
Atomic snapshots in O(log3 n) steps
using randomized helping

James Aspnes1 and Keren Censor-Hillel2

1 Yale University, Department of Computer Science. aspnes@cs.yale.edu.
2 Department of Computer Science, Technion. ckeren@cs.technion.ac.il.

Abstract. A randomized construction of unbounded snapshots objects
from atomic registers is given. The cost of each snapshot operation is
O(log3 n) atomic register steps with high probability, where n is the
number of processes, even against an adaptive adversary. This is an ex-
ponential improvement on the linear cost of the previous best known
unrestricted snapshot construction [7, 8] and on the linear lower bound
for deterministic constructions [9], and does not require limiting the num-
ber of updates as in previous sublinear constructions [4]. One of the main
ingredients in the construction is a novel randomized helping technique
that allows out-of-date processes to obtain up-to-date information with-
out running into covering lower bounds.

1 Introduction

An atomic snapshot object allows processes to obtain the entire contents of a
shared array as an atomic operation. The first known wait-free implementations
of snapshot from atomic registers [1, 2, 6] required Θ(n2) steps to carry out a
snapshot with n processes; subsequent work [7, 8] reduced this cost to O(n),
which was shown to be optimal in the worst case for non-blocking deterministic
algorithms by Jayanti et al. [9].

Limitations of the Jayanti et al. lower bound became apparent with the
development of wait-free sublinear-complexity limited-use variants of objects to
which the lower bound applied. These included deterministic implementations of
max registers (which, when read, return the largest value written to them) and
counters [3], and even snapshot objects [4], all with individual step complexity
polylogarithmic in the number of operations applied to them.3 These objects
still have linear cost in the worst case, but the worst case is reached only after
exponentially many operations.

The dependence on the number of operations was shown to be necessary
initially for max registers [3], and later for a variety of objects satisfying a per-
turbability condition similar to that used in the Jayanti et al. lower bound [5].
3 In the case of snapshot, this requires both registers large enough to hold a complete
snapshot and the cooperation of updaters. The assumption of large registers may
be avoidable for some applications of snapshot where only summary information is
needed.



II

Curiously, for randomized implementations these lower bounds were not larger
than O(logn) for any number of processes. This appeared to be a weakness of
the particular proof technique used to obtain the randomized lower bounds.

We show that it is not the case that other techniques may produce larger
lower bounds. Using a new randomized helping procedure along with a simple
approximate max register implementation, it is possible to accelerate the max
register implementation of [3] so that every operation finishes in O(logn) steps
with high probability, regardless of the number of previous operations, provided
the max register value does not change too quickly. Applying the same tech-
niques to the max array of [4] (a pair of max registers supporting an atomic
snapshot operation) yields a max array with O(log2 n) step complexity with high
probability, under the same restriction. This can be used in the snapshot im-
plementation of [4] to obtain atomic snapshots with O(log3 n) step complexity
with high probability. Because the use of the max array within the atomic snap-
shot satisfies the restriction on changes in value, the complexity of the snapshot
implementation holds without restrictions. The end result is a polylogarithmic
snapshot implementation in which the cost of each operation does not depend
on the number of operations but only on the number of processes.

1.1 Previous constructions

Before giving more detail on our construction, we give a quick review of the
previous work on which it is based. The basic building block of the bounded
snapshot construction in [4] is a 2-component max array. This object supports a
write operation, which specifes a value and a component, and a read operation,
which returns a pair of the maximal values written to the two components in all
write operation linearized before it. To directly build an unbounded snapshot
object we need an unbounded version of a max register, and an unbounded
version of a 2-component max array.

The max register construction of [3] is based on a tree of switches, which are
one-bit registers that initially hold the value 0 and can only be set to 1. Each
leaf represents a value for the register. A write operation sets the switches on the
path toward the respective leaf, while a read operation follows the rightmost path
of set switches to get the largest value written. The problem with an unbounded
max register according to this construction is that the length of an operation
reading the rightmost path in the infinite tree construction is unbounded. This
is because this operation is searching for the first node on the rightmost path
whose switch is 0, and the depth of this node depends on the values that have
been written, which are now unbounded. Even worse, such an operation is not
guaranteed to be wait-free, as it might not terminate if new writes keep coming
in with greater values, forcing it to continue moving down the tree to the right.
To handle this, the tree is backstopped with a linear snapshot object that is
used for larger values in order to bound the number of steps. Formally, this
means that at some threshold level, the node on the rightmost path of switches
no longer points to an infinite subtree of switches but rather to a single linear-
time snapshot object, and all write operations set the switch at this node after



III

writing their value to the snapshot object, and all read operations accessing this
node continue by reading the snapshot object. In total, this gives a complexity
of O(min (log v, n)) steps per operation that reads or writes the value v.

