

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. COMPUT. c© 2012 Society for Industrial and Applied Mathematics
Vol. 41, No. 6, pp. 1451–1465

FAST INFORMATION SPREADING IN GRAPHS WITH LARGE
WEAK CONDUCTANCE∗

KEREN CENSOR-HILLEL† AND HADAS SHACHNAI‡

Abstract. Gathering data from nodes in a network is at the heart of many distributed appli-
cations, most notably while performing a global task. We consider information spreading among
n nodes of a network, where each node v has a message m(v) which must be received by all other
nodes. The time required for information spreading has been previously upper-bounded with an
inverse relationship to the conductance of the underlying communication graph. This implies high
running time bounds for graphs with small conductance. The main contribution of this paper is
an information spreading algorithm which overcomes communication bottlenecks and thus achieves
fast information spreading for a wide class of graphs, despite their small conductance. As a key tool
in our study we use the recently defined concept of weak conductance, a generalization of classic
graph conductance which measures how well-connected the components of a graph are. Our hybrid
algorithm, which alternates between random and deterministic communication phases, exploits the
connectivity within components by first applying partial information spreading, in which information
is exchanged within well-connected components, and then sending messages across bottlenecks, thus
spreading further throughout the network. This yields substantial improvements over the best known
running times of algorithms for information spreading on any graph that has large weak conductance,
from a polynomial to a polylogarithmic number of rounds.

Key words. distributed computing, randomized algorithms, weak conductance, information
spreading

AMS subject classifications. 68Q85, 68W15, 68W05, 68R10

DOI. 10.1137/110845380

1. Introduction. Collecting data of all nodes in a network is required by many
distributed applications which perform global tasks. The goal of an information
spreading algorithm is to distribute the messages sent by each of n nodes in a network
to all other nodes. We consider the synchronous push/pull model of communication
along with the transmitter gossip constraint [31], where each node contacts in each
round one neighbor to exchange information with, though a node can be contacted
by multiple neighbors.

Intuitively, the time required for achieving information spreading depends on the
structure of the communication graph or, more precisely, on how well-connected it
is. The notion of conductance, defined by Sinclair [37], gives a measure for the con-
nectivity of a graph. Roughly speaking, the conductance of a graph G, denoted by
Φ(G), is a value in [0, 1]: This value is large for graphs that are well-connected (e.g.,
cliques) and small for graphs that are not (i.e., graphs which have communication
bottlenecks). It has been shown that the time required for information spreading
can be bounded from above based on the conductance of the underlying communica-

∗Received by the editors August 23, 2011; accepted for publication (in revised form) September
17, 2012; published electronically November 15, 2012. A preliminary version of this paper appeared
in Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011,
pp. 440–448.

http://www.siam.org/journals/sicomp/41-6/84538.html
†CSAIL, MIT, Cambridge, MA 02139 (ckeren@csail.mit.edu). Supported by the Simons Postdoc-

toral Fellows Program and NSF award 0939370-CCF. Part of this work was done while the author
was a Ph.D. student at the Department of Computer Science, Technion, Haifa 32000, Israel and sup-
ported in part by the Adams Fellowship Program of the Israel Academy of Sciences and Humanities
and by the Israel Science Foundation (grant 953/06).

‡Department of Computer Science, Technion, Haifa 32000, Israel (hadas@cs.technion.ac.il).

1451

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1452 KEREN CENSOR-HILLEL AND HADAS SHACHNAI

tion graph [4, 11, 12, 22, 31]. In particular, Giakkoupis [22] shows that information
spreading can be achieved in O(log n

Φ(G)) rounds with probability at least 1 − δ, where

δ = 1
nd for some constant d. This holds when each node randomly chooses a neighbor

to contact in every round.
Some graphs have small conductance, implying that they are not well-connected,

and therefore the above approach may require many rounds of communication for
information spreading. This led us to define in [9] weak conductance, Φc(G), of a graph
G, which measures connectivity among subsets of nodes, whose sizes depend on the
parameter c ≥ 1. The paper shows that a relaxed requirement of partial information
spreading, where each node needs to receive only some of the messages, can be solved
fast with high probability in graphs with large weak conductance, although they may
have small conductance. As shown in [9], partial information spreading is a sufficient
guarantee for some applications.1

In this paper we return to the question of achieving full information spreading,
where each node must receive every message. We present an algorithm that obtains
full information spreading on connected graphs and runs fast with high probability
on graphs with large weak conductance, independent of their conductance.2 This
expands the known family of graphs for which fast information spreading can be
guaranteed, since the weak conductance of a graph is always lower bounded by its
conductance and is significantly larger for many graphs.

More generally, for graphs with large weak conductance, our algorithm induces
fast solutions for tasks which can be solved using full information spreading, such as
leader election, achieving consensus, and computation of aggregation functions.

It has been long known that the conductance itself is insufficient as a lower bound
for information spreading. For example, Feige et al. [19] show that information spread-
ing on the hypercube can be obtained in O(logn) rounds, despite its conductance be-
ing O(1/ logn). Our results refine this observation, showing that weak conductance
is a more accurate measure for full information spreading.

1.1. Our contribution. The main contribution of this paper is an algorithm
which achieves fast information spreading with high probability for graphs with large
weak conductance. Formally, for any c > 1 and δ = 1

nd for some constant d, our algo-

rithm achieves full information spreading in O(c(log n
Φc(G) + c)) rounds with probability

at least 1 − 3cδ. This yields substantial improvements in the best known running
times of algorithms for information spreading, in particular on graphs that have small
conductance but large weak conductance from polynomial to polylogarithmic number
of rounds.3

Since the best known running times of algorithms for full information spreading
inversely depend on the conductance, which may be small due to communication bot-
tlenecks, a natural direction toward speeding up information spreading is to identify
such bottlenecks and choose these links with higher probability compared to other
neighboring links. However, detecting bottlenecks may not be easy. One approach
for separating bottlenecks from other neighbors is to show that a node receives mes-
sages from nodes across a bottleneck only with small probability. This seems to

1The results in [9] use an alternative definition of conductance, proposed by [31]. Here we return
to the original definition of Sinclair [37] and show that the results for partial information spreading
still hold.

