
Structuring Unreliable Radio Networks∗

Keren Censor-Hillel† Seth Gilbert‡ Fabian Kuhn§ Nancy Lynch¶ Calvin Newport‖

August 25, 2013

Abstract

In this paper we study the problem of building a constant-degree connected dominating set (CCDS),
a network structure that can be used as a communication backbone, in the dual graph radio network
model [5, 11–13]. This model includes two types of links: reliable, which always deliver messages,
and unreliable, which sometimes fail to deliver messages. Real networks compensate for this differing
quality by deploying low-layer detection protocols to filter unreliable from reliable links. With this in
mind, we begin by presenting an algorithm that solves the CCDS problem in the dual graph model under
the assumption that every process u is provided with a local link detector set consisting of every neighbor
connected to u by a reliable link. The algorithm solves the CCDS problem inO(∆ log2 n

b +log3 n) rounds,
with high probability, where ∆ is the maximum degree in the reliable link graph, n is the network size,
and b is an upper bound in bits on the message size. The algorithm works by first building a Maximal
Independent Set (MIS) in log3 n time, and then leveraging the local topology knowledge to efficiently
connect nearby MIS processes.

A natural follow-up question is whether the link detector must be perfectly reliable to solve the CCDS
problem. With this in mind, we first describe an algorithm that builds a CCDS in O(∆polylog(n)) time
under the assumption of O(1) unreliable links included in each link detector set. We then prove this
algorithm to be (almost) tight by showing that the possible inclusion of only a single unreliable link in
each process’s local link detector set is sufficient to require Ω(∆) rounds to solve the CCDS problem,
regardless of message size. We conclude by discussing how to apply our algorithm in the setting where
the topology of reliable and unreliable links can change over time.

∗A preliminary version of this paper appeared in the Proceedings of the 30th ACM Symposium on Principles of Distributed
Computing (PODC), pages 79-88, 2011.
†Technion, ckeren@cs.technion.ac.il. Shalon Fellow. Part of this work was done while the author was at MIT and

supported by the Simons Postdoctoral Fellows Program.
‡National University of Singapore, seth.gilbert@comp.nus.edu.sg. This work is partially supported by the Singapore

MOE AcRF-2 grant MOE2011-T2-2-042.
§University of Freiburg, Germany, kuhn@cs.uni-freiburg.de.
¶MIT CSAIL, lynch@csail.mit.edu. Supported by AFOSR Award Numbers FA9550-13-1-0042 and FA9550-08-1-0159,

and NSF Award Numbers CCF-0726514, CCF-AF-0937274, 0939370-CCF, and CCF-1217506.
‖Georgetown University, cnewport@cs.georgetown.edu. Supported by Mobile Mesh Networks (Ford-MIT Alliance

Agreement January 2008).

1

1 Introduction

In this paper, we study the problem of constructing a constant degree connected dominating set (CCDS) in
a radio network. The CCDS problem is important in this setting as it provides a routing backbone that can
be used to efficiently move information through the network [19, 22].

We study this problem in the dual graph network model, which describes static ad hoc radio networks.
The dual graph model, previously studied in [5, 11–13], includes two types of links: reliable, which in the
absence of collisions always deliver messages, and unreliable, which sometimes fail to deliver messages.
This model was inspired by a simple observation: in real radio network deployments, unreliable links are an
unavoidable (and much cursed) feature; c.f., [2, 3, 6, 7, 9, 20, 21, 23]. To mitigate the difficulties introduced
by such links, most modern ad hoc radio network deployments attempt to isolate unreliable links by using
low-level link detector protocols (e.g., [3, 6, 7, 9, 23]), or sometimes even specialized hardware (e.g., [2]).
We capture this strategy in our model with a new link detector formalism, which provides each process u, at
the beginning of each execution, with a set of ids that represent an estimate of which neighbors are reliable,
i.e., are connected to u by a reliable link.

Using this formalism, we explore two important questions: (1) How can we leverage link detection
information, commonly assumed in practice, to build efficient solutions to the CCDS problem? (2) How
reliable must these link detectors be for their information to be useful? Our answers potentially extend
beyond the realm of theoretical interest and into the realm of practice, where real networks rely on link
detector information and can make use of structures such as a CCDS.

1.1 Results.

In this paper, we study τ -complete link detectors, 0 ≤ τ ≤ n. A τ -complete link detector, for a given
process u, contains the identifier of every reliable neighbor of u and potentially up to τ additional ids.
In other words, τ bounds the number of classification mistakes made by the detector, with 0-complete
indicating perfect knowledge of reliable neighbors.

As previously mentioned, practical network deployments seek to accurately filter reliable from unreli-
able links. That is, they try to implement a 0-complete link detector [3, 6, 7, 9, 23]. With this in mind, in
Section 5 we describe a randomized algorithm that uses a 0-complete link detector to construct a CCDS.
The algorithm runs for O(∆ log2 n

b + log3 n) rounds, with high probability, where ∆ is the maximum degree
in the reliable link graph, b is an upper bound on the message size, measured in bits, and n is the network
size. For reasonably large messages (b = Ω(∆)), this algorithm terminates in polylogarithmic time. The
algorithm works by first building a Maximal Independent Set (MIS) in O(log3 n) rounds (the algorithm for
which is presented separately, in Section 4), and then leverages the link detector information to execute a
novel path finding procedure to identify paths to nearby MIS processes.

A natural follow-up question is whether such accuracy in our link detector is necessary. In other words,
can we find efficient solutions to the CCDS problem for some τ > 0? To answer this question, we start
by describing, in Section 6, an algorithm that solves the CCDS problem in O(∆polylog(n)) rounds, given
a τ -complete detector for any τ = O(1). We then prove in Section 7 that this bound is (almost) tight by
showing, that even with a 1-complete link detector, every algorithm that solves the CCDS problem, requires
Ω(∆) rounds, regardless of message size. This bound not only defines a separation with respect to the τ = 0
case, but also defines a separation with respect to the classical radio network model, which assumes only
reliable links. Previous work has identified a CCDS algorithm for the classical model that uses no topology
knowledge and uses only O(polylog(n)) rounds [1].

We conclude by discussing, in Section 8, how to apply our algorithm in the setting where the topology
of reliable and unreliable links can change over time, and, in Section 9, how to modify our MIS algorithm to
work in the classical radio model, yielding a solution that is comparable with the best known MIS solutions.

1

1.2 Discussion.

A 0-complete link detector seems like a quite powerful tool. It is worth pausing to discuss what capabilities
such a link detector does and does not provide.

First, we observe that a 0-complete link detector gives us signficant power to do things that are im-
possible otherwise. Since it provides each process with the set of neighbors that are reliable, it enables an
algorithm to build structures that solely rely on reliable neighbors and reliable links. For example, using a
link detector, we can build a CCDS that is connected via reliable links. Without a link detector, this would
be impossible: any link that we believe to be reliable could later turn out to be unreliable.

Second, we consider the algorithmic challenges of using a 0-complete link detector. It is important to
note that assuming a 0-complete link detector is very different from assuming a network with only reliable
edges: the link detector provides knowledge about the network topology; however, one still must grapple
with the uncertainty caused by the presence of unreliable edges.

Consider the following example. Assume we have n processes, each with one neighbor (which we
refer to as its partner); each process wants to send a message to its partner. In a system with only reliable
links, it is simple to accomplish this task. For example, each process i can broadcast its message with
probability 1/2 until it succeeds. Even if the partner process of i also wants to send a message to i, process
i succeeds with probability 1/4 in each round. Now, assume that there are unreliable links as well: each
process has an unreliable link to some (unknown) subset of (other) processes in the system. In this case, the
broadcast problem is significantly harder, even with a 0-complete link detector. Each process knows that
it has a reliable link to its partner. However, there is also an indeterminate amount of contention caused
by other unreliable neighbors. A process can choose to broadcast with probability 1/n, and thus avoid all
contention—but now the broadcast takes Θ(n) time to complete. Alternatively, a process can choose to
broadcast with probability 1/2, in which case the unreliable links may cause too much contention, resulting
in even slower message delivery. Thus, even with a 0-complete link detector, the existence of unreliable
links leads to significant complications.

1.3 Related Work.

The dual graph model was introduced in [5], where it was called the dynamic fault model, and then later
studied in [11–13] under its current name. These papers show, among other results, that the canonical prob-
lem of multihop broadcast is strictly harder in the presence of unreliable links. There are some similarities
between the dual graph model and the quasi-unit disk graph model [16], which includes a gray zone distance
at which two nodes in a radio network may or may not have a link. Unlike the dual graph model, however,
the quasi-unit disk graph model features uncertainty only in the definition of the topology; once the links
have been decided, they behave reliably.

The CCDS problem, along with related coordination problems, has been extensively studied in general
graph models (see [15] for a good overview). In the context of radio networks with only reliable links (i.e.,
what we call the classical radio network model), [22] describes an O(n) time CCDS algorithm, and [19]
describes an O(log2 n) time algorithm. The latter algorithm, however, requires that processes know their
multihop local neighborhoods so they can construct collision-free broadcast schedules. In our model, for a
process to learn its (h+ 1)-hop neighborhood (of reliable links) would require Ω(∆h) time, where ∆ is the
maximum degree of the network; even then the broadcast schedules constructed in [19] could be thwarted
by unreliable links causing collisions. As with our paper, both [22] and [19] assume synchronous starts
(i.e., processes start during the same round). Concurrent work has identified an O(polylog(n))-time CCDS
solution in the classical radio network model without synchronous starts [1].

The MIS problem, which we use as a step in our construction of a CCDS, was studied in the classical
radio network model without synchronous starts in [14], which provides a O(log6 n)-time solution. This

2

was later improved in [18] to O(log2 n). The MIS algorithm presented in the main body of this paper uses
O(log3 n) rounds, and it assumes synchronous starts and a 0-complete link detector. In Section 9, however,
we describe a minor variation to the algorithm that has the same running time in the classical radio network
model, without synchronous starts or any topology information. This algorithm is a factor of O(log n)
slower than the result of [18], but trades this decreased speed for increased simplicity in both the algorithm
description and proof structure.

2 Model

Fix some n > 2. We define a network (G,G′) to consist of two undirected graphs, G = (V,E) and
G′ = (V,E′), where V is a set of n wireless nodes and E ⊆ E′. Informally, graph G describes the reliable
edges, while graph G′ describes all possible edges, both reliable and unreliable. We assume G is connected.

For each u ∈ V , we use the notation NG(u) to describe the neighbors of u in E, and the notation
NG′(u) to describe the neighbors of u in E′. Let ∆ be the maximum size of NG over all nodes and ∆′ be
the maximum size of NG′ over all nodes. To simplify the presentation of time complexity bounds later in
the paper, we assume that ∆ = ω(log n) (for smaller values of ∆, even simple solutions work well).