The max array construction of [4] builds upon the above max register con-
struction by combining the trees of the two components in a subtle manner.
The data structure consists of a main tree, corresponding to the tree of the first
component. The tree of the second component is embedded in the main tree at
every node. That is, each switch of the main tree is associated with a separate
copy of the tree of the second component. Writing to the first component is
done by writing to the main tree, ignoring the copies of the second component
at the switches. Writing to the second component is done by writing to the copy
associated with the root of the main tree. The coordination between the pairs of
values is left for the read operations. Such an operation travels the main tree in
order to read the value of the first component, while dragging along the maximal
value it reads for the second component along its path. It is proven in [4] that
this implementation gives a linearizable 2-component max array.

1.2 Our Contributions

Our first contribution is an O(logn) construction of an unbounded max register,
which overcomes the obstacle of the construction of [3] by combining a new
approximate max-register with a novel technique of randomized helping.
In essence, this technique allows an operation that is traveling down the tree to
the right (we refer to the rightmost path of the tree as the spine of the tree) for
too long to jump farther ahead to a point on the spine that is the correct one,
that is, the first point on the spine for which the switch is unset. This is done by
adopting a location in the spine used by another operation, with the challenge
of making sure that this value is fresh—recent enough that the first operation
can use it without violating linearizability. The only condition we place on the
usage of the max register in order for this to work is that operations write values
that are not increasing too fast. We need this condition in order to argue that
once the operation found the correct node on the spine, it can safely continue to
the left subtree without the worry that a new write operation is now writing a
much larger value that is placed farther down the spine. While at first glance this
might seem as a strong restriction, this is actually a very reasonable condition
in applications that use max registers, and in particular it is satisfied by our
implementation of an unbounded snapshot object.

Our second contribution is a 2-component max array that is unbounded, and
whose cost per operation does not depend on the number of operations. The
natural thing to try is embedding the unbounded max register construction in
the 2-component max array construction of [4]. However, this does not work
directly, since the main insight there is that values of the second component
need to be propagated down while traveling the tree of the first component
in order to guarantee that returned pairs are comparable. This cannot be done
within our randomized helping technique because operations may jump down the
spine without accessing each node along the way. We address this problem by



IV

restructuring the 2-component max array implementation such that operations
that go right on the spine re-read the value of the second component that is
located at the root. The main observation here is that a single re-reading of the
root is inexpensive, and that we do not care that this information skips the nodes
between the root and the target node since the second component of these nodes
will never be accessed again (because their switches are either set or skipped).

Plugging these two contributions into the snapshot implementation of [4]
gives an implementation of an unbounded snapshot object with an O(log3 n)
step complexity (with high probability) for updating or scanning the object.

2 Unbounded max registers with bounded increments

A max register [3] supports operations WriteMax(v) and ReadMax(), where
WriteMax(v) writes the value v to the max register and ReadMax() returns the
largest value previously written. The purpose of a max register is typically to
avoid lost updates, by ensuring that old values (tagged with smaller timestamps)
cannot obscure newer values, regardless of the order in which they are written.
In this section, we show how to construct an unbounded max register that is
linearizable in all executions and wait-free with O(logn) step complexity with
high probability in executions with bounded increments.

2.1 Bounded max registers

We begin by reviewing the max register implementation of Aspnes et al. [3]. The
idea is to implement the register as a fixed binary tree of one-bit atomic registers,
referred to as switch bits. Initially these bits are all 0, which is interpreted as
pointing to the left child of the register, while a 1 points to the right child. Each
value of the max register corresponds to a leaf of the tree (which does not get a
register). A ReadMax operation follows the path determined by the values of the
switch bits until it reaches a leaf; the number of leaves to the left of this leaf (its
rank) gives the return value. (See Algorithm 1.)

