
SIAM J. COMPUT.
Vol. 23, No. 2, pp. 335-354, April 1994

S6ciety for Industrial and Applied Mathematics1994
009

BOUNDS ON THE COSTS OF MULTIVALUED REGISTER IMPLEMENTATIONS*

SOMA CHAUDHURI AND JENNIFER L. WELCH

Abstract. A fundamental aspect of any concurrent system is how processes communicate with each other.
Ultimately, all communication involves concurrent reads and writes of shared memory cells, or registers. The stronger
the guarantees provided by a register, the more useful it is to the user, but the harder it may be to implement in practice.
This paper considers the problem of implementing a k-ary regular (respectively, safe) register out of binary regular
(respectively, safe) registers, assuming a single writer. While algorithms have been developed previously for these
problems, no nontrivial lower bounds were known. The cost measures considered here are the number of physical
registers and the number of reads and writes on the physical registers required to implement the logical register. Tight
bounds are obtained on the cost measures in many cases, and interesting trade-offs between the cost measures are

identified. The lower bounds are shown using information-theoretic techniques. Two new algorithms are presented
that improve on the costs of previously known algorithms: the hypercube algorithm implements a k-ary safe register
out of binary safe registers, requiring only one physical write per logical write; and the tree algorithm implements a

k-ary regular register out of binary regular registers, requiring only [log k] physical operations per logical operation.
Both algorithms use novel combinatorial techniques.

Key words, registers, concurrent distributed system, concurrent computation, shared memory registers, time
and space complexity

AMS subject classifications. 68Q22, 68Q25

1. Introduction. A fundamental aspect of any concurrent system is how processes com-
municate with each other. Ultimately, all communication involves concurrent accesses to
shared memory cells, or registers. The stronger the guarantees provided by the shared mem-
ory, the more useful it is to the user, but the harder it may be to implement in practice. Thus
it is of interest to determine which types of registers can implement which other types. Many
such implementations are known, e.g., [1], [2], [6], [7], [10], [11], [12], [13], [15], [16], [17],
among many others.

The contribution of this paper is to study the costs of implementing one type of register
(the logical register) out of registers of another type (the physical registers). Cost measures
considered are the number of physical registers and the number of operations on the physical
registers used to perform the operations of the implemented register. Bounds on the number
of physical operations can be used to obtain time bounds for the logical operations in terms
of the time taken by the physical operations.

A register is a shared variable or memory cell that supports concurrent reading and
writing by a collection of processing entities. The operations of reading and writing are
not instantaneous; instead, they have duration in time, from a starting point to an ending
point. Although each entity accessing a register is assumed to issue operations sequentially,
operations on behalf of different entities can overlap in time.

A variety of types of registers can be defined, differing in several dimensions, including
the number of concurrent readers supported, the number of concurrent writers supported, the
number of values the register can take on, and the strength of the consistency guarantees
provided in the presence of concurrent operations. Throughout this paper we assume there

*Received by the editors November 19, 1990; accepted for publication (in revised form) November 30, 1992.
This work was done while the authors were at the Department of Computer Science, University of North Carolina at

Chapel Hill, and supported in part by National Science Foundation grant CCR-9010730, an IBM Faculty Development
Award, and National Science Foundation Presidential Young Investigator Award CCR-9158478.

Department of Computer Science, Iowa State University, Ames, Iowa 50011
(chaudhur@cs. iastate, edu).

Department of Computer Science, Texas A&M University, College Station, Texas 77843
(welch@cs. tamu. edu).

335

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

336 SOMA CHAUDHURI AND JENNIFER L. WELCH

is only one writer, leaving three parameters of interest: the number of readers, the number
of values, and the consistency guarantees. We distinguish between 1-reader registers and
n-reader registers, for n > 1, and between binary registers and k-ary registers, for k > 2. (A
k-ary register can take on k different values.)

Lamport [6] defines three consistency guarantees of increasing strength, namely, safe,
regular, and atomic. Roughly speaking, a read of a safe register always returns the most recent
value written to the register, unless the read overlaps with a write, in which case any legal
value of the register can be returned. A read of a regular register always returns the most
recent value written, unless the read overlaps one or more writes, in which case it returns
either the old value or one of the values written by an overlapping write. An atomic register
provides the illusion, via the values returned by read operations, that each operation happens
at a single instant in time within its range, i.e., that the operations are totally ordered. In this
paper, we only consider safe and regular registers. In particular, we consider the problem
of implementing an n-reader k-ary regular (respectively, safe) register out of n-reader binary
regular (respectively, safe) registers.

We study the costs incurred by these implementations. Let M, R, and W be the minima,
over all implementations between two particular types of registers, of the number of physical
registers, the maximum number of physical operations in a logical read, and the maximum
number of physical operations in a logical write, respectively. Our algorithms will involve no
physical reads in a logical write and no physical writes in a logical read. Our lower bound
results give bounds on the number of physical reads per logical read, and the number of
physical writes per logical write. These are stronger results than just giving bounds on the
number of physical operations per logical action.

Our results are summarized in Tables and 2. Table gives the bounds when all algorithms
are considered. Table 2 gives the bounds when certain classes of algorithms are considered,
as specified by the column labeled S--namely, 1-write algorithms, c-write algorithms, and
[log k]-register algorithms. (All logarithms are base 2.)

For implementing a k-ary safe register out of binary safe registers, we show tight bounds
of R [-logk], W 1, and M [-logk-]. The upper bound of on W is obtained from
a new algorithm, which we call the hypercube algorithm. The best previous upper bound on
W was [log k] [6]. These three optimal bounds are not obtained simultaneously in a single
algorithm, and in fact, we show some nontrivial trade-offs between the three cost measures.

For implementing a k-ary regular register out of binary regular registers, we show the tight
bound that R [log k], and the bounds <_ W < [log k, and max{ [log k + 1,2(log k)
loglogk 2} _< M < min{k 1,n(31ogk + 68)}, where n is the number of readers of
the logical register. The upper bounds on R and W are simultaneously achieved by a new
algorithm, which we call the tree algorithm. We also present some lower bounds on R and M
that follow if we restrict attention to implementations that use only a small constant number
of physical writes per logical write.

The lower bounds in Table for safe registers and those on R and W for regular registers
are obvious from information-theoretic considerations. All of the remaining lower bounds
are new. Little previous work has been done concerning lower bounds or trade-offs for
register implementations. One such previous result is in [6], where it is shown that in any
implementation of an atomic register using regular registers, a read of the logical register must
involve a write to a physical register. Tromp [13] uses this result to show that three binary
safe registers are necessary to construct a binary atomic register.

In 2 we present our model and some results for all implementations. Section 3 considers
safe registers and 4 considers regular registers. We conclude in 5 with some open questions.

2. Preliminaries. In this section, we give formal definitions for the types of registers that
we will study (n-reader, k-ary, safe, and regular), describe the rules we impose on implementing

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 337

TABLE
hdependent boundsfor binary to k-ary algorithms.

R [log k] [log k]
W

M [log k] [log k]

Regular
lower upper

[log k] [log k]
[log k]

max{ [log k] + 1, min{k 1,

[21ogk loglogk] 2} n(31ogk +68)}

TABLE 2

Trade-off resultsfor binary to k-ary algorithms.

{A WA 1} Rs
Ms

{A WA c} Rs
Ms

{ALMA [logk]} Ws

Safe Regular
lower upper

k-1 2 Flog k]

k or kl 2 [log k]

(c!k/2) 1/c c- 2 + [k/2c-2]
(c!k/2) I/c c- 2 + Fk/2c-2]
[log k] [log k]

lower [upper
k-1 ex

k

(c!kl2) i/c ex

(c!k/2)l/c

one type of register with another, and define the cost measures we will use. Then we present
some definitions and lemmas that are true for implementations between any types of registers.

