
Lower Bounds for Restricted-Use Objects∗

Extended Abstract

James Aspnes
Department of Computer
Science, Yale University
aspnes@cs.yale.edu

Hagit Attiya
†

Department of Computer
Science, Technion

hagit@cs.technion.ac.il

Keren Censor-Hillel
‡

Computer Science and
Artificial Intelligence

Laboratory, MIT
ckeren@csail.mit.edu

Danny Hendler
§

Department of Computer
Science, Ben-Gurion

university of the Negev
hendlerd@cs.bgu.ac.il

ABSTRACT
Concurrent objects play a key role in the design of appli-
cations for multi-core architectures, making it imperative
to precisely understand their complexity requirements. For
some objects, it is known that implementations can be signif-
icantly more efficient when their usage is restricted. How-
ever, apart from the specific restriction of one-shot imple-
mentations, where each process may apply only a single op-
eration to the object, very little is known about the com-
plexities of objects under general restrictions.

This paper draws a more complete picture by defining a
large class of objects for which an operation applied to the
object can be “perturbed”L consecutive times, and proving
lower bounds on the time and space complexity of determin-
istic implementations of such objects. This class includes
bounded-value max registers, limited-use approximate and
exact counters, and limited-use collect and compare-and-
swap objects; L depends on the number of times the object
can be accessed or the maximum value it supports.

For implementations that use only historyless primitives,
we prove lower bounds of Ω(min(logL, n)) on the worst-case
step complexity of an operation, where n is the number of
processes; we also prove lower bounds of Ω(min(L, n)) on the

∗ACM, 2012. This is the authors version of the work. It
is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published
in SPAA 2012.
†Supported in part by the Israel Science Foundation (grant
number 1227/10).
‡Supported by the Simons Postdoctoral Fellows Program
§Supported in part by the Israel Science Foundation (grant
number 1227/10).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’12, June 25–27, 2012, Pittsburgh, Pennsylvania, USA.
Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

space complexity of these objects. When arbitrary primi-
tives can be used, we prove that either some operation incurs
Ω(min(logL, n)) memory stalls or some operation performs
Ω(min(logL, n)) steps.

In addition to these deterministic lower bounds, the paper
establishes a lower bound on the expected step complexity of
restricted-use randomized approximate counting in a weak
oblivious adversary model.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming ; F.2.2 [Analysis of Algo-
rithms and Problem Complexity]: Nonnumerical Algo-
rithms and Problems

General Terms
Theory, Algorithms

Keywords
Concurrent objects, lower bounds, restricted-use objects,
perturbable objects

1. INTRODUCTION
With multi-core and multi-processor systems now preva-

lent, there is growing need to gain better understanding
of concurrent objects and, specifically, to establish lower
bounds on the cost of implementing them. An important
general class of concurrent objects, defined by Jayanti, Tan
and Toueg [15], are perturbable objects, including widely-
used objects, such as counters, max registers, compare-and-
swap, single-writer snapshot and fetch-and-add.

Lower bounds are known for long-lived implementations
of perturbable objects, where processes apply an unbounded
number of operations to the object. For example, Jayanti
et al. [15] consider obstruction-free implementations of per-
turbable objects from historyless primitives, such as read,
write, test-and-set and swap. They prove that such imple-
mentations require Ω(n) space and that the worst-case step-
complexity of the operations they support is Ω(n), where n
is the number of processes sharing the object.

In some applications, however, objects are used in a re-
stricted manner. For example, there might be a bound on
the total number of operations applied on the object, or a
bound on the values that the object needs to support. When
an object is designed to allow only restricted use, it is some-
times possible to construct more efficient implementations
than for the general case.

Indeed, Aspnes, Attiya and Censor-Hillel [3] showed that
at least some restricted-use perturbable objects admit im-
plementations that “beat” the lower bound of [15]. For ex-
ample, a max register can do a write of v in O(min(log v, n))
steps, while a counter limited to m increments can do each
increment in O(min(log2m,n)) steps. Such a restricted-use
counter leads to a randomized consensus algorithm with
O(n) individual step complexity [4], while restricted-use
counters and max registers are used in a mutual exclusion
algorithm with sub-logarithmic amortized work [7].

This raises the natural question of determining lower
bounds on the complexity of restricted-use objects. The
proof of Jayanti et al. [15] breaks for restricted-use objects
because the executions constructed by this proof exceed the
restrictions on these objects.

For the specific restriction of one-time object implemen-
tations, where each process applies exactly one operation
to the object, there are lower bounds which are logarith-
mic in the number of processes, for specific objects [2, 1, 6]
and generic perturbable objects [14]. Yet, these techniques
yield bounds that are far from the upper bounds, e.g., when
the object can be perturbed a super-polynomial number of
times.

This paper draws a more complete picture of the cost of
implementing restricted-use objects by studying the middle
ground. We give time and space lower bounds for imple-
mentations of objects that are only required to work under
restricted usage, for general families of restrictions.

We define the notion of L-perturbable objects that strictly
generalizes classical perturbability; specific examples are
bounded-value max registers, limited-use approximate and
exact counters, and limited-use compare-and-swap and col-
lect objects.1 L, the perturbation bound, depends on the
number of times the object can be accessed or the maxi-
mum value it can support (see Table 1).

For L-perturbable objects, we show lower bounds on the
step and space complexity of obstruction-free determinis-
tic implementations from historyless primitives. The step
complexity lower bound is Ω(min(logL, n)), and its proof
uses a technique that we call backtracking covering, which
is a quantified version of a technique introduced by Fich,
Hendler and Shavit in [11] and later used in [5]. The space
complexity lower bound is Ω(min(L, n)).

We also consider implementations that can apply arbitrary
primitives not just historyless primitives, and use the mem-
ory stalls measure [8] to quantify the contention incurred by
such implementations. We extend backtracking covering to
prove that either an implementation’s worst-case operation
step complexity is Ω(min(logL, n)) or some operation incurs
Ω(min(logL, n)) stalls.

In addition to our deterministic lower bounds, we estab-

1A single-writer snapshot object is also a collect object (the
converse is, in general, false). Therefore, our lower bounds
for the collect object also hold for the single-writer snapshot
object.

lish a lower bound of Ω
(

log logm−log log c
log log logm

)
on the expected

step complexity of randomized m-valued c-multiplicative-
accurate counters, a particularly weak class of counters that
allow a multiplicative error of factor at most c. Our lower
bound employs Yao’s Principle [16] and assumes a weak
oblivious adversary. Table 1 summarizes the lower bounds
for specific L-perturbable objects.

Aspnes et al. [3] prove lower bounds on obstruction-
free implementations of max registers and approximate
counters from historyless primitives: an Ω(min(logm,n))
step lower bound for deterministic implementations and
a Ω(logm/ log logm) lower bound, when m ≤ n, on the
expected step complexity of randomized implementations.
These bounds, however, use a different proof technique,
which is specifically tailored for the semantics of the particu-
lar objects, and does not seem to generalize to the restricted-
use versions of arbitrary perturbable objects. Moreover,
they neither prove space-complexity lower bounds nor con-
sider implementations from arbitrary primitives.