We assume that each node in V is embedded in a two-dimensional plane, and use dist(u, v) to denote
the distance between nodes u and v in the plane. We assume that all close nodes are neighbors in G, i.e.,
for all u, v ∈ V where dist(u, v) ≤ 1, (u, v) ∈ E. We also assume that all neighbors in G′ are not too far
apart, i.e., there exists a constant distance d ≥ 1, such that for all (u′, v′) ∈ E′, dist(u′, v′) ≤ d. Notice,
this is a generalization of the unit disk graph model that now captures the (potentially) large gray zone of
unpredictable connectivity observed in real wireless networks.

We next define an algorithm A to be a collection of n processes. An execution of an algorithm A on
network (G,G′) begins with the adversary assigning a different process to each node in V . The processes
have no advance knowledge of this assignment. Specifying an execution in this manner formally captures
the fact that a process has no knowledge of its position in the network topology.

We assume that each process in A has a unique identifier from the range 1 to n. We use the notation
id(v), v ∈ V , with respect to an execution, to indicate the unique identifier of the process assigned to node
v. Throughout this paper, we refer to processes in two ways: (1) we use the notation process u, for some
u ∈ V , to refer to the process assigned to node u in the execution in question; (2) we use the notation
process i, for some i ∈ [n], to refer to the process with id i.

An execution proceeds in synchronous rounds, 1, 2, . . . , with all processes starting in the first round.
At the beginning of each round, r, each process v decides whether or not to send a message. Next, the
adversary chooses a reach set of edges that consists of E and some subset, potentially empty, of edges in
E′ \ E. This set describes the links that will behave reliably in this round. Let Bv,r be the set of nodes
whose corresponding processes broadcast in round r and are connected to v by an edge in the reach set for
this round. The messages received by v depend on the size of Bv,r. If process v broadcasts in r then it
receives only its own message. If process v does not broadcast and |Bv,r| = 1, then it receives the message
sent by the single broadcaster in Bv,r. Otherwise, if |Bv,r| = 0 or |Bv,r| > 1, and v does not broadcast, then
process v receives ⊥; that is, we assume no collision detection.

In the following we sometimes use the notation [i], for positive integer i, to indicate the set {1, ..., i}.
Furthermore, we use the notation w.h.p. (i.e., with high probability) to indicate a probability at least 1− 1

nc ,
for some positive constant c. For simplicity we omit the specific constants used in our proofs, and assume
only that they are large enough such that the union bounds applied to our various w.h.p. results produce a
final error probability that is sufficiently small.

3

Link Detectors. As described in the introduction, real wireless network deployments compensate for
unreliability by using low-level protocols and special hardware to differentiate reliable from unreliable links.
Because these link detection strategies often make use of information not described in our network model
(e.g., properties of the received physical layer signal) we introduce the link detector formalism to capture
the functionality of these services.

In more detail, this formalism provides each process u a link detector set Lu ⊆ [n]. The set Lu is
provided to process u before the execution begins. The set Lu is an estimate of which neighbors are con-
nected to u by a reliable link. In this paper we study the τ -complete link detector, 0 ≤ τ ≤ n. In more
detail, we say a link detector set Lu is τ -complete if and only if Lu = {id(v) : v ∈ NG(u)} ∪Wu, where
Wu ⊆ {id(w) : w ∈ NG′(u) \ NG(u)}, and |Wu| ≤ τ . That is, the detector contains the id of every
neighbor of u connected by a reliable link, plus up to an additional τ additional neighbors. This makes τ a
bound on the number of links that are mistakenly classified as reliable.

3 Problem Definitions

We now define the maximal independent set and constant-bounded connected dominating set problems. In
both definitions, we reference the graphH = (V,EH), defined with respect to a specific execution, where V
is the vertex set fromG andG′, andEH is the edge set consisting of every edge (u, v) such that: id(u) ∈ Lv
and id(v) ∈ Lu (that is, u and v are in each others’ link detector sets). Recall, link detectors, as defined
above, are not required to be symmetric (in real networks, link quality is not necessarily symmetric). The
graph H is the subset of links that happen to be categorized as reliable by the detector at both endpoints.
Notice, for a τ -complete link detector, for any value of τ , G is a subgraph of H and H is a subgraph of G′.
For τ = 0, H = G.

Maximal Independent Set. A maximal independent set (MIS) algorithm requires every process to even-
tually output 0 or 1, where 1 indicates that the process is in the MIS, and 0 indicates that it is not. We say
an execution of an MIS algorithm has solved the MIS problem by round r, if and only if the following three
conditions hold: (1) [Termination] every process outputs 0 or 1 by the end of round r; (2) [Independence]
if processes u and v both output 1, then (u, v) /∈ E; and (3) [Maximality] if process u outputs 0, then there
exists a process v such that v outputs 1 and (u, v) ∈ EH .

Constant-Bounded Connected Dominating Set. A constant-bounded connected dominating set (CCDS)
algorithm requires every process to eventually output 0 or 1, where 1 indicates that the process is in the
CCDS, and 0 indicates that it is not. The algorithm has an associated constant denoted by δ (to be ex-
plained below), independent of the size of the input graph. We say an execution of a CCDS algorithm solves
the CCDS problem by round r, if and only if the following four conditions hold: (1) [Termination] every
process outputs 0 or 1 by the end of round r; (2) [Connectivity] the set of processes that output 1 is con-
nected in H; (3) [Domination] if a process u outputs 0, then there exists a process v such that v outputs
1 and (u, v) ∈ EH ; and (4) [Constant-Bounded] for every process u, no more than δ neighbors of u in
G′ output 1. Notice, by requiring the connectivity property to hold in the stricter sub-graph H , and the
constant-bounded property to hold in the more general G′, we are making the definition more difficult for
the algorithm to match, resulting in a structure that will be more useful in practice.

Note that the definitions depend on all three graphs G, G′, and H and they therefore differ from the
standard definition of an MIS or a CCDS for graph G. In particular, maximality in the MIS definition and
connectivity in the CCDS definition are slightly weaker than in the standard definition where they would
both be defined w.r.t. graph the edge set E (instead of EH). Note however that the model assumptions force

4

Algorithm 1 Maximal Independent Set Algorithm (for node u)
1: Mu ← ∅
2: for e ∈ {1, . . . , `E} do
3: active ← (Mu = ∅)
4: for c ∈ {1, . . . , dlog ne} do
5: for r ∈ {1, . . . , `P } do
6: if active then
7: transmit with probability 2c−1/n
8: if message from G-neighbor received then active ← false end if
9: end if

10: end for
11: end for
12: if active then Mu ← {u} end if
13: for r ∈ {1, . . . , `P } do
14: if active then
15: transmit with probability 1/2
16: else
17: if message from G-neighbor v received then Mu ←Mu ∪ {v} end if
18: end if
19: end for
20: end for
21: Node u outputs 1 (joins the MIS) if and only if Mu = {u}

us to use these slightly weaker conditions as an algorithm cannot distinguish between an edge in e ∈ E
and an edge e′ ∈ EH if the adversary decides to always include e′ in the reach set (or to include e′ in the
reach set for long enough). On the other hand, if τ = 0, then H = G, and the definitions become closer to
standard (they still differ in that there are unreliable links in the network, and the constant bounded property
will therefore still be defined with respect to all types of links).

4 Maximal Independent Set Algorithm

In this section, we present an algorithm that solves the MIS problem inO(log3 n) rounds, w.h.p. We assume
that the processes have access to a 0-complete link detector and that the message size is b = Ω(log n)
bits. In Section 5, we use this algorithm as a subroutine in our solution to the CCDS problem. Recall that
having a 0-complete link detector is not equivalent to having a network model with only reliable edges.
The completeness of the link detector describes the knowledge about the topology, it does not eliminate the
negative impact of unreliable edges.

4.1 Algorithm Description

We now give an overview of the algorithm. Pseudo-code for the algorithm is given in Algorithm 1. Through-
out an execution, each process u discards messages received from processes not in u’s link detector set.
Therefore, in the following description, when we say that a process receives a message, we mean to imply
that it is a message sent from a neighbor in E. By using the link detector in this manner, we ensure that
every node either joins the MIS or has a reliable neighbor (guaranteed by 0-complete link detector) in the
MIS. (Without the link detector, the protocol would still output an independent set; however the maximality
would not be satisfied.)

5

Each process u maintains a set Mu of MIS process ids in u’s 1-hop neighborhood (initially empty). The
execution is divided into epochs, each one consisting of phases of several rounds. The exact description is
as follows. There are `E = Θ(log n) epochs, indexed by 1, . . . , `E . At the beginning of each epoch i, each
process u declares itself active if and only if its MIS setMu does not include its own id or the id of a reliable
neighbor. Only active processes participate in the epoch.

Each epoch is divided into dlog ne competition phases, each of length `P = Θ(log n), followed by a
single announcement phase of the same length. During the first competition phase, in each round, each
active process broadcasts a contender message, labeled with its id, with probability 1/n. If an active process
u receives a contender message from another process, then process u is knocked out: it sets its status to
inactive and does no further broadcasting during this epoch. (At the beginning of the next epoch, it again
decides whether to be active, as described above.) At each successive competition phase, the remaining
active processes double their broadcast probabilities. In the second competition phase they broadcast with
2/n, in the third 4/n, and so on, up to probability 1/2 in the final competition phase.

An active process u that makes it through all dlog ne competition phases without being knocked out,
adds itself to the MIS set by outputting 1, adding its own id to Mu, and broadcasting an MIS message
labeled with its id, with probability 1/2, in every round of the announcement phase. Every process v that
receives an MIS message from a process u in the announcement phase adds u to its MIS set Mv.

4.2 Correctness Proof

As with the MIS solutions presented in [14,18], which are analyzed in the standard radio model where G =
G′, we begin by covering the plane with an overlay of disks of radius 1/2, arranged on a hexagonal lattice
to minimize overlap. We index the occupied disks: D1, D2, (Notice, because our graph is connected,
no more than n disks are required to cover all occupied portions of the plane.) Also following [14, 18], we
use the notation Ehi to reference a disk of radius h centered at disk Di. We introduce the new notation Ih

to reference the maximum number of overlay disks that can intersect a disk of radius h. The following fact
concerning this overlay, also used in [14, 18], will prove useful:

Fact 4.1. For any c = O(1): Ic = O(1).