2We consider an algorithm to be fast if it runs in a scalable number of rounds, i.e., in O(logn)
or O(polylog(n)) rounds.

3Consider, for example, the class of graphs with conductance O(1/n) but constant weak conduc-
tance. We give specific examples in section 2.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST INFORMATION SPREADING WITH WEAK CONDUCTANCE 1453

reduce to finding lower bounds for information spreading, a direction which has not
proved fruitful so far. Instead, we develop an algorithm that does not detect bot-
tlenecks or formally define their properties, which also appears to be a challenging
task. Nonetheless, our algorithm successfully copes with bottlenecks and guarantees
fast information spreading despite their presence throughout the network. Roughly
speaking, our approach ensures that each node exchanges information quickly with
all of its neighbors, perhaps indirectly, and despite the possibility of large degrees, as
long as the weak conductance of the graph is large.

We propose a hybrid approach for choosing the neighbor to contact in a given
round, which interleaves random choices and deterministic ones. As in the case of
random choices, selecting neighbors only in a deterministic manner may require a
number of rounds (at least) proportional to the degree of the node, which may be
large.4 Our approach combines random and deterministic techniques using a frame-
work where each node carefully maintains a diminishing list of its neighbors to contact
deterministically and alternates between selections from this list and random choices
from the set of all neighbors. The lists maintained by the nodes assure that the in-
formation spreads across bottlenecks. A main challenge overcome by our algorithm is
the tradeoff imposed by managing the lists, namely, inducing a connected subgraph
while having scalable list sizes that allow contacting each of the neighbors in them
within a small number of rounds.

This constitutes our second contribution: obtaining a connected scalable-degree
subgraph in a distributed network of unbounded degree. We believe that finding
such subgraphs can be useful in other applications, e.g., in obtaining scalable-degree
spanners [32, 33]—fundamental subgraphs that preserve distances between nodes up
to some stretch. We elaborate about this in the discussion with the technical details
of our algorithm in hand.

1.2. Related work. Information spreading algorithms have been extensively
studied, starting with the work of Demers et al. [14] for replicated database main-
tenance. Additional research uses information spreading for computation of global
functions [28, 31].

Communication models vary in different studies. For example, Karp et al. [26]
consider the random phone-call model, where in each round every node chooses
a random node to communicate with, assuming the communication graph is com-
plete. Much attention has been given to this model, such as bounding the number of
calls [15], bounding the number of bits sent [21], or bounding the amount of random-
ization used [23]. Chen and Pandurangan [10], Jelasity, Montresor, and Babaoglu [25],
and Kashyap et al. [27] address the problem of computing aggregate functions in this
model, mainly by constructing efficient overlay structures in the graph. Berenbrink
et al. [5] give a lower bound trade-off between message size and time complexity for
gossip, and Alistarh et al. [1] study spreading of information while tolerating failures
in the network. We emphasize that the above papers assume that every node can
contact every other node in the network.

As opposed to the random phone-call model, our results hold for arbitrary com-
munication graphs. For such graphs, much work has been done to analyze the time it
takes for information spreading using the uniform randomized algorithm (each neigh-
bor has the same probability of being chosen). The most recent papers are by Mosk-
Aoyama and Shah [31] and Chierichetti, Lattanzi, and Panconesi [11], and there is

4Indeed, this is due to the fact that a neighbor adjacent to a bottleneck link may be contacted
last.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1454 KEREN CENSOR-HILLEL AND HADAS SHACHNAI

the recent result of Giakkoupis [22], who showed the best bound of O(logn
Φ(G)) for infor-

mation spreading using this algorithm.
Additional work includes distance-based bounds that were given for nodes placed

with uniform density in Rd [29, 30]. These papers also address gossip-based so-
lutions to specific problems such as resource location and minimum spanning tree.
Bradonjić et al. [8] analyze information spreading in random geometric graphs. Geor-
giou et al. [24] study information spreading in asynchronous networks. Chierichetti,
Lattanzi, and Panconesi [12] and Doerr, Fouz, and Friedrich [16] consider information
spreading in social networks. Sauerwald and Stauffer [36] study information spreading
on regular graphs with respect to vertex expansion, a notion similar to conductance
which addresses vertices rather than edges. Sarwate and Dimakis [35] and Boyd et
al. [7] study the problem in wireless sensor networks, while Pettarin et al. [34] consider
sparse mobile networks.

The quasi-random model for information spreading has been introduced by Doerr,
Friedrich, and Sauerwal [17] and studied subsequently in [18, 20], as an approach to
reduce the amount of randomness. In this model each node has a (cyclic) list of
its neighbors, in which it chooses randomly a starting position. It then accesses its
list sequentially using this starting position. The paper [17] shows that this model
behaves essentially the same as the standard rumor-spreading model.

Recently, our algorithm was used in [3] for obtaining a spanning tree, by each
node marking its parent as the neighbor from which it obtained the message of the
node with the smallest ID. The spanning tree was then used for information spreading
through algebraic gossip [13], which is similar to random linear network coding and
is used when message sizes are bounded. In fact, our algorithm can be used to obtain
a spanning subgraph with additional properties, as described in section 5.

1.3. Organization. The rest of the paper is organized as follows. We give an
overview of the notions of conductance, weak conductance, and partial information
spreading in section 2. In section 3, we present our algorithm for obtaining full infor-
mation spreading. The analysis of the number of rounds required by our algorithm
is given in section 4. Finally, a summary and discussion of the results appear in
section 5.

2. Preliminaries. The notion of graph conductance was introduced as a mea-
sure of how well-connected a graph is. We follow the definition of Sinclair [37] but
extend it, so we can measure the conductance of subsets of nodes in a graph. This
is different than the conductance of the induced subset, as will be explained in the
proof of Theorem 1.