2. MODEL AND DEFINITIONS
A shared-memory system consists of n asynchronous pro-

cesses p1, . . . , pn communicating by applying primitive oper-
ations (primitives) on shared base objects. An application of
each such primitive is a shared memory event. A step taken
by a process consists of local computation followed by one
shared memory event.

A primitive is nontrivial if it may change the value of the
base object to which it is applied, e.g., a write or a read-
modify-write, and trivial otherwise, e.g., a read. Let o be
a base object that is accessed with two primitives f and
f ′; f overwrites f ′ on o [10], if starting from any value v
of o, applying f ′ and then f results in the same value as
applying just f , using the same input parameters (if any)
in both cases. A set of primitives is historyless if all the
nontrivial primitives in the set overwrite each other; we also
require that each such primitive overwrites itself. A set that
includes the write and swap primitives is an example of a
historyless set of primitives.

2.1 Executions and Operations
An execution fragment is a sequence of shared memory

events applied by processes. An execution fragment is pi-
free if it contains no steps of process pi. An execution is an
execution fragment that starts from an initial configuration
(in which all shared variables and processes’ local states as-
sume their initial values). For execution fragments α and β,
we let αβ denote the execution fragment which results when
the events of β are concatenated to those of α.

An operation instance of an operation Op on an imple-
mented object is a subsequence of an execution, in which
some process pi performs the operation Op on the object.
The primitives applied by the operation instance may de-
pend on the values of the shared base objects before this
operation instance starts and during its execution (pi’s steps
may be interleaved with steps of other processes).

An execution is well-defined if it may result when pro-
cesses each perform a sequence of operation instances ac-
cording to their algorithms. All the executions we consider
are well-defined.

An implementation is obstruction-free [12] if a process ter-

perturbation step complexity max(steps, stalls) space complexity rand. step
bound (L) complexity

compare 3
√
m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(3

√
m,n)) —

& swap
collect m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(m,n)) —
max m− 1 Ω(min(logm,n)) Ω(min(logm,n)) Ω(min(m,n)) Ω(log logm

log log logm
)

register (also [3]) (for m ≤ n, [3])
k-additive

√
m
k
− 1 Ω(min(logm− log k, n)) Ω(min(logm− log k, n)) Ω(min(

√
m
k
, n)) Ω(log logm

log log logm
)

counter (also [3]) (for m ≤ n)

Table 1: Summary of lower bounds for restricted-use objects; where m is the maximum value assumed by
the object or the bound on the number of operations applied to it. All the bounds are derived in this paper,
except when stated otherwise.

minates its operation instance if it runs in isolation long
enough.

A process p is active after execution α if p is in the mid-
dle of performing an operation instance, i.e., p has applied
at least one event of the operation instance in α, but the
instance is not complete in α. Let active(α) denote the set
of processes that are active after α. If p is not active after
α, we say that p is idle after α.

A base object o is covered after an execution α if there is
a process p in the configuration resulting from α that has a
nontrivial event about to access o; we say that p covers o
after α.

2.2 Restricted-Use Objects
Our main focus in this paper is on objects that support

restricted usage. One example of such objects are objects
that have a limit on the number of operation instances that
can be performed on them, as captured by the following
definition. An m-limited-use object is an object that allows
at most m operation instances; m is the limit of the object.

Another type of objects with restricted usage are objects
that have a value associated with their state which cannot
exceed some bound. Examples are bounded max-registers
and bounded counters [3], whose definitions we now provide.

A max-register is a linearizable [13] object that supports a
Write (v) operation, which writes the value v to the object,
and a ReadMax operation, which returns the maximum value
written by a Write operation instance linearized before it.
In the bounded version of these objects, the object is only
required to satisfy its specification if its associated value does
not exceed a certain threshold.

A counter is a linearizable object that supports a Coun-

terIncrement operation and a CounterRead operation,
which returns the number of CounterIncrement opera-
tion instances linearized before it. In a k-additive-accurate
counter, every CounterRead operation returns a value within
±k of the number of CounterIncrement operation instances
linearized before it. A c-multiplicative-accurate counter is
a counter for which any CounterRead operation returns a
value x with v/c ≤ x ≤ vc, where v is the number of Coun-

terIncrement operation instances linearized before it.
A b-bounded max register takes values in {0, . . . , b − 1}.

A b-bounded counter is a counter that takes values in
{0, . . . , b− 1}.

For a b-bounded object O, b is the bound of O.
We also consider collect and compare-and-swap objects.
A collect object provides two operations: a store(val) by

process pi sets val to the latest value for pi. A collect opera-
tion cop returns a view, 〈v1, . . . , vn〉, satisfying the following

properties: 1) if vj = ⊥, then no store operation by pj com-
pletes before cop starts, and 2) if vj 6= ⊥, then vj is the
operand of a store operation sop by pj that starts before
cop completes and there is no store operation by pj that
starts after sop completes and completes before cop starts.

A linearizable b-valued compare-and-swap object has a
value in {1, . . . , b} and supports the operations read and
CAS(u,v), for all u, v ∈ {1, . . . , b}. When the object’s value
is u (as determined by the sequence of operation instances on
the object that were linearized), CAS(u,v) changes its value
to v and returns true; when the object’s value differs from
u, CAS(u,v) returns false and does not change the object’s
value.

3. LOWER BOUNDS FOR DETERMINIS-
TIC RESTRICTED-USE OBJECTS

In this section, we prove lower bounds for obstruction-free
implementations of some restricted-use objects. Our start-
ing point is the definition of perturbable objects by Jayanti
et al. [15]. Roughly speaking, an object is perturbable if
in some class of executions, events applied by an operation
of one process influence the response of an operation of an-
other process. The flavor of the argument used by Jayanti et
al. to obtain their linear lower bound is that since the per-
turbed operation needs to return different responses with
each perturbation, it must be able to distinguish between
perturbed executions, implying that it must perform an in-
creasing number of accesses to base objects.

The formal definition of perturbable objects is as follows.

Definition 1. (See Figure 1.) An object O is per-
turbable if there is an operation instance opn by process pn,
such that for every pn-free execution αλ where no process
applies more than a single event in λ and for some process
p` 6= pn that applies no event in λ, there is an extension of
α, γ, consisting of events by p`, such that pn returns dif-
ferent responses when performing opn by itself after αλ and
after αγλ.

We observe that αγλ in the above definition is a well-
defined execution if αλ is well-defined. This is because no
process applies more than a single event in λ and p` applies
no events in λ, hence no process can distinguish between the
two executions before it applies its last event.