In the following, let Pi(r) =
∑

u∈Ai(r)
p(u, r), where Ai(r) is the set of active processes in Di at the

beginning of the epoch that contains round r, and p(u, r) is the broadcast probability of process u in round
r. In other words, p describes the broadcast probability of a single process, while P describes the sum of
the broadcast probabilities of all processes in a given disk.

Before continuing to our proof, we conclude this discussion of preliminaries by defining a pair of stan-
dard probability facts:

Fact 4.2. 1. For any p ≤ 1/2: (1− p) ≥ (1/4)p.

2. For any p > 0: (1− p) < e−p.

We now begin our argument with an important lemma that bounds the broadcast probability in a disk.

Lemma 4.3. Fix some epoch. During every round r of this epoch, and every disk index i: Pi(r) ≤ 1, w.h.p.

Proof. We need to bound the probability that some disk ends up with a broadcast probability greater than 1.
Notice, if any disks end up with this large probability, then there must be some disk that is first to breach
this threshold. With this in mind, fix some disk Di. We will begin by bounding the probability that Di is the
first disk to have its broadcast sum (Pi) exceed 1. For Pi to exceed 1, there must be some round r, such that
r is the first round in which Di’s broadcast probability is greater than 1. Round r must be the first round of

6

a competition phase, as these are the only rounds in which processes increase their broadcast probabilities.
Furthermore, r cannot be the first round of the first competition phase, as the broadcast sum of the first phase
can never exceed 1, as it has each process broadcasting with probability 1/n. Combining these observations
with the fact that broadcast probabilities double in each competition phase, it follows: there exists a full
competition phase before r, such that during every round r′ of this preceding phase: 1/2 ≤ Pi(r

′) ≤ 1.
Furthermore, by assumption, r was the first round in which any disk exceeds a broadcast sum of 1, so we
also know that for all disks j 6= i, during every round r′ of this preceding competition phase, Pj(r′) ≤ 1.

We will now use these two observations to prove that there is a high probability that a single process
in Di broadcasts alone among nearby disks, and therefore knocks out all other active processes in Di,
thus reducing its broadcast probability to 1/2 for the remainder of the epoch. To start, fix any round r′

of the phase preceding r. Let p1 be the probability of a single process broadcasting in Di during this
round. Using Fact 4.2 and our our bounds on disk broadcast sums from above, we can bound p1 as follows:
First, note that p1 =

∑
u∈Ai(r′)

(
p(u, r′)

∏
v∈Ai(r′),v 6=u(1− p(v, r′))

)
, which is greater than or equal to∑

u∈Ai(r′)

(
p(u, r′)

∏
v∈Ai(r′),v 6=u

1
4

p(v,r′)
)
≥ 1

2 ·
1
4 .

Next, let Dj be a disk that contains a G′-neighbor of a process in Di, and let probability p2 be the
probability that no process in Dj broadcasts in r′. By the same approach used above, we can bound p2 =∏
u∈Aj(r′)(1−p(u, r′)), which we know is greater than or equal to:

∏
u∈Aj(r′)

1
4

p(u,r′) ≥ 1
4 . Let γ = Id+1/2

describe the total number of disks potentially containing G′-neighbors of processes in Di (recall that d =
O(1) is the maximum distance at which a G′ edge exists), and let p3 be the probability that a single process
in Di broadcasts in r′, and this message is received by all processes in Di (an event we call an uncontested
broadcast). We know: p3 ≥ p1p

γ
2 = 1

2 ·
1
4

(γ+1)
= (1

4)γ+1.5. (Notice, by Fact 4.1, γ = O(1), therefore p3 is
also constant.)

To conclude the proof, we note that the probability that we fail to achieve an uncontested broadcasts
in Di in all `P rounds of this phase is no more than (1 − p3)`P . By Fact 4.2 this is less than e−p3`P .
For sufficiently large constant factors in our definition of `P , this evaluates to 1

nc , with a sufficiently large
constant c that we retain high probability even after we perform a union bound over allO(n) occupied disks.
The result, is that w.h.p no disk is the first to exceed 1 during this epoch.

The following lemma leverages the observation that if the broadcast probability in the system is low
(as established by Lemma 4.3), then a process about to enter the MIS will have a good probability of
both knocking out its G-neighbors and announcing to them its new status, during the Θ(log n) round final
competition phase and subsequent announcement phase. This fact ensures that the output set is independent.

Lemma 4.4. (Independence) With high probability, there are no G-neighbors u and v such that both u and
v output 1.

Proof. Fix any epoch in which neither u nor v has yet output 1. Such an epoch must exist in any execution
where u and v proceed to both output 1. Assume that the property in Lemma 4.3 holds in this epoch (this
happens with high probability). Under this assumption, we will show that with high probability, either:
neither process joins the MIS in this epoch, or one process joins and the other outputs 0. Assume that at
least one process makes it through the final competition phase (otherwise, we are done). Without loss of
generality, assume this process is u. In each round of this phase, process u broadcasts with probability
p1 = 1/2. Let Di be the disk containing u, and let p2 be the probability that no process other than u in
a disk intersecting Ed+1.5

i broadcasts in r. (This is sufficient to ensure that v would receive any message
sent by u, as Ed+1.5

i contains all G′-neighbors of v.) Under the assumption that Lemma 4.3 holds, we can

use Fact 4.2 in a similar manner as in Lemma 4.3 to bound p2 ≥ 1
4

γ′ , where γ′ = Id+1.5. Let p3 be the
probability that v receives a message from u during this final competition phase, and is therefore knocked

7

out and does not join the MIS. We combine p1 and p2 to yield p3 ≥ 1
2 ·

1
4

γ′ . (By Fact 4.1, γ′ = O(1),
therefore p3 is also constant.) We note that u fails to knock v in all `P rounds of the phase with probability
no more than (1 − p3)`P . By Fact 4.2 this is less than e−p3`P . For sufficiently large constant factors in our
definition of `P , this evaluates to 1

nc , for any constant c.
We can use the same argument to show that u fails to deliver its MIS message to v during the subsequent

announcement phase with a similarly low probability. For sufficiently large constant factors in our definition
of `P , these probabilities are small enough to retain high probability even after we perform a union bound
over all O(n2) pairs of processes and all O(log n) epochs, combined with a union bound establishing that
Lemma 4.3 holds in each epoch.

This next lemma leverages the observation that a process u, in each epoch, either joins the MIS or is
knocked out by aG-neighbor v. If the latter occurs, due to the low level of contention ensured by Lemma 4.3,
v has a constant probability of knocking out all of its G-neighbors, and then continuing uncontested to join
the MIS and announce its new status to u. Over Θ(log n) epochs, therefore, u will either output 1 or 0, with
high probability.

Lemma 4.5. (Termination) By the end of the last epoch, every process outputs 0 or 1, w.h.p.

Proof. Assume Lemma 4.3 holds in all `E = Θ(log n) epochs. Fix some process u that starts some epoch
active. During this epoch, either u is knocked out or it survives and joins the MIS. If it joins the MIS we
are done, so we will consider the case where it is knocked out. Let v be the process that knocks out u.
Because v knocked out u, we know it broadcasts at least once during this epoch. We will now bound the
probability that this broadcast is received by all processes in v’s 1-hop neighborhood in G. Let Di be the
disk containing v. Let p1 be the probability that v broadcasts alone in Ed+1.5

i during the round in which
it broadcasts. (Notice this range is large enough to include v’s 1-hop neighbors in G and these neighbors’
1-hop neighbors in G′, which are potential sources of contention.) Using Fact 4.2 in a similar manner to the
previous lemma, we can bound p1 ≥ 1

4

γ′ , where γ′ = Id+1.5.
Assume that this event occurs, i.e., v is the only process broadcasting Ed+1.5

i . In this case, its message
must be received by every process in its 1-hop neighborhood in G. With these processes now knocked out,
v will continue on, uncontested, to join the MIS in this epoch.

Now let us return to u. Using the same argument applied in Lemma 4.4 to show that some process u
would have its message received by aG-neighbor during the final competition phase, w.h.p., we observe that
the process u in this proof will receive an announcement message from v during the announcement phase,
w.h.p. Let us call this high probability p2. On receiving this message, u outputs 0.

We have shown, therefore, that in each epoch, u outputs 0 or 1 with probability at least p3 = p1p2 =
O(1). Therefore, the probability that u fails to output 0 or 1 at the end of all `E = Θ(log n) epochs is
no more than (1 − p3)`E . By Fact 4.2 this is less than e−p3`E . For sufficiently large constant factors in
our definition of `E , this evaluates to 1

nc , with a sufficiently large constant c that we retain high probability
even after we perform a union bound over all O(n) processes, and a union bound with the probability that
Lemma 4.3 holds in all Θ(log n) epochs.

Theorem 4.6. Using 0-complete link detectors, our MIS algorithm solves the MIS problem in O(log3 n)
rounds, w.h.p.

Proof. By definition, the algorithm takes O(log3 n) rounds: O(log n) epochs each consisting of O(log n)
phases each of length O(log n). To satisfy termination, we note that by Lemma 4.5, every process outputs
0 or 1 by the end of the algorithm, w.h.p. To satisfy independence, we note that by Lemma 4.4, no two
processes who are neighbors in E both output 1, w.h.p. And finally, to satisfy maximality, we note that
by the definition of the algorithm, a process does not output 0 unless it receives an MIS message from a

8

neighbor in E, and any process that sends an MIS message, outputs 1. To achieve our final high probability
we simply use a union bound to combine the two high probability results from above.

This corollary about the density of the resulting MIS follows from the definition of independence which
allows no more than a single MIS process in any disk.

Corollary 4.7. Fix an execution in which the MIS algorithm solves the MIS problem. For any process u and
distance r, there are no more than Ir MIS processes within distance r of u.

5 Constant-Bounded Connected Dominating Set Algorithm

In this section, we present an algorithm that solves the CCDS problem inO(∆ log2 n
b +log3 n) rounds, w.h.p.,

where b is the bound on message size in bits. (Recall that ∆ is the maximum number of G-neighbors that
a process has.) This algorithm uses the MIS algorithm from Section 4 as a subroutine. As in that previous
section, we assume that b = Ω(log n) and specifically that b ≥ c log n for an appropriate constant c. Without
loss of generality, we also assume that b = O(∆ log n) (as our algorithm never sends messages of any larger
size). Finally, we assume that processes are provided a 0-complete link detector.

At a high-level, the algorithm proceeds in two phases. First, it has processes build an MIS, placing each
MIS node in the CCDS. Next, it connects all MIS processes within 3 hops in G with a path consisting of
CCDS processes. Standard techniques show that the resulting structure satisfies the definition of a CCDS.

