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Chapter 1
Introduction
Distributed systems are di�cult to design and verify because they must cope witharbitrary interleaving of processor steps. Formal modeling has been applied to rea-son about distributed algorithms, state problem speci�cations, describe algorithmsprecisely, and prove correctness. The input/output automaton model, developed byNancy Lynch and Mark Tuttle [20], is a formal mathematical model for describingasynchronous concurrent systems. Recently, Stephen Garland and Nancy Lynch havedeveloped a formal language for I/O automata, IOA, which enables the constructionof software tools to support the design and analysis of distributed systems.It is important to have tools for simulating distributed algorithms. First, sinceformal proofs of correctness are often long, hard, and tedious to construct and read,simulation and testing can help reveal errors in algorithms quickly and easily, be-fore delving into correctness proofs. Second, constructing a correctness proof for analgorithm requires intuition of how the algorithm works, which can be obtained byobserving its behavior. Third, a better understanding of an algorithm's behavior canguide improvement of the algorithm. Fourth, a simulator facilitates the study of thealgorithm performance under varying conditions.In this thesis, we present the design for a simulator for the IOA language and de-scribe its construction and use. Another contribution of this thesis is the developmentof front end tools for the IOA system. 8



1.1 Thesis OverviewThis thesis is organized as follows. In Chapter 1, we give an introduction to theIOA language and toolset, a system that provides support for mathematics-baseddistributed programming, and we outline the design goals of the IOA system. InChapter 2, we review the underlying theoretical model of the IOA system, the in-put/output automaton model. Chapter 3 introduces the IOA language for describingdistributed algorithms as I/O automata and gives examples of IOA speci�cations ofdistributed algorithms. The main body of the thesis is Chapter 4, where we describethe usage and give sample runs of the IOA simulator; we end the chapter with acomparison of the simulator to previous research. In Chapter 5, we discuss the im-plementation of the IOA system and the simulator. Chapter 6 contains a detaileddescription of a composition transformation, an IOA front-end tool developed by theauthor. In Chapter 7, we evaluate the design and implementation of the simulatorand discuss possibilities for future work.1.2 BackgroundThe use of computers is undergoing a revolution, leading to widespread use of dis-tributed computing. Until the 1980s, computers were large and expensive, and theyoperated largely independently of each other. Two major advances in technologybegan to change that situation. The �rst was the development of cheap and pow-erful microprocessors that had computing power comparable to that of mainframecomputers. The second was the proliferation of local area networks (LANs), whichallowed hundreds of machines to be connected and information to be transferred atrates of 10{100 million bits per second.The net result of these two technologies is that a large number of CPUs can be con-nected by a high-speed network to form a distributed system, in contrast with previouscentralized systems consisting of a single CPU, memory, and peripherals. Tanen-baum [25] describes the advantages of distributed systems over centralized ones. He9



argues that distributed systems are more economical (have higher price/performanceratios), faster (have more total computing power), more manageable (because com-puting power can be added in small increments), and more reliable (because if onemachine crashes the system as a whole can still survive) than centralized systems.Currently, distributed systems are �nding applications in such areas as telecommuni-cation, distributed information processing, scienti�c computing, and real-time processcontrol.Distributed systems need radically di�erent software than do centralized systems.Unlike sequential algorithms, distributed algorithms must cope with arbitrary inter-leaving of processor steps. Since a program's execution can unfold nondeterminis-tically, designing and reasoning about distributed algorithms is inherently di�cult.Formal modeling has been applied to reason about distributed algorithms.The input/output (I/O) automaton model was developed by Nancy Lynch andMark Tuttle [20] to describe and reason formally about distributed and real-timesystems. Professor Lynch's book Distributed Algorithms [19] formulates many algo-rithms in terms of I/O automata and contains proofs of complexity, reliability, safetyand liveness properties of these algorithms. Because of the complicated settings inwhich distributed algorithms run, the design and veri�cation of these algorithms canbe an extremely di�cult task. Hence, the model supports a rich set of techniquesfor proving correctness and other desirable properties of distributed algorithms, in-cluding invariant assertion methods, forward and backward simulation methods, andtemporal logic methods. Some of the proofs of invariants, simulation relations, andtemporal properties have been carried out using computer-aided veri�cation [24].1.3 IOA SystemThe I/O automaton model provides a solid foundation for the development of dis-tributed algorithms, as shown in [19]. The IOA system is based on the I/O automa-ton model; the system permits distributed algorithm speci�cation, design, debugging,analysis, and correctness proofs within a single framework. Such integration not only10



saves one from translating between di�erent models and languages, but also allowsfacts discovered during simulation and debugging to be more easily incorporated intocorrectness proofs, as well as properties used in proofs to be checked mechanicallyduring simulation.The system provides a language for expressing algorithms as input/output au-tomata, together with a suite of tools that support the production of high-qualitydistributed software. The IOA language is a programming language for distributedsystems that is suitable for both veri�cation and simulation. The toolset providesa variety of validation methods such as theorem proving, model checking, and sim-ulation, which can be used to ensure the correctness of an algorithm. The toolsetalso supports a development process that starts with a high-level speci�cation, re�nesthat speci�cation by successively adding more details, and �nally generates e�cientdistributed programs, thereby providing a formal connection between veri�ed designsand the corresponding �nal code.The high level structure of the IOA system is presented in Figure 1-1. The IOAsystem is two-tiered. The �rst tier consists of the IOA language and its front endtools: a parser, a syntactic and semantic checker, prettyprinters, and transformationtools. The second tier consists of the intermediate language and a set of back endtools: a simulator, interfaces to theorem provers and model checkers, and a codegenerator.The IOA system contains a variety of analytical tools ranging from light-weighttools, which check the syntax and semantics of an automaton description; to medium-weight tools, which simulate actions of an automaton or provide interfaces to modelcheckers; and to heavier weight tools, which provide support for proving propertiesof automata using a theorem prover. Figures 1-2 and 1-3 show how we expect theIOA system to be used in designing distributed algorithms. First, the user designs analgorithm and translates it into IOA speci�cations. He/she then uses one or more ofthe veri�cation tools to test, debug, and analyze his/her design. In this process, theuser may discover a need to redesign the speci�cations and properties of the system(see Figure 1-2). 11
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The toolset supports a development process called successive re�nement. Thisprocess is depicted in Figure 1-3. The user �rst develops an abstract description ofa distributed system and its properties. As shown in Figure 1-2, the user formalizesthe description in the IOA language, and uses veri�cation tools to check its desiredproperties. The user then models the architecture of the system using IOA, andproves that this architecture is faithful to the abstract speci�cation by describing asimulation relation (see Section 2.3) between the two levels of description. In theproofs, the user may need to supply information about the correspondence betweensteps of the high-level and low-level descriptions. The toolset helps users de�nestep correspondences by modifying code or using a special language for de�ning stepcorrespondences. Continuing in this fashion, the programmer speci�es progressivelymore detailed designs. Once the user reaches low enough level and is con�dent in thedesign and correctness of the system, the code generator can be used to translate theIOA speci�cations into Java or C++ programs.The IOA system provides three complementary approaches to testing and verifyingdistributed algorithms:1. SimulationThe simulator allows the user to observe the run-time behavior of an IOA pro-gram; it can be used for debugging and testing the correctness and performanceof a distributed algorithm.2. Model checkingThe IOA system will provide an interface to the SPIN [15] model checker. Modelcheckers provide a di�erent approach to validating a distributed algorithm. Amodel checker performs an exhaustive test of an automaton's properties in allreachable states. Model checkers resolve nondeterminism present in IOA speci-�cations by exploring all possible options. Since a model checker automaticallyexplores all reachable states, it is feasible only for systems that do not havemany states.
14



3. Theorem provingAn IOA interface to the Larch Prover (LP) [7] can be used to prove propertiesand invariants of IOA speci�cations, to prove simulation relations between twospeci�cations, and to prove validity properties for user input and facts aboutthe data types manipulated by the programs. The theorem prover interfacesubmits axioms and goals, translated into the Larch Shared Language (LSL),to LP. Using algebraic substitution and other logical deductions along with userguidance, LP tries to prove that the goals follow from the axioms.The combination of these three tools with the code generator provides the designerof a distributed system or algorithm with a solid development framework. The toolsetis capable of producing e�cient distributed programs whose correctness has beenfully proved subject to stated assumptions about the environment of the system.The generated code can use speci�ed externally-provided services and underlyinghardware. For example, an IOA channel automaton is implemented by externally-provided service such as TCP [21] or MPI [12]. The toolset assumes that built-in anduser-supplied sequential code for data type operations is correct; it does not verifythis code, though such veri�cation is within the scope of today's proof technology.1.4 Design GoalsIn designing any set of software tools, it is important to formulate and adhere to aset of design principles. The philosophy behind the IOA system is described by thefollowing design principles.1. The language and tools must be faithful to the formally de�ned mathematicalmodel. For example, it only makes sense to check simulated executions of analgorithm against the properties asserted by a theorem prover if the semanticsof the simulation match the semantics of the proof. Because successful testingalone is not su�cient cause to believe that an algorithm is correct, one shouldstill construct a correctness proof as part of the algorithm development cycle.15
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Therefore, it is important that the semantics of the simulation language beconsistent with the formal model of the proof.To meet this goal, as much of the design, veri�cation, and analysis as possibleshould be done within the IOA language, and therefore in terms of the underly-ing mathematical model. Only at the latest possible moment should a transitionto physical code be made.2. The language and tools should be natural for expressing a large class of dis-tributed algorithms. However, the main emphasis should be on simplicity anduniformity: complicated language constructs should be avoided in the interestof being able to apply powerful tools to simple statements.3. The tools should not depend too much on each other; their design spaces shouldbe orthogonal. This goal is essential for the maintenance and scalability ofthe system. It allows one to use only a subset of the tools, and facilitatesincorporating additional testing and verifying tools into the system.4. The language and tools should encourage experimentation. In general, it shouldbe easy to modify the algorithm being studied and to use the tools. Often aresearcher does not know exactly where to look for new insights about an al-gorithm being developed, but discovers them through exploration and experi-mentation. It is important that the system facilitate this process. For example,the IOA language should support modular design and decomposition, so thatthe user can easily change a single component of an algorithm. Furthermore, tofacilitate experimentation, the time between modifying an algorithm and beingable to use a verifying tool should be short.
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Chapter 2
The Input/Output AutomatonModel
The Input/Output (I/O) automaton model, developed by Lynch and Tuttle [20],models components of asynchronous concurrent systems as state transition systems.The I/O automaton model is general and simple, and its fundamental notions aremathematical. The execution of an automaton is de�ned by traces of its external be-havior. The model supports techniques for modular design and analysis of distributedsystems, including automata composition based on synchronized external actions anddescription of levels of abstraction based on trace inclusion. The model also supportsa rich set of proof methods, including invariant assertions, forward and backward sim-ulation and compositional methods. More details, motivation, examples, and resultscan be found in [20] and [19].Lynch's book Distributed Algorithms [19] describes many algorithms in terms ofI/O automata and contains many proofs of various properties of these algorithmsand of impossibility results. Careful proofs using the I/O automaton model havebeen constructed using a variety of techniques for a wide range of algorithms (formore examples, see [18] and [23]). The proofs have been applied to verifying practicaldistributed systems such as group communication services [6] and distributed sharedmemory services [5]. (While verifying [5] using the I/O automaton model, a signi�canterror was found and repaired.) In this chapter we present an overview of the I/O18



automaton model adapted from Chapter 8 of [19]. In the course of presenting themodel we highlight those properties that have been represented in the IOA languageand the simulator.2.1 I/O AutomataI/O automata are best suited for modeling systems whose components operate asyn-chronously. Each system component is modeled by an I/O automaton, which isa nondeterministic (possibly in�nite state) automaton with an action labeling eachtransition. An automaton's actions are classi�ed as input, output, or internal. Anautomaton can restrict when it will perform an output or internal action, but it isunable to block the performance of an input action. An automaton is said to be closedif it has no input actions; closed systems do not interact with their environment.An automaton's signature S is a set of actions partitioned into three disjoint sets:the input actions, in(S), the output actions, out(S), and the internal actions, int(S).The external actions, ext(S), are the input and output actions in(S) [ out(S); thelocally controlled actions, local(S), are out(S) [ int(S). All actions in S are denotedby acts(S).Formally, an I/O automaton A consists of �ve components:� sig(A), a signature of A� states(A), a (possibly in�nite) set of states� start(A), a nonempty subset of states(A) known as initial states� trans(A), a state-transition relation, such thattrans(A) � states(A)� acts(sig(A))� states(A)and for every state s and every input action �, there is a transition (s; �; s0) 2trans(A): Informally, trans(A) speci�es all transitions that can occur for everystate and every action. 19