For S, T ⊆ V , the cut between S and T is defined as cut(S, T) = {{u, v} ∈ E | u ∈
S, v ∈ T }. For S ⊆ V , the volume of S is defined as vol(S) =

∑
v∈S dv, where dv is

the degree of v in G. Notice that although the cut considers only edges between nodes
in S and in T , the volume is defined with respect to the entire graph G (namely, it
does not correspond to the induced subgraph).

The conductance of a cut is defined as

ϕ(S, T) =
|cut(S, T)|

min {vol(S), vol(T)} ,(1)

and the conductance of the graph G is then defined to be the minimal such value,
taken over all cuts:

Φ(G) = min
S⊆V,|S|≤vol(V)/2

ϕ(S, V \ S).

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST INFORMATION SPREADING WITH WEAK CONDUCTANCE 1455

Notice that the conductance satisfies 0 ≤ Φ(G) ≤ 1, since the number of edges from
S to T is at most the total number of edges leaving nodes in S.

Full information spreading is the condition that each node receives the information
of all other nodes. For some applications, partial information spreading, where this
condition is relaxed, suffices. Formally, for some values c ≥ 1 and δ ∈ (0, 1), we require
that with probability at least 1−δ every message reaches at least n/c nodes, and every
node receives at least n/c messages. An algorithm that satisfies this requirement
is called (δ, c)-spreading. Indeed, the special case where c = 1 corresponds to full
information spreading.

Since only a relaxed spreading guarantee is required, the concept of weak conduc-
tance can be used in order to analyze partial information spreading. While conduc-
tance provides a measure for the connectivity of the whole graph, weak conductance
measures the best connectivity among subsets that include each node. Formally, for
an integer c ≥ 1, the weak conductance of a graph G = (V,E) is defined as

Φc(G) = min
i∈V

⎧⎪⎪⎨
⎪⎪⎩

max
Vi ⊆ V ,
i ∈ Vi,

|Vi| ≥ n
c

⎧⎪⎨
⎪⎩

min
S ⊆ Vi,

|S| ≤ vol(Vi)
2

ϕ(S, Vi \ S)

⎫⎪⎬
⎪⎭

⎫⎪⎪⎬
⎪⎪⎭
,

where ϕ(S, T) is defined in (1). Indeed, in the special case where c = 1, the weak
conductance of G is equal to its conductance, namely, Φ1(G) = Φ(G). Moreover, this
definition implies that the weak conductance of a graph is a monotonically increasing
function of c; therefore, the weak conductance of a graph G is at least as large as its
conductance.

The following theorem bounds the number of rounds required for (δ, c)-spreading.
Theorem 1 (see [9, Theorem 3]). For δ = 1

nd for some constant d, the number

of rounds required for (δ, c)-spreading is O(logn
Φc(G)).

Instead of the proof given in [9], we give a proof that corresponds to the definition
of conductance we use here.

Proof. For a subset of nodes of the graph, the conductance measure we need is
not the conductance of the induced subgraph, since our analysis of spreading within
a certain subset still has to account for the probability of choosing edges that leave
that subset (and are therefore not part of the induced subgraph).

Instead, when analyzing spreading within a subset, the conductance of the subset
can be calculated by considering any edge that leaves the subset as a self-loop,5 thereby
paying for contacting a neighbor over that edge without obtaining information from
within the subset.

Therefore, we can use the result of [22] for information spreading within Vi in
time O(logn

Φ(G(Vi))
), where G(Vi) is the graph on nodes in Vi with edges in Vi taken as

they are and edges leaving Vi taken as self-loops. Together with the definition of weak
conductance the theorem follows. We note that the result of [22] holds also for graphs
with self-loops (although this is not mentioned explicitly).

We note that the proof of Theorem 1 actually gives a much stronger result. For
any vertex v ∈ V , let Vv be a component realizing the definition of the weak conduc-
tance. Then the above proof shows that this is also a bound on the number of rounds
required for every node v to obtain the message m(u) of every u ∈ Vv and for every
u to obtain m(v).

5Recall that the volume of a set is measured with respect to the entire graph.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1456 KEREN CENSOR-HILLEL AND HADAS SHACHNAI

Fig. 1. The c-barbell graph is a path of c equal-sized cliques. It is an example of a graph with
small conductance and large weak conductance.

Theorem 2. For δ = 1
nd for some constant d with probability at least 1 − δ,

the number of rounds required for every node v to obtain the message m(u) of every
u ∈ Vv and for every u ∈ Vv to obtain m(v) is O(logn

Φc(G)).

Therefore, for all nodes v ∈ V , the sets Vv will be central to our analysis. These
sets depend on the value of c, which is omitted to avoid excessive notation.

We proceed by giving examples of the conductance and weak conductance of
different graphs. A clique has constant conductance. Its weak conductance is equal to
its conductance, since for every node i the best subset Vi is V itself. The conductance
of a path is 1

n , while its weak conductance improves only to c
n . For these two examples,

the weak conductance is in the same order as the conductance for some constant c ≥ 1.
The c-barbell graph is an example of a graph with very small conductance (for

which, to the best of our knowledge, it was not known up to this work how to achieve
fast information spreading) but large weak conductance. The c-barbell graph, which
is a generalization of the barbell graph, consists of a path of c cliques, where each
contains n/c nodes (see Figure 1). While the conductance of the c-barbell graph is
Θ(c

n2), the weak conductance is a constant. For any constant c ≥ 1, this implies
conductance of Θ(1/n2) while the weak conductance is Θ(1). Indeed, the barbell
graph has been studied before (see, e.g., [2, 6]) as a graph for which information
spreading requires a large number of rounds. In [2] the context is random walks,
which are closely related, since the path of a message can be viewed as a random walk
on the graph.

There are additional families of graphs that have a similar property of small
conductance and large weak conductance. Examples include rings of cliques and
other structures with c equal-sized well-connected components that are connected by
only a few edges.

3. A fast information spreading algorithm. Our algorithm for full infor-
mation spreading applies several phases of partial information spreading, interleaved
with our deterministic spreading on a scalable subgraph (whose number of edges can
be significantly smaller). We emphasize that the only initial information a node has
is n, the size of the network, and the set of its neighbors. No value of c is given to
the nodes nor do they aim to obtain partial information spreading; c is only used
in the analysis. Moreover, spreading information requires no extra headers, only the
messages m(v) of different nodes.