The core technical novelty of the algorithm is its efficient method for discovering and connecting nearby
MIS processes. In more detail, the simple approach would be to have each MIS process give each of its
neighbors a chance to explore whether it is on a path to a nearby MIS process. This would require, however,
O(∆) explorations. This is too slow given that there are only O(1) nearby MIS processes to be discovered
(a property that follows from Corollary 4.7, which bounds the density of our MIS).

The algorithm presented here, by contrast, makes use of a banned list process to ensure that an MIS
process only gives a neighbor a chance to explore if that neighbor is on the path to a nearby MIS process that
has not yet been discovered. This reduces the number of explorations from O(∆) to O(1). The O(∆ log2 n

b)
term in the running time describes the time needed for an MIS process to communicate its banned list
to its neighbors. For large message size (i.e., large b), this is fast, and the time to build the MIS and
explore neighboring paths dominates the time complexity. For small message size, however, this banned
list communication time dominates the time complexity and yields an algorithm no faster than the simple
approach of giving each neighbor a chance to explore.

For clarity, we start by presenting and proving the correctness of two subroutines before moving on to
the main algorithm. The first subroutine, bounded-broadcast, is used to broadcast a message to a process’s
G-neighbors, given a known bound on contention for this message. The second subroutine, directed-decay,
assumes an MIS and that each MIS process has a subset of its non-MIS neighbors wanting to send it a
message. The subroutine delivers at least one message to each MIS process.

5.1 The Bounded-Broadcast Subroutine

The subroutine bounded-broadcast(δ,m), when called by a process u with message m, attempts to deliver
m to u’s G neighbors. The parameter δ is a bound on the number of other nearby processes (within distance
d+ 1) that are also trying to perform a bounded-broadcast.

The subroutine works as follows: A process calling bounded-broadcast(δ,m) broadcasts m with proba-
bility 1/δ for `BB (δ) = Θ(δ log n) consecutive rounds.

9

Lemma 5.1. Assume process u calls bounded-broadcast(δ,m), and that during every round of the subrou-
tine, no more than δ other processes within distance d + 1 of u are running the subroutine concurrently. It
follows that u delivers m to all of its G-neighbors, w.h.p.

Proof. Let p1 be the probability that u broadcasts alone among all processes within distance d + 1 during
some round of the subroutine. (Notice, if this event occurs, u succeeds in delivering its message to its
G-neighbors.) We can bound this probability as: p1 ≥ 1/δ(1 − 1/δ)δ ≥ 1/4δ. Using Fact 4.2, we note
that the probability that u fails to succeed in broadcasting alone in all `BB (δ) rounds of the subroutine with
probability no greater than (1 − p1)`BB (δ) ≤ e−p1`BB (δ). For any constant c, we can use sufficiently large
constant factors in our definition of `BB (δ) to ensure this probability is no greater than 1

nc , as needed.

5.2 The Directed-Decay Subroutine

The directed-decay(〈m1,m2, ...〉) subroutine assumes that the processes have already solved the MIS prob-
lem. We will use the terminology covered processes to describe the processes that are not in the MIS. It also
assumes that all processes call the subroutine during the same round. Covered processes pass the subroutine
a vector containing the messages they want to attempt to send—each covered processes attempts to send at
most one message to each neighboring MIS process. We assume each message is labeled with the id of its
destination. All other processes pass an empty vector to the subroutine. For a given MIS process u, we use
the notation covered set of u to refer to the set of neighboring processes with a message to send to u. The
subroutine attempts to ensure that every MIS node u receives at least one message from its covered set, if it
is not empty.

The subroutine works as follows: The subroutine divides time into dlog ne phases of length `DD =
Θ(log n), each associated with an exponentially increasing broadcast probability, starting with 1/n and
ending with 1/2. If a covered process has multiple messages to send, it simulates a unique covered process
for each message. Initially all simulated covered processes are active. If a simulated covered process with
a message starts a phase active, it broadcasts its message with the corresponding probability during every
round of the phase. If a process has multiple simulated processes broadcast during the same round, it
combines the messages. (Since no process has more than a constant number of neighbors in the MIS, these
messages are of size O(log n) bits, matching our assumption that b = Ω(log n).)

At the end of each phase, every MIS process that received a message during the phase runs bounded-
broadcast(δDD ,m), where δDD = Id+1, to send its neighbors a stop order, m, labeled with its id. On
receiving a stop order from its message’s destination, the (perhaps simulated) covered process that originally
sent the message sets its status to inactive for the remainder of the subroutine.

Lemma 5.2. Assume that in some round after the processes have solved the MIS problem, they run the
directed-decay subroutine. By the end of the subroutine, with high probability, every MIS node u receives at
least one message from its covered set, if it is not empty.

Proof. To simplify notation, round n up to the nearest power of 2, and number the phases of directed decay
from 1 to log n. For concision, we will drop the term “simulated” when discussing the behavior of simulated
processes, and treat each like an independent process.

In each Phase i, active processes broadcast with probability 1
2logn−i+1 . We say a given MIS process’s

covered set is completed if all processes in the set have received a stop order from the MIS process.
We proceed by induction on the phase number. The inductive hypothesis is as follows: by the first round

of Phase i, all MIS processes with covered sets larger than 2logn−i+1 have completed their set. The base
case (i = 1) follows trivially: no process has more than n neighbors in G.

10

To prove that the inductive step holds, assume the hypothesis holds for some Phase i ∈ [1, log n−1]: we
will prove that it holds for Phase i+1, w.h.p. Let u be an MIS process that has not completed its covered set
by the end of Phase i, and has a covered set S, s.t., 2logn−i ≤ |S| ≤ 2logn−i+1. During this phase, processes
in S broadcast with probability p1 = 1

2logn−i . Let p2 be the probability that a single process in S broadcasts
in some round of this phase. Using the same techniques as in Lemma 4.3, combined with our bounds on the
size of S, we can bound this probability as: p2 ≥

∑
v∈S p1

∏
w∈S,w 6=v(1− p1) ≥ 1

8 .
Assume that some process v ∈ S broadcasts alone. We now calculate the probability that no other

G′-neighbor of u broadcasts during this round—therefore allowing u to receive v’s message. Only MIS
processes within distance d + 1 of u can have covered subsets that include processes within range of u
(recall that d = O(1) is the maximum distance at which a G′ edge exists). By Corollary 4.7, there exists
at most Id+1 = O(1) MIS processes within distance d + 1 of u. By our inductive hypothesis, the sum of
broadcast probabilities in each of the covered subsets associated with these MIS processes is also bounded
by a constant.

Therefore, for each such subset, the probability that no process broadcasts in a given round is also
constant. Combining, we have a constant number of potentially interfering covered subsets, each with a
constant probability of not interfering. The probability of no interference is therefore constant. Let p3

denote this constant probability of no interference, and p4 denote the probability that u receives a message.
We can bound p4 ≥ p2p3 = O(1). Using Fact 4.2, we note that the probability that u fails to receive a
message in all `DD rounds of this phase is no more than (1− p4)`DD ≤ e−p4`DD . For any constant c, we can
use sufficiently large constant factors in our definition of `DD to ensure that this probability evaluates to no
more than 1

nc ,
At this stage, u has received a message from its covered set. The inductive hypothesis, however, re-

quires that u also now successfully delivers a stop order to its covered set, using bounded-broadcast(δDD).
By Lemma 5.1, u succeeds in delivering its stop order so long as no more than δDD other processes
within G′ range of u’s covered set are executing the subroutine concurrently. As argued above, only MIS
processes within distance d + 1 of u are potentially within interference range of u’s covered set. For
δDD ≥ Id+1 = O(1), bounded-broadcast(δDD) successfully delivers the start order w.h.p. By a series
of O(n) union bounds, we show that every MIS process completes its covered set during the appropriate
phase of the subroutine, w.h.p.

The induction establishes that at the beginning of the final phase (Phase log n), all covered sets of size
greater than 2 have completed. For the small covered sets that remain in the final phase, the same argument
used above for the earlier stages of the induction holds. For each such covered set, in every round, there is
a constant probability of delivering a message to their destination. Over all `DD rounds of this phase, this
event occurs with high probability. Using a union bound, we combine this result with the high probability
that bounded-broadcast(δDD), called at the end of this final phase, successfully delivers the stop orders.

5.3 The Main CCDS Algorithm

Having described our subroutines, we continue by describing the main CCDS algorithm (which relies on
these subroutines). As already described, the algorithm consists of two phases: first, it builds an MIS, and
then it connects nearby MIS processes.

Our algorithm begins with the processes executing the MIS algorithm from Section 4. We assume
every process not in the MIS knows which of its G-neighbors are in the MIS. (Notice that the algorithm
in Section 4 provides this information). After building the MIS, the algorithm adds every MIS process to
the CCDS, then attempts to discover, and add to CCDS, a constant-length path between every pair of MIS
processes that are within 3 hops in G.

At a high-level, this path-finding procedure works as follows: Each MIS process u maintains a banned
list Bu, initially set to contain its own id and the id of the processes in its link detector set (i.e., its neighbors

11

in G). Throughout the path-finding procedure, process u adds to its banned list Bu the MIS processes that
it discovers as well as the G-neighbors of these discovered MIS processes. When a given MIS process asks
its neighbors to nominate a nearby process to explore (i.e., to see if it is connected to an MIS process or the
neighbor of an MIS process), it uses this banned list to prevent exploration of processes that lead to already
discovered MIS processes. In other words, an MIS process asks processes to report any neighbors that are
not already in its banned list.

We divide the search procedure into search epochs. During the first phase of each epoch, an MIS process
u transmits its banned list to its neighbors using bounded-broadcast. The time required to do this depends
on b: this is the source of the ∆/b term in the final time complexity.

During the second phase, MIS process u asks its reliable neighbors to use directed-decay to nominate
one of their reliable neighbors for further exploration. (Recall, “reliable neighbor” refers to a neighbor
connected by a reliable link.) The restriction for such a nomination, however, is that the nominated process
cannot be in the banned list. Notice, these nominations require that each process knows its set of reliable
neighbors: this is where the assumption of 0-complete link detectors proves useful. By the definition of the
banned list, any such nominated process must either be an MIS process that u does not know about, or be a
neighbor of an MIS process that u does not know about. In both cases, we find a new MIS process within 3
hops if such an MIS process exists.

In the third phase, bounded broadcast is used to talk to the nominated process, first in order to find out if
it is in the MIS or if it is a neighbor of a process in the MIS, and then second to transmit the necessary new
information to u to add to its banned list.

This path finding process, which ensures that u never explores a path that leads to an MIS process
it already knows, is what provides our efficient running time (as long as the message size is large). If
we instead had u explore every reliable neighbor, and in turn had these neighbors explore each of their
neighbors, the running time would be O(∆polylog(n)), regardless of the message size.