The linear lower bounds [15] on the space and step com-
plexity of obstruction-free implementations on perturbable
objects (as defined in Definition 1 above) are obtained by
constructing executions of unbounded length, hence they do
not apply in general for restricted-use objects.

α λ

a single step by some

processes except p`

-opn by pn

α γ

events by p`

λ -opn by pn

Figure 1: A perturbable object: opn returns different responses in the two executions.

To prove lower bounds for restricted-use objects, we define
a class of L-perturbable objects. As opposed to the defini-
tion of a perturbable object, we do not require every exe-
cution of an L-perturbable object to be perturbable, since
this requirement is in general not satisfied by restricted-use
objects. For such objects, some executions already reach the
limit or bound of the object, not allowing any further oper-
ation to affect the object, which rules out a perturbation of
these executions. To achieve our lower bounds we only need
to show the existence of a special perturbing sequence of
executions rather than attempting to perturb every execu-
tion. The longer the sequence, the higher the lower bound,
since the perturbed operation will have to access more base
objects in order to distinguish between executions in the
sequence and be able to return different responses.

Definition 2. An object O is L-perturbable if there
exists an operation instance opn by pn such that an L-
perturbing execution of O can be constructed as follows: The
empty execution is 0-perturbing. Assume the object has a
(k−1)-perturbing execution αk−1λk−1, where no process ap-
plies more than a single event in λk−1.

1. If |λk−1| = n − 1, then we say that αk−1λk−1 is
saturated, and the execution αkλk with αk = αk−1,
λk = λk−1 is k-perturbing.

2. Otherwise, if there exists a process p` 6= pn that ap-
plies no event in λk−1 and an extension of αk−1, γ,
consisting of events by p`, such that pn returns dif-
ferent responses when performing opn by itself after
αk−1λk−1 and after αk−1γλk−1, then we define a k-
perturbing execution as follows. Let γ = γ′eγ′′, where
e is the first event of γ such that opn returns different
responses after αk−1λk−1 and after αk−1γ

′eλk−1. Let
λ be a permutation of the events in λk−1 and the event
e, and let λ′, λ′′ be any two sequences of events such
that λ = λ′λ′′. The execution αkλk is k-perturbing,
where αk = αk−1γ

′λ′ and λk = λ′′.

If an object is L-perturbable, then, starting from the ini-
tial configuration, we may construct a sequence of L + 1
perturbing executions, αkλk, for 0 ≤ k ≤ L, each of which
extending its predecessor perturbing execution. If for some
i, αiλi is saturated, then we cannot further extend the se-
quence of perturbing executions since we do not have avail-
able processes to perform the perturbation. However, in this
case we have lower bounds that are linear in n. For presen-
tation simplicity, we assume in this case that the rest of the
sequence’s perturbing executions are identical to αiλi.

Definition 2 allows flexibility in determining which of the
events of λk−1 are contained in λk and which are contained
in αk. We use this flexibility to prove lower bounds on the
step, space and stall-complexity of L-perturbable objects.

The definition implies that every perturbable object is L-
perturbable for every integer L ≥ 0; hence, the class of L-
perturbable objects generalizes the class of perturbable ob-
jects. On the other hand, there are L-perturbable objects
that are not perturbable; for example, a b-bounded n-process
max register, for b ∈ poly(n), is not perturbable in general,
by the algorithm of [3]. That is, the class of perturbable ob-
jects is a proper subset of the class of L-perturbable objects.

The next lemma establishes that several common
restricted-use objects are L-perturbable, where L is a func-
tion of the limit on the number of different operations that
may be applied to them. The challenge in the proof is in
increasing L, which later translates to higher lower bounds.

Lemma 1. 1. An obstruction-free implementation of a
b-bounded-value max register is (b− 1)-perturbable.

2. An obstruction-free implementation of an m-limited-
use max register is (m− 1)-perturbable.

3. An obstruction-free implementation of an m-limited-
use counter is (

√
m− 1)-perturbable.

4. An obstruction-free implementation of a k-additive-
accurate m-limited-use counter is (

√
m
k
− 1)-

perturbable.

5. An obstruction-free implementation of an m-limited-
use b-valued compare-and-swap object is (3

√
m − 1)-

perturbable (if b ≥ n).

6. An obstruction-free implementation of an m-limited-
use collect object is (m− 1)-perturbable.

Proof. We present the proofs for representative objects;
proofs for other objects appear in the full paper.

1. Let O be a b-bounded-value max register and consider
an obstruction-free implementation of O. We show
that O is (b− 1)-perturbable for a ReadMax operation
instance opn of pn, by induction, where the base case
for r = 0 is immediate for all objects. We perturb
the executions by writing values that increase by one
to the max register. This guarantees that opn has to
return different values each time, while getting closer
to the limit of the object as slowly as possible.

Formally, let r < b and let αr−1λr−1 be an (r − 1)-
perturbing execution of O. If αr−1λr−1 is saturated,
then, by case (1) of Definition 2, it is also an r-
perturbing execution.

Otherwise, our induction hypothesis is that opn re-
turns r−1 when run after αr−1λr−1. For the induction
step, we build an r-perturbing execution after which
the value returned by opn is r. Since αr−1λr−1 is not
saturated, there is a process p` 6= pn that does not
take steps in λr−1. Let γ be the execution fragment

by p` where it first finishes any incomplete operation
in α and then performs a Write operation to the max
register with the value r ≤ b−1. Then opn returns the
value r when run after αr−1γλr−1, and r−1 when run
after the (r−1)-perturbing execution αr−1λr−1. It fol-
lows that r-perturbing executions may be constructed
from αr−1λr−1 and γ as specified by Definition 2.

2. The proof for an m-limited-use max register appears
in the full paper.

3. When O is an m-limited-use counter, we use a proof
similar to the one we used for a limited-use max reg-
ister, where we perturb a CounterRead operation opn
by applying CounterIncrement operations. The sub-
tlety in the case of a counter comes from the fact that
a single perturbing operation may not be sufficient for
guaranteeing that opn returns a different value after
αr−1λr−1 and after αr−1γλr−1, since we do not know
how many of the CounterIncrement operations by pro-
cesses that are active after αr−1 were linearized. As
there are at most r − 1 such operations, in order to
ensure that different values are returned by pn after
these two executions, we construct γ by letting the
process p` apply r CounterIncrement operations after
finishing any incomplete operation in αr−1. This can
be done as long as r ≤

√
m in order not to pass the

limit on the number of operations allowed, which will

be 1 +
∑√m
r=1 r = 1 + (

√
m−1)

√
m

2
≤ m.

4. For a k-additive-accurate m-limited-use counter, the
proof is similar to that of a counter, except that p`
needs to perform an even larger number of Counter-

Increment operations in γ, because of the inaccuracy
allowed in the returned value of the CounterRead op-
eration opn. The details appear in the full paper.