We consider a synchronous system with n nodes V = {v1, v2, . . . , vn}, represented
by a graph G = (V,E). In each round r, every node contacts one of its neighbors,
as explained below, and exchanges information with it. For the analysis, we consider
each round r as a sequence of n events of information exchange, ordered by the ID of
the node that initiated the exchange. (If both nodes choose each other, we consider the
node with the smaller ID as the initiator.) We number these events by an event time
t, such that rn ≤ t < (r + 1)n. However, these exchanges occur in parallel, which
means that a node sends information it had by the end of the last round without
additional information it may have received in the current round.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST INFORMATION SPREADING WITH WEAK CONDUCTANCE 1457

For each node v, let N(v) be the set of all neighbors of v. At every event time
t, node v maintains a cyclic list Bt(v) of suspected bottlenecks among its neighbors,
where B0(v) is initialized to be N(v), in an arbitrary order. To exchange information
with its neighbors, each node v alternates between choosing a random neighbor from
N(v) and choosing the next neighbor from Bt(v). During this procedure, v removes
neighbors from Bt(v) according to the following policy.

Neighbor removal policy for node v. Let u be a node in N(v). At event time t
in which v exchanges information with another node, v removes any node u whose
message is received for the first time, unless it is received from u itself and v is the
initiator of this information exchange.

We emphasize that a node v which removes a node u from Bt(v) can still contact
node u if it happens to be its random choice in an even-numbered round r.

Each node v also maintains a buffer Mt(v) of received messages, initialized to
consist only of its own message m(v). When v has all n messages it returns the buffer
Mt(v) as its output.

At every event time t, for every node v we define a partition of N(v) into three
sets, as follows:

• Whitet(v) = B0(v) \ Bt(v): The set of nodes that have been removed from
B0(v),

• Blackt(v) = {u ∈ N(v) | m(u) ∈ Mt(v) and u �∈ Whitet(v)}: The set of
nodes at event time t guaranteed to never be removed from B0(v),

• Grayt(v) = N(v) \ (Blackt(v) ∪ Whitet(v)): The rest of the nodes, which
may or may not be removed in later event times.

We illustrate this partition on the directed graph Gt = (V,E), which is the same
as the communication graph but with colors associated with each edge at event time
t: if u ∈ Whitet(v), then (v, u) is colored white; if u ∈ Blackt(v), then (v, u) is colored
black; otherwise (v, u) is colored gray.

The pseudocode for a node v appears in Algorithm 1.

Algorithm 1. Full information spreading code for node v.

Initially M0(v) = {m(v)}, B0(v) = N(v), r = 0, t = 0
1: Repeat:
2: if r is even
3: w = a random neighbor from N(v)
4: else
5: w = the next neighbor from Grayt(v) if it is not empty, and the next from

Bt(v) otherwise
6: Contact w and exchange information
7: Exchange information with every w′ that contacts v
8: for i = 1 to n
9: if v = vi or v is contacted by w′ = vi
10: Add new messages to Mt(v)
11: for every node u ∈ N(v)
12: if v receives m(u) for the first time from w and w �= u

or v receives m(u) for the first time from w′

13: Bt+1(v) = Bt(v) \ {u}
14: t = t+ 1
15: r = r + 1

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1458 KEREN CENSOR-HILLEL AND HADAS SHACHNAI

We start the analysis with four simple claims regarding the colors of the edges
of Gt. First, we claim that initially all edges are gray. Second, if a node v has the
message of a neighbor u, then the edge (v, u) cannot be gray. The third claim restricts
the possibility of having symmetric edges change their color at the same event time
t: if this occurs, then these two nodes are the ones that exchange information in this
event time. Finally, it is not hard to see that two symmetric edges cannot turn white
at the same event time t, which is our fourth claim.

Lemma 3. The following four claims hold:
(i) In G0 all edges are colored gray.
(ii) For any nodes v and u, if m(u) ∈ Mt(v) and u ∈ N(v), then (v, u) is not

gray in Gt.
(iii) For any event time t, if for some nodes v and u both edges (v, u) and (u, v)

change their color at t, then v and u are the pair of nodes that exchange
information in this event time.

(iv) If (v, u) and (u, v) are both gray, they cannot both turn white at the same time
step.

Proof.
(i) By definition, at event time 0 no edges are colored white, since no node u has

been removed from any set B0(v). Moreover, no buffer M0(v) contains any
message other than m(v), therefore no edge is colored black. This implies
that all edges in G0 are gray.

(ii) If v has the message m(u) by event time t and u �∈ Whitet(v), then by
definition, u ∈ Blackt(v), that is, (v, u) is black in Gt.

(iii) By the code of Algorithm 1, an edge (v, u) changes its color at event time t
only if v received a message at that time. If u is not one of the two nodes
that exchange information at event time t, then (u, v) cannot change its color
at time t.

(iv) By (iii), two neighbors can change the color of the edges connecting them
at the same time step only if they exchange information at this time step.
Assume without loss of generality that v is the initiator of this exchange.
Then v does not remove u from Bt(v) at this step because neither of the
conditions in line 12 is satisfied.

We are now ready to prove a key lemma in our analysis, which shows that when-
ever a node v removes a neighbor u from Bt(v), that is, the edge (v, u) is colored
white, there is an undirected path of edges between v and u that are guaranteed to
never be removed, i.e., a black path.

Lemma 4. For any event time t ≥ 0, if (v, u) turns white, then there is a path
v = a0, a1, . . . , a�−1, a� = u such that for all 0 ≤ i ≤ �− 1, either (ai, ai+1) is black or
(ai+1, ai) is black.

Proof. The proof is by induction on the time step t, where the base case for t = 0
is the initial coloring of the graph. By Lemma 3(i), at this time all the edges are
colored gray, therefore the lemma holds vacuously. For the induction step, assume
that the lemma is true for every edge that turns white in a step t′ < t. We prove
the lemma for any edge (v, u) that turns white at time t. If this happens, then one
of the conditions in line 12 of the algorithm is satisfied. We distinguish between two
cases.