� tasks(A), a task partition, which is an equivalence relation on local(sig(A)).An element (s; �; s0) of trans(A) is called a transition or step of A. If (s; �; s0)is a step of A, then � is said to be enabled at state s. Since every input action isenabled at every state, every automaton is input-enabled (i.e., an automaton is unableto block its inputs). The equivalence relation tasks(A) is used in the de�nition of afair computation. Each class of the partition may be thought of as a separate process.I/O automata are often described in a precondition-e�ect style. This style groupstogether all the transitions (s; �; s0) that involve each particular type of action into asingle piece of code. The code also speci�es the preconditions under which the actionis permitted to occur, as a predicate on the components of state s. The code speci�esthe e�ects that occur as a result of applying � to s. The code in the e�ects clauseand the precondition predicate are executed as one atomic operation. We will saymore about I/O code and give examples of I/O automata speci�cations in the nextchapter.An execution of automaton A is a �nite sequence s0; �1; s1; :::; �n; sn or an in�nitesequence s0; �1; s1; �2; ::: of alternating states and actions of A such that s0 2 start(A)and (si; �i; si+1) is a step of A for every i. A state is said to be reachable in A if it isthe �nal state of a �nite execution of A. The trace of an execution � of A, denotedtrace(�), is the subsequence of � consisting of all its external actions.2.2 CompositionMany interesting I/O automata are de�ned using the composition operation, whichcan be used to describe an automaton in terms of individual system components.As a special case, a system or an algorithm described by an I/O automaton can becomposed with another automaton that represents an I/O automaton model of thesystem's environment.An automaton A can be de�ned as a composition of a number of individual au-tomata A1; A2; : : : ; An. There are two main requirements on the automata beingcomposed: 20



1. The set of internal actions of Ai is disjoint from the set of all actions of Aj, forall j 6= i; 1 � i; j � n.2. The sets of output actions out(A1); out(A2); :::; out(An) are mutually disjoint.We call automata A1; A2; : : : ; An compatible if their signatures satisfy conditions 1and 2. The composite automaton A has the signature:� int(A) = S1�i�n int(Ai)� out(A) = S1�i�n out(Ai)� in(A) = S1�i�n in(Ai)� out(A):The set of states of the composition automaton is the Cartesian product of thesets of states of the component automata.� states(A) = �1�i�n states(Ai):The transitions of a composite automaton are obtained by applying the followingrule: if a particular action � is in the signature of more than one of the composedautomata, then all these automata participate simultaneously in steps involving �.� trans(A) is the set of triples (s; �; s0) such that, for all i 2 f1; :::; ng, if � 2acts(Ai), then (si; �; s0i) 2 trans(Ai); otherwise, si = s0i:The task partition of the composition is the union of the component task partitions.� tasks(A) = S1�i�n tasks(Ai):In [19], Lynch de�nes a composition operation on a countable collections of au-tomata. We have restated the de�nition to allow only �nite collection of automatato be composed, since this composition operation is the one supported by the IOAtools. We will return to this de�nition in Chapter 6, where we describe the composi-tion transformation tool of the IOA system front end.
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2.3 Simulation RelationsThe I/O automaton model supports levels of abstraction based on trace inclusion.High-level descriptions of a distributed system as I/O automata model problem re-quirements; low-level descriptions are closer to the real implementation of the system.To prove that one automaton implements another, it is enough to de�ne a relationshipbetween the two automata, showing that for any execution of the low-level automatonthere is a corresponding execution of the higher-level automaton.Formally, let A and B be two I/O automata with the same external actions.(A represents the low-level automaton and B represents the high-level automaton.)Suppose f is a binary relation over states(A) and states(B). Then f is a simulationrelation from A to B provided that the following hold:1. If s 2 start(A), then f(s) \ start(B) 6= ;.2. If s is a reachable state of A, u 2 f(s) is a reachable state of B, and (s; �; s0) 2trans(A), then there is an execution fragment � of B starting with u and endingwith some u0 2 f(s0) such that trace(�) = trace(�).The �rst condition requires that any start state of A have some corresponding startstate of B. The second condition requires that for any step of A and any state ofB corresponding to the initial state of the step, there is a corresponding sequenceof steps of B. In general, this corresponding sequence can consist of none, one, ormore steps of B as long as the correspondence between the states and the externalbehavior of the two automata are preserved.2.4 Alternative ModelsThe I/O automaton model is only one of a number of formal models that have beenused for reasoning about concurrent systems. A review of alternative models is con-tained in [20].Hoare's Communicating Sequential Processes (CSP) [13] is closely related to theI/O automaton model. A CSP program consists of a set of processes written as22



sequential programs. Each program can contain statements that attempt to sendor receive data over channels connected to other processes. The channels are syn-chronous, i.e., data transfer occurs simultaneously at both ends of the channel, butonly after both the sender and the receiver are at the appropriate points in theirprograms. Thus, CSP is not suited for describing systems in which the individualprocesses are autonomous, because, unlike I/O automata, a CSP process that is notprepared to receive data may block a process that is prepared to send data.Another programming model, UNITY (which stands for Unbounded Nondeter-ministic Interactive Transformations) [2], uses nondeterministic choice instead of se-quential control ow. A UNITY program consists of a set of statements that accessa global shared memory. At each step in the (in�nite) execution, a statement is se-lected and executed. Statement schedules are constrained to be fair, meaning thateach statement is executed in�nitely often. One may think of each statement as a sep-arate process, which is given fair turns. Since UNITY programs do not terminate, thenotion of algorithm termination is de�ned in terms of a �xed point in the execution,after which no statements cause state changes. The UNITY model has a program-ming logic that is useful for constructing rigorous correctness proofs of algorithms.To model distributed computation, one declares variables that represent channels andwrites statements for sending and receiving data that update those variables. Sincethere is no notion of \input actions" in UNITY, processes must actively read sharedvariables in order to become informed of the outputs of other processes. This rules outsynchronous interprocess communication. Modularity is a problem in UNITY, sincethe interfaces between program modules use global variables and are not describablein terms of well-de�ned sets of actions as in the I/O automaton model.

23



Chapter 3
The IOA Language
This chapter introduces the IOA language and gives examples of IOA programs. TheIOA language is based on the I/O automaton model discussed in the previous chapter.IOA uses an axiomatic language, the Larch Shared Language (LSL) [14], for de�ningabstract data types. Part of the discussion of the IOA language is adopted from theIOA manual [9]. For a more thorough presentation of the IOA language, the readeris referred to that document. At the end of this chapter, we discuss a leader electiondistributed algorithm, describe this algorithm using the I/O automaton model, andgive its IOA speci�cation. We will present several simulation runs of this algorithmin the next chapter.3.1 OverviewIOA is a precise language for describing input/output automata and for stating theirproperties. It was developed by Garland and Lynch as an extension and formalizationof the notation used in the Distributed Algorithms book [19] and in [20] and [18]. Thelanguage is based on the formal, mathematical I/O automaton state machine model.IOA uses the Larch Shared Language [14] to de�ne the semantics of abstract datatypes.Since the I/O automaton model is a reactive system model rather than a sequentialprogramming model, the IOA language cannot simply be a standard sequential pro-24



gramming language with some constructs for concurrency and interprocess commu-nication. Instead, the language must be suitable for both veri�cation and simulation.Such a language is hard to design, since for veri�cation an axiomatic language withnondeterministic constructs is preferable, while a deterministic operational languageis easier to simulate and translate into real code. In the current design for IOA, datatypes are de�ned using the axiomatic Larch Shared Language, while IOA speci�ca-tion of transition de�nitions include assignment, conditional, iteration, and chooseoperations.The language supports two main techniques for building distributed systems outof components. First, the language supports the construction of a system in termsof smaller systems. This technique conforms to the semantics of the compositionoperation of the I/O automaton model described in Section 2.2. Second, the IOAlanguage supports developing a system design using levels of abstraction. The systemis �rst described at a high level, capturing the essential ideas of an algorithm, andthen this speci�cation is successively re�ned. This technique is based on the formalnotion of a simulation relation described in Section 2.3.3.2 Structure of IOA ProgramsIn the IOA language, the description of an I/O automaton has four main parts:the action signature, the states, the transitions, and the tasks of the automaton.An automaton's actions are declared in the signature part. States are describedby combinations of values for typed `state' variables. The transitions are given inprecondition-e�ect style (see Section 2.1). Each transition de�nition has a precondition(pre) which describes a condition on the state that should hold before the transitioncan be executed, and an e�ect (eff) which describes how the state changes when thetransition is executed. If pre is not speci�ed, then it is assumed to always evaluate totrue. The eff part of a transition de�nition can consist of assignment, conditional,loop, or nondeterministic choice operations. Nondeterminism is useful for generalityin high level algorithm design; it is included in the language in the form of choose25



operations. An optional task part describes the task partition. If a task partitionis not speci�ed, then it consists of a single task containing all internal and outputactions of the automaton.Figure 3-1 contains a simple IOA description for an automaton, Adder, which getstwo integers as input and then outputs their sum. The �rst line declares the name ofthe automaton. The signature of the automaton Adder consists of two parameterizedactions: add(i, j) and result(k). The types Int and Bool, representing integerand boolean types respectively, are built-in types in IOA.automaton Addersignatureinput add(i, j: Int)output result(k: Int)statesvalue: Int,ready: Bool := falsetransitionsinput add(i, j)e� value := i + j;ready := trueoutput result(k)pre k = value ^ readye� ready := falseFigure 3-1: IOA description of an adderIt is possible to place constraints on the values of parameters of an action in thesignature using the keyword where followed by a predicate. Such constraints restrictthe set of actions denoted by the signature. For example, the signaturesignatureinput add(i, j: Int) where i > 0 ^ j > 0output result(k: Int) where k > 1could have been used to restrict the values of the input parameters to positive integersand the value of the output parameter to integers greater than 1.The automaton Adder has two state variables: value, an integer to hold thecurrent sum, and ready, a boolean ag that indicates whether the sum has been26



computed. The initial value of value is arbitrary, since it is not set in the descriptionof the state variables; ready is initialized to false.The input action add(i, j) has no precondition (i.e., its precondition alwaysevaluates to true). Since I/O automata are input-enabled, every input action isalways enabled and has no precondition. The e�ect of transition add(i, j) setsvalue to the sum of i and j and ready to true. The output action result(k) canoccur only when it is enabled, i.e., when ready is set to true and the parameter kis equal to value. Its e�ect is to reset ready back to false. A trace of Adder is asequence of external actions such asadd(3, 2), result(5), add(1, 2), add(-1, 1), result(0), ...that starts with an add action, and in which every result action is parameterizedby the sum computed by the last add action. Successive result actions must beseparated by one or more add actions.3.3 Example of a Leader Election AlgorithmIn this section we describe a distributed algorithm that solves the leader election prob-lem in networks with a ring topology. We give an IOA description of the algorithmas a composition of I/O process and channel automata, and we state an invariant forthe algorithm.The problem of electing a unique leader process from among the processes ina network originally arose in the study of local area token ring networks, where asingle token circulates around the network, giving its current owner permission toinitiate communication. Sometimes, however, the token may be lost, and it becomesnecessary to elect the \leader" process that will regenerate the lost token. We considerthe LeLann-Chang-Roberts (LCR) leader election algorithm that solves the problemin ring networks. We assume that the network digraph G is a ring consisting ofn nodes. Figure 3-2 gives an example of a ring network with 4 processes. Theprocesses associated with the nodes of G do not know their indices, nor those of their27
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Figure 3-2: A ring of 4 processesneighbors. Instead, processes are distinguished by a unique identi�er (uid). In theLCR algorithm, each process sends its identi�er around the ring. When a processreceives an incoming identi�er, it compares that identi�er with its own uid. If theincoming uid is greater than its own, then the process passes the identi�er on; if it isequal to its own uid, then the process declares itself a leader. In this algorithm, theprocess with the largest uid is elected as the leader, since the largest uid is the onlyone that will pass all the way around the ring.The IOA description of the process automaton is presented in Figure 3-3. Au-tomaton Process is parameterized by the type I of the process indices and by theprocess index i. The assumes clause identi�es an auxiliary speci�cation, RingIndex(Figure 3-4), that imposes restrictions on the type I. This speci�cation is written inthe Larch Shared Language; it requires that there be a ring structure on I induced byoperators first, right, and left, and that the operator uid provide a one-to-onemapping from indices of type I to uids of type String. The type declaration on thesecond line of Figure 3-3 declares Status to be an enumeration of the values waiting,elected, and announced.The automaton Process(I, i) has two state variables: pending is a multisetof Strings, and status has type Status. Initially, pending is set to fuid(i)g and28



automaton Process(I: type, i: I)assumes RingIndex(I, String)type Status = enumeration of waiting, elected, announcedsignatureinput receive(m: String, const left(i), const i)output send(m: String, const i, const right(i)),leader(m: String, const i)statespending: Mset[String] := {uid(i)},status: Status := waitingtransitionsinput receive(m, j, i)e� if m > uid(i) then pending := insert(m, pending)elseif m = uid(i) then status := elected�output send(m, i, j)pre m 2 pendinge� pending := delete(m, pending)output leader(m, i)pre status = elected ^ m = uid(i)e� status := announcedtasks{send(m, j, right(j)) for m: String, j: I};{leader(m, j) for m: String, j: I}Figure 3-3: IOA speci�cation of election processstatus to waiting. The input action receive(m, left(i), i) compares m, the uidreceived from the automaton Process(I, left(i)) to the left of Process(I, i) inthe ring, with the uid of the automaton itself. If m is greater than the process's uid,then m is inserted into pending and is sent to the next process in the ring. If m isless than i's uid, then nothing is done. If m equals to i's uid, then Process(I, i)is declared the leader. There are two output actions: send(m, i, right(i)), whichsimply sends a message in pending to the automaton Process(right(i)) on theright in the ring, and leader(m, i), which announces a successful election. The twokinds of output actions are placed in separate tasks, so that a Process automatonwhose status is elected must eventually perform a leader action.Automaton Channel, described in Figure 3-5, represents a reliable communicationchannel, which neither loses nor reorders messages in transit. The automaton is29