5. Let O be an m-limited-use b-bounded compare-and-
swap object, b ≥ n. We show that it is (3

√
m − 1)-

perturbable for a read operation instance by pn, by
induction, where the base case for r = 0 is immediate
for all objects. In our construction, all processes except
for pn perform only CAS operation instances.

Let r < 3
√
m − 1 and let αr−1λr−1 be an (r − 1)-

perturbing execution of O. If αr−1λr−1 is saturated,
then, by case (1) of Definition 2, it is also an r-
perturbing execution.

Otherwise, our induction hypothesis is that αr−1λr−1

includes at most
∑r−1
i=1 i

2 CAS operation instances.
Let u be the value returned by opn after αr−1λr−1, and
let j denote the number of processes that apply events
in λr−1 and let p1r−1, . . . , p

j
r−1 be these processes. Let

ξ be an execution fragment that follows αr−1 in which
all active processes other than p1r−1, . . . , p

j
r−1 finish

any incomplete operation instances they started in
αr−1. For k ∈ {1, . . . , j}, let (uk, vk) denote the
operands of the last CAS operation instance started
by pkr−1 in αr−1. Since αr−1λr−1 is not saturated
and since r − 1 < 3

√
m − 1, there is a process p` 6∈

{p1r−1, . . . , p
j
r−1}∪{pn} and, moreover, there is a value

v ∈ {1, . . . , n} \ {u, u1, . . . , uj}.
Denote by β the sequence of operation instances
CAS(u, v)CAS(v1, v) . . . CAS(vj , v), denote by βr the

sequence of operation instances resulting from concate-
nating r copies of β and let γ = ξβr.

We claim that O’s value after αr−1γλr−1 is v. Con-
sider O’s value after p` executes β once after αr−1ξ.
There are two possibilities: either O’s value is v (in
which case it remains v also after αγ), or, other-
wise, all the CAS instances in β failed, implying that
one or more of the operation instances performed by
p1r−1, . . . , p

j
r−1 are linearized when execution fragment

γ is performed. In the latter case, consider O’s value
after p` executes β twice after αr−1ξ. Once again, ei-
ther O’s value is v (and remains v also after αr−1γ), or,
otherwise, additional operation instances performed by
p1r−1, . . . , p

j
r−1 are linearized when the second instance

of execution fragment β is performed. Applying this
argument iteratively and noting that j ≤ r − 1, by
construction, establishes our claim.

Consider the execution αr−1γλr−1φ, where φ is an ex-
ecution of read by pn. Then φ must return v, whereas
an execution of read by pn after αr−1λr−1 returns
u 6= v. Execution αrλr can now be constructed as
in the proofs for limited use max registers and coun-
ters. The number of operation instances applied by p`
in γ is (j + 1) · r ≤ r2. Since O allows only m opera-
tion instances, this implies that the sequence can have
length 3

√
m− 1, because the total number of operation

instances will be 1 +
∑ 3√m−1
r=1 r2 < m.

6. Let O be an m-limited-use collect object and consider
an obstruction-free implementation of O. We show
that O is (m − 1)-perturbable for a collect operation
instance opn of pn, by induction, where the base case
for r = 0 is immediate for all objects. We perturb
the executions by having processes store values that
change their collect component. This guarantees that
opn has to return different values each time, while get-
ting closer to the limit of the object as slowly as pos-
sible.

Formally, let r < m and let αr−1λr−1 be an (r − 1)-
perturbing execution of O. If αr−1λr−1 is saturated,
then, by case (1) of Definition 2, it is also an r-
perturbing execution.

Otherwise, Let V =< v1, . . . , vn > denote the value
that is returned by a collect operation by pn after
αr−1λr−1. Since αr−1λr−1 is not saturated, there is
a process p` 6= pn that does not take steps in λr−1.
Let γ be the execution fragment by p` where it first
finishes any incomplete operation in α and then ap-
plies an update(v′`) operation operation to O, for some
v′` 6= v`. Then opn must return different values when
run after αr−1γλr−1 and after the (r − 1)-perturbing
execution αr−1λr−1. It follows that r-perturbing exe-
cutions may be constructed from αr−1λr−1 and γ as
specified by Definition 2.

3.1 Lower bounds for implementations using
historyless objects

We define the concept of an access-perturbation sequence,
and prove a step-complexity lower bound for objects that
admit such a sequence.

αr−1 λr−1

steps by p1r−1, . . . , p
jr−1
r−1

to base objects O1
r−1, . . . , O

jr−1
r−1

accessed by pn in φr−1

-φr−1

opn by pn accessing

{B1
r−1, . . . , B

ir−1
r−1 }

αr = αr−1γ
′
rλ
′
r−1 λr = λ′′r er -φr

opn by pn

Figure 2: An access-perturbation sequence of length L: the above describes the executions for every r,
1 ≤ r ≤ L. Notice that αrλr is pn-free for every r.

Definition 3. (See Figure 2.) An access-perturbation
sequence of length L of an operation instance opn by process
pn on an object O is a sequence of executions {αrλrφr}Lr=0,

such that α0λ0 is empty, φ0 is an execution of opn by
pn starting from the initial configuration, and for every r,
1 ≤ r ≤ L, the following properties hold:

1. The execution αrλr is pn-free.

2. In φr, process pn runs solo after αrλr until it completes
the operation instance opn, in the course of which it
accesses the base objects B1

r , . . . , B
ir
r .

3. λr consists of jr ≥ 0 nontrivial events applied by jr
distinct processes, p1r, . . . , p

jr
r to distinct base objects

O1
r , . . . , O

jr
r , respectively, all of which are accessed by

pn in φr. If jr = n − 1, we say that αrλrφr is satu-
rated.

4. (a) If αr−1λr−1φr−1 is saturated, then we let αr =
αr−1, λr = λr−1 and φr = φr−1.

(b) Otherwise, we let αr = αr−1γ
′
rλ
′
r−1, and λr =

λ′′r−1er, where λ′r−1 is the subset of λr−1 contain-
ing all events to base objects that are not accessed
by pn in φr, λ

′′
r−1 is the subset of λr−1 contain-

ing all events to base objects that are accessed
by pn in φr, and γ′rer is an execution fragment
by a process p`r not taking steps in λr−1, where
er is its first nontrivial event to a base object in

{B1
r−1, . . . , B

ir−1
r−1 } \ {O1

r−1, . . . , O
jr−1
r−1 }.

We now prove that every L-perturbable objects has an
access-perturbation sequence of length L.

Lemma 2. An L-perturbable object implementation from
historyless primitives has an access-perturbation sequence of
length L.

Proof. Let O be an L-perturbable object implementa-
tion from historyless primitives. We show that it has an
access-perturbation sequence of length L, for the operation
opn as defined in Definition 3. The proof is by induction,
where we prove the existence of the execution αrλrφr, for
every r, 0 ≤ r ≤ L. To allow the proof to go through, in
addition to proving that the execution αrλrφr satisfies the
four conditions of Definition 3, we will prove that αrλr is
r-perturbing.