Case 1. Node v receives m(u) for the first time from node w �= u and removes
node u from Bt(v). The fact that w has the message m(u) at this time implies that
m(u) traveled a path u = a0, a1, . . . , a�′ = w by time t−1. For all 0 ≤ i < �′, there has
been information exchange between ai and ai+1, which implies that both nodes have

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST INFORMATION SPREADING WITH WEAK CONDUCTANCE 1459

Fig. 2. Proof of Lemma 4. Dashed arrows represent white edges, while solid arrows represent
black edges. If v removes u from Bt(v) by receiving m(u) from w, then there is an undirected black
path between u and w.

each other’s message. Lemma 3(ii) implies that both edges (ai, ai+1) and (ai, ai+1)
are not gray.

Assume that for some i, both edges are white. (If no such i exists, then we are
done.) By Lemma 3(iv), these two edges could not have turned white at the same time
step. Let t′ be the time step in which the second edge turned white. By the induction
hypothesis, at time t′ there was an undirected path ai = bi,0, bi,1, . . . , bi,�i = ai+1

colored black. Since this is true for all i = 0, . . . , �′ − 1, we have that there is an
undirected black path between u and w (see Figure 2).

It remains to be shown that there is a black path between v and w. Since v and
w exchange information, by Lemma 3(ii), both edges (v, w) and (w, v) are colored.
Assume that they are both colored white. (Otherwise we are done.) Then (v, w) does
not turn white in event time t because v is the initiator. This implies that (v, w) turns
white at some time t′ < t. By the induction hypothesis, there is an undirected black
path between v and w at that time, which completes the proof of this case.

Case 2. Node v receives m(u) for the first time from node w′ which was the
initiator of the information exchange and removes node u from Bt(v). The proof
follows the lines of Case 1 to show that there is an undirected black path between u
and w′. It then remains to be shown that there is a black path between v and w′.
A similar argument to that of Case 1, replacing the initiator v with w′, proves that
there is such a path.

Lemma 4 guarantees that after removing elements from the sets Bt(v) of different
nodes, the nodes always remain connected by black and gray edges, even though white
edges in the communication graph are ignored in line 5 of the algorithm. Again, recall
that a node v can still contact a neighbor u it removed from Bt(v) by choosing it in
line 3 of the algorithm. Finally, we note that for every round r and node v, only one
edge can be colored black by v through all n event times of this round, since a node
u joins Blackt(v) only if u is the unique node w with whom v initiated information
exchange at event time t.

Claim 5. For every round r and every node v we have that |Blackn(r+1)(v)| −
|Blacknr(v)| ≤ 1.

4. Analysis. We now claim that there are not too many black edges outgoing
from any node v. This guarantees that every neighbor remaining in Bt(v) will be
eventually contacted after a small number of rounds. The precise measures of these
amounts will be defined later.

For the rest of this section, we fix a value c > 1 and a value δ = 1
nd for some

d, as guaranteed by [22]. However, we emphasize that these values are not used in
the algorithm and are therefore unknown to the nodes. They are only used for the
analysis,6 and eventually we will choose a value c that minimizes the number of rounds.

6This is formalized in Theorem 12.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1460 KEREN CENSOR-HILLEL AND HADAS SHACHNAI

Let T = O(log n
Φc(G)), the number of rounds obtained in Theorem 2. We consider

phases of the algorithm, each phase consisting of 2T rounds. The outline of our
analysis is as follows. Recall that for any v ∈ V , Vv is the component realizing
the definition of the weak conductance. Roughly speaking, Theorem 2 shows that
with high probability after one phase a node v has the messages of all nodes u in
its component Vv, since the even-numbered rounds comprise of regular information
spreading. We then show that after three phases, a node v has the messages of all
nodes that are either in its component or in an intersecting component. Finally, we
show that after c(6T + 2c) rounds, a node v has the messages of all nodes. This
strongly relies on the connectivity argument in Lemma 4 and a careful bookkeeping
of the number of edges in Bt(v) throughout these phases. In addition, we need to
keep track of the probability of failure in every phase.

We begin by using Theorem 2 to show that starting from any round r0, after
one phase of the algorithm we have spread the information of Mnr0(v) inside the
component Vv (instead of just m(v) if r0 = 0). We emphasize that the probability of
success is for all nodes v to satisfy the requirements.

Lemma 6. Let r0 be a round number. After round r = r0+2T with probability at
least 1−δ, for every node v we have

⋃
u∈Vv

Mnr0(u) ⊆ Mnr(v) and Mnr0(v) ⊆ Mnr(u)
for every u ∈ Vv.

Proof. Consider the state of the buffers Mnr(v) after r = r0 + 2T rounds. By
Theorem 2 and since 2T rounds contain T even-numbered rounds, with probability
1 − δ every node v has all messages Mnr0(u) of every u ∈ Vv and every u ∈ Vv has
Mnr0(v).

We consider the progress of the algorithm after three phases. For every node v
we define the set Iv = {u ∈ V | Vu∩Vv �= ∅} of nodes whose component intersects the
component of v. Further, for every node v let Av =

⋃
u∈Iv

Vu. Notice that Vv ⊆ Av.
Lemma 7. Let r0 be a round number. After round r = r0 + 6T with probability

at least 1− 3δ, for every node v we have
⋃

x∈Av
Mnr0(x) ⊆ Mnr(v).

Proof. Consider the algorithm after 6T rounds. Let v be a node and u a node not
in Vv. If Vv ∩ Vu �= ∅, then there is a node w ∈ Vv ∩ Vu. Lemma 6 implies that after
4T rounds w has all messages Mnr0(x) of nodes x in Vu (one phase for u to receive
Mnr0(x) of every x ∈ Vu and another phase for this information to reach w ∈ Vu).
Applying Lemma 6 again gives that w spreads these messages to v in 2T additional
rounds. That is, v has the messages Mnr0(x) of all nodes x in

⋃
u∈Iv

Vu. All three
phases of information spreading need to succeed for the above to happen. A simple
union bound on the probability that either fails gives that with probability at least
1− 3δ all three phases succeed.