We continue by describing the details of this path finding procedure: Each MIS process maintains a
banned list Bu and a delivered banned list Du. Bu is initially set to u’s link detector set and Du is empty.
Each non-MIS process v maintains a replica banned list Bv

u and a primary replica banned list P vu , both
initially empty, for each MIS process u that neighbors it in G. The algorithm proceeds by dividing groups
of consecutive rounds into `SE = O(1) search epochs. Each search epoch is divided into 3 search phases,
which we describe below.

Phase 1: Each MIS process u divides Bu \ Du into messages of size b − log n bits, where b is the
maximum message size. It then includes its own id with each message so recipients know its source. Process
u sends these messages to its non-MIS neighbors using bounded-broadcast(δ,m), with δ = Id+1 = O(1).
Let process v be a non-MIS process that neighbors u in G. This process adds the values received from u to
Bv
u. If this is the first search epoch, it also adds these values to P vu . At the end of the phase, u setsDu = Bu.

The phase is of a fixed length, long enough for the maximum number of calls to bounded-broadcast that
might need to be made. As will be clear by the description of subsequent phases, there are never more
than ∆ new ids added to Bu in a search epoch, and hence the set Bu \Du never contains more than ∆ ids.
Therefore we can bound the number of calls by O(∆ logn

b).

Total Length: O(∆ log2 n
b) rounds.

Phase 2: Let Nu be the subset of processes that neighbor MIS process u in G, where each v ∈ Nu has a
neighbor w in its link detector set such that w /∈ Bv

u. We say w is the neighbor nominated for u by v. To do
so, the processes run directed-decay to report their nominations to their neighbor MIS processes. With high
probability, each MIS process u hears from one process in Nu, if the set is non-empty. The fixed length of
this process is the number of rounds required to run directed-decay.

Total Length: O(log2 n) rounds.
Phase 3: Let u be an MIS process that heard from a process v ∈ Nu during the previous phase. Let w

12

be the process nominated for u by v. During this phase, u initiates an exploration of w. In more detail, using
bounded-broadcast, with the same parameters as Phase 1, u tells v that it has been selected. Next v uses
bounded-broadcast with these same parameters to tell w that it wants to find out more about it. If w is in the
MIS, it sends u its neighbor set. If w is not in the MIS, it chooses a neighbor x that is in the MIS, and sends
to u the id of x and Pwx (i.e., x’s neighbor set). Finally, v uses bounded-broadcast to pass this information
along to u, which adds the new values to its banned set, Bu. Process v and w add themselves to CCDS by
outputting 1 if they have not already done so. The fixed length of this phase is set to the number of rounds
required for the maximum number of calls that might need to be made to bounded-broadcast, which, as in
Phase 1, is bounded as O(∆ logn

b).

Total Length: O(∆ log2 n
b) rounds.

The total running time for the MIS algorithm is O(log3 n) rounds, and the time to run O(1) search
epochs is bounded by O(∆ log2 n

b + log2 n). Combined this provides our final running time of O(∆ log2 n
b +

log3 n) rounds.
Following is our main theorem, which shows that indeed we obtain a CCDS.

Theorem 5.3. Using 0-complete link detectors, our CCDS algorithm solves the CCDS problem inO(∆ log2 n
b +

log3 n) rounds, w.h.p.

Proof. Our CCDS algorithm first constructs an MIS using the algorithm presented in Section 4. It then
executes `SE search epochs, each consisting of three phases. The MIS algorithm and the search epoch
phases are of fixed length, so the running time of the algorithm follows directly from its definition.

For the remainder of the proof, assume that the MIS algorithm called by the CCDS algorithm solves
the MIS problem, and that all O(n) calls to bounded-broadcast and directed-decay during the O(1) search
epochs satisfy the guarantees of Lemmas 5.1 and 5.2. By a union bound, these assumptions hold w.h.p.

Useful Notation. We begin by defining some useful notation: (a) We say a process v is covered by an
MIS process u if v and u are neighbors in G. (b) we say an MIS process u has discovered an MIS process
v (u 6= v) if u learned about v and v’s G-neighbors during Phase 3 of a search epoch; (c) we say an MIS
process u is connected to an MIS process v (u 6= v) if there exists a path in the CCDS of length 6 hops or
less between u and v in G; and (d) we define Uu, for MIS process u, to be the set of MIS processes (not
including u) that are within 3 hops of u and that are not connected to u.

Useful Claims. Our goal will be to show that this set Uu becomes empty by the end of the algorithm.
To aid this task, we define the following useful claims:

Claim 1: If MIS process u discovers MIS process v, then by the end of the same search epoch it adds a
path of length no more than 3 hops between u and v to the CCDS.

Proof. This claim follows from the definition of the algorithm.
Claim 2: Let u be an MIS process. Assume that during Phase 2 of some search epoch at least one

process covered by u has a neighbor that it nominates for u. It follows that u discovers a new MIS process
during this epoch.

Proof. Let u′ be the process covered by u assumed by the claim. Assume u′ is nominating a neighbor v′

for u. By definition of the algorithm, v′ is not in the banned set Bu for this epoch. It follows that either v′ is
an MIS process that has not been discovered by u, or none of the MIS neighbors of v′ have been discovered
by u. At least one such u′ succeeds in its call to directed decay. In either case, u discovers a MIS process
during Phase 3 of this epoch.

Main Proof Argument. By repeated application of Claim 2, it follows that u will keep discovering
processes within 3 hops until its neighbors run out of nominations for u. There are two things to note here:
first, banned sets are monotonically increasing, so once a process runs out of nominations it will never again
have nominations; second, by Corollary 4.7, we know there are no more than I3d = O(1) MIS processes

13

within 3 hops of u, so if we set `SE = I3d, we have enough search epochs to reach the point where we run
out of nominations.

We will now consider the set Uu of processes that are in the MIS, are within 3 hops of u, but are still
undiscovered by u after the point where its neighbors have run out of nominations. Our goal is to show that
a constant length path in the CCDS between u and these processes exists by the end of algorithm. We first
note that every process v ∈ Uu must be exactly 3 hops from u: if some v was within 2 hops, it would have
been nominated by its common neighbor with u until discovered. Let u, u′, v′, v be a 3 hop path from u to
some v ∈ Uu. Because we assume that no neighbor of u has nominations for u at this point, v′ must be in
the banned set Bu—otherwise, u′ could nominate it. By the definition of the algorithm, it follows that that
u must have previously discovered some MIS process w such that w neighbors v′. This, in turn, puts MIS
process w within 2 hops of v, on the path w, v′, v. As we argued above, however, any MIS processes within
2 hops eventually discover each other. It follows that by the end of the algorithm w discovers v.

We now have a path from u to w and from w to v. By Claim 1, because each path was from a discovery,
each is of length 3 hops or less. We can combine these two paths to get a single path, of length 6 hops or
less, from u to v.

We have shown that, with high probability, the algorithm constructs a dominating set consisting of
all MIS processes, plus a constant-length path between every pair of MIS processes within 3 hops. By a
standard argument (see Section 2.6.1 of [10]), this yields a connected dominating set. We are left to show
that the dominating set is constant-bounded. To prove this, fix a process u. By Corollary 4.7, there are only
a constant number of MIS processes within 1 hop of u in G′. We must also bound, however, the CCDS
processes added by connecting nearby MIS processes with a path. Consider every pair of MIS processes
(v, w) such that v discovered w and added a path of length 2 or 3 to the CCDS. If v and w are both more
than distance 4d from u, then neither v, w, nor any process on their connecting path are within 1 hop of u.
By Corollary 4.7, there are at most x = I4d = O(1) MIS processes within distance 4d of u, and therefore
at most x2 = O(1) pairs of MIS processes, each contributing no more than 4 processes to the CCDS, for a
total of no more than 4x2 = O(1) CCDS processes within 1 hop of u, as needed.

6 Upper Bound for Incomplete Link Detectors

In the previous section, we described an algorithm that can solve the CCDS problem with a 0-complete
link detector. In this section we answer the natural follow-up question of whether we can still solve the
problem with an incomplete link detector (i.e., a τ -complete link detector for some τ > 0). In more detail,
we describe an algorithm that solves the problem in O(∆polylog(n)) rounds, when combined with a τ -
complete link detector for any τ = Θ(1). Notice, this represents a clear separation from the algorithm for
0-complete detectors, which can solve the CCDS problem in O(polylog(n)) rounds when the message size
is b = Ω(log n). In the next section, we will prove that this gap is fundamental by proving a lower bound of
Ω(∆) rounds for the problem for any τ > 0.

The algorithm follows the same basic strategy as the CCDS algorithm presented in Section 5—i.e.,
build a dominating structure then connect nearby dominating processes—but differs in its details. A main
difficulty we face now that τ > 1 is that a dominating structure established in H might not provide a
sufficient building block for a connected structure. To understand why, recall that in the setting with reliable
links (i.e., where τ = 0), it was sufficient for each dominator to find and connect to every dominator within
3 hops. With τ > 1, this strategy no longer guarantees a connected structure. Imagine, for example, a line
of nodes u1, u2, u3, u4, u5 in G (i.e., each (ui, ui+1) is an edge in G) that is fully connected in G′. Imagine
that u3 incorrectly contains u1 in its link detector (which is valid behavior even for τ = 1). Depending on
the dominating set algorithm, it is possible that u1 and u5 end up in the dominating set, with u3 believing it
is dominated by u1 (even though, in reality, they are only connected in G′). Now, when the time comes for

14

u1 and u5 to search for other dominators within 3 hops, imagine the G′ edges are excluded from the reach
set. Neither of these nodes will find each other, and therefore, no nodes between them will be added to the
CDS. The resulting structure is not connected.

Our solution to this problem is to deploy a more involved dominating set structure that does not just
guarantee every node is covered by a neighbor in its link detector, but that every node is covered by at least
one G-neighbor. In our proof, we argue that this coverage property is sufficient to guarantee that a 3-hop
search will yield a connected structure. To achieve this property we run an MIS algorithm τ + 1 times. In
each instance, nodes disregard nodes not in their link detector sets. Also, a node that joins the MIS in one
instance will not participate in future instances. This guarantees that every node either joins the MIS, or
ends up dominated by a G-neighbor, in at least one of the τ + 1 instances.

Algorithm Description. The CCDS algorithm proceeds in two stages. The first stage builds a dominating
set by running τ + 1 consecutive iterations of an MIS algorithm. The second stage attempts to connect
all nearby dominating set nodes with a constant-length path. The dominating nodes and the nodes on the
connecting paths all join the CCDS.