RingIndex(I, J): traitintroducesfirst: ! Ileft, right: I ! Iuid: I ! Jasserts with i, j: Isort I generated by first, right;9 i (right(i) = first);right(i) = right(j) , i = j;left(right(i)) = i;uid(i) = uid(j) , i = jFigure 3-4: LSL speci�cation for �nite ring of processes
automaton Channel(M, Index: type, i, j: Index)signatureinput send(m: M, const i, const j)output receive(m: M, const i, const j)statesbuffer: Seq[M] := { }transitionsinput send(m, i, j)e� buffer := buffer ` moutput receive(m, i, j)pre buffer 6= { } ^ m = head(buffer)e� buffer := tail(buffer)Figure 3-5: IOA description for a reliable communication channel

30



parameterized by a type M of messages, by a type Index of process indices, and bytwo indices i and j, which represent indices of processes that use the channel. Thestate of automaton Channel consists of a sequence of messages, buffer, which isinitially empty. The input action send(m, i, j) has the e�ect of appending m tobuffer. The output action receive(m, i, j) is enabled when buffer is not emptyand starts with message m. The e�ect of this action is to remove the head elementfrom buffer.automaton LCR(I: type)assumes RingIndex(I, String)composeProcess(type I, i) for i: I;Channel(type String, type I, i, right(i)) for i: IFigure 3-6: IOA speci�cation of the LCR algorithmThe full LCR leader election algorithm is described in Figure 3-6 as a compositionof a set of process automata connected in a ring by reliable communication channels.The assumes statement on the �rst line repeats the assumption about the type I ofprocess indices in Figure 3-3. The list of automata following the keyword composedescribe the composition. This composition consists of one Process automaton andone Channel automaton for each element of type I. The type parameters M and Indexfor the Channel automata (Figure 3-5) are instantiated by the actual types Stringand I of messages and process indices, and the parameters i and j are instantiated bythe values i and right(i), so that each channel connects a process to its right neigh-bor. In the composition, the input actions receive(m, left(i), i) of the automa-ton Process(I, i) are identi�ed with the output actions receive(m, left(i), i)of the automaton Channel(String, I, left(i), i). Likewise, the input actionssend(m, i, right(i)) of the automaton Channel(String, I, i, right(i)) areidenti�ed with the output actions of the automaton Process(I, i). Since all inputactions of the channel and process subautomata are identi�ed with output actions ofother subautomata, the composite automaton contains only output actions.Figure 3-7 presents an IOA speci�cation of an invariant for the LCR automaton.31



invariant of LCR:8 i: I 8 j: I (Process(type I, i).status = elected^ Process(type I, j).status = elected ) i = j)Figure 3-7: IOA speci�cation of an invariant for the states of automaton LCRThe invariant states that at most one process is ever elected as the leader.3.4 IOA TerminologyIn this section we collect some de�nitions used to describe the parts of IOA speci�-cations of automata.De�nition 1 A primitive IOA automaton description is an IOA program withoutthe compose operator.An example of a primitive IOA automaton description is the IOA speci�cation forthe Adder automaton in Section 3.2.De�nition 2 An action header is an entry in one of the three (input, output, internal)action lists in the signature of an automaton.An action can have input, output, or internal action type, depending on whetherthe action is in the input, output, or internal action list of the automaton's signature.De�nition 3 An action pattern is a name and a sequence of types for the formalparameters of an action.Example: input blah(i:Int, s:String) has action pattern blah(Int, String).De�nition 4 Two action headers, a1 2 sig(A1) and a2 2 sig(A2), match i� theirpatterns match, i.e., i� a1 and a2 have the same names, and the same number, types,and order of the formal parameters.IOA requires that (see the semantic checks section of the IOA manual [9]):1. Each automaton has at most one action pattern with a particular name.2. Each action pattern occurs at most once in each of the input/output/internalaction lists of the signature of an automaton. Thus, an action pattern can occur32



at most three times in a signature de�nition | once in each action list.Thus, the following signature is illegalsignatureinput name(i: Int) where P1(i)output name(s: String) where P2(s),because it de�nes two di�erent action patterns, name(Int) and name(String), withthe same name.If the user wants to have a formal parameter that can be either of type Int or oftype String, the user must de�ne the corresponding union type. Figure 3-8 providesan example of using a union type for Int and String.type IntString = union of int: Int, str: Stringsignatureoutput name(x: IntString)where if tag(x) = int then P1(x.int) else P2(x.str)...statesn: Ints: Stringtransitionsoutput name(x: IntString) where tag(x) = intpre x.int = ne� ...output name(x: IntString) where tag(x) = strpre x.str = se� ... Figure 3-8: Dispatching on parameter typeThe same action pattern can occur in di�erent action types, but the user has theproof obligation that the where clauses for these action types do not overlap. Forexample, the following signature is legalsignatureinput name(i:Int) where P(i)output name(i:Int) where Q(i),provided the predicate P (i) ^Q(i) is false for every i.33



Chapter 4
Simulator
The simulator runs selected executions of an IOA program on a single machine. Thesimulator checks proposed invariants in the selected executions, generates logs ofexecution traces, and displays state information upon the user's request.In order to simulate an I/O automaton, the user has to resolve all nondetermin-ism present in its speci�cation. IOA speci�cations can contain two kinds of nonde-terminism: explicit nondeterminism introduced by choose statements and chooseparameters, and implicit nondeterminism introduced when more than one transitionis enabled at a particular state. The user selects which executions are run by writingsimulation con�gurations, known as determinators, for the automaton. The deter-minator mechanism provides three general resolution techniques for nondeterminism:specifying sets of deterministic alternatives to resolve nondeterministic choices, pick-ing random elements from sets of choices, and prompting the user for input at apoint of computation when nondeterminism arises. The simulator provides a choiceof scheduling options to resolve implicit nondeterminism, when more than one actionis selected for execution.An important part of the simulator design is the separation of the IOA de�nitionof an automaton and its determinators. As the result of this decision, the user canexperiment with a given algorithm in a variety of di�erent simulations.We start this chapter with an overview of the simulator. In Section 4.2, we statethe assumptions on the automata that can be simulated, since the simulator is not34



capable of simulating an arbitrary IOA program. Section 4.3 discusses the determi-nator, the mechanism that helps the user of the simulator resolve the nondeterminismof IOA programs, and gives examples of the determinator's use. Section 4.4 describesthe usage of the simulator and gives examples of executions of a simple automaton. InSection 4.5, we restate the LCR algorithm in a form acceptable to the simulator andpresent several determinators for it. We give two sample executions for the algorithmthat were obtained using di�erent scheduling policies and analyze the performanceof the simulator. We conclude the chapter by comparing the simulator to previousrelated projects.4.1 OverviewThe biggest problem faced by a simulator of distributed algorithms is resolving non-determinism. There are several sources of nondeterminism in the IOA language; wedistinguish two. Explicit nondeterminism arises from choose statements in the e�ectclauses of transition de�nitions, choose parameters of transition de�nitions, chooseexpressions in the initialization of the state variables, and in non-initialized variableswith and without so that constraints. Implicit nondeterminism involves the schedul-ing of enabled actions. If more than one action is enabled in a particular state, thenthe simulator has to decide which transition, with what parameter values, to schedulefor execution.The input to the simulator consists of the IOA description of an automaton anda determinator for the automaton. The determinator resolves all nondeterminism inthe speci�cation for the automaton, including how the automaton's transitions arescheduled and how values are chosen for choose operators and parameters. A simplelanguage for the determinator provides the user of the simulator with a mechanismfor expressing algorithm-speci�c scheduling rules, randomization over a set of possibleparameter values, and halting the simulation for the user's input at a speci�ed pointof simulation. The determinator language is described in detail in Section 4.3.The IOA speci�cation of an automaton together with a determinator for it speci�es35



a set of deterministic executions, which is parameterized by randomization parametersfor the simulation. The IOA de�nition of an automaton and the determinator for itare written separately; thus, users can experiment with a given algorithm in a varietyof di�erent simulation con�gurations.At every step of the simulation, the set of possible transitions and their parametervalues is determined by the speci�cations given by the user in the determinator. Ifmore than one transition is speci�ed in a given state, then the scheduler picks oneof them according to the scheduling policy selected by the user before the simulationbegan. The simulator provides the user with several scheduling options.4.2 AssumptionsThe simulator is not capable of simulating an arbitrary IOA program. The followingare the restrictions imposed on the IOA programs being simulated (see Section 7.2for a discussion of removing or relaxing some of these assumptions).1. IOA Language Restrictions� The automaton must be well formed; for example, constraints on transitionparameters and state variables should be satis�ed, and the components ofa composite automaton should be compatible.2. Simulator Restrictions� All quanti�ed variables must be bounded, that is, have a �nite set ofpossible values.� The simulator must have an implementation for every operator used in thede�nition of the automaton. The simulator has a library of implementa-tions for the data types and operators built into the IOA language. If theIOA speci�cation of the automaton uses a non-built-in data type, then theuser must provide an implementation for this data type, as described inSection 5.4.2. In this case, the user is responsible for the correctness of thecode. 36



� The number of component automata must be �nite. Thus the following isnot a valid input to the simulator (but is a valid IOA speci�cation):automaton Acompose B(i) for i:Int.3. Restrictions of the Current Implementation� The use of quanti�ed variables in the IOA description of the automaton isnot allowed. The user must rewrite the program to eliminate quanti�ers.For example, some existential quanti�ers used in transition de�nitions canbe translated using choose parameters, as shown on Figure 4-1. Someuniversal quanti�ers in the e�ect clause of transition de�nitions can betranslated using the for operator, as shown on Figure 4-2. In this example,P is a predicate testing an element of enumeration type Color.� Only variables and simple constants are allowed as parameters to the tran-sition de�nitions of the automaton. It is possible to translate a transitionwith an expression as a parameter to one that has only variables as itsparameters using a choose parameter. This transformation is describedin Section 7.2 in Figure 7-1.� The parameterized components of composite automata cannot be instan-tiated with constrained variables. This restriction is imposed because ofa di�culty in naming states of the resulting automaton (see Section 6.2).Thus, the simulator does not accept the following examples.automaton Acompose B(i) for i: Int where 1 � i ^ i � 3.type Color = enumeration of white, red, blackautomaton Ccompose D(i) for i: Color.Instead, these examples must be rewritten as follows:37



automaton Acompose B(1); B(2); B(3).type Color = enumeration of white, red, blackautomaton Ccompose D(white); D(red); D(black).� Only one automaton can be simulated at a time. Simulating several au-tomata could be useful when the user wants to test a simulation relation(see Section 2.3). We give suggestions on how to implement this kind ofcoupled simulation in Section 7.2.� The user must rewrite the speci�cation of the automaton so that all choosevariables have di�erent names. This is necessary because the determinatoruses a global naming scheme for all choose variables of an automaton.The simulator has a prede�ned initialization value for every built-in type. Thesevalues are used for every non-initialized state variable; therefore, the user does nothave to resolve the nondeterminism involved in the initialization of state variables.The user can also specify a set of initial values for a state variable, and the simulatorwill pick one of the speci�ed values at random.4.3 DeterminatorsAs mentioned in Section 4.1, the simulator needs to resolve all nondeterminism presentin IOA speci�cations. An I/O automaton to be simulated is transformed using adeterminator into a particular deterministic version of the automaton.The language for describing determinators is designed so that the user can assistthe simulator in resolving nondeterminism present in the speci�cation of automata.It provides a mechanism for expressing algorithm-speci�c scheduling rules, such as \ifany automaton has more than �fty messages in its bu�er, then give it priority to takea step." It also enables users to specify which transition de�nitions and parameter38



automaton Squaresignatureoutput result(i: Int)statesdone: Bool := falsetransitionsoutput result(i)pre 9 k: Int i = k*ke� done := trueautomaton Squaresignatureoutput result(i: Int)statesdone: Bool := falsetransitionsoutput result(i)choose k: Int where i = k*kpre i = k*ke� done := trueFigure 4-1: Eliminating existential quanti�er in transition de�nitionvalues should be chosen at each state. Determinators are written separately fromautomaton speci�cations.A determinator has two parts. The �rst resolves all choose operators and chooseparameters in the automaton's de�nition1; it is introduced by the keyword choose.The second resolves nondeterminism in action scheduling; it is introduced by thekeyword transitions. Appendix B gives a BNF grammar for the determinatorlanguage. In the rest of this section we argue for the necessity of the two parts of thedeterminator language, give examples of each part, and describe their usage.In the choose section, the user must resolve every choose parameter and everychoose operator used in the speci�cation of the automaton by specifying a �nite setof possibilities. The user must also rewrite the speci�cation of the automaton sothat all choose variables have di�erent names. This is necessary because a globalnaming scheme is used in the choose section of the determinator. When the simulator1The implementation of this part of the determinator is not complete yet.39



automaton TestColortype Color = enumeration of white, red, blacksignatureoutput report(b: Bool)statesdone: Bool := falsetransitionsoutput report(b)pre b = donee� done := 8 c: Color P(c)automaton TestColortype Color = enumeration of white, red, blacksignatureoutput report(b: Bool)statesdone: Bool := falsetransitionsoutput report(b)pre b = donee� done := truefor c: Color in Color dodone := done ^ P(c)odFigure 4-2: Eliminating universal quanti�er in the e�ect clause
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encounters a choose variable, it picks a random element in the �nite multiset of valuesfor this variable speci�ed in the choose section of the determinator. Currently, thesimulator uses a uniform distribution for selecting this random element; if the userwants value v1 to be selected twice as frequently as value v2, then the number ofoccurrences of v1 in the multiset should be twice that of v2.Consider the automaton Choice de�ned in Figure 4-3. The state variable numis initialized nondeterministically to some value of the variable n that satis�es thepredicate 1 � n ^ n � 3, that is, to one of the three values 1, 2, or 3. Figure 4-4 contains a determinator for the automaton Choice. The choose section in thedeterminator shown in Figure 4-4 instructs the simulator to pick this value in the setf1, 2, 3g. The transitions section speci�es scheduling information and is describedlater in this section.automaton Choicesignatureoutput result(i: Int)statesnum: Int := choose n where 1 � n ^ n � 3,done: Bool := falsetransitionsoutput result(i)pre : done ^ i = nume� done := trueFigure 4-3: Example of nondeterministic choice of initial value for state variablesimulate Choicechoose n: Int in {1, 2, 3}transitionsif : done thenresult(num)Figure 4-4: Determinator for the Choice automatonAny so that or where constraint on the initial state or on the post state of atransition is checked after initialization or execution of the transition, respectively.41