After each node v has all the messages of nodes in Av, it takes only 2c rounds
for all remaining gray edges to turn white or black. The reason we handled nodes in
Av separately in Lemma 7 is that nodes that are outside Av have components that
do not intersect Vv. This implies that if v has to spend a round contacting a node
outside Av, then it receives at least n/c new messages of nodes in Vv. Hence, v does
not need to contact these nodes directly. In other words, this allows us to claim that
soon there are no more gray edges in the graph (see Figure 3).

Lemma 8. After r = 6T + 2c rounds with probability at least 1 − 3δ, for every
node v we have that {m(u) | u ∈ N(v)} ⊆ Mnr(v).

Proof. Let Si
v be the set of nodes u such that v receives the message m(u) af-

ter ri = 6T + 2i rounds. We claim that with probability at least 1 − 3δ, for every
node v and every i, 1 ≤ i ≤ c, after round ri the buffer Mnri(v) of messages re-
ceived by v either contains m(u) of all nodes in N(v) or there are i different nodes

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST INFORMATION SPREADING WITH WEAK CONDUCTANCE 1461

Fig. 3. Illustration of a node v, its component Vv, and the set Av of intersecting components.

u1, . . . , ui ∈ N(v) such that Vuj ∩ Vuk
= ∅ for all 1 ≤ j < k ≤ i, and for every

1 ≤ j ≤ i we have Auj ⊆ Si
v.

We prove this claim by induction. For the base case i = 1, by Lemma 7 we have
that with probability at least 1 − 3δ after 6T ≤ r1 rounds each node v has m(u) of
all nodes u in Av, therefore we choose u1 = v.

We next assume that the claim holds up to i − 1 and prove it for i. By the
induction hypothesis, with probability at least 1− 3δ for every node v we have after
round ri−1 = 6T+2(i−1) that there are i−1 nodes u1, . . . , ui−1 such that Vuj∩Vuk

= ∅
for all 1 ≤ j < k ≤ i− 1, and Auj ⊆ Si−1

v for every 1 ≤ j ≤ i− 1.
If Si−1

v contains all nodes in N(v), then we are done. Otherwise, there is a node
u ∈ N(v) such that the edge (v, u) is gray at the beginning of round ri. In the next
odd-numbered round v contacts such a node u. Since u �∈ Si−1

v , by the induction
hypothesis we have u �∈ Auj for every 1 ≤ j ≤ i − 1. This implies that Vu ∩ Vuj = ∅
for every 1 ≤ j ≤ i− 1. Moreover, by Lemma 7 Au ⊆ Si

v. This completes the proof of
our claim. The claim implies that after 6T + 2c rounds, either v has m(u) for every
u ∈ N(v) or there are c different nodes u1, . . . , uc such that Vuj ∩ Vuk

= ∅ for all
1 ≤ j < k ≤ c, and for every 1 ≤ j ≤ c we have Auj ⊆ Sc

v. In particular, v has the
messages of all nodes of the pairwise disjoint sets Vuj for 1 ≤ j ≤ c, all of which are
of size n/c, which implies that v has all messages.

Having the messages of all components of the neighbors of a node immediately
implies that there are no more gray edges. In addition, by Claim 5 we can bound the
number of out-going black edges for each node.

Corollary 9. After 6T + 2c rounds, i.e., for t = (6T + 2c)n with probability at
least 1− 3δ, for every node v we have Bt(v) = Blackt(v) and |Bt(v)| ≤ 6T + 2c.

We are now ready to prove our main lemma, which bounds the complexity of the
algorithm. Roughly speaking, the argument follows the line of proof of Lemma 8, but
instead of considering gray edges, it relies on having connectivity among the black
edges.

Lemma 10. With probability at least 1−3cδ after at most r = 2c(6T+2c) rounds,
for every node v we have Mnr(v) = {m(u) | u ∈ V }.

Proof. Let r0 be a round number, and let Si
v be the set of nodes u for which

Mnr0(u) ⊆ Mnri(v) after ri = r0 + r′i rounds, where r′i = 2i(6T + 2c). We use in the
proof the following.

Claim 11. With probability at least 1 − 3iδ, for every node v and 1 ≤ i ≤ c,
after round ri the buffer Mnri(v) of messages received by v either contains messages
of all nodes or there are i different nodes u1, . . . , ui such that Vuj ∩ Vuk

= ∅ for all
1 ≤ j < k ≤ i, and for every 1 ≤ j ≤ i we have Auj ⊆ Si

v.
Proof. We prove the claim by induction. For the base case i = 1, by Lemma 7

with probability at least 1− 3δ, after r0 + 6T ≤ r1 rounds, for every node v we have⋃
{x∈Av} Mnr0(x) ⊆ Mnr1(v). Therefore, Av ⊆ S1

v so we choose u1 = v.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1462 KEREN CENSOR-HILLEL AND HADAS SHACHNAI

Next, we assume that the claim holds up to i − 1 and prove it for i. By the
induction hypothesis with probability at least 1− 3(i− 1)δ, for every node v we have
after round ri−1 = r0 +2(i− 1)(6T + 2c) that there are i− 1 nodes u1, . . . , ui−1 such
that Vuj ∩ Vuk

= ∅ for all 1 ≤ j < k ≤ i− 1, and Auj ⊆ Si−1
v for every 1 ≤ j ≤ i− 1.

If Si−1
v contains all nodes, then we are done. Otherwise, by Lemma 4 and Corol-

lary 9, by this time there is an undirected black path between any two nodes of the
graph, and specifically there is a node u �∈ Si−1

v connected by a black edge to some
node w ∈ Si−1

v . Since after 6T +2c rounds all nodes v have at most 6T +2c nodes in
Bt(v), after at most 6T + 2c additional rounds each node contacts each of its black
neighbors. Therefore, after round r′ = r0 + 2(6T + 2c) the node w has the messages
of all nodes in S1

u, that is,
⋃

x∈S1
u
Mnr0(x) ⊆ Mnr′(w).