2.1. Model. We use a simplified form of the I/O automaton model [9] to describe our

system.
To implement a logical register with value set V, where VI k, we compose a collection

of physical registers Xj, <_ j <_ m, each with value set {0, }, a collection of read processes
RPi, < < n, and a single write process WE The read and write processes implement the
protocols used by the readers and writer of the logical register. Each such protocol consists of
accessing certain of the physical registers and doing some local computation.

Communication between these components takes place via actions. Each action is an
output of one component (the component that generates it) and an input to another component.
Components are modeled as state machines in which actions trigger transitions. Components
have no control over when inputs occur and thus must have a transition for every input in every
state. Components do have control over when outputs occur; if an output labels a transition
from a state, then the output is enabled in that state.

An execution of the implementation consists of a sequence in which state tuples (one entry
for the state of each component) and actions alternate, beginning with a tuple of initial states.
For each action sr in the execution, sr must be enabled in the preceding state of the component
for which it is an output. In the following state tuple, the states of the two components for
which sr is an input and an output must change according to the transition functions, while
the remaining components’ states are unchanged.

A schedule is the sequence of actions in an execution.
The logical actions are READ(i), RETURN(i, v), WRITE(v), and ACK, < < n and

v 6 V. READ(i) is an input to RPi from the outside world; RETURN(i, v) is an output from
RPi to the outside world. WRITE(v) is an input to WP from the outside world and ACK is an
output from WP to the outside world. Although we do not explicitly model the outside world
with a component, we do assume that for each i, the outside world and RPi cooperate so that
READs and RETURNs strictly alternate, beginning with a READ, and analogously for WP.

k if k is a power of 2; k otherwise.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

338 SOMA CHAUDHURI AND JENNIFER L. WELCH

The physical actions are readj(i), returnj(i, v), writej(v), and ackj. The subscript j
is between and m; it indicates that Xj is the physical register being read or written. The
parameter v is either 0 or and indicates the value being read from or written to Xj. For a
fixed j, the parameter for reads and returns ranges over some subset of {0 n} of size
at most n; this subset indicates which of the read and write processes read Xj. (The value 0
indicates WE) For a fixed j, there is no parameter for writes and acks, since there is a unique
read or write process that writes Xj.

A READ(i) and its following RETURN(i, v) form a logical operation, as do a WRITE(v)
and its following ACK. Physical operations are defined analogously. An operation is pending
if its first half is present but not its second half.

We assume that the read and write processes cooperate with the physical registers so that
for each i, 0 _< < n, and each j, < j < m, readj(i) and returnj(i, .) alternate beginning
with a read, and analogously for writes. We also assume that no read or write process has a
physical operation pending unless it has a logical operation pending.

Each physical register Xj satisfies this liveness property: Immediately after an input
action occurs, the matching output is enabled.

A safe physical register satisfies the Safe Property: For every physical read operation
that does not overlap a physical write operation, the value returned is the value written by the
most recent physical write operation. If there is no preceding write operation, then it returns
the initial value.

A regular physical register satisfies the Regular Property: Every physical read operation
returns a value written by an overlapping write operation or by the most recent preceding write
(or the initial value if there is no preceding write).

The read and write processes must work together to implement a logical register. The
liveness property for a logical register differs from that for a physical register, as discussed
below. A safe (respectively, regular) logical register satisfies the safe (respectively, regular)
property, as defined for physical registers, replacing "physical" with "logical."

The liveness property for a logical register is that the implementation must be wait-free,
meaning that in every finite execution, if a logical operation by RPi (respectively, WP) is
pending, then there is a finite sequence of actions involving only RPi (respectively, WP) that
finishes the operation. Our algorithms actually provide a bounded number of actions, while
our lower bounds hold for algorithms satisfying the weaker definition.

A natural question that may arise is why the liveness property is different for physical
and logical registers. The wait-free definition for the logical register implies that every logical
operation must complete using only physical operations initiated by that logical operation. In
the case of the physical register, where we don’t model the "internal" actions, this wait-free
property reduces to the physical liveness property given.

We now define the cost measures.
Consider two register types, physical and logical, and let A be an algorithm for a physical-

to-logical register implementation. Let MA be the number of physical registers used in A, let
RA be the maximum number of physical operations performed during any logical READ in
any execution of A, and let WA be the maximum number of physical operations performed
during any logical WRITE in any execution of A. Given a set S of physical-to-logical register
implementations, let Ms be the minimum of MA over all A S, Rs be the minimum of RA
over all A 6 S, and Ws be the minimum of WA over all A 6 S. (If S 0, then Ms, Rs,
and Ws are infinity.) Finally, let M Ms, R Rs, and W Ws, where S is the set of all
physical-to-logical register implementations (for these two types). (The physical and logical
register types are implicit parameters to M, R, and W.)

In the rest of this paper, we derive upper and lower bounds on M, R, and W, and trade-offs
between them, for different physical and logical register types.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 339

These bounds on R and W can be converted into time bounds for performing logical
operations as follows. Suppose we know bounds Rt, Ru, Wt, and Wu such that Rt < R < Ru
and Wt < W < W,. Let r be an upper bound on the time to read a physical register and let
w be an upper bound on the time to write a physical register. Let s be an upper bound on
the time for a read or write process to perform an action once it becomes enabled. Our upper
bounds on R and W come from algorithms, all of which have the property that no logical
READ involves a physical write and no logical WRITE involves a physical read. Since we
assume that all physical operations are enclosed within logical operations and that only one
physical operation can be pending at a time, we deduce that an upper bound on the worst case
time to perform a READ of a logical register that is implemented with physical registers is
R,(r + s) / s. Similarly, an upper bound on the worst case time to perform a WRITE of
a logical register that is implemented with physical registers is Wu(w + s) + s. Our lower
bounds on R and W do not assume that logical READs do not involve physical writes, or that
logical WRITEs do not involve physical reads, and thus they imply analogous lower bounds
on the worst case times.

2.2. General results. Given a finite schedule cr of an algorithm A, let the configuration
of cr be the tuple of sets of "possible values" of the physical registers at the end of the schedule,
i.e., if Xi is the ith physical register, then the ith element of the configuration is the set of
all values that could be returned by a physical read of that register at that point, according to
the safe/regular property. A configuration is stable if each element of the tuple is a singleton
set. Thus it can be represented as x Xm, where xi is the value of register Xi for all i. The
initial configuration is the (stable) configuration of the empty schedule, consisting of the
initial value of each physical register.

Let VO (for "write-only") be the set of all schedules of A in which only WP takes steps
and no physical write is pending. Let ,5’ {C C is the configuration of some cr 6 WO}. It
is easy to see that all configurations in $ are stable.

For each i, define L , V as follows. Li(C) is the logical value returned by RPi
when RPi starts in its local initial state, the physical registers have the values specified in C,
and no other read or write process takes a step.

What we would like is a function that returns the value of the logical register when the
physical registers are in a given configuration. However, an arbitrary algorithm may have
different protocols for different read processes (necessitating our use of a subscript on L), and
it may use the history of the read process to determine what value is returned. Thus it might
be the case that RPi returns different values at different times in an execution, even given the
same configuration. In order to accommodate such algorithms, we define each Li specifically
when RPi has taken no steps yet.

The next lemma states that Li is well defined, i.e., that the current configuration (values
of the physical registers) and nothing else determines the value of the logical register (as
perceived by RPi). This can be shown by a simple induction on the length of the execution.

LEMMA 2.1. For any algorithm A, the function Li is well definedfor all i.

Let WOC (for "write-only, completed") be the set of all schedules of A in which only
WP takes steps and no logical WRITE is pending. Let 7- {C C is the configuration of
some r 6 A20C}. It is easy to see that 7"

_
S. Every configuration in 7" is defined to be a

terminal configuration.
The next lemma states that if no read process has taken any steps and no logical WRITE

is in progress, then each L is equal to the value of the most recent WRITE to the logical
register.