An unbalanced tree backed by a linear-time snapshot implementation gives
a cost of O(min(log v, n)) for an operation that read or writes the value v. Asp-
nes et al. [3] show that O(min(log v, n)) is optimal for deterministic obstruction-
free max register implementations from atomic registers. For randomized im-
plementations, they show a weaker lower bound of O(logn/ log logn) steps for
n-bounded max registers. This lower bound is obtained as a trade-off between
the complexities of ReadMax and WriteMax operations.

We will show that with randomization, the dependence on v can be elimi-
nated. It is possible to build a snapshot object (and thus a max register), whose
cost is polylogarithmic in n with high probability for all operations, regardless
of the size of the values it contains.



V

Shared data:1
switch: a single bit multi-writer register, initially 02
left: a MaxRegisterm object, where m = dk/2e, initially 0,3
right: a MaxRegisterk−m object, initially 04

5
procedure WriteMax(r, v)6

if v < m then7
if r.switch = 0 then8

WriteMax(r.left, v)9

else10
WriteMax(r.right, v −m)11
r.switch← 112

13
procedure ReadMax(r)14

if r.switch = 0 then15
return ReadMax(r.left)16

else17
return ReadMax(r.right) + m18

Algorithm 1: Implementation of WriteMax(r, v) and ReadMax(r) for a
MaxRegisterk object called r.

2.2 An unbounded max register implementation

We now show how to extend the results of [3] to allow an unbounded max
register that nonetheless has fixed cost per operation with high probability. The
first step is to bound the cost of WriteMax operations. We will do this under the
assumption of k-bounded increments, which we will define by the rule that
each new WriteMax operation writes a value v that is at most k more than the
largest input to any previously initiated WriteMax operation.4 This assumption
will be justified later by the details of our unbounded snapshot construction.

As in a standard max register, the core of our unbounded max register is a
binary tree of switch bits. But now the tree is infinite, consisting of an infinite
spine forming the rightmost path through the tree, each node of which has an
m-valued max register (implemented as a balanced dlogme-depth tree), where
m is an integer that will be chosen later, rooted at its left child (see Figure 1 ).
Using this tree with the original algorithm, a WriteMax(v) operation must walk
all the way from the root of the tree to the corresponding leaf, which will be
found in the dv/me-th m-valued max register. It must then walk back up to the
root, setting switch bits as needed, giving a cost of O(v/m+ logm).

In our algorithm, we assume that the tree is packed in memory so that a
WriteMax(v) operation can access the root of the dv/me-th max register directly.
Within this subtree, it executes the standard algorithm; but along the spine, it
sets only as many switch bits as are needed to guarantee that all ancestors are set;
4 Note that we do not require that this previous WriteMax operation finished.



VI

this is checked by performing an embedded ReadMax operation. This optimization
does not affect correctness, because setting switches that are already set farther
up the spine has no effect. What it does give is an improvement to the step
complexity under the assumption of k-bounded increments, since between the n
processes v can have increased by at most kn above the value of the last complete
WriteMax, meaning that only kn/m steps up the spine are needed.

Setting aside for the moment the cost of the ReadMax, this gives a cost for the
WriteMax of O(logm) for updating the m-valued max register plus O(kn/m) for
updating the segment of the spine. We will later choose k and m in a way for
which the above results in O(logn) steps per WriteMax operation. Note that as-
suming bounded increments, this procedure gives this complexity for WriteMax
operations without dependence on the value being written and that this imple-
mentation is deterministic. However, the ReadMax operations still suffer from the
problem mentioned earlier: they are not wait-free in the presence of concurrent
WriteMax operations with increasing values. For this we add an additional mech-
anism of randomized helping. Algorithm 2 is a pseudo-code of our implementa-
tion, where WrapWriteMaxi and WrapReadMaxi are the operations for process i,
which invoke WriteMax and ReadMax operations as in [3] on the m-values max
registers (in which the process id does not matter).

We now provide a high-level description of the helping mechanism. Each
WriteMax operation is wrapped with a WrapWriteMaxi procedure, as follows.
WrapWriteMaxi operations by process i cycle over the PIDs, helping one process
at a time. The operation then reads the timestamp, TS[s], associated with the
current helped process, s, written to TS[s] by a WrapReadMaxs operation. It then
reads the value v′ of the max register, and if the value v it needs to write is
larger than v′ it goes ahead and writes it into the max register. It then records
the maximum between v and v′ into a helping array, along with the timestamp
it saw for s, and updates a random location in a pointer array with its pid. A
WrapReadMaxi operation first increments its timestamp and then takes a certain
amount of steps reading the max register. If it does not finish within that num-
ber of steps, it tries to get help from a random process chosen from a random
location in the pointer array. Getting help is done by checking whether the cho-
sen helping process, j, holds the current timestamp of process i, performing the
WrapReadMaxi operation, and if so, taking its value from its helping array.