For example, the where clause in the Choice automaton in Figure 4-3 is checkedafter the initialization of its state variables. The user can use the theorem prover tocheck that the provided choices satisfy any required constraints (expressed by whereclauses, preconditions, or so that predicates). If any of the constraints are violated,the simulator informs the user and stops the simulation.The simulator must also resolve implicit nondeterminism. If more than one actionis enabled in a particular state, then the simulator must decide which one to execute.Moreover, since an action header may contain action parameters, every parameterizedaction can be viewed as an additional source of nondeterminism for the scheduler. Theuser must explicitly resolve nondeterminism by specifying which transition de�nitionshould be executed in each state, and with which parameter values. The user writesthis information in the transitions part of a determinator.In the transitions sections, the user provides a list of conditional clauses thatspecify the set of selected transitions and their parameter values. The form of eachclause is either if <test> then <set1> or if <test> then <set1> else <set2>,where <test> is a predicate on state variables of the automaton, and <set1> and<set2> are �nite sets of transitions with parameter values for these transitions. If<test> evaluates to true in a particular state, then <set1> is the set of transitionsand parameter values for them that are selected for execution at this state, otherwise<set2> is the selected set.At each step of the simulation, the simulator determines the set of selected tran-sitions by evaluating the list of if statements in the transitions section of thedeterminator. The set of all selected transitions and parameter values for them at astate is the union of the results of evaluating each if statement at this state. Thescheduler chooses one of the speci�ed transitions according to the scheduling policyselected by the user before the simulation began. If there are no transitions speci�edfor a state, then the simulator informs the user and stops the simulation. Possiblescheduling policies for transitions are discussed in Section 5.4.1.Consider again the determinator for the automaton Choice given on Figure 4-4.The transitions section of the determinator speci�es that if state variable done is42



false, then the set of selected transitions consists of a single transition result withparameter value num; otherwise, no transitions are selected.Figure 4-5 gives an example of a determinator for simulating the automaton Adder.simulate Addertransitionsif ready thenresult(value), add(value, value+1)elseadd(1, 2) Figure 4-5: Determinator for the Adder automaton(The IOA speci�cation for Adder appears in Figure 3-1.) This determinator speci-�es that, when ready is true, one of the two transition de�nitions, result(value)and add(value, value+1), can be scheduled for execution. In all other states, theadd(1, 2) transition should be executed.The expressions that specify parameter values for transitions can use only statevariables of the automaton. The user can also introduce a for variable to parameterizethe �nite set of selected transitions, as illustrated in Figure 4-6. This determinatorfor automaton Adder speci�es that if state variable ready is false, then the set ofselected transitions is add(1, 1), add(2, 1), and add(3, 1).simulate Addertransitionsif ready thenresult(value)elseadd(i, 1) for i: Int in {1, 2, 3}Figure 4-6: Using for variable in determinator speci�cationThe determinator language has two special functions, RAND and USER. These func-tions can be applied to the primitive data types (i.e., Bool, Int, Nat, and Real)supported by the simulator. They can be used in both the choose and transitionsparts of a determinator. 43



A call to the RAND function applied to a primitive built-in type returns a randomvalue of this type. Figure 4-7 demonstrates the use of the RAND function in anothersimulate Addertransitionsif ready thenresult(value)elseadd(RAND(Int), RAND(Int))Figure 4-7: Using RAND in a determinator for Adderdeterminator for Adder. If the state variable ready is true, then a transition forresult is simulated with its parameter set to the current value of the state variablevalue. Otherwise, the transition add is executed with its parameters set to the valuessupplied by the RAND function.The use of the USER function is similar to that of RAND. When a call to the USERfunction applied to a primitive built-in type, T, is encountered during a simulation,the user is prompted to enter the value of this type. The simulator parses the inputand uses the resulting value of type T.As an alternative to using a determinator, it is possible to resolve some of theimplicit nondeterminism by modifying the speci�cations of the simulated automaton.For example, the user can augment the automaton with new state variables contain-ing scheduling information, can add extra constraints involving the new schedulingvariables to the preconditions of transitions, and can add extra statements to thee�ects of transitions to maintain the scheduling variables. This conversion must bedone manually, without the help of the determinator mechanism. The advantage ofdoing the conversion manually is that the same deterministic IOA speci�cations canbe reused with the theorem prover, the simulator, and the code generator, while thedeterminator can be used only with the simulator and the code generator.Figure 4-8 gives an example of resolving some of the implicit nondeterminism inautomaton Adder in this fashion. This example de�nes an \environment automaton"AdderEnv to supply inputs for the automaton Adder and uses the composition op-44



eration to construct a deterministic system to simulate. The automaton AdderEnvuses two state variables, nums and next, to provide parameters for the output actionadd(i, j). The precondition for the transition de�nition add(i, j) constrains thevalues of i and j in the terms of these state variables, and the e�ect clause causesnew values to be used when the action is simulated again.automaton AdderEnvsignatureoutput add(i, j: Int)statesnums: Array[Int] := {1, 2, 3, 4},next: Int := 1transitionsoutput add(i, j)pre i = nums[next] ^ j = nums[next+1] ^ next � 4e� next := next + 2automaton AdderClosedcompose Adder; AdderEnvFigure 4-8: Closing the Adder automaton using compositionsimulate AdderClosedtransitionsif ready thenresult(value)elseadd(nums[next], nums[next+1])Figure 4-9: Determinator for AdderClosed automatonFigure 4-9 gives an example of a determinator for the composite automatonAdderClosed. This determinator removes the remaining nondeterminism by explic-itly specifying a transition de�nition and its parameters for each state, using a simplefunction applied to the new variables. Thus, even when all nondeterminism is re-moved in an IOA speci�cation, the simulator still needs help from a determinator inidentifying just which transition is enabled in a state and for which parameter values.45



The simulator can simulate both input and output actions; thus, the simulatedautomaton does not have to be closed (restricted to have only output and internalactions). The determinator in a way \closes" the automaton, so that all simulatedinput actions can be thought of as output actions.Finally, determinator language provides support for distinguishing transition def-initions with the same action header. The IOA language allows the user to specifyseveral transition de�nitions for a particular action header; however, the simulatorneeds to know which one of them to execute. If there are several transition de�nitionsfor a particular action, then the intermediate representation of the automaton num-bers them in the order of their appearance (see Section 5.3 for details). In writinga determinator speci�cation for a transition with multiple transition de�nitions forits action header, one appends the number of the transition de�nition to the actionheader of the transition as shown in Figure 4-10.4.4 Using the SimulatorIn this section we describe how the simulator is used and give sample execution runsof a simple automaton. More interesting examples are given in Section 4.5.The user invokes the simulator by a command line and then responds to anyprompts for inputs. The simulation is run for a speci�ed number of steps or untilno transitions are selected. If an invariant for automaton or any constraint on statevariables or transition parameters is violated, the simulation is stopped and the useris informed about the failure. If the determinator for a simulated automaton containsthe USER function, then the simulation will be halted at the point where the call to theUSER function is encountered. For example, consider the simulation of the automatonAdder using the determinator given in Figure 4-11. A sample execution run of theautomaton Adder with this determinator is given in Figure 4-12. The simulator wasinvoked using the following command line:java larch.simulator -rand -step 2 -acts 1 < Adder.ilThe command java indicates that the simulator is written in the Java program-46



automaton AdderCountZerosignatureinput add(i, j: Int)output result(k: Int), zero_reported(k: Int)statesvalue: Int,ready: Bool := false,count: Int := 0transitionsinput add(i, j)e� value := i + j;ready := trueoutput result(k)pre k = value ^ ready where k = 0e� count := count + 1ready := falseoutput result(k)pre k = value ^ ready where k 6= 0e� ready := falseoutput zero_reported(k: Int)pre k = countsimulate AdderCountZerotransitionsif ready ^ value = 0 thenresult(value):[1], zero_reported(count)if ready ^ value 6= 0 thenresult(value):[2], zero_reported(count)elseadd(value, value+1), zero_reported(count)Figure 4-10: Numbering several transition de�nitions
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ming language; it invokes the Java interpreter for larch.simulator, the simulatorprogram. The �le Adder.il contains the intermediate representations of the IOA de-scription of automaton Adder and the determinator in Figure 4-11 (see Section 5.3).simulate Addertransitionsif ready thenresult(value)elseadd(USER(Int), 1)Figure 4-11: Using the USER function in a determinatorSimulation of automaton Adderstates:ready = falsevalue = 0actions:enter the 1st parameter of type Int for transition add1add(1, 1)states:ready = truevalue = 2actions: result(2)states:ready = falsevalue = 2simulation stopped: executed 2 transitionsFigure 4-12: A sample execution run with user interactionThere are three optional command ags to the simulator. The �rst indicatesthe scheduling policy, the second indicates the number of steps in the execution tobe simulated, and the third indicates the number of steps between two consecutivereports of state information.The �rst command ag of the simulator is used for selecting a scheduling policy.The scheduler for the automaton is controlled by the determinator and the user-selected scheduling policy. The user can select one of three scheduling policies by usingthe following command line ags: rand for the randomized scheduler, round for the48



round robin scheduler, and time for a scheduler with time estimates. The randomizedscheduler with equal weights is used by default. If a randomized scheduler is selected,then the user can specify an integer weight for each transition in the determinator.Figure 4-13 gives and example of a determinator that speci�es weights for transitionssimulate Addertransitionsif ready thenresult(value)elseadd(1, 2) weight 1,add(2, 3) weight 2Figure 4-13: Specifying weights for a randomized schedulerwhen more than one transition is selected. This determinator speci�es that if ready isfalse, then transition add(2, 3) should be selected twice as frequently as transitionadd(1, 2). If a time-based scheduler is selected, then the user must specify thetime estimates for transitions when more than one transition is selected. An examplesimulate Addertransitionsif ready thenresult(value)elseadd(1, 2) time 1,add(2, 3) time 2 Figure 4-14: Specifying time estimatesof a determinator with time estimates is given in Figure 4-14. This determinatorspeci�es that transition add(2, 3) take twice the time of transition add(1, 2); thus,transition add(1, 2) should be selected twice as frequently as transition add(2, 3).The reader is referred to Section 5.4.1 for a detailed discussion of how these schedulerswork.The simulator produces a log that contains a description of the initial state of thesimulated automaton and a trace of the executed actions. The user is able to specify49



the name of a log �le by using the standard UNIX input/output redirection. If aname for a log �le is not speci�ed, then the simulator writes the log to the standardoutput.The user can also specify the total number of actions performed during the sim-ulation using the step ag followed by the number of simulation steps. The numberof actions performed between two consecutive dumps of state information can bespeci�ed using acts ag followed by the number.Figure 4-15 gives an example of an execution trace of automaton Adder fromFigure 3-1 with the determinator in Figure 4-5. The simulation was run for �vesteps and the state information was recorded after every transition. The randomizedscheduler with equal weights was used. The simulator was invoked using the followingcommand line:java larch.simulator -rand -step 5 -acts 1 < Adder.il > Log.sim.
4.5 Example of Simulating a Leader Election Al-gorithmIn this section we simulate a distributed algorithm that solves the leader electionproblem in networks with a ring topology (the algorithmwas described in Section 3.3).We give a modi�ed IOA description of the algorithm as an explicit composition of I/Oprocess and channel automata, we state an invariant for the algorithm, and presenta determinator and sample execution runs for the algorithm.There are several di�culties in simulating the automaton LCR as given on Fig-ure 3-6. The �rst di�culty is in determining and scheduling enabled transitions ateach step of the simulation. The determinator is used to solve this problem. Second,we need to provide an implementation for the non-built-in data type RingIndex usedin the description of automaton LCR, giving a particular implementation for the op-erators uid, first, right, and left. Instead of implementing the RingIndex datatype, we modify the speci�cation for LCR to use Int for the Index data type, and50