For the base case, r = 0, α0λ0 is empty and φ0 is an execu-
tion of opn starting from the initial configuration. Moreover,
the empty execution is 0-perturbing. We next assume the
construction of the sequence up to r − 1 < L and construct
the next execution αrλrφr as follows.

By the induction hypothesis, the execution αr−1λr−1 is
(r − 1)-perturbing. If αr−1λr−1 is saturated, then, by case

(1) of Definition 2, αr = αr−1, λr = λr−1 and αrλr is
r-perturbing. Moreover, by property 4(a) of Definition 3,
αrλrφr is the r’th access-perturbation execution, where
φr = φr−1.

Assume otherwise. Then, by property 2 of Definition 2,
there is a process p`r 6= pn that does not take steps in
λr−1, for which there is an extension of αr−1, γr, con-
sisting of events by p`r , such that pn returns different re-
sponses when performing opn by itself after αr−1λr−1 and
after αr−1γrλr−1. As per Definition 2, let γr = γ′rerγ

′′
r ,

where er is the first event of γ such that opn returns different
responses after αr−1λr−1 and after αr−1γ

′
rerλr−1. Clearly

er is a nontrivial event.
Denote by φr the execution of opn by pn after

αr−1γ
′
rerλr−1. Since opn returns different values after

αr−1λr−1 and after αr−1γ
′
rerλr−1, and since the implemen-

tation uses only historyless primitives, this implies that er
is applied to some base object B not in {O1

r−1, . . . , O
jr−1
r−1 }

that is accessed by pn in φr.
We define λ′r−1 to be the subsequence of λr−1 containing

all events to base objects that are not accessed by pn in
φr, and λ′′r−1 to be the subsequence of λr−1 containing all
events to base objects that are accessed by pn in φr. We
then define αr = αr−1γ

′
rλ
′
r−1, λr = λ′′r−1er and show that

αrλrφr satisfies the properties of Definition 3.
We first observe that αrλrφr is a well-defined execution,

since the execution fragment γ′r by p`r is performed after
αr−1, and all operations in λr−1 are nontrivial events to
distinct base objects none of which is by p`r . It follows that
αrλr and αr−1γ

′
rerλr−1 are indistinguishable to pn, hence

φr is a solo execution of opn by pn after both executions.
Property 1 holds since αrλr is pn-free by construction, and

φr is a solo execution fragment by pn in which it performs
opn, so Property 2 holds. To show Property 3, we observe
that αrλr is indistinguishable to pn from αr−1γ

′
rerλr−1 and

hence pn accesses the base object B in φr. Finally, Prop-
erty 4 follows by construction.

We conclude the proof by claiming that αrλr is r-
perturbing, which follows from its construction and Defi-
nition 2.

Next, we prove a step lower bound for implementations
that have an access-perturbation sequence. If the sequence
is saturated, then the lower bound is linear in the number
of processes, otherwise it is logarithmic in the length of the
sequence. Our goal is to prove that pn has to access a large
number of base objects as it runs solo while performing an
instance opn of Op in one of the executions of opn’s access-
perturbation sequence. Let πr denote the sequence of base
objects accessed by pn in φr, in the order of their first access
in φr; πr is pn’s solo path in φr. If all the objects accessed
in λr−1 are also in λr, i.e., pn accesses them also in φr, then

λr = λr−1er. However, the application of er may have the
undesirable effect (from the perspective of an adversary) of
making πr shorter than πr−1: pn may read the information
written by p`r and avoid accessing some other objects that
were previously in πr−1.

To overcome this difficulty, we employ the backtracking
covering technique, which is a quantitative version of a tech-
nique previous used in [5, 11]. The observation underlying
this technique is that objects that are in πr−1 will be absent
from πr only if the additional object to which p`r applies
the nontrivial event er precedes them in πr−1. Thus the set
of objects along πr that are covered after αrλr is ‘closer’,
in a sense, to the beginning of pn’s solo path in φr−1. It
follows that if there are many access-perturbation sequence
executions r for which |πr| < |πr−1|, then one of the solo
paths πr must be ‘long’.

To capture this intuition, we define Ψ, a monotonically-
increasing progress function of r. Ψr is a (logL)-digit binary
number defined as follows. Bit 0 (the most significant bit)
of Ψr is 1 if and only if the first object in πr is covered after
αr (by one of the events of λr); bit 1 of Ψr is 1 if and only
if the second object in πr exists and is covered after αr, and
so on. Note that we do not need to consider paths that are
longer than logL. If such a path exists, the lower bound
clearly holds.

To construct the r’th access-perturbation sequence execu-
tion, we deploy a free process, p`r and let it run solo until it
is about to write to an uncovered object, O, along πr. (Since
the sequence is not saturated, it follows from Property 4(b)
of Definition 3 that such p`r and O exist.) In terms of Ψ,
this implies that the covering event er might flip some of the
digits of Ψr−1 from 1 to 0. But O corresponds to a more
significant digit, and this digit is flipped from 0 to 1, hence
Ψr > Ψr−1 must hold. Thus we can construct executions
αrλrφr, for 1 ≤ r ≤ L, in each of which Ψr increases. It
follows that Ψr = L−1 must eventually hold, implying that
πr’s length is Ω(logL).

Theorem 3. Let A be an n-process obstruction-free im-
plementation of an L-perturbable object O from historyless
primitives. Then A has an execution in which some pro-
cess accesses Ω(min(logL, n)) distinct base objects during a
single operation instance.

Proof. Lemma 2 establishes that every implementation
of O from historyless primitives has an access-perturbation
sequence of length L ≥ 1, {αrλrφr}Lr=0. If the sequence is
saturated, then Definition 3 immediately implies that pn ac-
cesses n−1 distinct base objects in the course of performing
φr, and the lower bound holds. Otherwise, we show that
opn accesses Ω(logL) distinct base objects in one of these
executions.

Let πr = B1
r . . . B

ir
r denote the sequence of all distinct

base objects accessed by pn in φr (after αrλr) according to
Property 2 of Definition 3, and let Sπr denote the set of these
base objects. Let SCr = {O1

r , . . . , O
jr
r } be the set of base

objects defined in Property 3 of Definition 3. Observe that,
by Property 3, SCr ⊆ Sπr holds. Without loss of generality,
assume that O1

r , . . . , O
jr
r occur in πr in the order of their

superscripts.
In the execution αrλrφr, pn accesses ir distinct base ob-

jects. Thus, it suffices to show that some ir is in Ω(logL).
For j ∈ {1, . . . , ir}, let bjr be the indicator variable whose
value is 1 if Bjr ∈ SCr and 0 otherwise. We associate an in-

tegral progress parameter, Ψr, with each r ≥ 0, defined as
follows:

Ψr =

ir∑
j=1

bjr ·
L

2j
.