We begin with the first phase. We cannot use the MIS solution from Section 5 as it requires τ = 0.
Fortunately, because our time complexity target is less ambitious in this setting, we can make due with a
slower approach. In particular, we use the SAP local broadcast algorithm of [8] to simulate the broadcast
version of the synchronous message passing model (i.e., the version of the message passing model where
you must send the same message to all your neighbors in each round). That is, we run one instance of the
local broadcast protocol for each simulated round of the message passing model, with nodes broadcasting
the message (if any) they want to send in the simulated round. A node receiving a message from the local
broadcast protocol will simulate receiving it in the message passing model if and only if it comes from a
neighbor in its link detector set.

On top of this simulated message passing model, we run τ + 1 consecutive iterations of Luby’s MIS
algorithm [17]. It is important to note that this algorithm works in our broadcast variant of the message
passing model, as it always has a node broadcast the same message to all its neighbors. To keep these
iterations non-overlapping we assigned a fixed group of tMIS rounds to each, where tMIS = O(log n) is the
high probability termination time of Luby’s algorithm. A node participates in a given iteration if and only if
it did not join the MIS in a previous iteration. Every node that joins the MIS in some iteration also joins the
dominating set that is used as a basis for the next phase of the algorithm.

In the second phase of our CCDS algorithm, we must now search for short paths between nearby CCDS
nodes, and add the nodes on these paths to our structure. Our goal is to find such a path between all
dominators within 3 hops in G. For this second phase, we abandon the message passing model simulation,
as it is too slow for our search strategy (which requires dominators to communicate, sequentially, with each
of their O(∆) neighbors). Instead, we make use of the bounded broadcast subroutine of Section 5, which
allows a node to successfully broadcast a message to its neighbors inO(log n) rounds, with high probability,
so long as no more than O(1) other nodes within a constant number of hops are also running the subroutine.

We enforce this contention property with a token-based approach. That is, each node in the dominating
set is given a token. The token must be explicitly passed from node to node, such that only one node owns a
token at any given time. The token can never travel more than 3 hops in H . And finally, a node cannot run
bounded broadcast unless it possesses the token. If a node is required to run a bounded broadcast on behalf
of multiple tokens at the same time, it can combine the messages into one larger message. Because a node
can never possess more than a constant number of tokens, this does not effect the asymptotic message size
bound. It is straightforward to see that we can call bounded broadcast with sufficiently large constant factor
to ensure it works with high probability under these constraints.

We divide the search phase into several steps. In the following, let M be the set of nodes in the domi-

15

nating set. Assume we divide rounds into groups of size tBB = O(log n), where tBB is the time complexity
of bounded broadcast. Call each such group a bounded broadcast round. And finally, assume that nodes
always ignore neighbors not in their link detector set.

The first step has each u ∈ M pass its token to each of its neighbors, one by one. When each neighbor
v receives the token, it calls bounded broadcast to announce its id and the fact it neighbors u. It then returns
the token. This requires 3 bounded broadcast rounds for each neighbor. If u does not receive its token back
from some v, it recognizes that the link to v is unreliable. In this case, it acts as if v is not in its link detector
set (it ignores v for the remainder of the execution) and it respawns the token so it can continue. All nodes
in M wait 3(∆ + τ) bounded broadcast rounds before proceeding to the next step—to ensure all nodes have
finished this first step. Notice, at the end of the first step, the neighbors of each u ∈ M have collective
knowledge of all nodes in M within 3 hops of u in G.

In the second step, we add short paths between nodes within 2 hops in M . Each u ∈ M has a set Du,
initially empty, to record the nearby nodes in M to which it has already added a path in the CCDS. As
before, u will pass the token to each neighbor v, along with a copy of Du (which will never contain more
than a constant number of ids). On receiving the token, if v directly neighbors any w 6= u in M (which it
knows because it would have received the token during the first step), and w /∈ Du, node v joins the CCDS
and reports w to u when it returns the token. Node u will then add w to Du. As in step 1, if it fails to receive
a reply from a neighbor it commits to ignoring that neighbor moving forward and respawns the token. This
step again requires O(∆) bounded broadcast rounds to complete. (Starting with this step, it is not important
that all nodes are synchronized, so a node u ∈M can move on to step 3 as soon as it finishes with all of its
neighbors in step 2.)

In the third step, we add short paths between nodes that are 3 hops apart in M . This step requires more
care. We begin by having each u ∈M once again pass the token, along with the current value ofDu, to each
neighbor, one by one. When neighbor v receives the token, it responds by reportingMv = {w ∈M \Du | w
is 2 hops from v}. For eachw ∈Mv, it also includes a setQv(w) of up to 2τ+1 neighbors of v that reported
in step 1 that they neighbored w. If v knows of less than 2τ + 1 such nodes, it returns them all, if it knows
more, it returns just the first 2τ + 1 by some arbitrary ordering. Notice, this message still contains only a
constant number of ids. As before, if v fails to reply, u ignores v and respawns the token.

After u has gone through all of its neighbors, it now knows of all 3-hop neighbors from M that it must
try to connect to. It also has some information about potential paths to these neighbors. We have node u deal
with each such w separately. Fix one such w. Node u starts by simulating a reliable communication channel
with w. To send a message to w, u will attach the message to a token, and pass the token and message
hop-by-hop on some path it learned about to w. When w receives the message, it replies by bouncing the
token back on the same path. If node u does not get a response back after 6 bounded broadcast rounds, or
it gets back a failure notice from a hop farther along the path that failed to receive a reply, it knows there is
an unreliable link somewhere on the path and moves on the next path—using a selection criteria we define
below.

In particular, consider the set S of u’s neighbors that claim to be on a 3-hop path to w. Node u starts
with the first v ∈ S, by some arbitrary ordering. It will then try a path for each Qv(w), until one works, or
all fail. If at some point it fails to hear back from v, or if v reports a failure for all next hops in Qv(w), u
will move on to the next node in S. We note that u’s simulation will eventually stabilize. Let u, v, v′, w be
the 3-hop path in G we assume exists. If the simulation keeps failing, u will eventually move on to v. If v
knows of≤ 2τ+1, 2-hop paths to w, then v′ ∈ Qv(w), and if the simulation keeps failing, u will eventually
select u, v, v′, w. Otherwise, if v knows of more such paths, it is possible that v′ /∈ Qv(w). In this case,
however, we note that there must be some v′′ ∈ Qv(w) that is connected to both v and w in G. To see why,
note that |Qv(w)| = 2τ + 1 in this case, and at most τ of these nodes can fail to be connected to v in G, and
up to at most τ can fail to be connected to w in G.

Our simulated channel from u to w, therefore, can have up to O(∆) bounded broadcast rounds of delay

16

beyond its normal constant round delay for each round trip. We can now discuss how u and w coordinate
using this reliable channel. To find a path between u and w to add to the structure, we have u propose to
w one such path it knows about. Then u uses its token to request the first hop join while w does the same
for the second hop. Nodes u and w then report back to each other whether they were successful in their
requests. If both are successful, then they are done—a path between them has been added to the structure. If
at least one of the nodes failed to hear back, u adds the non-replying node to the list of nodes being ignored,
and proposes a new path. Notice, both u and w can each have at most τ neighbors that potentially join but
fail to report this back due to a faulty link. Therefore, a path will be founded between the two nodes with at
most 2τ extra nodes joining the CCDS. This whole step still takes only O(∆) bounded broadcast rounds.

Theorem 6.1. Using τ -complete link detectors, for any τ = O(1), the CCDS algorithm described above
solves the CCDS problem in O(∆ log2 n) rounds, w.h.p.

Proof. We begin with the time complexity. Each simulated round of the message passing model takes
tSAP = O(∆′ log n) rounds. We run τ + 1 = O(1) iterations of an MIS algorithm that each last tMIS =
O(log n) simulated rounds. During the second phase, as specified in the algorithm description, each node in
M requires no more thanO(∆+τ) = O(∆) bounded broadcast rounds. At this point, the total running time
is O(∆′ log2 n + ∆ log n) = O(∆′ log2 n) rounds. We conclude the time complexity analysis by noting
that in our geographic model, ∆′ = Θ(∆). To see why, notice that for any node u, the region containing
potential G′ neighbors can be covered by O(d2) = O(1) disks of diameter 1 (i.e., as argued in our analysis
of the MIS algorithm from Section 5). Each disk is fully connected in G, and therefore has at most ∆ nodes.
It follows that there are no more than O(∆) nodes in this region.

We next consider the properties of the structure we build. To do so, we note that our key high probability
subroutines: MIS, local broadcast, and bounded broadcast, need to succeed for a polynomial number of
rounds (or simulated rounds, for the case of the MIS algorithm), in n, for no more than n nodes per round.
Therefore, for sufficiently large constant factors, we can assume by a union bound that they always succeed,
with high probability. Moving forward with our analysis, assume this holds.

To achieve the constant-degree property, fix some node u. We can apply the same argument used in
Section 5 which proves that any given instance of an MIS algorithm can add at most a constant number of
u’s neighbors to the MIS. Because we run only τ + 1 = O(1) iterations of an MIS algorithm in the first
phase of our algorithm, u ends up with at most a constant number of neighbors in M .

Again leveraging the argument from Section 5, we next consider the nodes added to the CCDS structure
when we connect nearby nodes in M . This argument proves that these paths add no more than a constant
number of additional nodes to the structure withinG′ range of u. Unlike Section 5, however, we must finally
also consider failed paths, where a node joined a path from some v, w ∈ M , but its link to v or w failed so
it could not report this fact, leading the dominators to move on to potentially add a different path between
themselves . By the definition of the algorithm and our link detector, for 2 hop paths between a pair of nodes
inM , this can only happen τ times. For 3 hop paths, the algorithm will have no more thanO(τ2) failures. In
both cases, we are increasing the number of failed paths within range of u by only a constant factor, keeping
the total bound on u’s neighbors in the CCDS at a constant.

Moving on, we now consider the connectivity property. Because we run τ + 1 iterations of the MIS
algorithm, every node either ends up in M or neighbors at least one node in M by G. Let S be the CCDS
generated by our algorithm. Our above maximality observation will prove useful in showing that S is
connected inH . Assume for contradiction that S is not connected inH . Partition the nodes into components,
C1, C2, ... such that for each Ci, S ∩ Ci is a CCDS for Ci, but for every Ci and Cj , i 6= j, S ∩ (Ci ∪ Cj)
is not a CCDS for Ci ∪ Cj . Furthermore, when defining these components, for each u /∈ S, make sure it is
included in a component that includes a G-neighbor in S (every node has at least one such neighbor in S; if
it has multiple neighbors in different components, choose one arbitrarily).