Simulation of automaton Adderstates:ready = falsevalue = 0actions: add(1, 2)states:ready = truevalue = 3actions: add(3, 4)states:ready = truevalue = 7actions: result(7)states:ready = falsevalue = 7actions: add(7, 8)states:ready = truevalue = 15actions: add(15, 16)states:ready = truevalue = 31simulation stopped: executed 5 transitionsFigure 4-15: A sample execution run of automaton Adder
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we parameterize the Process automaton with n, the number of processes in the ring.This enables us to count modulo n in order to impose a ring structure on process in-dices. We also provide a uid to the Process automaton as a parameter, rather thanusing a �xed function from indices to uids, in order to be able to experiment withdi�erent distributions of process uids in the ring, resulting in di�erent communicationpatterns during the simulation of the LCR algorithm. Third, we need to instantiatethe Process and Channel automata with particular indices. As described in Sec-tion 4.2, the current implementation of the simulator requires that each automatonbe instantiated separately. Therefore, in the description of the automaton LCR3, weinstantiate each Process and Channel without using parameterized composition.automaton Process(i, uid, n: Int)type Status = enumeration of waiting, elected, announcedsignatureinput receive(m: Int, const mod(i - 1, n), const i)output send(m: Int, const i, const mod(i+1, n)),leader(m: Int, const i)statespending: Mset[Int] := {uid},status: Status := waitingtransitionsinput receive(m, j, i)e� if m > uid then pending := insert(m, pending)elseif m = uid then status := elected�output send(m, i, j)pre m 2 pendinge� pending := delete(m, pending)output leader(m, i)pre status = elected ^ m = uide� status := announcedtasks{send(m, j, mod(j+1, n)) for m, j: Int};{leader(m, j) for m, j: Int}Figure 4-16: Modi�ed IOA speci�cation of election processThe modi�ed IOA description of the process automata is presented in Figure 4-16. The automaton Process has three integer parameters. Parameter i is the index52



of the process in the ring graph G, and parameter n is the number of processes inthe ring G. The parameter uid indicates the unique identi�er of process i. We usemod(i-1, n) instead of left(i) and mod(i+1, n) instead of right(i). Channelautomata are the same as in Figure 3-5, except that they do not have the parameterindicating the type of process indices, and the indices i and j are integers.automaton Channel(i, j: Int)signatureinput send(m: Int, const i, const j)output receive(m: Int, const i, const j)statesbuffer: Seq[Int] := { }transitionsinput send(m, i, j)e� buffer := buffer ` moutput receive(m, i, j)pre buffer 6= { } ^ m = head(buffer)e� buffer := tail(buffer)Figure 4-17: Modi�ed IOA speci�cation of channel automatonautomaton LCR3composeProcess(0, 11, 3); Process(1, 8, 3); Process(2, 15, 3);Channel(0, 1); Channel(1, 2); Channel(2, 0)Figure 4-18: IOA speci�cation for LCR algorithm using three processesFigure 4-18 presents an automaton, LCR3, which is describes the algorithm ina ring of three processes as a composition of process and channel I/O automata.Figure 4-19 restates the invariant shown in Figure 3-7 for automaton LCR3, in orderto eliminate the use of the universal quanti�ers.Figure 4-20 gives an example of a determinator for automaton LCR3. Since LCR3does not have choose variables, there is no choose part in the determinator. Thetransitions part speci�es the scheduling of transitions during simulation of LCR3.This simulation con�guration speci�es every enabled action and its parameters atevery state. 53



invariant of LCR3:Process(0, 11, 3).status = elected )( Process(1, 8, 3).status 6= elected^ Process(2, 15, 3).status 6= elected )^ Process(1, 8, 3).status = elected )( Process(0, 11, 3).status 6= elected^ Process(2, 15, 3).status 6= elected )^ Process(2, 15, 3).status = elected )( Process(1, 8, 3).status 6= elected^ Process(0, 11, 3).status 6= elected )Figure 4-19: IOA speci�cation of invariant for states of automaton LCR3
simulate LCR3transitionsif Channel(0, 1).buffer = { } thensend(i, 0, 1) for i: Int in Process(0, 11, 3).pendingelse receive(head(Channel(0, 1).buffer), 0, 1)if Channel(1, 2).buffer = { } thensend(i, 1, 2) for i: Int in Process(1, 8, 3).pendingelse receive(head(Channel(1, 2).buffer), 1, 2)if Channel(2, 0).buffer = { } thensend(i, 2, 0) for i: Int in Process(2, 15, 3).pendingelse receive(head(Channel(2, 0).buffer), 2, 0)if Process(0, 11, 3).status = elected then leader(11, 0)if Process(1, 8, 3).status = elected then leader(8, 1)if Process(2, 15, 3).status = elected then leader(15, 2)Figure 4-20: Determinator for automaton LCR3
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Simulation of automaton LCR3states:Process(0, 11, 3).pending = Mset: {11}Process(0, 11, 3).status = waitingProcess(1, 8, 3).pending = Mset: {8}Process(1, 8, 3).status = waitingProcess(2, 15, 3).pending = Mset: {15}Process(2, 15, 3).status = waitingChannel(0, 1).buffer = Seq:{ }Channel(1, 2).buffer = Seq:{ }Channel(2, 0).buffer = Seq:{ }actions:send(8, 1, 2), receive(8, 1, 2), send(11, 0, 1), receive(11, 0, 1),send(11, 1, 2)states:Process(0, 11, 3).pending = Mset: { }Process(0, 11, 3).status = waitingProcess(1, 8, 3).pending = Mset: { }Process(1, 8, 3).status = waitingProcess(2, 15, 3).pending = Mset: {15}Process(2, 15, 3).status = waitingChannel(0, 1).buffer = Seq:{ }Channel(1, 2).buffer = Seq:{11}Channel(2, 0).buffer = Seq:{ }actions:receive(11, 0, 1), send(11, 1, 2), send(15, 2, 0), receive(11, 1, 2),receive(15, 2, 0)states:Process(0, 11, 3).pending = Mset: { }Process(0, 11, 3).status = waitingProcess(1, 8, 3).pending = Mset: {15}Process(1, 8, 3).status = waitingProcess(2, 15, 3).pending = Mset: { }Process(2, 15, 3).status = waitingChannel(0, 1).buffer = Seq:{ }Channel(1, 2).buffer = Seq:{ }Channel(2, 0).buffer = Seq:{ }actions:send(15, 1, 2), receive(15, 1, 2), leader(15, 2)simulation stopped: no enabled actionsFigure 4-21: A sample execution run of automaton LCR3
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simulate LCR3transitionsif Channel(0, 1).buffer = { } thensend(i, 0, 1) for i: Int in Process(0, 11, 3).pending time 3else receive(head(Channel(0, 1).buffer), 0, 1) time 3if Channel(1, 2).buffer = { } thensend(i, 1, 2) for i: Int in Process(1, 8, 3).pending time 1else receive(head(Channel(1, 2).buffer), 1, 2) time = 1if Channel(2, 0).buffer = { } thensend(i, 2, 0) for i: Int in Process(2, 15, 3).pending time 10else receive(head(Channel(2, 0).buffer), 2, 0) time = 10if Process(0, 11, 3).status = elected then leader(11, 0) time 3if Process(1, 8, 3).status = elected then leader(8, 1) time 1if Process(2, 15, 3).status = elected then leader(15, 2) time 10Figure 4-22: Determinator with time estimates for automaton LCR3Figure 4-21 presents a sample execution run of automaton LCR3. In this run thesimulator was asked to report state information after executing every �ve actions.Since the speci�cation for the automaton LCR3 contains an invariant, the invariantwas checked at every step. An equal weight randomized scheduling algorithm wasused for scheduling action executions. The simulation stopped when no actions wereenabled, that is, after the maxim uid traveled around the ring and the process withthe maximum uid executed the leader action.Figure 4-22 presents a determinator that uses a timed scheduling algorithm, tobe described in Section 5.4.1. This con�guration is the same as the one in Fig-ure 4-20, but contains timing estimates for the send and receive actions, makingChannel(2, 0) slow and Channel(1, 2) fast. Figure 4-23 gives a sample executionof automaton LCR3 using the time-based scheduling. In this execution several pileupsoccurred in the channel, since some uids traveled faster then others.4.6 Performance AnalysisTable 4.1 presents information about the simulation of the LCR algorithm with 3, 5,10, and 20 processes and channels. The table gives the number of lines of the source56



Simulation of automaton LCR3states:Process(0, 11, 3).pending = Mset: {11}Process(0, 11, 3).status = waitingProcess(1, 8, 3).pending = Mset: {8}Process(1, 8, 3).status = waitingProcess(2, 15, 3).pending = Mset: {15}Process(2, 15, 3).status = waitingChannel(0, 1).buffer = Seq:{ }Channel(1, 2).buffer = Seq:{ }Channel(2, 0).buffer = Seq:{ }actions:send(11, 0, 1), send(15, 2, 0), send(8, 1, 2), receive(15, 2, 0),send(15, 0, 1)states:Process(0, 11, 3).pending = Mset: { }Process(0, 11, 3).status = waitingProcess(1, 8, 3).pending = Mset: { }Process(1, 8, 3).status = waitingProcess(2, 15, 3).pending = Mset: { }Process(2, 15, 3).status = waitingChannel(0, 1).buffer = Seq:{11, 15}Channel(1, 2).buffer = Seq:{8}Channel(2, 0).buffer = Seq:{ }actions:receive(11, 0, 1), send(11, 1, 2), receive(15, 0, 1), send(15, 1, 2),receive(8, 1, 2)states:Process(0, 11, 3).pending = Mset: { }Process(0, 11, 3).status = waitingProcess(1, 8, 3).pending = Mset: { }Process(1, 8, 3).status = waitingProcess(2, 15, 3).pending = Mset: { }Process(2, 15, 3).status = waitingChannel(0, 1).buffer = Seq:{ }Channel(1, 2).buffer = Seq:{11, 15}Channel(2, 0).buffer = Seq:{ }actions:receive(11, 1, 2), receive(15, 1, 2), leader(15, 2)simulation stopped: no enabled actionsFigure 4-23: A sample execution run of automaton LCR3 using time-based scheduling
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Table 4.1: Simulator's performance for LCR algorithmNo. of processes 3 5 10 20No. of lines in intermediate spec 298 316 348 392Simulation Time(msec) 120 150 190 230�les for the intermediate representation and the simulation time for each automaton.The source �les for the intermediate representation are large because they include thesymbol table for all operations of all data types used by the automata (see Section5.3). The simulation was done on a PC with a 200 MHz Pentium Pro processorrunning the Red Hat 4.2 version of UNIX OS. The LCR algorithm with 20 processeswas simulated in less than half a second.4.7 Related WorkThe IOA language has evolved from earlier work in Professor Lynch's research groupon describing distributed algorithms in the form of pseudocode. Goldman in his Ph.D.thesis on the Spectrum system de�ned a programming language with preconditionsand e�ects, but without any nondeterministic constructs. He designed a simple sim-ulator for that language. In the Spectrum language, the design was speci�cally tunedfor the simulator: for example, each transition de�nition had a SEL �eld, where theuser had to specify transition parameters for the simulation. In contrast, the IOAsystem isolates the process of automaton de�nition from the process of simulatingan automaton. In addition, the Spectrum language did not have constructs for ran-domization and user de�nition of parameters (although the Spectrum user interfaceallowed some of this functionality), while the IOA simulator has the RAND and USERfunctions in its determinator language.Goldman's more recent work on the Programmers' Playground [11] includes soft-ware support and formal semantics in terms of the I/O automaton model for design-ing distributed applications; however, it has no facilities for simulation and proofs.Instead, the Programmer's Playground provides support for debugging distributed58



applications by monitoring so called \published" variables. Cheiner and Shvartsman[3] gave some suggestions on general strategies for resolving nondeterminism in I/Oautomata using levels of abstractions; their work, however, concerned code generationand not simulation.
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Chapter 5
Implementation
Since the simulator is a part of the IOA system, the design and implementation ofthe whole IOA system and the simulator for the IOA language are interdependent.We start this chapter by describing the IOA toolset architecture. We then discuss theIOA front-end tools for transforming IOA programs into an intermediate form, whichis used by the IOA back-end tools. We present the design and implementation of theintermediate language. Finally, we describe the implementation of the simulator andthe libraries of scheduling policies and basic data types supported by the simulator.5.1 IOA ToolsAs described in Section 1.2, the IOA system provides a variety of tools for the produc-tion of high-quality distributed software. The user is provided with a combination ofanalytical tools, which are designed to complement each other in veri�cation and de-bugging. IOA speci�cations can also be translated automatically into correspondingJava or C++ code.An interface to a theorem prover can be used to prove invariants, simulationrelations, and the validity of systems described using IOA.An interface to a model checker can be used to exhaustively test an automaton'sproperties in all reachable states, provided the number of states is �nite and su�-ciently small. 60