For simplicity of presentation, and without loss of generality,
assume that L = 2s for some integer s > 0, so s = logL.
If ir > s for some r then we are done. Assume otherwise,
then Ψr can be viewed as a binary number with s digits
whose j’th most significant bit is 1 if the j’th base object
in πr exists and is in SCr , or 0 otherwise. This implies that
the number of 1-bits in Ψr equals |SCr |. Our execution is
constructed so that Ψr is monotonically increasing in r and
eventually, for some r′, Ψr′ equals L− 1 = L

∑s
j=1

1
2j

. This
would imply that pn accesses exactly s base objects during
φr′ (after αr′λr′).

We next show that Ψr > Ψr−1, for every 0 < r ≤ L.
Since αr−1λr−1φr−1 is not saturated, by Property 4(b) of
Definition 3, there is a process p`r that takes no steps in
λr−1, and an execution fragment γ′rer of p`r after αr−1,
such that er is the first nontrivial event of p`r in γ′rer to a

base object in {B1
r−1, . . . , B

ir−1
r−1 } \ {O1

r−1, . . . , O
jr−1
r−1 }. By

Property 2 of that definition, this object is accessed by pn
in φr. Let k be the index of the object among the objects
accessed in φr−1, i.e., it is Bkr−1. This implies that Bkr−1 ∈
Sπr−1 \ SCr−1.

As Bkr−1 /∈ SCr−1, we have bkr−1 = 0. Since er is the first
nontrivial event of p`r in γ′rer to a base object in Sπr−1 \
SCr−1, we have that the values of objects B1

r−1 · · ·Bk−1
r−1 are

the same after αr−1λr−1 and αrλr. It follows that bjr−1 = bjr
for j ∈ {1, . . . , k−1}. This implies, in turn, that Bkr−1 = Bkr .
As Bkr ∈ SCr , we have bkr = 1. We get:

Ψr =

ir∑
j=1

bjr ·
L

2j

=

k−1∑
j=1

bjr ·
L

2j
+ bkr ·

L

2k
+

ir∑
j=k+1

bjr ·
L

2j

=

k−1∑
j=1

bjr−1 ·
L

2j
+
L

2k
+

ir∑
j=k+1

bjr ·
L

2j

≥
k−1∑
j=1

bjr−1 ·
L

2j
+
L

2k

>

k−1∑
j=1

bjr−1 ·
L

2j
+

ir−1∑
j=k+1

bjr−1

L

2j

= Ψr−1,

where the last equality is based on the observation that
bkr−1 = 0.

As Ψ0 = 0 and since Ψr strictly grows with r and can
never exceed L− 1, it follows that ΨL = L− 1, which con-
cludes the proof.

Lemmas 1, 2 and Theorem 3 imply the following.

Theorem 4. An n-process obstruction-free implemen-
tation of an m-limited-use max register, m-limited-use
counter, m-limited-use b-valued compare-and-swap object or
an m-limited-use collect object from historyless primitives

has an operation instance requiring Ω(min(logm,n)) steps.
An obstruction-free implementation of a b-bounded max reg-
ister from historyless primitives has an operation instance
requiring Ω(min(log b, n)) steps.
An obstruction-free implementation of a k-additive-accurate
m-limited-use counter from historyless primitives has an op-
eration instance requiring Ω(min(logm− log k, n)) steps.

To prove space-complexity lower bounds on L-perturbable
objects, we construct perturbing sequences in which many
objects are covered; not all of them are necessarily accessed
by the reader, but, nevertheless, they must be distinct, giv-
ing a lower bound on the number of base objects. The proof
of the next theorem appears in the full paper.

Theorem 5. The space complexity of an obstruction-
free implementation of an m-limited-use max register or
an m-limited-use collect object from historyless primitives
is Ω(min(m,n)).
The space complexity of an obstruction-free implementation
of an m-limited-use b-valued compare-and-swap object from
historyless primitives is Ω(min(3

√
m,n)).

The space complexity of an obstruction-free implementation
of a b-bounded max register from historyless primitives is
Ω(min(b, n)).
The space complexity of an obstruction-free implementation
of a k-additive-accurate m-limited-use counter from history-
less primitives is Ω(min(

√
m
k
, n)).

3.2 Lower bounds for implementations using
arbitrary primitives

The number of steps performed by an operation, as we
have measured for implementations using only historyless
objects, is not the only factor influencing the performance
of an operation. The performance of a concurrent object im-
plementation is also influenced by the extent to which mul-
tiple processes simultaneously access widely-shared memory
locations. Dwork et al. [8] introduced a formal model to
capture such contention, taking into consideration both the
number of steps taken by a process and the number of stalls
it incurs as a result of memory contention with other pro-
cesses. More formally, an event e applied by a process p
to object O in an execution α incurs k memory stalls if it
is immediately preceded by k events by distinct processes
different from p that apply nontrivial primitives to O.

Our next result shows a lower bound on implementations
using arbitrary read-modify-write primitives. Its proof em-
ploys an extension of the backtracking covering technique
that uses a “bins-and-balls” argument. The proof of The-
orem 3 uses access-perturbable sequence of executions, in
which each new execution deploys a process to cover an ob-
ject that is not covered in the preceding execution. Such a
series of executions cannot, in general, be constructed for
algorithms that may use arbitrary primitives. Instead, the
proof constructs a series of executions in which each new
execution deploys a process that covers some object along
pn’s path.

Definition 4. An access-stall perturbation sequence of
length L of an operation instance opn by process pn on an
object O is a sequence of executions αrσr,1 · · ·σr,jrρr, such
that α0 is empty, j0 = 0, ρ0 is an execution of opn by pn
starting from the initial configuration, and for every r, 1 ≤
r ≤ L, the following properties hold:

1. αr is pn-free,

2. in ρr process pn runs solo until it completes the op-
eration instance opn; in this instance, pn accesses the
base objects B1

r , . . . , B
ir
r ,

3. there is a subsequence O1
r , . . . O

jr
r of disjoint objects

in B1
r , . . . B

ir
r and disjoint nonempty sets of processes

S1
r , . . . , S

jr
r such that, for j = 1, . . . , jr,

• each process in Sjr covers Ojr after αr, and

• in σr,j, process pn applies events until it is about
to access Ojr for the first time, then each of the
processes in Sjr accesses Ojr, and, finally, pn ac-
cesses Ojr.

4. let λr−1 be the subsequence of events by the pro-

cesses in S1
r−1 ∪ · · ·S

jr−1
r−1 that are applied in

σr−1,1 · · ·σr−1,jr−1 , then αr−1λr−1 is an r − 1-
perturbing execution; if αr−1λr−1 is saturated, then we
say that αr−1σr−1,1 · · ·σr−1,jr−1ρr−1 is saturated,

5. If αr−1σr−1,1 · · ·σr−1,jr−1ρr−1 is saturated, then the
r’th execution in the access-stall perturbation sequence
is defined as identical to it. Otherwise, the following
holds: Ojrr = Bkr−1, for some 1 ≤ k ≤ ir−1; Bir =
Bir−1, for all i ∈ {1, . . . k}; Oir−1 = Oir and Sir−1 = Sir
for all objects Oir−1 that precede Bkr−1 in the sequence

B1
r−1, . . . , B

ir
r−1; and either Bkr−1 /∈ {O1

r−1, . . . , O
jr−1
r−1 }

or Ojrr = Ojrr−1 and |Sjrr | = |Sjrr−1|+ 1.