The idea behind the proof is that if a ReadMax operation takes too many
steps trying to read the max register without finishing, it must be that there are
many concurrent WriteMax operations that keep sending it down the spine. But
in such a case, the WrapReadMaxi operation finds a value in one of the helping
arrays that it may use, in the sense that it was updated by one of these concur-
rent WrapWriteMaxj operations – specifically, after the WrapReadMaxi operation
started.

Next, we proceed with the formal proof. Let spine be the array induced by
the switch bits on the spine of the tree. Let Mi be the m-valued max register
whose root is spine[i].



VII

spine

m-valued 

max registers

Fig. 1. An unbounded max register

Shared Data:1
array TS[1..n] where T S[i] = timestamp for process i2
array pointer[1..n3]; each entry is a pid3
array help[i]; each entry consists of4

value = integer, most recent value seen by a WrapWriteMaxi operation5
TS[j] = integer, most recent timestamp of pj seen by a WrapWriteMaxi6

operation
procedure WrapWriteMaxi(v)7

s← s + 1 mod n // initialized to 08
t← TS[s]9
v′ ← WrapReadMaxi()10
if v > v’ then11

WriteMax(Mbv/mc, v mod m) // Write to the corresponding m-valued12
max register
for j = bv/mc to bv′/mc do13

spine[j]← 114

help[i].value← max(v, v′)15
help[i].TS[s]← t16
pointer[random()]← i17

procedure WrapReadMaxi()18
TS[i]← TS[i] + 119
while true do20

for t = 1 to c′ log m // For a constant c′, to be fixed in the step21
complexity proof do

Take a step of ReadMax()22

if finished (initially false) then23
return value24

else25
j ← pointer[random(1, . . . , n3)]26
if help[j].TS[i] = TS[i] then27

return help[j].value28

Algorithm 2: Max register with randomized helping; code for process i.



VIII

We linearize a WrapWriteMaxi operation writing a value v at the first time in
which all the relevant switches on the path from the root to the leaf corresponding
to v are set. We linearize a WrapReadMaxi operation that returns in Line 24
at the time the corresponding original ReadMax is linearized. We linearize a
WrapReadMaxi operation that returns in Line 28 at the linearization point of the
WrapReadMaxj operation by pj that is part of the WrapWriteMaxj operation that
wrote to help[j].TS[i] the value read by WrapReadMaxi in Line 27.

It is worth mentioning that, as the proof below shows, we do not need the
assumption of k-bounded increments for linearizability of the construction. This
assumption is used only for bounding the step complexity.

Lemma 1. Algorithm 2 is a linearizable implementation of an unbounded max
register.

Proof. We base our proof on the correctness proof of the max register construc-
tion in [3]. We need to address two issues that differ in our implementation.
First, we need to address WrapWriteMaxi operations and show that the switches
leading to a written value are indeed set by the time it terminates, showing that
our linearization is well defined. The second issue is that we need to address
WrapReadMaxi operations that return in Line 28.

We use an induction on the order of linearization points to prove the correct-
ness of the linearization. We add to the inductive claim the invariant that all
switches on the path from the root to a leaf corresponding to a value v written
by a WriteMax operation op are set if the path descends to their right child on
the tree, by the time op finishes. This clearly holds for the base case, when no
operation has yet been performed.

Assume that the linearization is correct up to some operation t−1 in the total
order it induces. Let op be the t-th operation, and assume it is a WrapWriteMaxi

operation. By construction, all appropriate switches inside M(bv/mc) are set in
Line 12. By the induction hypothesis, all spine switches from the root down to
location bv′/mc, where v′ is the value read by op in Line 10, are set. The loop
in Line 13 then shows that the invariant still holds.