The simulator allows the user to observe the run-time behavior of an IOA pro-gram; it can be used for debugging and testing the correctness and performance ofa distributed algorithm. The design and implementation of the simulation tool aredescribed in detail in Section 5.4.A code generator generates real code for a distributed system. The code generatorand the simulator need to resolve many similar issues when converting axiomaticdescription into running code. In order to resolve nondeterminism of IOA programs,the code generator can use the determinator described in Section 4.3. It can alsoreuse the library of basic data types described in Section 5.4.2.5.2 IOA Front EndThe IOA front end tools consist of a parser, syntactic and semantic checker, pret-typrinters, and transformation tools.The IOA parser parses, reports syntax errors, and constructs an internal rep-resentation for IOA speci�cations. The parser is written using the Java CUP [17]LALR parser generator and is implemented using standard compiler techniques (see[1]). The grammar together with the static semantic checks for IOA are described in[9]. One prettyprinter indents the code consistently and breaks long lines; anothertranslates IOA speci�cations into LATEX format.In order to be used as input to some of the IOA tools, IOA programs are �rstconverted into a simpli�ed intermediate representation. The IOA front end provides atool to transform IOA programs into the intermediate language, which serves as inputlanguage to the IOA toolset and drives the second tier of the IOA system architecture(see Figure 1-1).Two transformations that occur in the translation into the intermediate repre-sentation are composition and term expansion. Composition expansion transformsthe de�nition of a composite automaton into a single I/O automaton de�nition with-out the compose operator. This transformation is performed in the front-end, andcomposite automata do not appear in the intermediate language, to avoid duplicate61



e�ort in the back-end tools. Term expansion is applied to actions in the automa-ton's signature; it replaces action parameters written as expressions by fresh vari-ables constrained by where clauses. This transformation is needed because, in theintermediate language, action parameters in the automaton's signature are requiredto be variables in order to combine the where constraints for the same action headerin di�erent component automata. In generating the intermediate representation foran IOA description of an automaton, the term expansion transformation is appliedbefore composition expansion. We describe term and composition expansions in Sec-tions 5.2.1 and 5.2.2.5.2.1 Term ExpansionIn the IOA speci�cation of an automaton's signature, an action parameter can bespeci�ed as either a variable or a term. However, in the intermediate language allaction parameters in the signature are required to be variables.Thus, during translation into the intermediate language, whenever an action pa-rameter is represented as a term, term expansion is applied. This transformation isdone on the parameters of an action in the automaton's signature. A correspondingtransformation on the parameters of the automaton's transitions is more complicated.It is discussed in Section 7.2 and is not currently implemented. Term expansion trans-forms action parameters speci�ed as terms into fresh variables and correspondingrestrictions on these variables.When specifying the signature of an automaton in IOA, the const operator canbe used to indicate that the value of an action parameter is �xed by the value ofa given term (see Section 2 of the IOA manual [9]). The operator const providessyntactic sugar for a where clause. The transformation is done by rewriting constclauses in the IOA source code as the corresponding where clauses using the followingdesugaring function D:D[[hactionNamei(const t)]] = hactionNamei(f : T ) where f = t:62



Here <actionName> stands for the name of an action in the automaton's signature, T isthe type of the term t and f is a fresh variable of type T. For example, blah(const 2)is expanded to blah(i:Int) where i = 2.5.2.2 Composition ExpansionThe IOA language allows a �nite collection of I/O automata to be composed intoone automaton using a compose operation. We decided that the IOA intermediatelanguage should not include this composition operation. If we had included a compo-sition operator in the intermediate language instead of implementing the compositiontransformation, each IOA tool would have to perform a variant of the compositiontransformation. We chose to do the composition transformation at the IOA languagelevel to insure that all tools use the same notion of composition.The front-end tool that implements the composition expansion, the composer, isdescribed in detail in Chapter 6.5.3 Intermediate LanguageThe intermediate language is the input language to the IOA toolset (see Figure 1-1).It is a simpli�ed variant of the IOA language.Appendix A includes the BNF grammar for the intermediate language. The inter-mediate representation of an IOA speci�cation contains two parts: a global symboltable and a list of intermediate forms for primitive automata speci�cation (see Sec-tion 3.4). The global symbol table consists of types and operators that are used byall automata in the speci�cations. It does not contain variables, since IOA has noglobal variables.An automaton's invariants are a part of the intermediate speci�cation for theautomaton. Each automaton is de�ned by its symbol table and an S-expressionfor the automaton de�nition, with resolved references for all variables, types, andoperators. The symbol table de�nes all variables, types, and operators that are usedin the automaton's de�nition, but not declared in the global symbol table. In the63



global and automaton's symbol tables, each variable, type, or operator is assigneda unique internal name for ease of reference. The symbol table also contains anexternal name, that is, the name used in the original IOA speci�cation, for eachvariable, type, or operator. This design is simple and e�cient: it signi�cantly reducesthe type checking of an automaton de�nition, while allowing the user of an IOA toolto refer to automaton variables, types, and operators by their original names.Figure 5-1 gives an example of the intermediate representation of the automatonAdder de�ned in Figure 3-1. A variable declaration starts with the keyword varfollowed by a unique identi�er for its internal name, and the external name and thetype of the variable. A type declaration is indicated by the keyword sort followedby the internal and external names of the type. The keyword LITERAL in a typedeclaration indicates that the type is a literal type (that is, decimal literals are theconstructors of the type). An operator declaration is indicated by the keyword opfollowed by the operator's internal name, its external name, and its signature. Theinternal names for variables, types, and operators are used in the description of theautomaton's actions, states, transitions, and tasks.If the IOA speci�cation for an automaton uses the compose operator, then itsintermediate representation is that of the primitive automaton description obtainedfrom applying the composition expansion (see Section 5.2.2) to the IOA speci�cation.In this representation, variables are described using references to state variables inthe component automata. A reference to an automaton's state variable consists ofthe following three components:1. A sequence of names for the component automata in which this state variableis de�ned, called a sequence of de�ning automata. If S = S1; S2; :::; Sn is asequence of de�ning automata for a state variable x, then automaton Sn shouldhave a primitive automaton description, and for all i 2 f2; :::; ng automaton Sishould be a component of the composite automaton Si�1.2. A sequence of actual parameters for every parameterized automaton in thede�ning sequence. 64



(/*top-level scope*/(sort s1 "Bool")(op o11 "___ __" s1 s1 s1)(op o7 "false" s1)(op o12 "true" s1)...(op o2 "if" s1 s0 s0 s0)(automaton Adder/*scope for automaton Adder*/(sort s3 "Int" LITERAL)(var v4 "ready" s1)(var v5 "i" s3)(var v2 "k" s3)(var v0 "i" s3)(var v7 "k" s3)(var v3 "value" s3)(var v6 "j" s3)(var v1 "j" s3)(op o33 "max" s3 s3 s3)(op o31 "mod" s3 s3 s3)...(op o37 "__�__" s3 s3 s1)/*description of automaton Adder*/(action input add v0 v1)(action output result v2)(state v3)(state v4 o7)(transition input add (actuals v5 v6)(eff ((assign v3 (o23 v5 v6)) (assign v4 o12))))(transition output result (actuals v7) (pre (o6 (o294 v7 v3) v4))(eff ((assign v4 o7)))))) Figure 5-1: Intermediate representation of automaton Adder
65



3. A name of a state variable.For example, the reference C(1).B(3, true).A.x tells that x is a state variablein automaton A, which is a component of automaton B instantiated with actual pa-rameters 3 and true, which in turn is a component of automaton C instantiatedwith actual parameter 1. In the intermediate language, a reference to state variableC.B(2).A(3, 5).x is represented as (2, 3, 5) C.B(Int).A(Int, Int) "x".Figure 5-2 gives an example of the intermediate representation of the compositeautomaton LCR3 de�ned in Figure 4-18.If there are several transition de�nitions for a particular action, the intermediaterepresentation of the automaton numbers them in the order of their appearance.The parser and static semantic checker for the intermediate language are simpleand are implemented using JavaCC [16], a recursive descent parser generator. Sincethe symbol table for a speci�cation is constructed before parsing the speci�cation,type checking is easy.5.4 Implementation of the SimulatorThe input to the simulator consists of the intermediate representation for an automa-ton and a determinator. The simulator provides the user with scheduling options.By default, the simulator uses randomized scheduling with equal probabilities for allselected actions. At every step of the simulation, the set of possible transitions andtheir parameter values is given by the determinator. If more than one transition ispossible, the scheduler picks one according to the scheduling policy selected by theuser before the simulation began. If both the precondition clause and the where con-straint of the chosen transition de�nition and its parameter values evaluate to truein the latest simulated state, then the e�ect is executed; otherwise, a failure messageis logged into the execution trace and the user is informed about the failure. Afterexecution of the chosen transition, the state invariants are checked, and the execu-tion trace is updated. Figure 5-3 presents the pseudocode for the main loop of thesimulator. 66



(/*top-level scope*/(sort s1 "Bool")(op o2 "if" s1 s0 s0 s0)(op o7 "false" s1)...(automaton LCR3/*scope for automaton LCR3*/(sort s24 "Status")(sort s3 "Int" LITERAL)(sort s27 "Mset" s3)(sort s23 "Seq" s3)...(var v25 "Process(1, 8, 3).pending" s27)(var v37 "Process(2, 15, 3).status" s24)...(op o402 "last" s23 s3)(op 30 "__*__" s3 s3 s3)/*description of automaton LCR3*/(action output receive v3 v26 v31 (where(o11(o11 (o6 (o406 v39 0:s3) (o406 v40 1:s3))(o6 (o406 v26 1:s3) (o406 v31 2:s3)))(o6 (o406 v26 2:s3) (o406 v31 0:s3)))))...(state v48 (o345 11:s3))(state v37 o318)...(transition input receive (actuals v10 v23 v25)(eff((if ((o6 (o406 v23 (o31 (o28 2:s3 1:s3) 3:s3))(o406 v25 2:s3))((if ((o36 v10 15:s3)((assign (o18 2:s3 15:s3 3:s3))(o341 v10 (o103 2:s3 15:s3 3:s3))... Figure 5-2: Intermediate representation of automaton LCR3
67



while true fdetermine the set of enabled actions using the determinatorif this set is not empty thenget next transition definition from schedulerif both precondition and where clause ofselected transition evaluate to truethen assign values to choose parameters of selected transitionexecute effect clause of selected transitioncheck invariantsreport and log executed transition and current stateelse report and log failure message and exitelse stop simulation and exitg Figure 5-3: Pseudocode for simulator's main loopWe decided to both write the simulator in Java and generate Java code for IOA,because Java is portable and relatively easy to code and debug. We considered twoalternatives to Java: C and C++. The main advantage of C and C++ would bethe speed of the simulator and the generated code; e�ciency is an important designgoal for a simulator. However, in view of the current development of e�cient Javacompilers and Java processors1, we decided that the di�erence in code e�ciency wouldnot be signi�cant. The simulator and the parser for the intermediate language areimplemented in less than 6,000 lines of Java code. The code for the simulator can befound inhttp://www.sds.lcs.mit.edu/~achefter/Simulator.Pro�ling tests of the simulator show that most of the time is spent in the Java systemroutines for memory garbage collection. Since JavaSoft is now implementing moree�cient garbage collectors, the simulator will also become faster.1For example, Cygnus is writing an optimized Java front end for gcc, and Sun has designed ahighly e�cient Java processor, JavaChip.
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5.4.1 SchedulersThe job of the scheduler is to select the next transition to be executed based on thecurrent state and the determinator, which speci�es the set of actions that can beperformed. The scheduler does not determine all enabled actions; only the actionsspeci�ed by the determinator are considered for execution. If the determinator spec-i�es more than one action in a state, then the scheduler selects one according to ascheduling policy speci�ed by the user before the simulation began. The user has achoice of three scheduling policies: randomized, round robin, and one based on timeestimates for each action. Since the design of the simulator is modular, it should notbe di�cult to add another scheduler.The randomized scheduler makes use of weights on transitions (see Section 4.4).It computes the total t of the weights of all speci�ed transitions, and at each stepof the execution selects a transition with weight w with probability w=t. The roundrobin scheduler keeps count of the number of times a transition was speci�ed but notselected for execution and maintains a queue of these counts. It always selects thetransition with the greatest count. The count is reset to zero after the transition isexecuted.The system provides assistance in coming up with probabilities for each action,by allowing the user to provide a time estimate for each action (see Section 4.4).The time estimate for an action can be used to schedule the action according to thespeed of the processor on which it is intended to run. The time estimates can alsobe used to account for computation latency or the rate at which an environmentgenerates actions. The smaller the time estimate, the faster the processor, and thehigher the probability that the action will get scheduled. Thus, actions running ona fast processor will get executed more frequently. The scheduler determines theprobabilities based on the user-speci�ed time estimates, with actions with low timeestimates having correspondingly high probabilities. Speci�cally, if times for n actionsare given by n integers time0; time1; ::: ; timen�1, then the scheduler determineswhich of the n actions to perform by the following procedure:69