By the induction hypothesis with r′ replacing r0, after r′i−1 additional rounds
v has them as well with another factor of 3δ added to the probability of failure.
Formally,

⋃
x∈S1

u
Mnr0(x) ⊆ Mnr′(w) ⊆ Mnr′′(v), where r

′′ = r′ + r′i−1 = r0 +2(6T +

2c) + 2(i− 1)(6T + 2c) = ri.
We now prove that taking ui = u satisfies the requirements of our claim. Since

u �∈ Si−1
v , by the induction hypothesis we have u �∈ Auj for every 1 ≤ j ≤ i− 1. This

implies that Vu ∩ Vuj = ∅ for every 1 ≤ j ≤ i− 1. Moreover, Au ⊆ Si
v since Au ⊆ S1

u.
This completes the proof.

By Claim 11, after 2c(6T + 2c) rounds either v has m(u) for every u ∈ N(v) or
there are c different nodes u1, . . . , uc such that Vuj ∩ Vuk

= ∅ for all 1 ≤ j < k ≤ c,
and for every 1 ≤ j ≤ c we have Auj ⊆ Sc

v. In particular, v has the messages of all
nodes of the pairwise disjoint sets Vuj for 1 ≤ j ≤ c, all of which are of size n/c. This
implies that v has all messages.

Rephrasing Lemma 10 gives our main theorem for full information spreading.
Theorem 12. For every c > 1 and δ = 1

nd for some constant d, Algorithm 1

obtains full information spreading after at most O(c(logn
Φc(G)+c)) rounds with probability

at least 1− 3cδ.
Looking at some specific values of the parameters in the above theorem we get that

Algorithm 1 is fast for graphs with scalable weak conductance (for a scalable value
of c). For example, if c = polylog(n) and Φc = 1/polylog(n), then our algorithm
requires a polylogarithmic number of rounds. The probability of failure is 3cδ, which
is O(polylog(n)/nd) since δ = 1/nd, and it is O(1/nd) if c is a constant; in both cases
it is o(1).

Since the bound holds for every value of c, we can also state our result as follows.
Theorem 13. Algorithm 1 obtains full information spreading after at most

minc {O(c(logn
Φc(G) + c))} rounds with probability at least 1− 3c′δ, where c′ is the value

that realizes the minimum in this expression and δ = 1
nd for some constant d.

5. Discussion. This paper studies information spreading, presenting a hybrid
algorithm, which interleaves random neighbor choices with deterministic ones for ex-
change of information. Our algorithm is fast on graphs which have large weak con-
ductance. For graphs which also have small conductance, it substantially improves
upon the running times of previously known algorithms, from a polynomial to a poly-
logarithmic number of rounds.

Our algorithm was used in [3] for obtaining a spanning tree by each node mark-
ing its parent as the neighbor from which it obtained the message of the node with
the smallest ID. In fact, a by-product of our algorithm is the maintenance of a con-
nected scalable-degree subgraph, which we believe will find additional applications.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST INFORMATION SPREADING WITH WEAK CONDUCTANCE 1463

Specifically, it may be possible to obtain scalable-degree spanners with low stretch
by applying similar techniques. The connection between our algorithm and spanners
is as follows. Consider the subgraph that is induced by the partial lists of neighbors
obtained during the algorithm. The number of edges in this subgraph is bounded by
the size of the lists Blackt(v) at the end of the algorithm, therefore if the weak con-
ductance is large, then the subgraph is sparse. In addition, a node can communicate
with all of its neighbors using this subgraph. Hence, if the weak conductance is large,
the number of steps required to obtain information from all neighbors is small, which
corresponds to the stretch of the subgraph.

An intriguing open question is whether there is a nontrivial lower bound on the
number of rounds required for information spreading as a function of the weak con-
ductance of the underlying graph. Another avenue for future research is to adapt our
algorithm to failure-prone environments, as resilience to faults is typically required in
practical scenarios.

Finally, we note that our model allows messages of unbounded size. Bounding
the size of messages is another direction for further research.

Acknowledgments. The authors thank Hagit Attiya for helpful suggestions
and comments on an earlier version of this paper. We also thank Chen Avin and the
anonymous reviewers of SODA 2011 for useful comments on a previous version of this
paper. Finally, we thank the anonymous referees for invaluable suggestions.

REFERENCES

[1] D. Alistarh, S. Gilbert, R. Guerraoui, and M. Zadimoghaddam, How efficient can gossip
be? (On the cost of resilient information exchange), in Proceedings of the 37th Interna-
tional Colloquium on Automata, Languages and Programming (ICALP), 2010, pp. 115–
126.

[2] N. Alon, C. Avin, M. Koucky, G. Kozma, Z. Lotker, and M. R. Tuttle, Many random
walks are faster than one, in Proceedings of the 20th Annual Symposium on Parallelism
in Algorithms and Architectures (SPAA), 2008, pp. 119–128.

[3] C. Avin, M. Borokhovich, K. Censor-Hillel, and Z. Lotker, Order optimal information
spreading using algebraic gossip, in Proceedings of the 30th ACM Symposium on Principles
of Distributed Computing (PODC), 2011, pp. 363–372.

[4] C. Avin and G. Ercal, Bounds on the mixing time and partial cover of ad-hoc and sensor
networks, in Proceeedings of the Second European Workshop on Wireless Sensor Networks,
2005, pp. 1–12.

[5] P. Berenbrink, J. Czyzowicz, R. Elsässer, and L. Gasieniec, Efficient information ex-
change in the random phone-call model, in Proceedings of the 37th International Collo-
quium on Automata, Languages and Programming (ICALP), 2010, pp. 127–138.

[6] M. Borokhovich, C. Avin, and Z. Lotker, Tight bounds for algebraic gossip on graphs, in
Proceedings of the 2010 IEEE International Symposium on Information Theory (ISIT),
2010, pp. 1758 –1762.

[7] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, Randomized gossip algorithms, IEEE/ACM
Trans. Netw., 14 (2006), pp. 2508–2530.