LEMMA 2.2. For any algorithm A, if cr is in]/VOC with configuration C, then, for all i,

Li(C) equals the value of the most recent WRITE (the initial value if or is empty).

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

340 SOMA CHAUDHURI AND JENNIFER L. WELCH

’SThe previous lemma implies that all the L must agree whenever the argument is in the
set 7". Thus we define L 7" --+ V to be L(C) Li(C) for any i. It is easy to see that for
each v 6 V, there is a C 6 7" such that L(C) v.

In most of our proofs, we only need to consider situations in which no logical WRITE
is pending, and thus we can use the notation L. However, in a few places (notably Lemmas
4.4 and 4.5), we must consider what happens in the middle of a logical WRITE, and thus we
must use a specific L (we choose L for concreteness).

3. k-ary safe register from binary safe registers. We consider the problem of imple-
menting an n-reader, k-ary, safe register out of n-reader, binary, safe registers, for any n > 1,
where k > 2. Subsection 3.1 is devoted to proving tight, independent bounds on R, W, and M.
In 3.2, we present an algorithm A such that WA 1. We also show some nice combinatorial
properties related to one-write algorithms. Subsection 3.3 discusses algorithms that allow c
physical accesses per logical WRITE. We also give some additional trade-offs between the
cost measures.

Let the value set of the logical register be V {0 k with initial value v0 6 V.

3.1. Independent bounds. The following theorem gives matching upper and lower
bounds on R, W, and M.

THEOREM 3.1. The implementation of an n-reader, k-ary, safe register by n-reader,
binary, safe registers gives the following independent bounds: R [log k], W 1, and
M [log k].

Proof. The upper bounds on R and M follow from the binary representation algorithm in
[6] described below. The upper bound on W follows from our hypercube algorithm presented
in 3.2. The lower bounds on W and M are obvious.

We now show the lower bound on R. For each v 6 V, there is a schedule o- of A of the
form

WRITE(v) co ACK READ(l)/3 RETURN(I, v),

where cto consists solely of actions of WP and contains no ACK, and/3 consists solely of
actions of RP1 and contains no RETURN.

By the definition of read processes, for all distinct v and w,/ -/3w and the maximal
common prefix of/3 and/3o is immediately followed by a return(0) action from some physical
register X in flo and by a return(I) action from X in/3 (or vice versa); that is to say, RP does
the same thing in/ and/3o until it reads a different value. Let Fo be the sequence of physical
values read in/, for all v.

Thus, if v :/: w, then the sequence ?, of physical values read in /3 is not equal to
the sequence F of physical values read in/o. There are k distinct sequences of physical
values corresponding to the Fo’s, i.e., k binary strings. Thus at least one string, say that
corresponding to Fo, must have length at least [log k], implying that/ contains at least
[log k] physical reads. [3

The binary representation algorithm in [6] implements an n-reader, k-ary, safe register
out of [log k] n-reader, binary, safe registers. The write process writes the binary representation
ofthe logical value into the physical registers. Each read process reads all the physical registers
and returns the logical value whose binary representation was read, as long as the value is less
than k. Otherwise, it ceturns any value less than k. This algorithm implies that R _< [log k-I,
W < [logk, and M < [log k]. By Theorem 3.1, the number of registers and number of
physical reads in the binary representation algorithm are both optimal.

The unary representation algorithm presented next shows that W _< 2. There are k-
physical registers, X Xk_. Logical value 0 is represented when all registers are 0.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 341

Logical value v : 0 is represented when Xv is and the other registers are 0. Each read
process reads registers X, X2, and so on, in order, until reading a 1, and RETURNs logical
value v, where Xv is the register that returned 1. If no register returns 1, then 0 is RETURNed.
To WRITE logical value v, assuming w is the old value of the logical register, the write process
writes 0 to Xw if w - 0, and writes to X if v - 0.

In the next subsection, we will present an algorithm which brings down the number of
physical writes per logical WRITE to 1.

3.2. One-write algorithms. In this subsection, we discuss the class of one-write algo-
rithms. We show that their existence depends on satisfying a combinatorial coloring property
of hypercubes.

Figure presents our new hypercube algorithm, which shows that W _< 1; it relies on a
function f, which will be defined shortly. For now, assume that k is a power of 2. Later we
will show how to remove this restriction.

Physical Registers: X X,_, initially f(X... Xk_) Vo and Xj. for at most one j
Read Process RPi, < < n" variables x x._

READ(i):
for j "= to k do x. read Xj endfor

RETURN(i, f(x...xk_))
Write process WP: variables x x._ , initially x. equals the initial value of Xj. for all j

WRITE(v):
if v : f(x ...x._) then

write to Xj., where j is such that f(x...x_xxj+...x_) v

x "= x
endif

ACK

FG. 1. Hypercube algorithm.

We notice an interesting relationship between the correctness of the hypercube algorithm
and coloring the nodes of a (k 1)-dimensional hypercube with k colors such that each node
has a neighbor with each of the k colors other than its own. The following definition
and lemmas formalize this idea. (Nodes are labeled with (k- 1)-bit strings, the colors are
elements of V, and the function is the coloring.)

A function g is said to have the rainbow-coloring property if g {0, }k-1 V such
that for all x G {0, }k-l, and for all v V, if v :/: g(x), then there exists y 6 {0, }k-1 such
that v g(y) and x and y differ in exactly one bit. That is, every node x has a neighboring
node with every color other than x’s color.

Lemma 3.2 states that if the function f used in the algorithm has the rainbow-coloring
property, the hypercube algorithm correctly implements a k-ary safe register using binary safe
registers such that each logical WRITE requires one physical write. The rainbow-coloring
property ensures that each READ RETURNs the correct value if it does not overlap a WRITE.

LEMMA 3.2. Iffunction f has the rainbow-coloring property, then the hypercube algo-
rithm is correct.

We define a function f {0, 1}k- __+ V for use in the algorithm. Lemma 3.3 shows
that f has the rainbow-coloring property. For positive integer < k, let bin(i) be the binary
representation of in log k bits (remember that k is a power of 2). For x 6 {0, }k-l, let xi
be the ith bit of x, i.e., x XlX2... xk-. For all x 6 {0, 1}k-l, we define f(x) to be the
element of V whose binary representation is)x,.= bin(i), where @ represents exclusive-or.
This expression consists of log k bits and thus represents a value in the range 0 to k 1, i.e.,
a value in V.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

342 SOMA CHAUDHURI AND JENNIFER L. WELCH

The intuition behind the coloring function f is that we want to go from a (k 1)-bit
string, the label of a node in the hypercube, to a (log k)-bit string, indicating one of k colors.
Given a node with label x, the color assigned is the one whose binary representation is equal
to the exclusive-or of the set of bin(i), for all such that xi 1. Note that if two nodes x and
y differ in the single bit i, then f(x) 3 f(y) bin(i). So, given the color of a node x, we
can derive the color of any adjacent node y in a consistent manner.

Given this definition of f, the initial values of the physical registers are all 0, except that
if v0 - 0 then Xv0 1. The computation of j in the writer’s code is bin(j) bin(v)
bin(f(x .x_)).

LEMMA 3.3. The function f definedfor the hypercube algorithm (when k is a power of
2) has the rainbow-coloring property.

Proof First we must show that for all x, y 6 {0, }k- that differ in exactly one bit,
f(x) f(y). Suppose x and y differ in bit i. Then f(x) @ f(y) bin(i). Since

bin(i) # 0gk, we are done. Second we must show that for all x, y, z 6 {0, 1}k- such
that y - z and y and z both differ from x in exactly one bit, f(y) 5/= f(z). This can be shown
similarly. These two facts together show that f has the rainbow-coloring property.

Figure 2 illustrates how our algorithm works in the simple case where k 4. Our
hypercube is then a three-dimensional cube, whose vertices can be colored with four colors,
r, b, g, and y. Note that the coloring satisfies the rainbow-coloring property.

ii0

010

000 001

i01

FIG. 2. An example illustrating the hypercube algorithm.