Next, since correctness for WrapReadMaxi operations that return in Line 24
now follows from the proof in [3], let op be a WrapReadMaxi operation that
returns in Line 28. Let op′ be a WrapWriteMaxj operation by pj that writes to
help[j].TS[i] the timestamp read by op in Line 27. Let op′′ be the WrapReadMaxj

operation performed by op′ in Line 10. Since op′′ is performed after op writes to
TS[i] and before op′ writes to help[j].TS[i], the linearization point of op′′ is within
the execution interval of op. By the correctness of the linearization points of the
construction in [3], the value returned by op, which is the maximum between the
value returned by op′′ and the value written by op′, is the largest value written
by operations that are linearized before op.

Having shown that this implementation is linearizable, we turn to prove its
logarithmic step complexity. Here we choose m = 3cn3 logn ≤ O(n4) and k =
O(n2 log2 n) for some fixed constant c that is required by the proof.



IX

Lemma 2. The step complexity of operations in Algorithm 2 is O(logn) with
high probability, when taking m = O(n3 logn) and assuming k-bounded incre-
ments for k = O(n2 log2 n).

Proof. Let opi be a WrapReadMaxi operation by pi. We say that a process pj is
current for operation opi if help[j].TS[i] = TS[i], where TS[i] is the timestamp
written by op. Every process pj can perform at most n WrapWriteMaxj operations
before it becomes current for opi, since j iterates over the processes to help.

By a coupon collector argument (see, e.g., [10, Chapter 2]), there is a constant
c such that after cn3 log (n3) executions of Line 26, opi covers all elements of the
array pointer. Suppose that 3cn3 logn wrapped WriteMax operations begin after
TS[i] is incremented. Then, at most n2 of these operations are by processes that
are not current for opi. There can be at most n2 different locations in the pointer
array written by such process, plus at most n− 1 locations that have operations
by current processes pending to write them, but still contain previous values.
The rest of the Θ(n3) locations hold values written by processes that are current
for opi. This implies that the probability of opi choosing a random location in
pointer that holds a value written by a process that is current for it is at least
1− (n+ n2)/n3 = 1−O(1/n).

Assume now that opi does not complete its ReadMax operation in Line 21
within c′ logm steps, where the constant is such that the number of steps is
enough to read a spine segment and an m-valued max register covering km
values. For this to happen, opi takes at least O((c′ − 1) logm) steps down the
spine (otherwise, it goes down somem-valued max register and terminates within
another O(logm) steps). By the k-bounded increments assumption, there are at
least m values being written for this to happen. Taking m to be 3cn3 logn ≤
O(n4) now gives that the probability of opi choosing a random location in pointer
written by a process current for it is at least 1 − O(1/n). Therefore, with high
probability, opi finishes within O(logm) = O(logn) steps.

A WrapWriteMaxi operation opi takes O(logm+ kn/m) steps in addition to
calling WrapReadMaxi. We choose k = O(n2 log2 n) such that kn/m = O(logn)
and therefore the number of steps required for this operation is also O(logn),
completing the proof.

3 Unbounded max arrays with bounded increments

To present our unbounded 2-component max array, we first describe the im-
plementation in [4] and then show how to overcome the obstacles that arise
when embedding our unbounded max register in that construction. The [4] 2-
component max array roughly works as follows. It has a main tree for the max
register of the first component, where each of the switches is associated with a
MaxRegister variable tail, that holds copy of the max register of the second com-
ponent. A write operation to the first component simply ignores these copies,
and travels up the main tree from the relevant leaf to the root, setting the re-
quired switches along the way. A write operation to the second component writes



X

only to the tail copy associated with the root of the main tree. A read operation
travels down the main tree reading the first component, while reading the tail
copy of the second component at every switch and updating it if it saw a greater
value earlier up the tree.

Propagating the values of the second component down the main tree is the
key ingredient in guaranteeing that returned pairs are comparable. The main
invariant that needs to be maintained is that a reader does not go right at
a switch of the main tree returning a value for the second component that is
smaller than that returned by a reader who goes left at that switch. In [4], this
is guaranteed by having the reader re-read the tail copy of a switch that is set,
and propagating this fresher value down to the right subtree.

However, embedding our max register in this construction does not work: in
our max register implementation, a read operation does not travel all the way
down from the root to the leaf, therefore it cannot drag the value of the second
component with it. This causes gaps in the values of the tail copies of the second
component along the tree, violating the required invariant.