[8] M. Bradonjić, R. Elsässer, T. Friedrich, T. Sauerwald, and A. Stauffer, Efficient
broadcast on random geometric graphs, in Proceedings of the 21st ACM-SIAM Symposium
on Discrete Algorithms (SODA), 2010, pp. 1412–1421.

[9] K. Censor Hillel and H. Shachnai, Partial information spreading with application to dis-
tributed maximum coverage, in Proceedings of the 27th ACM Symposium on Principles of
Distributed Computing (PODC 2010), 2010, pp. 161–170.

[10] J. Y. Chen and G. Pandurangan, Optimal gossip-based aggregate computation, in Proceedings
of the 22nd Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2010, pp. 124–133.

[11] F. Chierichetti, S. Lattanzi, and A. Panconesi, Almost tight bounds for rumour spreading
with conductance, in Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC), 2010, pp. 399–408.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1464 KEREN CENSOR-HILLEL AND HADAS SHACHNAI

[12] F. Chierichetti, S. Lattanzi, and A. Panconesi, Rumour spreading and graph conductance,
in Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms (SODA), 2010,
pp. 1657–1663.

[13] S. Deb, M. Médard, and C. Choute, Algebraic gossip: A network coding approach to optimal
multiple rumor mongering, IEEE/ACM Trans. Netw., 14 (2006), pp. 2486–2507.

[14] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-

hart, and D. Terry, Epidemic algorithms for replicated database maintenance, in Pro-
ceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing
(PODC), 1987, pp. 1–12.

[15] B. Doerr and M. Fouz, Asymptotically optimal randomized rumor spreading, in Proceedings
of the 38th International Colloquium on Automata, Languages and Programming (ICALP),
2011, pp. 502–513.

[16] B. Doerr, M. Fouz, and T. Friedrich, Social networks spread rumors in sublogarithmic
time, in Proceedings of the 43nd ACM Symposium on Theory of Computing (STOC),
2011, pp. 21–30.

[17] B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom rumor spreading, in Proceedings
of the 19th annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2008, pp. 773–
781.

[18] B. Doerr, T. Friedrich, and T. Sauerwald, Quasirandom rumor spreading: Expanders,
push vs. pull, and robustness, in Proceedings of the 36th International Colloquium on
Automata, Languages and Programming (ICALP), Part 1, 2009, pp. 366–377.

[19] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, Randomized broadcast in networks, in
Proceedings of the SIGAL International Symposium on Algorithms, 1990, pp. 128–137.

[20] N. Fountoulakis and A. Huber, Quasirandom rumor spreading on the complete graph is as
fast as randomized rumor spreading, SIAM J. Discrete Math., 23 (2009), pp. 1964–1991.

[21] P. Fraigniaud and G. Giakkoupis, On the bit communication complexity of randomized
rumor spreading, in Proceedings of the 22nd ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA), ACM, New York, 2010, pp. 134–143.

[22] G. Giakkoupis, Tight bounds for rumor spreading in graphs of a given conductance, in Pro-
ceedings of the 28th International Symposium on Theoretical Aspects of Computer Science
(STACS), 2011, pp. 57–68.

[23] G. Giakkoupis and P. Woelfel, On the randomness requirements of rumor spreading, in
Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011,
pp. 449–461.

[24] C. Georgiou, S. Gilbert, R. Guerraoui, and D. R. Kowalski, On the complexity of asyn-
chronous gossip, in Proceedings of the 27th ACM Symposium on Principles of Distributed
Computing (PODC), 2008, pp. 135–144.

[25] M. Jelasity, A. Montresor, and Ö. Babaoglu, Gossip-based aggregation in large dynamic
networks, ACM Trans. Comput. Syst., 23 (2005), pp. 219–252.

[26] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, Randomized rumor spreading, in
Proceedings of the 41st Annual Symposium on Foundations of Computer Science (FOCS),
IEEE Computer Society, Washington, DC, 2000, pp. 565–574.

[27] S. R. Kashyap, S. Deb, K. V. M. Naidu, R. Rastogi, and A. Srinivasan, Efficient gossip-
based aggregate computation, in Proceedings of the 25th ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems (PODS), 2006, pp. 308–317.

[28] D. Kempe, A. Dobra, and J. Gehrke, Gossip-based computation of aggregate information,
in Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), IEEE Computer Society, 2003, Washington, DC, pp. 482–491.

[29] D. Kempe, J. Kleinberg, and A. Demers, Spatial gossip and resource location protocols,
in Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC),
ACM, New York, 2001, pp. 163–172.

[30] D. Kempe and J. M. Kleinberg, Protocols and impossibility results for gossip-based commu-
nication mechanisms, in Proceedings of the 43rd Symposium on Foundations of Computer
Science (FOCS), IEEE Computer Society, Washington, DC, 2002, pp. 471–480.

[31] D. Mosk-Aoyama and D. Shah, Computing separable functions via gossip, in Proceedings of
the 25th annual ACM Symposium on Principles of Distributed Computing (PODC), ACM,
New York, 2006, pp. 113–122,

[32] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[33] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, SIAM J. Comput.,

18 (1989), pp. 740–747.
[34] A. Pettarin, A. Pietracaprina, G. Pucci, and E. Upfal, Tight bounds on information

dissemination in sparse mobile networks, in Proceedings of the 30th ACM Symposium on
Principles of Distributed Computing (PODC), 2011, pp. 355–362.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

FAST INFORMATION SPREADING WITH WEAK CONDUCTANCE 1465

[35] A. D. Sarwate and A. G. Dimakis, The impact of mobility on gossip algorithms, in 28th IEEE
International Conference on Computer Communications (INFOCOM), 2009, pp. 2088–
2096.

[36] T. Sauerwald and A. Stauffer, Rumor spreading and vertex expansion on regular graphs, in
Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms (SODA), 2011,
pp. 462–475.

[37] A. Sinclair, Algorithms for random generation and counting: A Markov chain approach,
Birkhäuser-Verlag, Basel, Switzerland, 1993.

D
ow

nl
oa

de
d

08
/0

8/
13

 to
 1

28
.3

0.
51

.7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