Combining Lemmas 3.2 and 3.3 shows that the hypercube algorithm is a one-write algo-
rithm (using k registers) if k is a power of 2. To obtain a one-write algorithm for values of
k that are not powers of 2, we modify the power-of-2 hypercube algorithm for rn physical
registers, where rn 2rlg kl, i.e., rn is the smallest power of 2 larger than i.. The modification
is to change the RETURN statement to be RETURN(min{k 1, f(xl...Xm-)}). This im-

plementation of a k-ary register by binary registers will not cause the binary registers to take
on all possible 2m-1 values, i.e., no stable configuration of the algorithm will be mapped to

a value that is out of the range of the logical register. However, a slow read process, which

overlaps a number of writes, might (spuriously) observe a configuration corresponding to a
value larger than k- 1, thus necessitating the modification. Thus we have shown the following
theorem.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 343

THEOREM 3.4. The hypercube algorithm correctly implements a k-ary safe register using
binary safe registers.

The following theorem summarizes our results for the class of 1-write algorithms.
THEOREM 3.5. Let S be the set ofalgorithms A such that WA < 1. Then
(i) k- < Rs < 2Flgk] 1,
(ii) Ms k 1, ifk is a power of 2, and
(iii) k < Ms < 2Flgkq 1, if k is not a power of 2.

Proof All the upper bounds follow from the hypercube algorithm. The rest of the proof
concerns the lower bounds.

Choose an algorithm A 6 S. Let Coo be the initial configuration. For all v v0, let Cv be
the configuration of a schedule in /V(,gC of the form WRITE(v) oto ACK, where co contains
no ACK. Since ot only contains one physical write, Coo and Co differ in a single bit, say that
for physical register

Since there are k choices for v - v0, there are at least k- physical registers. Since
A was chosen arbitrarily, Ms > k 1. The improved lower bound of k for Ms when k is not
a power of 2 follows from Lemmas 3.6 and 3.7.

To show Rs > k- 1, we assume, for contradiction, that RA < k- 1. Consider the
schedule READ(I)/3 RETURN(I, v0), where/3 consists solely of actions ofRP and contains
no RETURN./ contains a sequence of less than k physical reads. Let Xo (as defined
above) be one of the physical registers not read in/3; note that v v0. Since Coo differs from
Co in the value of register Xv and nowhere else, an easy induction on the length of/3 shows
that WRITE(v) cv ACK READ(l)/ RETURN(l, v0) is a schedule of A, violating the safe
property since v v0. We therefore have a contradiction, implying RA >_ k 1.

We now consider the number of registers when k is not a power of 2. Lemma 3.6,
which is the converse of Lemma 3.2, shows that the existence of a function with the rainbow-
coloring property is necessary for the existence of a one-write algorithm using k registers.
Lemma 3.7, which is the converse of Lemma 3.3, shows that when k is not a power of 2, no
function with the rainbow-coloring property can exist. Together, these two lemmas imply that
if k is not a power of 2, then any one-write algorithm must use more than k registers.

LEMMA 3.6. If there is an algorithm A with WA and MA k 1, then there exists
a function with the rainbow-coloring property.

Proof We show that L has the rainbow-coloring property. Recall that L maps 7-, the set
of terminal configurations, to V. We know 7- is not empty. Choose any configuration C 6 7-.
Let v be the color of C under L. Every neighbor of C is also in 7- and has a unique color
different from C’s color, since there are only k registers and k possibilities for the next
value not to be v. To finish the proof, we note that 7- {0, }k-l, since every neighbor of a
terminal configuration is also a terminal configuration. 71

LEMMA 3.7. Ifk is not a power of2, then there is nofunction with the rainbow-coloring
property.

Proof. Assume in contradiction that there is a function f with the rainbow-coloring
property. Choose any color, say blue, and let b be the number of nodes colored blue by f. Let
B be the set of edges in the hypercube that have one endpoint colored blue and one endpoint
not colored blue. Since each nonblue node is adjacent to exactly one blue node and there are
2’- b nonblue nodes, BI must be 2k- b. However, since each blue node is adjacent to
k- nonblue nodes and there are b blue nodes, IBI must be b(k 1). The implication is that
2k- b b(k 1), implying 2k- kb. This implies that k divides 2k-, contradicting the
fact that k is not a power of 2.

In this subsection, we showed that the existence of a one-write implementation of a k-
ary safe register was based on solving an underlying combinatorial problem. Specifically, a

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

344 SOMA CHAUDHURI AND JENNIFER L. WELCH

one-write algorithm using k physical registers exists if and only if we can color a (k 1)-
dimensional hypercube with k colors such that each node has a neighbor with every color other
than its own. We can generalize this to any number of physical registers as follows. A one-
write algorithm using m registers exists if and only if we can partially color an m-dimensional
hypercube with k colors, such that each colored node has a neighbor with every color other
than its own. By a partial coloring, we mean a coloring where not all nodes of the graph need
to be colored.

Lemmas 3.3 and 3.7 imply that there is rainbow-coloring of the (k 1)-dimensional
hypercube if and only if k is a power of 2. Kant and van Leeuwen [5] have independently
shown the same result. Their proof uses notions from coding theory and is based on showing
a correspondence between 1-error-correcting codes and these colorings. They applied this
result to the file distribution problem.

3.3. c-write algorithms and trade-off results. As we showed for 1-write algorithms,
the problem of implementing c-write algorithms can also be shown to have a corresponding
parallel in a combinatorial problem. Here, we are interested in a partial coloring of the m-
dimensional hypercube such that for each colored node, there exists a node of every other
color within a distance ofc from this node.

This combinatorial characterization also helps us obtain lower bounds for M and R. For
example, we know that for there to exist a one-write algorithm that uses m physical registers,
there must be a configuration Co that differs from k different configurations Cv in exactly
one bit. Since each configuration is represented in m bits, this says that there is a binary string
.of length m that differs from k different strings of the same length in exactly one bit. To
satisfy this combinatorial property, we require that m >_ k 1. This sequence of reasoning
was implicit in the proof of Theorem 3.5.

Along similar lines, for there to exist a c-write algorithm that uses m registers, there must
exist a binary string of length m which differs from k different strings of the same length
in at most c bits.

We formalize this property in Lemma 3.8 and Theorems 3.10 and 3.11. These theorems
give lower bounds on M and R for c-write algorithms, i.e., algorithms that use a small bounded
number of physical writes per logical WRITE.

The next result is Theorem 3.12, which gives trade-offs on I versus R and M. An
application of this result is to give upper bounds on M and R for c-write algorithms.

The final result in this subsection, Theorem 3.13, states that if no more than [log k
registers are used, then some WRITE must write at least [log k-i physical registers.

LEMMA 3.8. Given any binary string x of length m, if there are at least k distinct strings
oflength m which differfrom x in at most c bits, where c < (log k)/3, then m >_ (c!k/2) l/c.

Proof. Let x be a string of length m. The number of distinct strings of length m that differ
from x in at most c bits is

Since we know that there are at least k such distinct strings, we have i:0 () >- k. We
obtain the following upper bound on (.) for all i" (.) m(m-1)(m-2)...(m-i+l) < mi/il
To get an upper bound on the entire summation, we need the following claim, which is taken
from [14]. First, we introduce some notation. Let Sm,j denote Y{=0 ()" Let bm,i denote (7)"

CLAIM 3.9. If < j < m/3, then Sm,j < 2bm,j.
Proof. We compute a lower bound for bm j/bm,j-1 m-j+l Note that m-j+l is larger

than 2 for j < m/3. Therefore, for j < m/3, bm,j/bm,j-1 > 2. The remaining proof is by
induction.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 345

Inductive hypothesis: Sm, j < 2bm,j for j < rn/3.
Basis: For j- (assume rn > 3), Sm,O bm,o-- and bm,l --m. Therefore,

Sm, rn + and Sm, < 2bm, 1.