To solve this, our observation is that we can re-read the tail copy of the second
component associated with the root of the main tree, instead of reading the tail
component of the current spine node, which may not have been updated. This
guarantees that the value returned for the second component is always updated
to the largest one written. Notice that we can only do this with read operations
that go down the rightmost path of the main tree, that is, the spine. Otherwise,
an operation that started early and goes left at some switch of the main tree
might read a value for the second component that is too large: larger than the
one read by a quicker operation that goes right. But the fact that we can do
this only for the spine fits our goals, and our approach to handle the above
issue is to re-read the tail variable at the root only when traveling the spine.
At other switches the reader copies the values down the tree as in the original
construction, which is unaffected by our max register implementation since gaps
in switches can only occur on the spine, as a process going down some m-valued
max register travels an entire path from its root to a leaf. Algorithms 3 and 4
show the pseudo-code.

Instead of repeating the linearizability proof of the 2-component max array
in [4] (denoted by Alg hereafter), we reduce the algorithm in Algorithms 3 and 4
to Alg. In particular, we show that any execution of the algorithm can be trans-
lated to an execution of Alg in a way which preserves returned values, implying
that the linearization of Alg also applies to the algorithm in Algorithms 3 and 4.
The intuition is that whenever a ReadMaxArray operation goes down the spine
of the main tree, just before it is about to read the copy of the second component
again before going right, we imagine that a very quick ReadMaxArray operation
in Alg starts and runs solo, going down the spine of the main tree, propagating
the value of the second component that is at the copy of the second component
associated with the root. If we then let the first ReadMaxArray operation do
its read then it gets exactly the value associated with the root at that time.
Hence, it cannot distinguish between these two executions, and we can take its



XI

Shared Data:1
switch: a 1-bit multi-writer register, initially 02
left, right: two MaxArray objects with an unbounded second component, initially3
(0,0); at the spine, left has an m-bounded first component and right has an
unbounded first component; at a MaxArray with a b-bounded first component
for any integer b, the first component of both left and right is b/2-bounded
tail: an unbounded MaxRegister object, initially 04
array TS[1..n] where TS[i] = timestamp for process i5
array pointer[1..n3]; each entry is a pid6
array help[i]; each entry consists of7

value = most recent value seen by pi8
TS[j] = most recent timestamp seen by pi for pj9

procedure WriteMaxArray0(r, v) // Write to the first component10
s← s + 1 mod n // initialized to 011
t← TS[s]12
(v′, v′′)← ReadMaxArray(r)13
if v > v’ then14

WriteMax(Mbv/mc, v mod m)15
for j = bv/mc to bv′/mc do16

spine[j]← 117

help[i].value← max(v, v′)18
help[i].TS[s]← t19
pointer[random(1, . . . , n3)]← i20

21
procedure WriteMaxArray1(r, v) // Write to the second component22

WrapWriteMaxi(r.tail, v)23

Algorithm 3: Writing to the 2-component max array; code for process i.

linearization point as that of its corresponding operation in Alg. Following is the
formal proof of the above argument.

Theorem 1. The algorithm in Algorithms 3 and 4 is a linearizable implemen-
tation of a 2-component max array. It has a step complexity of O(log2 n) per
operation with high probability, when taking m = O(n3 logn) and assuming k-
bounded increments for k = O(n2 log2 n).

Proof. Let α be an execution of the algorithm in Algorithms 3 and 4 with
processes {p0, . . . , pn−1}. We construct a sequence of executions α0, α1, . . . , α

′,
which ends in an execution α′ of Alg, for which the return values of all operations
are the same as in α.

Every execution αj in the sequence is an execution with n+1 processes, such
that every process pi ∈ {p0, . . . , pn−1} invokes the same operations as in α, and
process pn is an extra process that performs only ReadMaxArray operations. If
in α the process pi reads the copy of the second component associated with the
root in Line 8, then starting from some αj it reads the copy associated with the



XII

procedure ReadMaxArrayDirect(r)1
x← WrapReadMaxi(r.tail)2
if r.switch = 0 then3

WrapWriteMaxi(r.left.tail, x)4
return ReadMaxArrayDirect(r.left)5

else6
if on spine then7

x← WrapReadMaxi(root.tail)8
else9

x← WrapReadMaxi(r.tail)10

WrapWriteMaxi(r.right.tail, x)11
return ReadMaxArrayDirect(r.right) + (m, 0)12

13
procedure ReadMaxArray(r)14

TS[i]← TS[i] + 115
while true do16

for t = 1 to c′ log m // For a constant c′ as in Algorithm 2 do17
Take a step of ReadMaxArrayDirect(r)18

if finished then19
return pair20

else21
j ← pointer[random(1, . . . , n3)]22
if help[j].TS[i] = TS[i] then23

firstComponent← help[j].value24
return ReadMaxArrayDirect(spine[firstComponent/m])25

26

Algorithm 4: Reading the 2-component max array; code for process i.

current switch (notice that this difference only occurs when reading locations on
spine).