1. Find the least common multiple (lcm), m, for the set ftimei : 0 � i � n� 1g.2. Assign a weight to each selected action as follows:weighti = (m=timei) = �n�1j=0 (m=timej):3. Apply the general weighted-random scheduler to the collection of actions withweights fweighti : 0 � i � n� 1g. That is, divide the interval [0::1] into n parts[0::weight0]; [weight0::weight0 +weight1]; :::; [�n�2j=0weightj::1] and schedule thenext action be performed to be action i if the random number is in the range[�i�1j=0weightj:::�ij=0weightj]:This scheduler assigns weights m=timei that are inversely proportional to the timesestimate for the actions. The lcm, m, is used to avoid oating point computation andto reduce the round-o� errors.5.4.2 Data TypesData types are de�ned axiomatically in IOA, but in order to simulate data type op-erations, the simulator needs actual code for those operations. The simulator has alibrary of data type de�nitions written in Java. Several IOA built-in data types trans-late straightforwardly into corresponding Java data types and operations on them:booleans (Bool), integers (Int), natural numbers (Nat), real numbers (Real), charac-ters (Char), and strings (String). The IOA built-in type constructors for one dimen-sional arrays (Array[type]), sets (Set[type]), multisets (Mset[type]), sequences(Seq[type]), and mappings (Map[type]) are implemented using Java Objects. Thesimulator also supports data types that are de�ned using LSL enumeration, tuple, orunion.We have written a suite for all built-in operators. This code is written in accor-dance with the LSL speci�cation for the corresponding trait de�ned in [14]. If theIOA speci�cation of an automaton description uses a non-built-in data type, thenin order to be able to simulate this automaton the user must provide a Java imple-70



mentation for this data type. The implementation of all operators for a non-built-indata type should be supplied in a class named by the name of the data type. Forexample, if the user wants to use a positive integer type, Pos, in an IOA speci�cation,then he/she writes an LSL trait for the Pos type. If the user wants to simulate thisautomaton, he/she must provide implementations for all the operators for type Pos.The simulator dynamically loads the implementations of all data types used in a givenautomaton. If an implementation for a data type is not found, then the simulatorinforms the user of the failure and stops the simulation.The simulator stops the simulation if one of the following run-time errors is en-countered:1. Division by zero.2. The succ function is applied to the last element in a sequence. For example, thefollowing IOA speci�cation will generate this run-time error during simulation:type Color = enumeration of white, red, blackautomaton Asignature output foostates c: Color := blacktransitionsoutput fooe� c := succ(c)3. Attempt to iterate over a set with a so that constraint, since, in general, thesimulator cannot determine the set and/or the set can be in�nite. For example,the following IOA speci�cation will generate a run-time error during simulation:
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automaton Asignature output foostates x: Array[Int]transitionsoutput fooe� for i: Int so that i > 0 dox[i] := iod
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Chapter 6
Composer
In this chapter, we describe the composer, an IOA front end tool that, given anIOA description of a composite automaton, constructs an equivalent primitive IOAautomaton description for the automaton. The semantics of this composition trans-formation conforms to that of the composition operation described in Section 2.2.The composer is used for translating IOA descriptions of composite automata intothe intermediate language. If any of the components are composite automata, thenthe composition transformation is applied recursively to these components.We describe the composition transformation by showing its e�ects on a generalautomaton speci�cation A, shown in Figure 6-1. Its component automata Ai areassumed to have primitive IOA automaton descriptions. If a component automatonAi has formal parameters, then the formals of Ai are replaced by the actuals providedin the de�nition of the composite automaton A.For the automata Ai to be compatible the where clauses should satisfy the prop-erty that for all values of the parameters i1, ..., ik at most one of the Qi is true.To guarantee that no transition is de�ned twice, it must be true thatfor all i 2 {1, ..., n}for all j1, j2 2 {1, ..., l_i}Pi,j1 (i1, ..., ik) ^ Pi,j2(i1, ..., ik) ) j1 = j2and 73



automaton Ai(p1: T1, ..., pv_i: Tv_i)signatureinput name(i1: I1, ..., ik: Ik) where Pi(i1, ..., ik), ...output name(i1: I1, ..., ik: Ik) where Qi(i1, ..., ik), ......statess1: S1,...sp: Spso that Si(s1, ..., sp)transitionsinput name(i1, ..., ik) where Pi,1(i1, ..., ik)e� ......input name(i1, ..., ik) where Pi,l_i(i1, ..., ik)e� ...output name(i1, ..., ik) where Qi,1(i1, ..., ik)pre Ri,1e� ......output name(i1, ..., ik) where Qi,m_i(i1, ..., ik)pre Ri,m_ie� ......tasks{name(i1, ..., in) for i1: I1, ..., ik: Ik}...automaton Acompose A1(a1,1 , ..., a1,v_1);A2(a2,1 , ..., a2,v_2);... ;An(an,1 , ..., an,v_n)Figure 6-1: General input to composer
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for all i 2 {1, ..., n}for all j1, j2 2 {1, ..., m_i}Qi,j1 (i1, ..., ik) ^ Qi,j2(i1, ..., ik) ) j1 = j2.To guarantee that all transitions are de�ned, we need to know thatfor all i 2 {1, ..., n}for all i1, ..., ikPi(i1, ..., ik) ) 9 j 2 {1, ..., l_i} Pi,j(i1, ..., ik)andfor all i 2 {1, ..., n}for all i1, ..., ikQi(i1, ..., ik) ) 9 j 2 {1, ..., m_i} Qi,j(i1, ..., ik).In the following sections we describe a speci�cation for a primitive automatondescription AExpanded that corresponds to the IOA speci�cation of the compositeautomaton A. The state variables of the automaton AExpanded, as described in Sec-tion 6.2, cannot be parsed by the IOA parser and are used only for describing thecomposition rule. This is not a problem because these state variables have a repre-sentation in the IOA intermediate language, as described in Section 5.3.6.1 Signature of Automaton AExpandedIf a component automaton Ai has formal parameters, then in the signature ofAExpanded the formals of Ai are replaced by the actuals provided in the composeclause in the de�nition of the composite automaton A. For example, in Figure 6-2 theautomaton A1 has a formal type parameter T. In the de�nition of the compositionautomaton A, A1 has been instantiated as A1(String). Therefore, in the signature ofAExpanded, all occurrences of T in A1's signature are replaced by String, resulting inthe action header input foo(m: String).
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automaton A1(T: type)signatureinput foo(m: T)statesvalue: Ttransitionsinput foo(m)e� value := mautomaton Acompose A1(type String); ...Figure 6-2: Example of instantiation of type parameters6.1.1 Output and Internal Actions of Automaton AExpandedAn action header name(i1:I1, ..., ik:Ik) where P(i1, ..., ik) is included inthe output (or internal) action list in the signature of AExpanded provided that thepattern name(I1, ..., Ik) appears in at least one of Ai's output (internal) actionlists andP = (P1 _ P2 _ ...).Here, the Pi are the where clauses of the action headers with patternname(I1, ..., Ik) that appear in the output (internal) action lists in the componentautomata.If one of the action headers of Ai's output (internal) action lists does not have awhere clause, i.e., if one of the Pi is always true, then the where clause for the cor-responding action header in the signature of AExpanded is omitted (since P simpli�esto true). See Figure 6-3 for examples of the signature of automaton AExpanded.6.1.2 Input Actions of Automaton AExpandedAn action header name(i1:I1, ..., ik:Ik) where P(i1, ..., ik) is included inthe input action list in the signature of AExpanded provided that an action headerwith action pattern name(I1, ..., Ik) appears in at least one of the Ai's inputaction lists and 76



P = (P1 _ P2 _ ...) ^ : (Q1 _ Q2 _ ...).Here, the Pi are the where clauses of the action headers with the patternname(I1, ..., Ik) that appear in input action lists in the component automata,and the Qi are the where clauses of the action headers with the patternname(I1, ..., Ik) that appear in output action lists in the component automata.If one of the matched output action headers does not have a where clause, i.e.,some Qi is always true, then the signature of the composite automaton does notinclude the matched action as an input action (since the where clause simpli�es tofalse). Figure 6-3 gives an example of the described rule.automaton A1signatureinput foo(i: Int) where 1 � i � 10output blah(j: Int)...automaton A2signatureinput blah(i: Int) where P(i)output foo(j: Int) where j < 3...automaton Acompose A1; A2automaton AExpandedsignatureinput foo(i: Int) where 1 � i � 10 ^ : (i < 3)output foo(i: Int) where i < 3,blah(j: Int)... Figure 6-3: Example of signature of automaton AExpanded
6.2 States of Automaton AExpandedThe state variables of AExpanded contain those of each of Ai with the state reference(see Section 5.3) modi�ed as follows: 77



1. The name of the automaton Ai is prepended to the sequence of de�ning au-tomata.2. The actual parameters of Ai are prepended to the sequence of actual parametersfor the state reference in Ai.The expressions describing the initial values of the state variables for Ai are mod-i�ed by replacing the formal parameters of Ai with the corresponding actual param-eters.If some Ai has a so that restriction on its state's initial values, then a so thatclause for the state variables of the automaton AExpanded is constructed by expandingand forming the conjunction of the so that clauses for the state variables of Ai. Thus,the so that predicate S of automaton AExpanded can be expressed asS = S1 ^ S2 ^ ... ^ Sn,where the Si are the so that clauses for the state variables of the component au-tomata, modi�ed by expanding the state names used in their de�nition and by replac-ing Ai's formal parameters with the corresponding actual parameters. For example,automaton B(i: Int)signature ...states n: Intso that n > itransitions ...automaton Acompose B(1); B(2)becomesautomaton AExpandedsignature ...states B(1).n: Int,B(2).n: Intso that B(1).n > 1 ^ B(2).n > 2transitions ... . 78



In systems that are described using several applications of the composition oper-ation, this technique of pre�xing variable names with automaton names can lead tolong pre�xes. IOA allows such pre�xes to be abbreviated if there is no ambiguity.6.3 Transitions of Automaton AExpandedAutomaton AExpanded has a single input transition de�nition and a single outputtransition de�nition for each action header name(i1, ..., ik) as shown in Figures 6-4 and 6-5. To avoid cluttering up the notation, we abbreviate (i1, ..., ik) as (j)in those �gures.input name(j)e�if P1,1(j) ^ P1(j) then[effects of A1's transition definition 1 for input name(j)]�;...if P1,l_1(j) ^ P1(j) then[effects of A1's transition definition l_1 for input name(j)]�;...if Pn,1(j) ^ Pn(j) then[effects of An's transition definition 1 for input name(j)]�;...if Pn,l_n(j) ^ Pn(j) then[effects of An's transition definition l_n for input name(j)]�; Figure 6-4: Input transition for composite automatonThe transition for action header name(i1, ..., ik) in the composition is formedby grouping together all transitions for name(i1, ..., ik) of the component au-tomata. Thus, an input transition de�nition for the composition consists of a list ofconditional statements. Each conditional statement corresponds to an input transi-tion de�nition in a component automaton; its condition is the where constraint andits consequence is the e�ects of that input transition. The input transition in the79



output name(j)preif Q1,1(j) ^ Q1(j) thenR1,1elseif ...elseif Q1,m_1(j) ^ Q1(j) thenR1,m_1...elseif Qn,1(j) ^ Qn(j) thenRn,1elseif ...elseif Qn,m_n(j) ^ Qn(j) thenRn,m_ne�if Q1,1(j) ^ Q1(j) then[effects of A1's transition definition 1 for output name(j)]�;...if Q1,m_1(j) ^ Q1(j) then[effects of A1's transition definition m_1 for output name(j)];�;...if Qn,1(j) ^ Qn(j) then[effects of An's transition definition 1 for output name(j)]�;...if Qn,m_n(j) ^ Qn(j) then[effects of An's transition definition m_n for output name(j)];�;if P1,1(j) ^ P1(j) then[effects of A1's transition definition 1 for input name(j)]�;...if P1,l_1(j) ^ P1(j) then[effects of A1's transition definition l_1 for input name(j)]�;...if Pn,1(j) ^ Pn(j) then[effects of An's transition definition 1 for input name(j)]�;...if Pn,l_n(j)^ Pn(j) then[effects of An's transition definition l_n for input name(j)]� Figure 6-5: Output transition for composite automaton80



composition also inherits the where clause(P1(j) _ P2(j) _ ... _ Pn(j)) ^ : (Q1(j) _ Q2(j) _ ... _ Qn(j))from the signature of automaton AExpanded, as described in Section 6.1.2.A similar procedure is applied to construct an output transition de�nition forthe composition. Since output actions can have preconditions, the output transitionde�nition of the composition incorporates the preconditions of the components.The order of conditional statements in the transitions of automaton AExpandeddoes not matter, because the component automata are compatible and because thereis at most one transition de�nition for each action in a component automaton. Forthe output transition de�nition, the compatibility assumption says that at most onecondition is true, and thus only one e�ect of an output transition de�nition is exe-cuted.Currently, the de�nition of IOA language requires that there be at most one transi-tion de�nition for every action header and set of values for its parameters (as explainedat the beginning of this chapter). If this requirement is relaxed to allow a nondeter-ministic choice of transition de�nition, then we would need to rewrite the if...thenstatements in the input and output transition de�nitions as if...then...else...statements and introduce a choose parameter for determining which one branch ofthe if...then...else statements is picked for execution.The IOA language requires that each action pattern occur only once in each of theinput/output/internal action lists; therefore, in the signature of AExpanded, we com-bine the where constraints of the component automata to construct the constraintfor an action of the composite automaton. The where predicates of individual tran-sition de�nitions are treated as constraints to be added to those already present inthe corresponding where predicate in the signature. We writeif P1,1(j) ^ P1(j) then[effects of A1's transition definition 1 for input name(j)]in the Figures 6-4 and 6-5, instead of 81



