I/O automaton model described in Chapter 23 of
[19]. In this approach, timing information is manipulated explicitly by the algorithm
being simulated.

In our design of the simulator, all automata have to be defined before a simulation

84

begins. This limitation to a static finite collection of automata is a problem if one
wishes to consider algorithms that involve dynamic process creation. In the I/O
automaton model, a distributed system consists of a static collection of components,
but the number of component can be infinite. Therefore, one can model dynamic
process creation by assuming that all possible processes exist at the beginning of

43

computation and then “waking them up” as the algorithm progresses. (For examples
of this see [18].) Since it is impossible to simulate an infinite collection of automata,
an interesting extension to the simulator might be to support dynamic creation of
automata.

Implementing a visual user interface to the simulator would be an interesting
and useful extension. Visualization is useful for debugging and analyzing algorithms.
There are two general ways to accomplish visualization: declarative and imperative
[22]. In imperative visualization, one embeds procedure calls in the algorithm being
studied in order to effect changes in the display. At any time in the simulation, the
image on the display is a product of the history of these procedure calls. This allows
one to construct elaborate program animations; however, it is rather difficult to set
up and modify such animations. In contrast, the declarative approach establishes
relationships between state information of the algorithm and points on the display.
With a declarative approach, the animation tends to be simpler and quicker to set up
and modify. Roman and Cox [22] recommend using the declarative approach for vi-
sualizing distributed computations. Consider, for example, rolling back an execution
generated by the simulator. With the declarative approach, it is easier to update the
display when one rolls back the simulation, since one need be concerned only with

the current state of the automaton, and not with the entire history of executions.

7.2 Implementation Extensions

It is possible to extend the simulator by adding a variety of schedulers. For example,
the scheduler can dynamically change the weights of actions, possibly taking into

account a time estimate for the action that was waiting to be executed.

85

Another way to make the simulator more general is to provide support for instan-
tiating parameterized automata in the specification of a determinator. One can do
this, for example, by introducing a parameters section into the determinator lan-
guage. In the parameters section, the user would provide the actual parameters to
the automaton to be simulated.

It is also possible to allow the user to specify a finite set of all actual parameters
for component automata, and then to generate the composition automatically. Fre-
quently used finite sets, such as a set of consecutive integers or an enumeration, are
easy to generate automatically; thus, the user would not have to type in all possible
instantiations of component automata for all values in the set.

The current version of the simulator does not incorporate support for automata
task partitions. The I/O automaton task partition can be thought of as an abstract
description of threads of control within an automaton, and is used to define fairness
conditions on executions of the automaton — conditions that say that the automaton
must give fair turns to each of its tasks. One way to implement tasks would be to
use a two-level action scheduling algorithm. The first level of such an algorithm
schedules the next task to be considered for execution, and the second level schedules
an action within the selected task. This implementation would require changes to
the simulator’s internal representation of actions and transitions to accommodate the
task information. The omission of task partitioning in the current implementation is
not critical, since the user has the control over the scheduling of actions during the
simulation via the determinator mechanism. Moreover, every /O automaton with a
task partition can be rewritten as an equivalent I/O automaton without tasks (see
[19] p.233, Exercise 8.8).

Currently, the choose part of the determinator uses global names for the automa-
ton’s choose variables. It is possible to modify the determinator language so that
the user would be able to specify separate sets for choose parameters for different
transition definitions, thus localizing the names of choose parameters.

Currently, the intermediate language does not restrict the parameters of transition

definitions to be variables. However, the simulator restricts the actual parameters of

86

transition definitions to be variables or constants (see Chapter 4). In the remainder
of this section we discuss a possible transformation on the terms used as parameters
in transition definitions that can be done to make the simulation tool more general.

Consider a general example in which transition definitions have terms as actuals,
and in which k transition definitions are provided for a given action header in an

automaton’s signature.

automaton A
signature output foo(fi: T1, ..., fn: Tn) where P(f1, ..., fn)
states ...
transitions
output foo(F1,1(t1,1,1 ..., t1,1,m_1), ...,
Fi,n(t1,n,1, ..., tl,n,m_1n))
pre ...
eff effl
output foo(Fk,1(tk,n, ..., tk,n,m_k1), ...,
Fk,n(tk,n,1, ..., tk,n,m_kn))
pre ...

eff effk

The static semantic checker checks that the range of functions Fi, j is Tj for all
1<i<kand1l < j<n The theorem prover can be used to check that the IOA
specification is valid, that is, that no transition is defined twice and all transitions
are defined.

The k transition definitions can be combined into a single transition definition
that does not have terms as its parameters as shown in Figure 7-1.

If foo were an input action, we could not combine its transition definitions in this
fashion, because input actions cannot have preconditions. Hence, we may need to

extend the grammar to allow us to write the corresponding specification.