Even though pi reads different locations in α and αj , steps by pn are used to
make it obtain the same values. We define the behavior of pn by induction. In α0
the process pn is not used, therefore it is the execution described above. Assume
executions α0, . . . , αj are defined and define execution αj+1 as follows. Let pi

be the first process in αj that reads root.tail in Line 8 corresponding to some
location x on the spine. Denote αj = α′jsiα

′′
j such that si is that step of pi (note

that we can assume an operation on a max register is an atomic operation). We
define αj+1 = α′jσs

′
iα
′′
j , where in σ process pn performs a read operation and

s′i is a step by pi reading the copy of the second component associated with
location x.

Our claim is that all operations return the same values in αj and in αj+1.
The reason is that pn reads the copy of the second component associated with
the root of the main tree and copies it down the spine at least until location
x since it starts after pi reaches x and hence all switches toward it are set.



XIII

Therefore, when pi reads the copy in x in s′i in αj+1 it gets the same value
it reads from the root in si in αj . Finally, for some j we reach an execution
α′ = αj of Alg, for which all returned values of processes {p0, . . . , pn−1} are
the same as in α. This execution α′ is linearizable by the proof of [4]. Because
pn performs only ReadMaxArray operations, removing these operations from the
linearization of α′ does not affect the return values of any other operations; this
reduced linearization is thus a linearization of α.

4 Unbounded snapshots

Given our unbounded 2-component max array implementation, we can now ob-
tain an unbounded snapshot object.

We use the construction from [4], which for convenience we restate here in
Algorithm 5 The shared data is:

– leafj , for j ∈ {0, . . . , n − 1}: the leaf node corresponding to process j, with
fields:
• parent: the parent of this leaf in the tree
• view[0, 1, . . .]: an infinite array, each of whose entries contains a partial
snapshot, view[0] contains the initial value of component j and view[`]
contains the `-th value of component j

• root: the root of the tree
– Each internal node has the fields:
• left: the left child of the node in the tree
• right: the right child of the node in the tree
• view[0, 1, . . .]: an infinite array, each of whose entries contains a partial
snapshot, view[0] contains the concatenation of leafj .view[0] for all leaves
leafj in the subtree rooted at this node, and view[`] contains the con-
catenation of views of the leaves after ` updates

• ma: an infinite MaxArray object, initially (0,0)
– The root also has the field mr: an infinite MaxRegister object, initially 0
– Each non-root internal node also has the field parent: the parent of the node

in the tree

We use this algorithm with our implementations of unbounded max registers
and unbounded max arrays from the previous sections. Loosely speaking, the
construction is based on a balanced binary tree with n leaves, one for each
process. Each intermediate node holds a 2-component max array object for its
two children, that counts the number of update operations performed on each.
It also stores the (unique) view corresponding to this number. A process that
updates its location does so by updating the nodes from its leaf to the root, and
a process scans the object by reading the view held by the root. We emphasize
that correctness is always guaranteed in the above implementation, therefore the
proof from [4] shows that this gives an unbounded snapshot object. It remains to
show the step complexity of our construction. For this, we only need to show that
the k-bounded increment assumption holds, and use the complexity analysis of



XIV

procedure Update(s, i, v)1
counti ← counti + 12
u← leafi3
ptr← counti4
u.view[ptr]← v5
while u 6= root do6

if u = u.parent.left then7
WriteMaxArray0(u.parent.ma, ptr)8

if u = u.parent.right then9
WriteMaxArray1(u.parent.ma, ptr)10

u← u.parent11
(lptr, rptr)← ReadMaxArray(u.ma)12
lview← u.left.view[lptr]13
rview← u.right.view[rptr]14
ptr← lptr + rptr15
u.view[ptr]← lview · rview16

WriteMax(root.mr, ptr)17

procedure Scan(s)18
ptr← ReadMax(root.mr)19
return root.view[ptr]20

Algorithm 5: Unbounded snapshot object; code for process i.

the previous sections. Intuitively, this is because every MaxRegister is used only
to store the number of operations observed in the subtree of processes that it
represents. If the difference between two values written to a MaxRegister is more
than n, then some processes completed a WriteMax operation between these two
WriteMax operations, implying that the maximal difference was smaller to begin
with. Formally, we prove this claim in the following lemma.