17

By our contradiction assumption there are at least two such components. Because G is connected (by
the model assumption), there must be two components Ci and Cj that are connected in G such that they are
not connected in H over the nodes in S ∩ (Ci ∪ Cj). Let (u, v) be an edge in G between Ci and Cj . By
definition, either u is in S, or u has a G-neighbor u′ in S ∩ Ci. The same holds with respect to v and some
v′ ∈ S ∩ Cj . Consider the cases for u and v. If both u and v are in S, then Ci and Cj are not separate
components—a contradiction. If (w.l.o.g.) only v is in S, then u′ is 2 hops from v. In this case, during our
CCDS algorithm, u would have heard from v and reported this to u′. During the 2 hop connection step, u′

would have added a 2 hop path in H between itself and v (potentially including v, or potentially another
node). This path, however, connects the components in H: a contradiction.

Next, assume that neighbor u nor v are in S. It follows that u′ and v′ are within 3 hops in G. In this
case, u would have learned of v′ through v, and v would have learned of u′ through u. During the 3 hop
connection step of our algorithm, u′ would have systematically explored paths to v′ until successfully adding
such a path in H . Again, this connects components in H and generates a contradiction.

To bring together the pieces, we proved that under the high probability assumption that our subroutines
worked correctly: (a) no node can have more than a constant number of G′-neighbors in S; and (b) every
node neighbors S in G and S is connected in H . Combined, this provides that our algorithm generates a
CCDS, with high probability.

7 Lower Bound

In Section 6, we described an algorithm that solved the CCDS problem in O(∆polylog(n)) rounds, given a
τ -complete detector, for τ > 0. In this section we show the bound to be nearly tight by proving that even
with a 1-complete link detector, constructing a CCDS requires Ω(∆) rounds. This bound holds regardless
of message size. Formally:

Theorem 7.1. LetA be a randomized CCDS algorithm such thatA combined with a 1-complete link detec-
tor guarantees, w.h.p., to solve the CCDS problem in f1(∆, n) rounds, where ∆ is the maximum degree in
G and n is the network size. It follows that f1(∆, n) = Ω(∆).

Our proof strategy is to reduce an easily boundable game to the CCDS problem. This reduction requires
a pair of transformations.

First Transformation. The first transformation is from a CCDS algorithm to a solution to the β-double
hitting game, which is defined as follows: There are two players, A and B, represented by the synchronous
probabilistic automata PA and PB . At the beginning of the game, an adversary chooses two target values
tA, tB ∈ [β]. It then provides tB as input to PA and tA as input to PB . The automata execute in rounds.
In each round each automaton can output a guess from [β]. Notice, however, other than the inputs provided
by the adversary at the beginning of the execution, these automata have no communication with each other.
That is, their executions unfold independently. The players solve the game when either PA outputs tA or
PB outputs tB .

We continue with the transformation lemma:

Lemma 7.2. LetA be a CCDS algorithm such thatA, combined with a 1-complete link detector, guarantees,
w.h.p., to solve the CCDS problem in f1(∆, n) rounds, where ∆ is the maximum degree in G and n is the
network size. We can then construct a pair of probabilistic automata (PA,PB) that solve the β-double
hitting game in f2(β, n) = f1(β, n) +O(1) rounds, w.h.p., where β is any positive integer.

Proof. Notice, with this transformation we shift from the world of radio network algorithms to the world of
abstract games, where players are represented by probabilistic automata. We maintain n as a parameter in
the running time function, however, so we can specify “w.h.p.” in a consistent manner.

18

Our transformation requires that we construct two player automata,PA andPB , given a CCDS algorithm
A. Our strategy is to design our player automata to cooperatively simulate an execution of A running on
a dual graph network of size 2β, where G consists of two cliques, each of size β, that are connected by a
single link, andG′ is fully connected. Call the two cliques in this networkA andB. Automata PA simulates
processes 1 to β assigned to nodes in clique A, and PB simulates processes β+ 1 to 2β assigned to nodes in
clique B. Thus we have 2β processes total, each assigned a unique id from [2β], as required by our network
model.

In this simulation, we want the two target ids, tA and tB from the hitting game to correspond to the ids
of the processes assigned to the endpoints of the link connecting the two cliques (which we will call the
bridge). To do so, we must be careful about how we simulate the 1-complete link detectors used by the
broadcast algorithm. In more detail, we have PA give each of its simulated processes a link detector set
consisting of the set [β] and the id tB +β, and we have PB give its simulated processes the set consisting of
{β+1, ..., 2β} and the id tA. It follows, that each player is simulating their processes receiving a 1-complete
link detector set that is compatible with a process assignment that has process tA (in clique A) and tB + β
(in clique B) as the endpoints of the bridge.

We have each of the two player automata simulate each round of the CCDS algorithm as follows: if two
or more simulated processes broadcast, or no simulated process broadcasts, then all processes simulated by
the automata receive ⊥. Notice, here we leverage the fact that we are in the dual graph model. Assume, for
example, that tA and one other process, i, broadcast in clique A. In the classical radio network model, tA’s
message would be received by process tB +β because i is not connected to tB +β. In the dual graph model,
however, the adversary can choose in this round to deliver a message on i’s G′ edge to tB + β, causing a
collision with tA’s message.

On the other hand, if only one simulated process broadcasts, then all processes simulated by that au-
tomata receive the message, and the automata makes a guess at the end of the round. The guessing works as
follows: if process i simulated by PA broadcasts alone in a simulated round, A guesses i during this round
of the game, and if j simulated by PB broadcasts alone, B guesses j − β.

Finally, if the simulated processes in clique A (resp. B) terminate (i.e., they have all output 0 or 1),
then PA (resp. PB), halts its simulation and guesses i (resp. i − β), for each simulated process i from its
clique that output 1. Because players can only output one value per round, but multiple simulated processes
from a clique might join the CCDS, completing this guessing might require multiple rounds. Due to the
constant-bounded property of the CCDS, however, no more than O(1) rounds will be needed to complete
this guessing.

To conclude this proof, we must now show that this simulation strategy solves the double hitting game.
We first notice that the simulations conducted by PA and PB will remain valid so long as there is no
communication required between the cliques. By our model definition, the only scenario in which a message
must pass between the cliques is if process tA or tB + β (i.e., the processes at the endpoints of the bridge)
broadcasts alone. In this case, however, the player responsible for the solo broadcaster would guess its
target, solving the double hitting game.

We now consider the case where the algorithm terminates without communication between the cliques.
Assume that the execution under consideration solves the CCDS problem (an event that occurs, by assump-
tion, w.h.p.). Consider the graph H used in the definition of the CCDS problem. In our simulated network,
this graph matches G: i.e., cliques A and B connected by a single bridge link. By the domination and
connectivity properties of the CCDS problem, the endpoints of this bridge must be included in the CCDS.
The processes corresponding to these endpoints are tA and tB + β. Therefore, when the respective players
in the double hitting game output the guesses corresponding to their CCDS processes, they will output their
targets, solving the game.

19

Second Transformation. Our next transformation is from the β-double hitting game to the β-single hitting
game, which is defined the same as double hitting game, except there is now only one player and target. That
is, the adversary chooses a value from [β], and then the synchronous probabilistic automata PA,B guesses
one value per round until it guesses the target value. In the proof of our main theorem statement, we will
show that the single hitting game is easily bounded. Note the reason we require a non-trivial transformation
from the double hitting game to the single hitting game is because the exchange of input values at the
beginning of the double hitting game, allows for subtle cooperative strategies that prevent us from just using
one of the automata PA or PB as our solution to the single player variant. We detail this transformation with
the following lemma:

Lemma 7.3. Let (PA,PB) be a pair of automata that solve the β-double hitting game in f2(β, n) rounds,
w.h.p., for any positive integer β. We can construct a probabilistic automata PA,B that solves the β-single
hitting game in f3(β, n) = f2(2β, n) rounds, w.h.p., also for any positive integer β.

Proof. We are given a pair of automata PA and PB that solve the 2β-double hitting game in f2(2β, n)
rounds, w.h.p. Unwinding the definition of the problem we get the following: for every pair of targets
tA, tB ∈ [2β], PA and PB will solve the double hitting game for these targets in no more than f2(2β, n)
rounds, w.h.p.

Let us now unwind even more: if we run PA with target tA and input tB , and run PB with target tB
and input tA, at least one of these two automata will output their target in f2(2β, n) rounds, w.h.p. To make
this argument we must proceed carefully. Recall, we define w.h.p. to be 1 − 1

nc for some constant c that is
sufficiently large for our needs. In this case, assume it is at least of size 2. Let pA be the probability that
PA fails to output tA in f2(2β, n) rounds given input tB . And let pB be the probability that PB fails to
output tB in f2(2β, n) rounds given input tA. Notice, these two probabilities are independent as the player
automata execute independently once provided their respective inputs. By our assumption that at least one
player succeeds with high probability, we know pApB ≤ 1

nc . To satisfy this inequality, at least one of these
probabilities is no larger than 1

nc/2 . The player automata with this probability therefore solves the game fast,
when run with (tA, tB), with probability at least 1− 1

nc/2 , which still qualifies as “w.h.p.” Call this automata
the “winner” for this pair of targets (if both output in the required time with the required probability, default
to call automata PA as the winner).

With this in mind, we can calculate a (2β × 2β)-sized table, where each position (x, y) contains either
A or B depending on which corresponding automata is the winner for targets tA = x and tB = y. (Notice,
this table is not something constructed by PA,B , it is instead something that can be calculated offline to help
construct PA,B .) By a simple counting argument, there must exist either: (a) a column with at least β A’s;
or (b) a row with a least β B’s.

For the remainder of this construction, assume we find some column y such that this column contains at
least β A’s. The case for a row with β B’s is symmetric. Given this column y, we know that there is a subset
Sy ⊂ [2β] of size β, such that if we run PA with target tA ∈ Sy and input tB = y, it will output the target
in f3(2β, n) rounds, w.h.p. (e.g., we can define Sy to be the first β rows in column y that contain A.) Let ψ
be bijection from Sy to [β].

We now define PA,B as follows: have the automata simulate PA being passed input y. If the simulated
PA outputs a guess x in a round, and x ∈ Sy, PA,B outputs ψ(x).

We now argue that PA,B solves the β-single hitting game. Let tA,B ∈ [β] be the target chosen for PA,B
at the beginning of some execution of the single hitting game. By definition, there exists an x ∈ Sy such
that ψ(x) = tA,B . By the definition of our table, we know PA will output target tA = x, given input
tB = y, in f2(2β, n) rounds, w.h.p. It follows that PA,B simulating PA with this input will therefore output
ψ(x) = tA,B in this same time with this same high probability, as needed.