Inductive step: Let the inductive hypothesis hold for all such that < j < m/3.
We show that it holds for j. By the inductive hypothesis, Sm,j_ 2bm,j-1. Note that
Sm,j Sm,j-1 -- bm,j. This implies that Sm, j 2bm,j-I -+- bm,j. Also, we showed earlier
that 2bm,j_l < bm,j. Therefore, sm,j < bm,j -+- bm,j

The above claim holds for j c since we know that m > log k (it takes log k bits to
represent k distinct values), and this implies that c < rn/3. Now, using the above claim and

c rn mour previous upper bound for (.), we have Zi=0 (i) 2(c) < 2mC/c!" So, k <_ 2mC/c!
by manipulating this inequality, we get rn > (c!k/2) 1/.

THEOREM 3.10. For all algorithms A, if WA c, where c < (log k)/3, then MA
(c!k/2) 1/.

Proof Given an algorithm A such that WA C, where c < (log k)/3, let Cv0 be the initial
configuration. Then L(Coo) vo. For all v
ACK yields the terminal configuration Co. Since each WRITE can initiate at most c physical
writes, each Co differs in at most c bits from Coo.

Since there are k values v, there must be at least k terminal configurations Co differing in
at most c bits from Coo. The number of registers used in the algorithm is MA. Each terminal
configuration is therefore a binary string of length MA. Therefore, there are at least k strings of
length MA which differ in at most c bits from Coo. Since, c _< (log k)/3, Lemma 3.8 applies,
and we have the result MA >_ (c!k/2) 1/.

THEOREM 3.11. For all algorithms A, if WA c, where c < (log k)/3, then RA
(c!k/2) 1/.

Proof For any algorithm A, where WA < c, consider the following schedules, for all v,

WRITE(v) co ACK READ(!)/v RETURN(I, v),

where oto and/o contain only physical actions. We claim that for some v,/3 initiates at least
(c!k/2) 1/c physical reads. We prove this by contradiction.

Suppose, for every v,/3 initiates at most p physical reads where p < (e!k/2)l/c. Let Po
be the sequence of values read, in order, on accessing any given register for the first time in
/3v. Note that we don’t include values obtained from registers which have been read before or
been written before in/3o. Clearly, [po[<_ p.

First we assume that the initial configuration is the zero-vector. Therefore, the initial
values of all the physical registers are 0. Since otv contains at most c physical writes, there
can be at most c l’s in pv. Clearly, each pv is distinct. Otherwise, if for some v, v’ such
that v - v’, p p,, then a READ in both cases would RETURN the same value, which
would be a contradiction. Therefore, {polv V} is a set of k distinct strings of length at most
p that differ from the zero-vector in at most c bits. Since p < (c!k/2) 1/, this contradicts
Lemma 3.8.

In the general case where the initial configuration is not the zero-vector, we can no longer
claim that Po contains at most c l’s. We therefore define the string go, for every v, as follows.
For every bit in p, if the value is the same as the initial value of the register read, place the
bit 0 in 6,. If the value is different from the initial value of the register read, place the bit in
go. Since co contains at most c writes, go can contain at most c l’s. Also, each go is distinct.
Now, the same argument as in the previous paragraph holds, with go substituted for po.

Therefore, for some v,/3v initiates at least (c!k/2) l/c physical reads. This gives our lower
bound for RA. [3

Theorem 3.12 presents bounds on the costs of algorithms that are a hybrid of the binary
and unary representation algorithms. Using this theorem, we can derive upper bounds on M

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

346 SOMA CHAUDHURI AND JENNIFER L. WELCH

and R for c-write algorithms. Theorem 3.13 concerns bounds on W for algorithms that use
[log k physical registers.

The binary representation algorithm yields an upper bound of [log k-[for R, W, and M.
The unary representation algorithm brings down the upper bound for W to 2, while pushing up
the bounds for R and M to (k). This suggests a trade-off between these measures. We can
construct a class of algorithms, by borrowing from the two previously mentioned algorithms,
that have bounds on RA and MA varying from (R)(log k) to (R)(k) and bounds on WA varying
from (R) (log k) to (R) (1).

THEOREM 3.12. For any m, < m < k, there is an algorithm A such that RA

(R)(log m + k/m), MA (R)(log m + k/m), and WA [log m] + 2.

Proof We implement our k-ary register by combining an a-ary register and a b-ary
register as follows. Let a be the smallest power of 2, which is at least as large as m, i.e.,
a 2[lgml. Let b [k/a]. We implement an a-ary register by the binary representation
method, and a b-ary register by the unary representation method. Both these methods have
been described earlier. Let the values represented by the a-ary register be in A a}
and the values represented by the b-ary register be in B b}. We obtain an ab-ary
register by combining these two registers, where the ab values represented are in A B. Note
that ab >_ k, so we have our k-ary register.

We consider the bounds of our combination register. The a-ary register uses [log m-]
registers and [log m] physical operations per logical operation. The b-ary register uses
registers, [k/a] physical reads per logical READ, and 2 physical writes per logical WRITE.
Therefore, the total number of registers used is [log m] + k/2Flgm]]. This is also the number
of physical reads per logical READ. There are [log m + 2 physical writes per logical WRITE.
This gives the combined bounds claimed by our theorem.

The preceding theorem helps us to derive upper bounds for Ms and Rs, where S is the
class of c-write algorithms. Choose m 2c-2. Since c < log k, it follows that m <_ k and
Theorem 3.12 applies. Therefore, there exists an algorithm A such that

(i) WA c,
(ii) RA c 2 + [k/2C-2], and
(iii) MA c 2 + [k/2C-2].
We thus have the corresponding upper bounds for Rs and Ms, where S is the class of c-

write algorithms. Clearly, the upper bounds obtained earlier for the class of 1-write algorithms
also hold for c-write algorithms. These new bounds surpass the earlier bounds when c > 3.

The next theorem states that if an algorithm uses only [log k] physical registers, then
some logical WRITE must use at least]log k] physical writes.

THEOREM 3.13. For any algorithm A, if MA <_ [log k, then WA >_ [log k].
Proof Let A be an algorithm with MA [log k]. (We have already shown MA cannot

be smaller.) Since the physical registers are binary, 17-1 < 2rlgk]. Recall that for all v 6 V,
there is an x 6 7" with L (x) v.

Let U be the subset of 7- such that x is in U if and only if there is no y :/: x in 7- such
that L(y) L(x). Thus for each configuration x in U, x is the only terminal configuration
which has the logical value L (x).

CLAIM 3.14. There is an x U such that Y 7-. (-Y is the binary string that differs from
x in every bit.)

Proof Suppose there is no such x. Let IUI l. Each element of U corresponds to a
distinct element of V, accounting for elements of V. The remaining k elements of V
are represented among the configurations of 7- that are not in U and are not the inverse of an
element of U. There are at most 2Flg kq 2l of these configurations. There are at least two of
these configurations for each remaining element of V. Thus 2rlgk] 2l > 2(k l), which
implies [log k] > log k + 1, a contradiction.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 347

Choose x 6 U such that 2 6 7". Let a be a schedule in WOC with configuration 7.
Suppose L(x) v. Then there is a schedule r in /VOC of the form cr WRITE(v) ot ACK,
where c contains no ACK. The configuration of r must be x since x U. Thus c contains at
least [log k] writes, and WA >_ [log k].

4. k-ary regular register from binary regular registers. We now shift our attention
to regular registers. We would like to implement an n-reader, k-ary, regular register using
n-reader, binary, regular registers. Binary regular registers and binary safe registers have the
same power. In other words, one can be implemented from the other using one physical
register per logical register, at most one physical write per logical WRITE, and one physical
read per logical READ [6].