if P1,1(j) then[effects of A1's transition definition 1 for input name(j)]because P1,1(j) ^ P1(j) is the speci�ed constraint on the actionname(i1, ..., ik) in the component automaton Ai.6.4 Tasks of Automaton AExpandedThe set of tasks for AExpanded is the union of the sets of tasks of A1, A2, ..., An.If any of the component automata does not have a set of tasks explicitly speci�ed,then its set of tasks is assumed to contain the single set of all its output and internalactions. Figure 6-6 gives an example. The �rst task of the automaton AExpanded isthe set of locally controlled (that is, output and internal) actions of automaton A1.The second and third tasks are those of automaton A2.
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automaton A1signatureinput A1Input(i: Int) where 1 � i � 10output A1Output(j: Int)internal A1Internal(k: Int) where R(k)...automaton A2signatureinput A1Output(i: Int) where P(i)output A1Input(j: Int) where j < 3internal A2Internal(b: Bool)...tasks{A1Input(i) for i: Int where j < 3};{A2Internal(b)} for b: Boolautomaton Acompose A1; A2automaton AExpandedsignatureinput A1Input(i: Int) where 1 � i � 10 ^ : (i < 3)output A1Output(i: Int), A1Input(i: Int) where i < 3internal A1Internal(k: Int) where R(k),A2Internal(b: Bool)...tasks{A1Output(i), A1Internal(k) for i: Int,k: Int where R(k)};{A1Input(i) for i: Int where j < 3};{A2Internal(b)} for b: BoolFigure 6-6: Examples of tasks of automaton AExpanded
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Chapter 7
Future Work
In this chapter we discuss the design and implementation of the simulator and givesuggestions for future work. We consider extensions to both the major functionalityand the current implementation of the simulator.7.1 Design ExtensionsA useful extension to the simulator would be to provide support for a coupled simula-tion of two automata, one representing a high-level description of a distributed systemand the other representing an implementation of the system. In order to run a cou-pled simulation, the user will have to provide a simulation relation (see Section 2.3)and the step correspondence in addition to IOA descriptions of the automata and adeterminator for the lower-level automaton. The simulator will check the simulationrelation between the two automata in every reachable state of the lower-level automa-ton, using the step correspondence to generate the corresponding reachable state ofthe higher-level automaton.It is also possible to extend the simulator with timing information. For example,the simulator can use the timed I/O automaton model described in Chapter 23 of[19]. In this approach, timing information is manipulated explicitly by the algorithmbeing simulated.In our design of the simulator, all automata have to be de�ned before a simulation84



begins. This limitation to a static �nite collection of automata is a problem if onewishes to consider algorithms that involve dynamic process creation. In the I/Oautomaton model, a distributed system consists of a static collection of components,but the number of component can be in�nite. Therefore, one can model dynamicprocess creation by assuming that all possible processes exist at the beginning ofcomputation and then \waking them up" as the algorithm progresses. (For examplesof this see [18].) Since it is impossible to simulate an in�nite collection of automata,an interesting extension to the simulator might be to support dynamic creation ofautomata.Implementing a visual user interface to the simulator would be an interestingand useful extension. Visualization is useful for debugging and analyzing algorithms.There are two general ways to accomplish visualization: declarative and imperative[22]. In imperative visualization, one embeds procedure calls in the algorithm beingstudied in order to e�ect changes in the display. At any time in the simulation, theimage on the display is a product of the history of these procedure calls. This allowsone to construct elaborate program animations; however, it is rather di�cult to setup and modify such animations. In contrast, the declarative approach establishesrelationships between state information of the algorithm and points on the display.With a declarative approach, the animation tends to be simpler and quicker to set upand modify. Roman and Cox [22] recommend using the declarative approach for vi-sualizing distributed computations. Consider, for example, rolling back an executiongenerated by the simulator. With the declarative approach, it is easier to update thedisplay when one rolls back the simulation, since one need be concerned only withthe current state of the automaton, and not with the entire history of executions.7.2 Implementation ExtensionsIt is possible to extend the simulator by adding a variety of schedulers. For example,the scheduler can dynamically change the weights of actions, possibly taking intoaccount a time estimate for the action that was waiting to be executed.85



Another way to make the simulator more general is to provide support for instan-tiating parameterized automata in the speci�cation of a determinator. One can dothis, for example, by introducing a parameters section into the determinator lan-guage. In the parameters section, the user would provide the actual parameters tothe automaton to be simulated.It is also possible to allow the user to specify a �nite set of all actual parametersfor component automata, and then to generate the composition automatically. Fre-quently used �nite sets, such as a set of consecutive integers or an enumeration, areeasy to generate automatically; thus, the user would not have to type in all possibleinstantiations of component automata for all values in the set.The current version of the simulator does not incorporate support for automatatask partitions. The I/O automaton task partition can be thought of as an abstractdescription of threads of control within an automaton, and is used to de�ne fairnessconditions on executions of the automaton | conditions that say that the automatonmust give fair turns to each of its tasks. One way to implement tasks would be touse a two-level action scheduling algorithm. The �rst level of such an algorithmschedules the next task to be considered for execution, and the second level schedulesan action within the selected task. This implementation would require changes tothe simulator's internal representation of actions and transitions to accommodate thetask information. The omission of task partitioning in the current implementation isnot critical, since the user has the control over the scheduling of actions during thesimulation via the determinator mechanism. Moreover, every I/O automaton with atask partition can be rewritten as an equivalent I/O automaton without tasks (see[19] p.233, Exercise 8.8).Currently, the choose part of the determinator uses global names for the automa-ton's choose variables. It is possible to modify the determinator language so thatthe user would be able to specify separate sets for choose parameters for di�erenttransition de�nitions, thus localizing the names of choose parameters.Currently, the intermediate language does not restrict the parameters of transitionde�nitions to be variables. However, the simulator restricts the actual parameters of86



transition de�nitions to be variables or constants (see Chapter 4). In the remainderof this section we discuss a possible transformation on the terms used as parametersin transition de�nitions that can be done to make the simulation tool more general.Consider a general example in which transition de�nitions have terms as actuals,and in which k transition de�nitions are provided for a given action header in anautomaton's signature.automaton Asignature output foo(f1: T1, ..., fn: Tn) where P(f1, ..., fn)states ...transitionsoutput foo(F1,1(t1,1,1 ..., t1,1,m_1), ...,F1,n(t1,n,1, ..., t1,n,m_1n))pre ...e� eff1output foo(Fk,1(tk,n, ..., tk,n,m_k1), ...,Fk,n(tk,n,1, ..., tk,n,m_kn))pre ...e� effkThe static semantic checker checks that the range of functions Fi,j is Tj for all1 � i � k and 1 � j � n. The theorem prover can be used to check that the IOAspeci�cation is valid, that is, that no transition is de�ned twice and all transitionsare de�ned.The k transition de�nitions can be combined into a single transition de�nitionthat does not have terms as its parameters as shown in Figure 7-1.If foo were an input action, we could not combine its transition de�nitions in thisfashion, because input actions cannot have preconditions. Hence, we may need toextend the grammar to allow us to write the corresponding speci�cation.
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output foo(f1, ..., fn)choose t1,1,1, ..., t1,1,m_11, t1,2,1, ..., t1,2,m_12, ...,..., tk,n,m_1n, ..., tk,n,1, ..., tk,n,m_knpre ( (f1 = F1,1(t1,1,1, ..., t1,1,m_11) ^ ...^ fn = F1,n(t1,n,1, ..., t1,n,m_1n))_ ... _ ..._ (f1 = Fk1(tk,n,1, ..., tk,n,m_k1) ^ ...^ fn = Fk,n(tk,n,1, ..., tk,n,m_kn)) )e� if (f1 = F1,1(t1,1,1, ..., t1,1,m_11)^ ...^ fn = F1,n(t1,n,1, ..., t1,n,m_1n)) theneff1elseif ...elseif (f1 = Fk,1(tk,n,1, ..., tk,n,m_k1)^ ...^ fn = Fk,n(tk,n,1, ..., tk,n,m_kn) theneffk� Figure 7-1: Rewriting transitions to eliminate term actuals
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Appendix A
BNF Grammar for IntermediateLanguage
Syntax of speci�cation �lespec ::= '(' decls automatonDef* ')'Syntax of declarationsdecls ::= sortDec* varDec* opDec*sortDec ::= '(' 'sort' sortId '"' name '"' sortId* 'LITERAL'? ')'varDec ::= '(' 'var' varId '"' name '"' sortId ')'opDec ::= '(' 'op' opId '"' name '"' sortId+ ')'name ::= ( ~["\""] )*opId ::= 'o' ( DIGIT )+sortId ::= 's' ( DIGIT )+varId ::= 'v' ( DIGIT )+DIGIT ::= [0-9]Syntax of automata de�nitionsautomatonDef ::= '(' 'automaton' nameAndDecls automatonBodyinvariant? config? ')'89



nameAndDecls ::= automatonId decls formals?automatonId ::= IDformals ::= '(' 'formals' varId+ ')'automatonBody ::= action+ state+ stateSoThat? transition+ task*ID :;= ( LETTER )+ ( DIGIT | LETTER )*LETTER ::= [A-Za-z_]Syntax of actionsaction ::= '(' 'action' actionName actionFormals? where? ')'actionName ::= actionType actionIdactionType ::= 'input' | 'output' | 'internal'actionId ::= IDactionFormals ::= varId+where ::= '(' 'where' predicate ')'Syntax of statesstate ::= '(' 'state' varId value? ')'value ::= term | choicechoice ::= '(' 'choose' (varId term)? ')'stateSoThat ::= '(' 'sothat' predicate ')'Syntax of transitionstransition ::= '(' 'transition' actionHead chooseFormals?precondition? effect? ')'actionHead ::= actionName (actionActuals where?)? NUMBER?actionActuals ::= '(' 'actuals' term+ ')'chooseFormals ::= '(' 'choose' varId+ ')'precondition ::= '(' 'pre' predicate ')'
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effect ::= '(' 'eff' program( '(' 'sothat' predicate ')' )? ')'program ::= '(' statement+ ')'statement ::= assignment | conditional | loopassignment ::= '(' 'assign' component value ')'component ::= varId | '(' opId term+ ')' // see comment 1conditional ::= '(' 'if' ( '(' predicate program ')' )+( '(' 'else' program ')' )? ')'loop ::= '(' 'for' varId term program ')' // see comment 2Syntax of taskstask ::= '(' 'task' actionSet forClause? ')'actionSet ::= '(' actualAction+ forClause? ')'actualAction ::= actionName actionActuals?forClause ::= '(' 'for' varId+ where? ')'Syntax of termspredicate ::= termterm ::= '(' opId term+ ')'| '(' quantifier term ')'| sortId | varId | opId| NUMERAL ':' sortId| stateRefstateRef ::= '(' term,+ ')'( automatonId ( '(' sortId,+ ')' )? )+'"' name '"' // see comment 3quantifier ::= ( '\A' | '\E') varIdComments1. The grammar for component is more general than the front-end produces.91



2. The grammar for loop allows both so that and in constraints. If term hastype Bool, then the constaint is a so that; otherwise, it is an in constrait.3. By addingstateDec ::= '(' 'state' varId( automatonId ( '(' sortId+ ')' )? )+'"' name '"' ')'the size of a stateRef can be reduced tostateRef ::= '(' varId term+ ')'.
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Appendix B
BNF Grammar for Determinator
Syntax of Determinator Speci�cationsconfig ::= 'simulate' automatonName choiceSim? transSim?choiceSim ::= 'choose' (ID ':' sort 'in' '{' term,+ '}' )+transSim ::= 'transitions' clause+clause ::= 'if' predicate 'then' actionSet ('else' actionSet)?actionSet ::= (actualAction,+ | forClause?)( ('time' | 'weight') NUMBER )?actualAction ::= actionId '(' (term | functionCall),+ ')'( ':' '[' NUMBER ']' )?( ('time' | 'weight' ) NUMBER )?functionCall ::= 'USER' '(' sort ')' | 'RAND' '(' sort ')'Syntax of Intermediate Language Format for Determinator Speci�cationsconfig ::= '(' 'simulate' automatonId choiceSim* transSim? ')'choiceSim ::= '(' 'choose' varId sortId term+ ')'transSim ::= '(' 'transitions' clause+ ')'clause ::= '(' 'if' predicate 'then' actionSet( 'else' actionSet )? ')'
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actionSet ::= '(' ( actualAction+ | forClause? )( ('time' | 'weight') NUMBER )? ')'actualAction ::= actionId NUMBER? '(' 'actuals' (term | functionCall)( ('time' | 'weight') NUMBER )? ')'functionCall ::= '(' 'USER' sortId ')' | '(' 'RAND' sortId ')'
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