The proof of the following lemma appears in the full paper.

Lemma 6. An L-perturbable object implementation has
an access-stall perturbation sequence of length L.

Theorem 7. Let A be an n-process obstruction-free im-
plementation of an L-perturbable object O from read-modify-
write primitives. Then A has an execution in which some
process either accesses Ω(min(logL, n)) distinct base objects
or incurs Ω(min(logL, n)) memory stalls, during a single
operation instance.

Proof. For simplicity and without loss of generality, as-
sume that L = 22s for some integer s. If A has an execu-
tion in which some process accesses s distinct base objects
during a single operation instance, then the theorem holds.
Otherwise, Lemma 6 establishes that A has an access-stall
perturbation sequence of length L. If one of these execu-
tions, αrσr,1 · · ·σr,jrρr, for some r ≤ L, is saturated, then
it follows from Definition 4 that pn incurs n − 1 memory
stalls in the course of σr,1 · · ·σr,jr and the theorem holds.
We therefore assume in the following that none of the execu-
tions in A’s access-stall perturbation sequence is saturated.
We will prove that pn incurs Ω(s) memory stalls in one of
these executions.

For i ∈ {1, . . . , ir}, let variable nir be defined as follows:

nir =

{
|Smr |, if ∃m ∈ {1, . . . , jr} : Bir = Omr ,

0, otherwise.

Let Nr =
∑ir
i=1 n

i
r. Thus, it suffices for the proof to show

that one of these executions has Nr = Ω(s). We associate

the following integral progress parameter, Φr, with each ex-
ecution r ≥ 0:

Φr =

ir∑
i=1

nir · ss−i.

If nir ≥ s − 1 for some 0 ≤ r ≤ L and i ∈ {1, . . . , ir},
then we are done, since clearly Nr ≥ s − 1 holds in this
case. Assume otherwise, then Φr can be viewed as an s-
digit number in base s whose i’th most significant digit is
0 if i > ir or equals the number of processes in S1

r , . . . , S
jr
r

covering Bir after αr, otherwise.

From the last property of Definition 4, O
jr+1
r+1 = Bkr , for

some 1 ≤ k ≤ ir and, moreover, Bir+1 = Bir for i ∈ {1, . . . k},
nir+1 = nir for i ∈ {1, . . . , k−1}, nkr+1 = nkr+1, and nir+1 = 0
for i ∈ {k + 1, . . . , ir}. We get:

Φr+1 =

ir+1∑
i=1

nir+1 · ss−i

=

k∑
i=1

nir+1 · ss−i

=

k−1∑
i=1

nir · ss−i + (nkr + 1) · ss−k

>

k∑
i=1

nir · ss−i +

s∑
i=k+1

(s− 1) · ss−i

≥
ir∑
i=1

nir · ss−i

= Φr

Since the sequence Φ1, . . .ΦL is strictly growing, each Φr
is unique. By the definition of Φ, each value Φr corresponds
to a different partitioning of integer Nr to the values of the
s digits of Φr. What is the maximum number N of dif-
ferent executions r for which Nr ≤ s holds? N is at most
the number of distinguishable partitions of up to s identical
balls into s bins. Let Ab,c be the number of distinguishable
partitions of b identical balls into c bins, then:

N ≤
s∑
j=0

Aj,s

= As,s+1

=

(
2s

s

)

=

(
logL

logL/2

)

= Θ

(
4logL/2√
π logL/2

)

= Θ

(
L√

π logL/2

)
< L.

Where the penultimate equality above follows from Stir-
ling’s approximation and the fact that the error of the ap-

proximation ratio
(

logL
logL/2

)
/ 4log L/2√

π logL/2
is inversely propor-

tional to s [9, page 75]. Thus, for all L ≥ 4, there is an
execution αr′σr′,1 · · ·σr′,jr ′ρr′ such that Nr′ > s holds.

Lemma 1 and Theorem 7 yield the following specific
bounds.

Theorem 8. An n-process obstruction-free implemen-
tation of an m-limited-use max register, m-limited-use
counter, an m-limited-use b-valued compare-and-swap object
or an an m-limited-use collect object from read-modify-write
primitives has an operation instance that either requires
Ω(min(logm,n)) steps or incurs Ω(min(logm,n)) stalls.
An obstruction-free implementation of a b-bounded max reg-
ister from read-modify-write primitives has an operation in-
stance that either requires Ω(min

(
log b, n

)
) steps or incurs

Ω(min
(

log b, n
)
) stalls.

An obstruction-free implementation of a k-additive-accurate
m-limited-use counter from read-modify-write primitives has
an operation instance that either requires Ω(min

(
logm −

log k, n
)
) steps or incurs Ω(min

(
logm− log k, n

)
) stalls.

4. LOWER BOUND FOR RANDOMIZED
APPROXIMATE COUNTERS

Proving lower bounds for randomized implementations of
concurrent objects is more difficult, due to the extra flex-
ibility these implementations have. We were not able to
prove general lower bounds for a class of objects, but we
take a first step in this direction by proving a lower bound
for a specific, but very useful, object, namely an approxi-
mate counter. This object allows some error in the opera-
tions applied to them. We consider two variants, depending
on whether the error is additive or multiplicative.

We assume an oblivious adversary, which fixes the se-
quence of process steps in advance, without being able to
predict the coin-flips of the processes or the progress of
the execution; in fact, our adversary does not even require
knowledge of the implementation, allowing us to prove the
lower bound using Yao’s Principle [16]. We consider deter-
ministic algorithms, since a randomized algorithm can be
seen as a weighted average of deterministic ones. A distri-
bution over schedules that gives a high cost on average for
any fixed deterministic algorithm, also gives a high cost on
average for any randomized algorithm, which also implies
that there exists some specific schedule that does so. We
will describe an (oblivious) adversary strategy achieving the
next lower bound:

Theorem 9. For a randomized implementation of an
m-valued c-multiplicative-accurate counter using historyless
primitives for n ≥ m processes, a fixed ε > 0, and w > 0,
there is an oblivious adversary strategy that yields, with prob-
ability at least 1−ε, an execution consisting of at most m−1
concurrent CounterIncrement operation instances, some of
which may be incomplete, followed by a CounterRead opera-
tion instance, in which one of the following conditions holds:
(a) a constant fraction of the CounterIncrement instances
take more than w operations; (b) the value returned by the
CounterRead operation instance is not consistent with any
linearization of the completed operation instances; or (c) the

CounterRead operation instance takes Ω
(

log logm−log log c
logw

)
operations.