As with safe registers, the problem of implementing k-ary regular registers can also be
shown to have a parallel in a combinatorial problem. If there exists an algorithm to implement
a k-ary regular register that uses m binary registers, then there is a partial k-coloring of an
m-dimensional hypercube with the following restriction. For each colored vertex v, let c be
its color. Then, for each color ci such that ci c (there are k such colors), there exists a
path in the hypercube from v to some vertex vi with color ci all ofwhose intermediate vertices
are colored c.

This characterization takes care of a slow WRITE that overlaps a number of READs. The
path corresponds to the intermediate configurations reached during aWRITE. It makes sure that
whatever value is RETURNed by a READ that sees an intermediate configuration preserves
the regular property of registers. Note, however, that while this restriction is necessary for an
algorithm, it is not sufficient. This is because the restriction doesn’t take care of the problem
of a slow READ overlapping a number of WRITEs, as we will show later. In particular, our
hypercube algorithm for safe registers satisfies this characterization, but cannot be used to

implement a regular register. Therefore, this characterization may help us get a lower bound
for this problem, but not an upper bound.

Subsection 4.1 shows our independent bounds on R, W, and M. Subsection 4.2 contains
our trade-off results. As before, we let V {0 k }.

4.1. Independent bounds. The following theorem establishes the independent bounds
achieved for this problem.

THEOREM 4.1. The implementation ofan n-reader, k-ary, regular register by n-reader,
binary, regular registers gives the following independent bounds:

(i) R [log k],
(ii) < W_< [logk],and
(iii) max{[logk] + 1, [21ogk-loglogkq 2} _< M < min{k- 1,n(31ogk +68)}.
Proof. The lower bound for R follows directly from a similar proof as the one for safe

registers. The lower bound for W is obvious. The lower bound for M is shown in Lemmas 4.4
and 4.5.

The upper bounds on R and W appear simultaneously in the tree algorithm, presented
below. However, this algorithm uses k- physical registers. Lamport [6] describes a complex
composition ofimplementations to achieve an algorithm using n(3 log k+68) 1-reader physical
registers (recall that n is the number of readers for the logical register). It is unknown whether
a better result, for example without the factor of n, is possible by taking advantage of the
additional power when the physical registers are n-reader. V1

The modified unary algorithm is a simple algorithm in [6] that gives upper bounds of
W < k, R < k and M < k. Given registers X0 Xk_, the index of the lowest indexed
register that has the value determines the k-ary value represented. A READ operation reads
X0, X in order, until a is returned. It subsequently RETURNs v, where the was read

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

348 SOMA CHAUDHURI AND JENNIFER L. WELCH

from X. A WRITE(v) operation writes in register Xo, and then writes 0 in So_ S0,
in order. (It is possible to optimize the algorithm so as to remove register Xk-l.)

Our hypercube algorithm, which we used to implement a k-ary safe register from binary
safe registers, cannot be used to implement a k-ary regular register. The reason for this is
as follows. In case of a slow READ that overlaps a number of WRITEs, the physical reads
initiated by the READ may return a set of register values that do not represent a configuration
that occurred during the course of the READ. Thus a logical value may be RETURNed that
does not correspond to a value written by an overlapping or last preceding WRITE. A stronger
result, stating that no 1-write algorithm using k registers can implement a k-ary regular
register from binary regular registers, is proven in Theorem 4.6.

We now present our new tree algorithm, which gives the improved bounds ofR < [log k],
W < [log k], and M < k 1. The registers are the nodes in a binary tree. The tree represents
a sort of binary search conducted by the READ operation to find the value written. The READ
takes a path from the root to a leaf, while the WRITE follows a path starting from a leaf to the
root. The path in the tree taken by the READ, along with the values it reads, uniquely defines
the value read.

The tree representation of the registers is described as follows. Given any binary tree of
k leaves, the internal nodes of the tree correspond to the registers, while the leaves correspond
to the k-ary values. Let the leaves of the tree be labeled in some arbitrary manner by the k
values in V.

Let v0 be the initial value of the logical register. The initial values of the physical registers
are those that would result from starting with all 0’s in the physical registers and then executing
a single WRITE(v0) operation described as follows.

A WRITE(v) operation writes into the set of registers that form the path from the leaf
labeled v to the root, beginning with the parent of the leaf, following the path, and ending with
the root. The value written to the ith node on the path is 0 (respectively, 1) if the (i 1)-st
node on the path is the left (respectively, right) child.

A READ operation reads a set of registers that form a path from the root to a leaf labeled
v, for some v, beginning with the root. Suppose the th node read has value 0 (respectively,
1). If its left (respectively, right) child is a leaf, then v is RETURNed, where v is the label of
the leaf. Otherwise, the left (respectively, right) child of the ith node is the (i + 1)-st node
read.

We just showed that any binary tree with k leaves completely specifies our algorithm.
Simple results in graph theory imply that for any k, there exists a binary tree with k leaves,
k internal nodes, and height [log k] (the number of edges in the longest path from the root
to a leaf). To obtain the desired complexity bounds, we base our algorithm on one of these
trees. Since only internal nodes correspond to registers, MA k 1, Ra < [log k-I, and
W,4 _< [log k].

Figure 3 illustrates a 7-ary register with value 3. The path marked on the tree corresponds
to the physical registers read by a logical READ operation.

If k is a power of 2, the registers and values form a complete binary tree of height log k.
We describe the algorithm, for this special case, formally in Fig. 4. Let Vm 1)m-1 Vl be the
binary representation of the k-ary value v, where rn log k. The root register is labeled with
the empty string . For each register labeled with the binary string l, the strings l0 and
are the labels of its left and right children, respectively. Let the initial value of the logical
register be v0 with its binary representation being V0,m 1)0,m-1 1)0,1. Then the initial value of
the physical register labeled Vo,m Vo,p+ is Vo, p, for all p 6 {1 m}. All other physical
registers have initial value 0.

Here, the log k physical values read by the READ operation form the binary representation
of the k-ary number. Clearly, the algorithm has the bounds stated.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 349

o i

o I o i

FIG. 3. An example illustrating the tree algorithm.

To WRITE(v),

for p := to m do

write Up to register U Up+

ACK

To READ,

for p :: rn to do

Up :’-- read register V 1)p+

RETURN(vm... vl)

FIG. 4. Tree algorithmfor k a power of 2.

In order to prove the correctness of the tree algorithm, we need some definitions and a
lemma. We define a physical read r to reflect a physical write w, in a given schedule, if r and
w access the same physical register, and either (1) w completely precedes r, or (2) w and r
overlap and r returns the value that w writes. We say that a logical READ R notices a logical
WRITE W if R contains a physical read that reflects a physical write contained in W.

LEMMA 4.2. Given any schedule ofthe tree algorithm, and any READ R in the schedule,
R RETURNs the value written by the last WRITE W that R notices (note that there is a
total order among the WRITE operations). Ifno such WRITE exists, R RETURNs the initial
value.

Proof. Let R be a READ in some schedule. Suppose R notices no WRITEs. Then every
physical read r initiated by R returns the initial value of the physical register read. Therefore,
R RETURNs the initial value of the logical register.

Otherwise, R notices some WRITEs. Let W be the last WRITE that R notices. Let s be
the last register read by R such that R’s read from s reflects W’s write to s. Clearly, R reads
the value b written by W into s. Otherwise, there is a later WRITE W such that W1 writes s
and R notices W; which contradicts the fact that W is the last WRITE that R notices.

Without loss of generality, let b 0. (The argument for b is identical by replacing
"left" in the following discussion with "right.")

We claim that s is the last register read by R. Suppose not. Then, R next reads the register
corresponding to the left son of s. Since W wrote b in register s, it must have earlier written

to register t. This contradicts the definition of s.
Now, the left son of s must be a leaf node. Let v be the label of this leaf node. Clearly, v

is RETURNed by R. Since W writes b into s, the logical value written by W is v. l-1
THEOREM 4.3. The tree algorithm implements a k-ary regular register using binary

regular registers.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

350 SOMA CHAUDHURI AND JENNIFER L. WELCH

Proof. We need to argue that our logical k-ary register behaves correctly; i.e., given that
our algorithm is implemented using regular binary physical registers, it actually implements
a regular k-ary register. Clearly the algorithm has the wait-free property.