87

output foo(f1i, ..., fn)
choose t1,1,1, ..., t1,1,m_11, ¢t1,2,1, ..., t1,2,m_12, ...,

., tkyn,m_1n, ..., tk,n,1, ..., tk,n,m_kn
pre ((f1 = F1,1(¢1,1,1, ..., t1,1,m_11) A
A fn = Fl,n(t1,n,1, ..., t1,n,m_1n))
\ \

V (fl = Fki(tk,n,1, ..., tk,n,m_ k1) A
A fn = Fk,n(tk,n,1, ..., tk,n,m_kn)))
eff if (f1 = F1,1(t1,1,1, ..., t1,1,m_11)

VAN
A fn = Fl,n(t1,n,1, ..., ti,n,m_1n)) then
effil
elseif ...
elseif (f1 = Fk,1(tk,n,1, ..., tk,n,m_k1)
AN
A fn = Fk,n(tk,n,1, ..., tk,n,m_kn) then
effk

Figure 7-1: Rewriting transitions to eliminate term actuals

88

Appendix A

BNF Grammar for Intermediate
Language

Syntax of specification file

spec ::= ’(’ decls automatonDefx ’)’

Syntax of declarations

decls = sortDec* varDec* opDecx

sortDec ::= ’(’ ’sort’ sortId ’"’ name ’"’ sortId* ’LITERAL’? ’)’
varDec = ’(’ ’var’ varId ’"’ name ’"’ sortId ’)’

opDec ::= 2 ’op’ opId ’"’ name ’"’ sortId+ ’)’

name = 7["\""])*

opld = 20’ (DIGIT)+

sortId = ’s’ (DIGIT)+

varld = ’v’ (DIGIT)+

DIGIT = [0-9]

Syntax of automata definitions

automatonDef ::= ’(’ ’automaton’ nameAndDecls automatonBody

invariant? config?)’

89

nameAndDecls
automatonId
formals
automatonBody
ID

LETTER

Syntax of actions

action
actionName
actionType
actionld
actionFormals

where

Syntax of states

automatonId decls formals?

ID

>(? ’formals’ varId+ ’)’

action+ state+ stateSoThat? transition+ tasksx
(LETTER)+ (DIGIT | LETTER)*

[A-Za-z_]

>(? ’action’ actionName actionFormals? where?
actionType actionId

>input’ | ’output’ | ’internal’

ID

varld+

>(? ’where’ predicate ’)’

’state’ varld value? ’)°’

choice

’choose’ (varId term)? ’)’

state = (0
value ::= term |
choice ::= ’(’
stateSoThat

::= ?(’ ’sothat’ predicate ’)’

Syntax of transitions

transition

actionHead
actionActuals
chooseFormals

precondition

>(’ ’transition’ actionHead chooseFormals?
precondition? effect? ’)’
actionName (actionActuals where?)? NUMBER?
’(? ’actuals’ termt+ ’)’
’(? ’choose’ varId+ ’)’

’(’ ’pre’ predicate ’)’

90

)))

effect ::= 2 ’eff’ program

(>’ ’sothat’ predicate ’)’)7 ’)’

program ::= 2(’ statement+ ’)’
statement = assignment | conditional | loop
assignment = ’(’ ’assign’ component value ’)’
component = wvarld | ’(’ opId term+ ’)’ // see comment 1
conditional = (’if’ (’(’ predicate program ’)’)+
(>’ ’else’ program ’)’)7 ?)’
loop ::= 7(? ’for’ varld term program ’)’ // see comment 2

Syntax of tasks

task ::= ?(’ ’task’ actionSet forClause? ’)’
actionSet ::= ’(’ actualAction+ forClause? ’)’
actualAction ::= actionName actionActuals?
forClause = ?(’ ’for’ varId+ where? ’)’

Syntax of terms

predicate ::= term
term = »(? opIld term+)’
| > quantifier term ’)’
| sortId | varId | opIld
| NUMERAL ’:’ sortId
| stateRef
stateRef c:=(C term,+ ’)’
(automatonId (’(’ sortId,+ ’)’)7)+
> name ’"? // see comment 3
quantifier ::= (’\A’ | ’\E’) varId
Comments

1. The grammar for component is more general than the front-end produces.

91

2. The grammar for loop allows both so that and in constraints. If term has

type Bool, then the constaint is a so that; otherwise, it is an in constrait.

3. By adding

stateDec ::= ’(’ ’state’ varId
(automatonId (’(’ sortId+ ’)’)7)+

P name PATI ;);

the size of a stateRef can be reduced to

stateRef ::= ’>(’ varld term+ ’)’.

92

Appendix B

BNF Grammar for Determinator

Syntax of Determinator Specifications

config = ’simulate’ automatonName choiceSim? transSim?
choiceSim = ’choose’ (ID ’:’ sort ’in’ ’{’ term,+ ’}’)+
transSim ::= ’transitions’ clause+
clause ::= ’if’ predicate ’then’ actionSet (’else’ actionSet)?
actionSet = (actualAction,+ | forClause?)

(("time’ | ’weight’) NUMBER)7
actualAction ::= actionId ’(’° (term | functionCall),+ ’)°’

(>:> °[’> NUMBER ’1’)7

(("time’ | ’weight’) NUMBER)?
functionCall = ’USER’ ’(’ sort ’)’ | ’RAND’ ’(’ sort ’)’

Syntax of Intermediate Language Format for Determinator Specifications

config = ’(’ ’simulate’ automatonId choiceSim* transSim? ’)’
choiceSim = ’(’ ’choose’ varId sortId termt+ ’)’

transSim = ’(’ ’transitions’ clause+ ’)’

clause ::= ?(’ ’if’ predicate ’then’ actionSet

(’else’ actionSet)7)’

93

actionSet ::= ’(’ (actualAction+ | forClause?)