Lemma 3. In Algorithm 5, all MaxRegister and MaxArray objects are accessed
according to the n-bounded increments assumption.

Proof. A process that performs WriteMaxArray on u.ma for some node u writes
the value of its ptr variable. We show that ptr holds a value which is at most
the number of Update operations invoked by processes corresponding to this
subtree, hence a value being written to u.ma is larger by at most n than the
largest value previously written to it. The claim follows by a simple induction
on the height of the node that holds the object. When accessing a leaf, ptr holds
the value of counti, which is the number of operations performed by process pi.
For an intermediate node u, ptr holds the sum of the values of its two children,
which, by the induction hypothesis are the number of Update operations invoked
by processes corresponding to these subtrees, which proves the claim. Finally,
the same holds for the value of ptr when the root is accessed, implying the claim
also for the MaxRegister object there.

Combining Lemma 3 with Theorem 1 gives our main theorem.



XV

Theorem 2. Algorithm 5 is an implementation of an unbounded snapshot ob-
ject, with a step complexity of O(log3 n) per operation with high probability.

5 Discussion

This paper gives the first sub-linear unbounded snapshot implementation from
atomic read/write registers. It is a randomized algorithm, with a step complexity
of O(log3 n) with high probability for each operation, where n is the number of
processes. The main component of the construction is a new randomized imple-
mentation of an unbounded max register with a complexity of O(logn) steps per
operation with high probability. The novelty of the construction is a randomized
helping technique, which allows slow processes to obtain fresh information from
other processes. The use of randomization avoids in most cases the linear worst-
case lower bound based on covering of Jayanti et al. [9], because the adversary
cannot predict what locations a process will read from the helper array and thus
cannot guarantee to cover those locations with old values. Conversely, the lower
bound shows that some use of randomization is necessary.

Acknowledgement: The authors thank the anonymous reviewers for careful comments
and suggestions that helped improve the presentation of this work. The first author is
supported in part by NSF grant CCF-0916389. The second author is a Shalon Fellow.

References
1. Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir

Shavit. Atomic snapshots of shared memory. J. ACM, 40(4):873–890, 1993.
2. James H. Anderson. Multi-writer composite registers. Distributed Computing,

7(4):175–195, 1994.
3. James Aspnes, Hagit Attiya, and Keren Censor-Hillel. Polylogarithmic concurrent

data structures from monotone circuits. J. ACM, 59(1):2:1–2:24, March 2012.
4. James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Faith Ellen. Faster than

optimal snapshots (for a while). In 2012 ACM Symposium on Principles of Dis-
tributed Computing, pages 375–384, July 2012.

5. James Aspnes, Hagit Attiya, Keren Censor-Hillel, and Danny Hendler. Lower
bounds for restricted-use objects. In Twenty-Fourth ACM Symposium on Parallel
Algorithms and Architectures, pages 172–181, June 2012.

6. James Aspnes and Maurice Herlihy. Wait-free data structures in the asynchronous
PRAM model. In Second Annual ACM Symposium on Parallel Algorithms and
Architectures, pages 340–349, July 1990.

7. Hagit Attiya and Arie Fouren. Adaptive and efficient algorithms for lattice agree-
ment and renaming. SIAM J. Comput., 31(2):642–664, 2001.

8. Michiko Inoue and Wei Chen. Linear-time snapshot using multi-writer multi-
reader registers. In WDAG ’94: Proceedings of the 8th International Workshop on
Distributed Algorithms, pages 130–140, London, UK, 1994. Springer-Verlag.

9. Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for
nonblocking implementations. SIAM Journal on Computing, 30(2):438–456, 2000.

10. Michael Mitzenmacher and Eli Upfal. Probability and Computing: Randomized
Algorithms and Probabilistic Analysis. Cambridge University Press, 2005.