Given any schedule, and any READ R in that schedule, we need to prove that R RETURNs
the value of one of the WRITE operations it overlaps with or the last preceding WRITE W (or
the initial value, in the case that no WRITE completely precedes R). We consider two cases.

Case 1" R notices no WRITEs. Since R reads the root node, and any WRITE must
write into the root node, it follows that no WRITE completely precedes R. By Lemma 4.2, R
RETURNs the initial value, and this satisfies regularity.

Case 2: R notices some WRITEs. Let W be the last WRITE that R notices. By
Lemma 4.2, R RETURNs the value written by W. We show that W1 either overlaps with R
or is the last WRITE preceding R. This would satisfy regularity.

Clearly, W cannot completely follow R, since, by the definition of notice, W contains
a physical write that either precedes or overlaps a physical read contained in R. The only
other case to consider is that W precedes another WRITE W2, which completely precedes R.
Since W1 is the last WRITE that R notices, R does not notice W2. Since W2 completely
precedes R, R must read the root node after W2 writes into it, which implies that R does notice

W2. This gives a contradiction. Therefore, W either overlaps with R or is the last WRITE
preceding R.

The tree algorithm simultaneously gives us the best bounds we have for this problem.
If the frequencies of READs and WRITEs of all the k values were known in advance, then
the number of accesses per READ or WRITE could be optimized by organizing the binary
registers as a Huffman tree. For a discussion of Huffman codes, see Hamming [4].

We present our lower bounds for M as follows. Both ofthe bounds we obtain are significant
for different values of k. The bound of Lemma 4.5 supersedes the bound of Lemma 4.4 for
k>55.

LEMMA 4.4. M > [log k-I + 1.

Proof. Choose any algorithm A. We assume, for contradiction, that MA [log k]. Note
that the lower bound for M of [log k], proved for safe registers, holds here as well. For all
v E V, there is a schedule o’o of A in W(.9C of the form WRITE(v) co ACK, where co contains
no ACK. Let Co be the configuration of cro" it is easy to see that Co is stable.

Choose v E V. For each w V, w :/: v, there is a schedule crow inWOC of the
form WRITE(v) oto ACK WRITE(w)/3ow ACK, where/3ow contains no ACK. Let Cow be the
configuration of crow; it is easy to see that Cow is stable.

Since only WP takes steps in crow and physical writes are done serially,/3ow goes through
a sequence of stable configurations (corresponding to schedules in WO). By Lemma 2.2,
L(Cow) w and L(Co) v. Since w - v and L is a function by Lemma 2.1, Cow :/: Co.
Thus a stable configuration is reached in/ow that is different than Co. Let Dow be the first
such configuration. Dow and Co differ in a single bit, i.e., in the value of a single register.

Since there are only [log k] bits in each configuration, there are only [log k] configurations
that differ in a single bit from Co. Since there are k values in V different than v, there
exist distinct w and u in V such that Dow Dot,. Call this configuration Do. By regularity,
L(Dow) {v, w} and L(Dou) {v, u}. Thus L(Do) v.

Since L(Co) v, all the Co’s are distinct. Since L(Do) v, all the Do’s are dis-
tinct. It is easy to see that Co Dw for all v and w. Thus there are at least 2k distinct
stable configurations, requiring at least [log k-I + registers. Therefore, we have a con-
tradiction.

LEMMA 4.5. M > [2 log k log log k] 2.

Proof Choose any algorithm A. Let d be the number of registers used in the algorithm.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 351

For all v 6 V, there is a schedule cro of A in WOC of the form WRITE(v) co ACK,
where co contains no ACK. Let Co be the configuration of cro" it is easy to see that Co is stable.
Clearly, L (Co) v.

We claim that for any two k-ary values v and w, there exists a pair of stable configurations
Do and Dw that differ in exactly one bit such that L(Do) v and L(D,) w. Suppose
not. Then, consider the schedule crow in /VOC of the form cro WRITE(w)/3ow ACK, where
/oo contains no ACK. Let the configuration of croo be Dow. The configuration of cro is Co.
Note that Doo is a stable configuration and L(Dow) w. Consider the sequence of stable
configurations reached by the schedule crow starting from Co and ending at Dow. By the
assumption, there exists a stable configuration Dx in the sequence such that L(Dx) x but
x - v and x :/: w. A READ starting at Dx would therefore RETURN x, which violates
regularity. This gives a contradiction.

Recall that S is the set of all configurations resulting from schedules in YVO (only WP
takes steps and no physical write is pending). Let co be the number of stable configurations C
in $ such that L(C) v, for each k-ary value v. Let c min{cxlx V}, and let v V be
such that c co. For each value w such that w - v, there are stable configurations Do and
Do in S that differ in exactly one bit such that L(Do) v and L(Dw) w. Since each
stable configuration C, such that L t(C) v, has d neighbors, and there are (k 1) values
w, it follows that cd > k 1. Since there are k different values and at most 2a possible
stable configurations, ck < 2a. Solving the two inequalities, we obtain that k2 k < d 2a,
which implies that 2(logk) < d + logd + 1, for k >_ 2. The last inequality implies that
d > 2(log k) log log k 2. [3

4.2. Trade-offs. We have the following lower bounds for R and M relating to one-write
algorithms. In particular, we show that any one-write algorithm for this problem would require
at least k registers. In other words, our hypercube algorithm for safe registers does not work
for regular registers.

THEOREM 4.6. For all algorithms A, if WA then RA >_ k- and M > k.
Proof The lower bound for RA follows from a similar proof as the one for safe registers.

By using a similar argument, we can actually make the additional claim that every READ
reads at least k distinct physical registers. We use this claim in the following proof of the
bound for MA.

To show MA > k, suppose in contradiction that a one-write algorithm A exists that uses
k registers. Then Lemma 3.6 carries over from the safe case, implying that the function
L has the rainbow-coloring property. Let Co be the initial configuration; clearly, L(Co) vo.
Consider the following schedule c: READ(l) 3 RETURN(I, v0), where 3 consists only of
physical actions taken by RP1. We claim that 3 does not contain any physical write.

CLAIM 4.7. The sequence ofactions 3 does not contain a physical write.

Proof. Suppose 3 does contain a physical write, i.e., 3 3 write/(b) 32, where 3 contains
no physical write. Then, there is a schedule of the form

READ(l) 31 writei(b) 32 RETURN(l, v0) READ(l) 3’ RETURN(l, v0),

where 3’ contains only physical actions. Let C be the configuration that differs from Co only
in position i. Then L (C) v, for some v Vo.

Consider the schedule WRITE(v) ?’ ACK, where , contains only physical actions ofWE
Then , consists of a single physical write, to register (as well as possibly some physical
reads). An easy induction shows that

READ(l) 3 WRITE(v) y ACK writei(b) 32 RETURN(I, v0) READ(l) 3’ RETURN(l, v0)

is a schedule, since there is no physical write in 3 and the physical write within the logical

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

352 SOMA CHAUDHURI AND JENNIFER L. WELCH

WRITE is "obliterated" by writei(b). This violates regularity because the second READ
should RETURN v, not v0.

Now, we continue with the proof of the theorem. Pick two distinct registers (call them
registers and j) that are read in schedule c.

We define C.to be the stable configuration that differs from Co in position j, C3 to be the
stable configuration that differs from Co in position i, and C2 to be the stable configuration
that differs from Co in positions and j. For all 6 1,2, 3}, Ct is a terminal configuration.
Let L(Ct) vt. It is easy to verify that v0, v, 1)2, and v3 are distinct values in V. Suppose,
without loss of generality, that the initial value of both registers and j is 0. Figure 5 illustrates
the relation between the four configurations defined. Adjacent configurations differ in a single
bit. The label on the edge between two configurations corresponds to the particular bit in
which they differ.