((Ctime’ | ’weight’) NUMBER)? ’)’

actualAction ::= actionId NUMBER? ’(’ ’actuals’ (term | functionCall)
(("time’ | ’weight’) NUMBER)?)’

functionCall ::= ’(’ ’USER’ sortId ’)’ | ’(’ ’RAND’ sortId ’)’

94

Bibliography

1]

Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman. Compilers: Principles, Tech-
niques, and Tools. Addison-Wesley Publishing company, 1986.

K. Many Chandy and Jayadev Misra. A Foundation of Parallel Program De-
sign. Addison-Wesley, Reading, MA, 1988.

Oleg Cheiner. Implementation and evaluation of an eventually-serializable

data service. Master’s thesis, Massachusetts Institute of Technology. Septem-

ber 1997.

Alan Fekete, David Gupta, Victor Luchangco, Nancy Lynch, and Alex
Shvartsman. Eventually-serializable data services. In Proceedings of the Fifth
Annual ACM Symposium on Principles of Distributed Computing, pages 300-
309, Philadelphia, PA, May 1996.

Alan Fekete, M. Frans Kaashoek, and Nancy A. Lynch. Implementing sequen-
tially consistent shared objects using broadcast and point-to-point communi-

cation. Journal of the ACM, 1998.

Alan Fekete, Nancy A. Lynch, and Alex Shvartsman. Specifying and using
partitionable group communication service. Technical Memo MIT-LCS-TM-
570, Laboratory for Computer Science, Massachusetts Institute of Technology,
1997.

95

7]

[10]

[11]

[12]

[13]

[14]

[15]

Stephen J. Garland and John V. Guttag. A guide to LP, the Larch Prover.
Research Report 82, Digital Systems Research Center. Palo Alto, CA, De-
cember 1991.

Stephen J. Garland and Nancy A. Lynch, The IOA Language and Toolset:
Support for Mathematics-Based Distributed Programming, 1998. Submitted

for publication.

Stephen J. Garland, Nancy A. Lynch, and Mandana Vaziri. IOA: a Formal
Language for I/O Automata, MIT Laboratory for Computer Science, 1997.
Available from http://theory.lcs.mit.edu/tds/cav.html

Kenneth J. Goldman “Distributed algorithm simulation using Input/Output
automaton” Technical Report MIT/LCS/TR-490, MIT Laboratory for Com-
puter Science, 1990.

Kenneth J. Goldman, Bala Swaminathan, T. Paul McCartney, Michael An-
derson, and Ram Sethuraman. The Programmers’ Playground: I/O abstrac-
tion for user-configurable distributed applications. IEEE Transactions on

Software Engineering, 21(9):735-746, September 1995.

William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable
Parallel Porgramming with Message-Passing Interface. MIT Press, October
1994.

C.A.R. Hoare. Communicating Sequential Processes. Prectice-Hall Interna-

tional, Englewood Cliffs, New Jersey, 1985.

John V. Guttag and James J. Horning, editor. Larch: Languages and Tools
for Formal Specification. Springer-Verlag, 1993.

Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice

Hall Software Series, New Jersey, 1991.

96

[16]

[17]

18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Java Compiler Compiler, The Java Parser Generator, Product of Sun Mi-
crosystems

Available from http://www.suntest.com/JavaCC/

LALR Parser Generator for Java, Scott Hudson, GVU Center, Georgia Tech.
http://www.cc.gatech.edu/gvu/people/Faculty /hudson /java_cup/home.html

Nancy A. Lynch, Michael Merritt, William Weihl, and Alan Fekete. Atomic
Transactions. Morgan Kaufmann Publishers, Inc. San Mateo, CA, 1994.

Nancy A. Lynch Distributed Algorithms. Morgan Kaufmann, 1996.

Nancy A. Lynch and Mark Tuttle. “Hierarchical correctness proofs for dis-
tributed algorithms.” Technical Report MIT/LCS/TR-387, MIT Laboratory
for Computer Science, 1987.

J. Postel. Transmission Control Protocol - DARPA Internet Program Speci-
fication (Internet Standard STC-007). Internet RFC-793, September 1981.

Gruia-Catalin Roman and Kenneth C. Cox. A declarative approach to vi-
sualizing concurrent computations. IEEE Computer, 22(10):25-36, October
1989.

Mark Smith. Formal Verification of TCP and T/TCP. Ph.D. thesis, Depart-
ment of Electrical Engineering and Computer Science, Massachusetts Insti-

tute of Technology, September 1997.

Jorgen A. Sogaard-Andersen, Stephen J. Garland, John V. Guttag , Nancy
A. Lynch, and Anna Pogosyants. “Computer-assisted simulation proofs.” 4th

Conference on Computer Aided Verification, 1993.

Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, Englewood
Cliffs, N.J., 1992

97