We first consider a schedule constructed as follows. Pro-
cess p1 carries out an operation β1 for at most w steps. With

probability p for each step, p1 is stopped early and is sus-
pended before it can carry the step out; if the step is not
a read operation, this means that the target register is now
covered by a pending operation that can be delivered later to
overwrite any subsequent work by other processes. Whether
p1 completes its operation or not, process p2 is next sched-
uled to carry out at most w steps, each of which causes p2 to
be suspended with probability p as before, and this process
is repeated for the remaining processes up through pn−1. In
this way we assemble a schedule Γ = β′1β

′
2 . . . β

′
n−1, where

each β′i is an initial prefix of some high-level operation βi.
Let r be chosen arbitrarily. From Γ, we construct a fam-

ily of schedules {Ξk}k≥0, where each Ξk consists of an ini-
tial prefix of Γ of length k (i.e., consisting of k steps),
followed by the delivery of all delayed operations from Γ,
and in turn followed by the first r steps of a single op-
eration α executed by pn. Thus each Ξk is of the form
β′1β

′
2 . . . β

′
m−1β

′′
mδmδm−1 . . . δ1α, where δi is either the de-

layed operation of i or the empty sequence if there is no
such operation, α is the single operation of pn, and β′′m is a
prefix of βm of length k − |β′1β′2 · · ·β′m−1|.

The proof is based first on bounding the number of distinct
values returned by the reader across all the schedules Ξk
as a function of p and r, and then showing that we can
select a subset of these schedules that must either violate
the restriction to short increment and read operations or
return significantly more distinct values. This implies that
choosing one of these schedules uniformly at random is likely
to hit one of the bad outcomes. The next lemma bounds the
number of distinct return values, and its proof appears in the
full paper.

Lemma 10. Among the schedules Ξk above, α returns at
most (1+1/p)r distinct values on average, where the average
is taken over the random choices of the adversary for when
to delay operations.

The key idea is that because α is deterministic, the value
it returns can depend only on the values of the at most r
registers it reads, and that each register will get at most
1 + 1/p values on average in all the Ξk before it becomes
covered by some δi. This is essentially the same idea as
used in [3] for max registers, except that we provide a more
careful analysis of the dependence between the number of
values found in each registers, because the union bound used
in [3] reduces the lower bound by a Θ(log logm) factor that
in our case would eliminate the lower bound completely.

Lemma 10 holds for arbitrary sequences of operations. To
prove Theorem 9, we show that for the specific case where
p = 1/4w and each βi is a CounterIncrement and α is a
CounterRead for a c-multiplicative-accurate counter, we can
pick out a subfamily of executions Ξk0 ,Ξk1 , . . .Ξk`−1 , where

` − 1 =
⌊
1
2

log2c

√
m
⌋
− 1 = Θ(logm/ log c), such that, on

average, a constant fraction of the executions Ξki satisfies
one of the conditions in Theorem 9. A detailed proof appears
in the full paper.

If we choose w to match the lower bound on Counter-

Read, we get a lower bound on the worst-case cost of a
c-multiplicative-accurate counter operation for fixed c of

Ω
(

log logm−log log c
log log logm

)
. This is much smaller than Jayanti’s

lower bound of Ω(logn) on randomized n-bounded coun-
ters [14], which also allows much stronger primitives in the
implementation. But the smaller bound is not surprising if

one considers that, for any constant c, a c-multiplicative-
accurate counter effectively provides only Θ(log logm) bits
of information about the number of increments, compared
with Θ(logm) for standard counter.

5. SUMMARY
This paper presents lower bounds for concurrent

obstruction-free implementations of objects that are used
in a restricted manner. (See Table 1 in the introduction.)

The step lower-bound on max registers is tight [3] and the
step lower bound on randomized counters is almost tight, as
there is an O(log logm) upper bound [7], under the same ad-
versary model. It is unclear whether the other lower bounds
are tight.

Another interesting research direction is to devise generic
implementations for L-perturbable objects. This is of par-
ticular interest in the case of randomized implementations,
where there is also an important issue of the type of adver-
sary tolerated.

6. REFERENCES
[1] D. Alistarh, J. Aspnes, K. Censor-Hillel, S. Gilbert,

and M. Zadimoghaddam. Optimal-time adaptive tight
renaming, with applications to counting. In PODC,
pages 239–248, 2011.

[2] D. Alistarh, J. Aspnes, S. Gilbert, and R. Guerraoui.
The complexity of renaming. In FOCS, pages 718–727,
2011.

[3] J. Aspnes, H. Attiya, and K. Censor. Polylogarithmic
concurrent data structures from monotone circuits.
J. ACM, 59(1), Feb. 2012. Previous version in PODC,
pages 36–45, 2009.

[4] J. Aspnes and K. Censor. Approximate
shared-memory counting despite a strong adversary.
ACM Transactions on Algorithms, 6(2), 2010.

[5] H. Attiya, R. Guerraoui, D. Hendler, and
P. Kuznetsov. The complexity of obstruction-free
implementations. J. ACM, 56(4), 2009.

[6] H. Attiya and D. Hendler. Time and space lower
bounds for implementations using k-cas. IEEE Trans.
Parallel Distrib. Syst., 21(2):162–173, 2010.

[7] M. A. Bender and S. Gilbert. Mutual exclusion with
O(log logn) amortized work. In FOCS, pages 728–737,
2011.

[8] C. Dwork, M. Herlihy, and O. Waarts. Contention in
shared memory algorithms. J. ACM, 44(6):779–805,
1997.

[9] W. Feller. An Introduction to Probability Theory and
Its Applications, Vol. 1. Wiley, 1968.

[10] F. Fich, M. Herlihy, and N. Shavit. On the space
complexity of randomized synchronization. J. ACM,
45(5):843–862, 1998.

[11] F. E. Fich, D. Hendler, and N. Shavit. Linear lower
bounds on real-world implementations of concurrent
objects. In FOCS, pages 165–173, 2005.

[12] M. Herlihy, V. Luchangco, and M. Moir.
Obstruction-free synchronization: Double-ended
queues as an example. In ICDCS, pages 522–529, 2003.

[13] M. Herlihy and J. M. Wing. Linearizability: a
correctness condition for concurrent objects. ACM
Trans. Prog. Lang. Syst., 12(3):463–492, June 1990.

[14] P. Jayanti. A time complexity lower bound for
randomized implementations of some shared objects.
In PODC, pages 201–210, 1998.

[15] P. Jayanti, K. Tan, and S. Toueg. Time and space
lower bounds for nonblocking implementations. SIAM
J. Comput., 30(2):438–456, 2000.

[16] A. C.-C. Yao. Probabilistic computations: Toward a
unified measure of complexity. In FOCS, pages
222–227, 1977.