Co --0

i=0
C3 C

j=0 j=l

C2

j=l

FIG. 5. Relationship between the four configurations.

Now, consider the sequences of actions, specified in Table 3, which can be applied at a
configuration Cstart and results in the configuration Cnnish.

TABLE 3
Sequencesfor proofof Theorem 4.6.

Cstart sequence Cfinish

Co /301 WRITE(vl)Fo writej(1)Fl ACK CI

C1 /3:z WRITE(v2) ’12 writei(1)F2 ACK C2

C2 /323 WRITE(v3) F23 writej(0)F3 ACK C3

C3 /332 WRITE(v2) F32 writej(l)F2 ACK C2

C2 /321 WRITE(v)F2 writei(0)Fl ACK C

We claim that if we have a schedule r with the configuration Cstart and no pending WRITE,
we can concatenate an appropriate sequence of actions/3 (from Table 3) to cr to obtain the
schedule or’ with the configuration Cnnish. The sequence/3 is a single logical WRITE which

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

BOUNDS ON COSTS OF REGISTER IMPLEMENTATIONS 353

consists of a single physical write (and possibly some physical reads)--thus none of the y,,’s
contain any physical writes. It is easy to see that each/3 exists.

We create a new sequence c’ by taking ot and inserting certain sequences at certain points,
according to the following rules. First, we insert/301 immediately before READ(l), resulting
in configuration C1. Then, immediately before each readj of RP1, if the configuration is
we insert/32/323, resulting in configuration C3. Immediately before each read/of RPI, if the
configuration is C3, we insert/332/321, resulting in configuration C.

To see that or’ is a schedule, it is sufficient to observe that the only time the configuration
changes within the schedule is when a sequence/ab is inserted. This follows from the fact,
proven in Claim 4.7, that ot contains no physical writes. In particular, inserting/301 changes
the configuration to CI, inserting/32/323 changes the configuration to C3, and inserting/332/321
changes the configuration to C. We can prove, by a simple induction, that the configuration
reached by any prefix of schedule or’ up to a read/ by RP is always C1. Similarly, the
configuration reached by any prefix of schedule c’ up to a readj by RP1 is always C3. Therefore,
read/ and readj always return the value 0. It follows that v0 is the value RETURNed by the
READ(I) in the schedule or’. Since, to satisfy regularity, the READ should RETURN v, v2,

or v3, we have a contradiction.
We conclude this section with a trade-off result relating to a constant number of writes.

This follows from the identical result derived in the safe case.
THEOREM 4.8. For all algorithms A, if WA C, where c <_ (log k)/3, then MA >_

(c!k/2) /c and RA > (c!k/2) /c.

5. Conclusion. We have demonstrated upper and lower bounds on the number ofphysical
registers, the number of physical reads in a logical read, and the number of physical writes
in a logical write, for a variety of multivalued register implementations. In many cases,
our bounds are tight. Some of our upper bounds follow from two new algorithms that we
present, one for implementing a k-ary safe register out of binary safe registers, and another
for implementing a k-ary regular register out of binary regular registers. We also presented
several interesting trade-offs between these cost measures, for implementing k-ary registers
out of binary registers. The bounds on the number of physical operations can be converted
into bounds on the time to perform the logical operations, in terms of the time for the physical
operations.

Future work includes finding such bounds for more algorithms, in particular, those in-
volving atomic registers and multi-writer registers. The bounds in this paper on W and M for
implementing a k-ary regular register out of binary regular registers are not tight. (Current
work shows that the tight bound for W is 1, i.e., that there exists a 1-write algorithm for a

k-ary regular register [3].) A final question is what difference does it make, if any, if clocks
are available to the read and write processes?

Acknowledgments. We would like to thank Brian Coan for the proof of Lemma 3.7.
Akhilesh Tyagi suggested the combinatorial techniques required in proving Theorems 3.10
and 3.11. We are grateful to Hagit Attiya, Paul Beame, Richard Ladner, Mike Saks, Martin
Tompa, and George Welch for many helpful conversations that improved some of the results
and presentation. The notes [8] from the Distributed Algorithms class taught by Nancy Lynch
at MIT served as a useful survey and tutorial of earlier work. The anonymous referees made
helpful comments that improved the presentation.

REFERENCES

B. BLOOM, Constructing two-writer atomic registers, in Proceedings of the Sixth Annual Association for Com-
puting Machinery SIGACT-SIGOPS Symposium on Principles of Distributed Computing, Vancouver,
Canada, August 1987, pp. 249-259.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

354 SOMA CHAUDHURI AND JENNIFER L. WELCH

[2] J. E. BURNS AND G. L. PETERSON, Constructing multi-reader atomic values from non-atomic values, in Pro-
ceedings of the Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on

Principles .of Distributed Computing, Vancouver, Canada, August 1987, pp. 222-231.
[3 S. CHAUDHURI, M. KOSA, AND J. L. WELCH, Upperand lowerboundsfor one-write multivalued regular registers,

in Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing, Dallas, December
1991, pp. 134-141.

[4] R.W. HAMMING, Coding and Information Theory, 2nd ed., Prentice Hall, Englewood Cliffs, NJ, 1986.
[5] G. KANT AND J. VAN LEEUWEN, Thefile distribution problemforprocessor networks, in Lecture Notes in Com-

puter Science 447: Proceedings of the Second Scandinavian Workshop on Algorithm Theory, Springer-
Verlag, Berlin, 1990, pp. 48-59.

[6] L. LAMPORT, On interprocess communication, Distributed Computing, (1986), pp. 86-101.
[7] M. Ll, J. TROMP, AND P. M. B. VITANYI, How to Share Concurrent Wait-Free Variables, manuscript.
[8] N.A. LYNCH AND K. J. GOLDMAN, Distributed Algorithms: Lecture Notesfor 6.852, Research Seminar Series

MIT/LCS/RSS 5, Massachusetts Institute of Technology, Cambridge, MA, May 1989.
[9] N. A. LYNCH AND M. R. TUTTLE, Hierarchical correctness proofs for distributed algorithms, in Proceedings

of the Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, Vancouver, Canada, August 1987, pp. 137-151.

[10] R. NEWMAN-WOLFE, A protocol for wait-free, atomic, multi-reader shared variables, in Proceedings of the
Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Vancouver, Canada, August 1987, pp. 232-248.

11 G. PETERSON, Concurrent reading while writing, Association for Computing Machinery Trans. Programming
Languages and Systems, 5 (1983), pp. 46-55.

[12] A. K. SINGH, J. H. ANDERSON, AND M. G. GOUDA, The elusive atomic register revisited, in Proceedings of
the Sixth Annual Association for Computing Machinery SIGACT-SIGOPS Symposium on Principles of
Distributed Computing, Vancouver, Canada, August 1987, pp. 206-22 I.

[13] J. T. TROMP, How to Construct an Atomic Variable, Tech. report CS-R8939, Centre for Mathematics and
Computer Science, Amsterdam, the Netherlands, October 1989.

[14] A. TYAGI, The Role ofEnergy in VLSI Computations, Ph.D. thesis, Department ofComputer Science, University
of Washington, Seattle, WA, 1988. Available as UWCS Tech. report 88-06-05.

[15] K. VIDYASANKA.R, Converting Lamport’s regular register to atomic register, Inform. Process. Lett., 28 (1988),
pp. 287-290.

16] Concurrent reading while writing revisited, Distributed Computing, 4 (1990), pp. 81-85.
17] E M. B. VITANYI AND B. AWERBUCH, Atomic shared register access by asynchronous hardware, in Proceedings

of the Twenty-Seventh Annual IEEE Symposium on Foundations of Computer Science, Toronto, Canada,
October 1986, pp. 233-243.

D
ow

nl
oa

de
d

04
/2

2/
20

 to
 1

73
.4

8.
63

.1
92

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