20

Main Proof. We can now pull together these pieces to prove Theorem 7.1:

Proof (of Theorem 7.1). Starting with the CCDS algorithm A provided by the theorem statement, we apply
Lemmas 7.2 and 7.3, to produce a solution to the β-single hitting game that solves the game in f3(β, n)
rounds. We next note that the β-single hitting game, which requires a player to identify an arbitrary element
from among β elements, requires Ω(β) rounds to solve w.h.p. (We formalize this intuitive probability
fact as part of the proof for our lower bound on randomized broadcast, presented in [11].) This yields:
f3(β, n) = Ω(β). Finally, substituting the running time functions generated by our transformations, we get:
f3(β, n) = f2(2β, n) = f1(2β, n) +O(1). It follows from our bound on f3 that f1(2β, n) +O(1) = Ω(β).
There exists a graph in which ∆ = 2β, and therefore f1(∆, n) = Ω(∆), as needed.

8 Dynamic Link Detectors

For clarity, this paper considers building a CCDS as a one-shot problem: processes are provided a static
estimate of their reliable neighbors, formalized as a link detector set, and then attempt to build the desired
structure as quickly as possible. In long-lived wireless networks, however, link status is not necessarily
stable. It is possible for a link that has behaved reliably for a long period to suddenly degrade into unre-
liability (this could happen, for example, due to a change in the multipath environment). We can capture
this setting with a dynamic definition of link detector as a service that provides a set to each process at the
beginning of every round (a definition more aligned with the classic failure detector formalism [4]). We say
a dynamic link detector stabilizes at some round r, if in every execution its output matches the definition of
the corresponding static link detector at r and never again changes in future rounds.

Given the efficiency of our CCDS solution (at least, under the assumption of large messages), a simple
approach to dealing with changing link detector output is to rerun the CCDS algorithm every δCDS =

Ω(∆ log2 n
b + log3 n) rounds. Call this the continuous CCDS algorithm. We can assume that when we

rerun the algorithm, processes wait to change their outputs until the very end of the algorithm, so they can
transition from the old CDS to the new CCDS all at once. We say that the continuous CCDS algorithm
solves the CCDS problem by some round r, if for any round r′ ≥ r, the output solves the CCDS problem,
w.h.p. The following theorem follows directly from the definition of this algorithm:

Theorem 8.1. In any execution of the continuous CCDS algorithm with a 0-complete dynamic link detector
that stabilizes by round r, the algorithm solves the CCDS problem by round r + 2δCDS .

It remains an interesting open question to explore the dynamic case in more detail. For example, we
might want to redefine what it means to solve problems like MIS and CCDS, with respect to the current
output of the link detector. We might also want to design efficient repair protocols that can fix breaks in the
structure in a localized fashion.

9 An MIS Algorithm for Asynchronous Starts and No Topology Knowledge

The model considered in this paper assumes that all processes start during the same round. In this section,
we describe a collection of small changes that allows our MIS algorithm from Section 4 to work in a model
where processes wake up during different rounds, and have only local knowledge of the round number. This
matches the wake up assumptions of previous studies of the MIS problem in the classical radio network
model; e.g., [14, 18]. Furthermore, we also show that if deployed in the classical radio network model,
our algorithm requires no topology information. It follows that our O(log3 n) time solution is directly
comparable to the O(log2 n) time solution of [18]. We discuss this comparison in this section.

21

Changes to Algorithm. If processes wake up asynchronously, they cannot start competition phases and
epochs at the same time. Therefore the epochs and phases of different processes might not be aligned. It
is possible, for example, that when a process wakes up, some neighbors might already have been active for
a while and they might already be part of the MIS or close to joining the MIS. A new process should not
be able to knock out a neighbor that would soon join the MIS otherwise, and so on. With this in mind, we
follow the example of [18], and add an additional listening phase of Θ(log2 n) rounds at the beginning of
each epoch.1 During the listening phase, the sending probability of a process is 0. If a process receives a
message from a neighbor during the listening phase, it is knocked out and starts a new epoch, which begins
with a brand new listening phase. The other obvious change we must make is that once a process joins the
MIS, it must continue to broadcast and announce this information with probability 1/2 for the remainder of
the execution (e.g., to inform processes that might potentially wake up much later).

Proof Modifications. We provide slightly modified versions of Lemmas 4.3 and 4.4 to compensate for
asynchronous starts, and, in the case where G = G′, no topology information. As before, we will only show
individual high probability bounds and assume that we choose all constants large enough so that we can do
all the necessary union bounds to get an overall high probability bound. This is possible because the number
of considered time slots, processes, and disks is at most polynomial in n. For these modified proofs, we
also assume that there are global round numbers starting when the first process wakes up. The global round
numbers are only used to refer to specific time slots in the analysis, and they are unknown to the processes
themselves.

Lemma 9.1. In every round r, for every disk Di: Pi(r) < 2, w.h.p.

Proof. We proceed by induction on r. Clearly, Pi(1) = 0 and thus the lemma holds for r = 1. Suppose
that the lemma holds up to round r − 1 and for contradiction, assume that Pi(r) ≥ 2. Consider the interval
[r − `P , r − 1] of `P = Θ(log n) rounds preceding round r. For every process u in Di that has a positive
broadcast probability pu in round r, either pu = 1/n and u started to compete during the considered `P
rounds or the broadcast probability of u is at least pu/2 throughout the considered interval. Hence, for all
r′ ∈ [r − `P , r − 1], we have Pi(r′) ≥ (2 − n · 1/n)/2 = 1/2. By the induction hypothesis, we also have
Pi(r

′) < 2 for all r′ ∈ [r − `P , r − 1]. By also applying the induction hypothesis for all the nearby circles,
because Pi(r′) ∈ [1/2, 2) for all such r′, the probability of exactly one process sending in Di, and no other
process sending among all the G′-neighbors of processes in Di in round r′ is a constant bounded away from
0. The details of this argument are analogous to the one used in the proof of Lemma 4.3. Therefore, if we
choose `P ≥ c log n for a large enough constant c, during the interval [r − `P , r − 1], some process in Di

succeeds in knocking out all the other processes in Di, in which case we clearly get Pi(r) < 2.

Lemma 9.2. (Independence) For every pair of processes u and v, (u, v) ∈ E, it is not the case that both
output 1, w.h.p.

Proof. The argument is analogous to the one used in the proof of Lemma 4.4. W.l.o.g., assume that u decides
to join the MIS at time ru and that v decides to join the MIS at some time rv ≤ ru. Let us first assume that
ru−rv ≥ `P = Θ(log n). In that case, process u is in the announcement phase for at least `P rounds while v
is awake and still competing. Because by Lemma 9.1, Pi(r) ≤ 2 for all i and r, the probability that u knocks
out v is a constant bounded away from 0 in each of these `P rounds. If ru − rv < `P , there are `P rounds
prior to rv in which both compete with broadcast probabilities at least 1/4. By again applying Lemma 9.1
for the `P rounds and nearby circles, in each of these rounds, one of the two processes knocks out the other
one with constant probability bounded away from 0. In both cases, this implies that if `P ≥ c log n for a

1It would be sufficient to only add the listening phase to the first epoch, but since each epoch requires Θ(log2 n) rounds anyway,
for simplicity, we can afford to add the listening phase to each epoch.

22

large enough constant c, w.h.p. either u or v is knocked out before both of them start the announcement
phase.

Lemma 9.3. (Termination) If processes have 0-complete link detectors, or if G = G′, each process outputs
0 or 1 after starting at most O(log n) epochs, w.h.p.

Proof. In both cases assumed the lemma statement, a process u can only be knocked out by a G-neighbor
v. In a given epoch, therefore, either u joins the MIS (at which point, we are done) or it is knocked out by
G-neighbor v. We can apply the same argument as in Lemma 4.5 (applied now with Lemma 9.1 instead
of Lemma 4.3), to show that with constant probability: v’s messages knocks all of v’s G-neighbors back
to a listening phase, allowing v to join the MIS, at which point, also with constant probability, u receives
v’s MIS announcement and therefore outputs 0. Hence, the probability that u does not output 0 or 1 after
starting O(log n) epochs is sufficiently small to provided the needed high probability.

To account for asynchronous starts, we must slightly modify our notation such that saying an algorithm
solves the MIS problem in f(n) rounds, means that every process outputs 0 or 1 within f(n) rounds of
waking up. With this in mind, combining the argument from our original Theorem 4.6 with our modified
lemmas, we get our final theorem statement:

Theorem 9.4. Assuming asynchronous starts and either 0-complete link detectors or G = G′, our modified
MIS algorithm solves the MIS problem in O(log3 n) rounds, w.h.p.

Comparison to Existing MIS Algorithms. By the above theorem, our modified MIS algorithm works
in the classical radio network model (i.e., G = G′) with asynchronous starts. It guarantees each process
to output 0 or 1 within O(log3 n) rounds of waking up. The algorithm is inspired by the O(log2 n) round
solution from [18]. We differ from [18] in that we trade speed for simplicity. That is, by running a factor
of O(log n) slower, we can eliminate a phase from the structure used in [18], simplifying the algorithm and
proof structure.

10 Future Work

This work motivates a collection of related open problems. For example, our CCDS algorithm for the 0-
complete link detector setting requires large messages to terminate fast. It remains open whether this is
fundamental, or if there exist fast solutions for the small message case. It is also interesting to consider
whether there exist CCDS algorithms for non-constant τ . Finally, our τ -complete link detector formalism is
only one possible definition from many different approaches to defining this style of service. We leave the
exploration of different definitions as additional future work.

Acknowledgements: The authors thank the anonymous reviewers for useful comments and suggestions
that helped improve the presentation of this paper.

References
[1] Personal Communication with Johannes Schneider, ETH Zurich, Jan. 2011.

[2] M. Abusubaih. A New Approach for Interference Measurement in 802.11 WLANs. In Proceedings of the International
Symposium on Personal Indoor and Mobile Radio Communications, 2010.

[3] D. Aguayo, J. Bicket, S. Biswas, R. Morris, B. Chambers, and D. De Couto. MIT Roofnet. In Proceedings of the
International Conference on Mobile Computing and Networking, 2003.

23

[4] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of the ACM,
43(2):225–267, 1996.

[5] A. Clementi, A. Monti, and R. Silvestri. Round robin is optimal for fault-tolerant broadcasting on wireless networks.
Journal of Parallel Distributed Computing, 64:89–96, 2004.

[6] D. De Couto, D. Aguayo, J. Bicket, and R. Morris. A High-Throughput Path Metric for Multi-Hop Wireless Routing.
Wireless Networks, 11(4):419–434, 2005.

[7] D. De Couto, D. Aguayo, B. Chambers, and R. Morris. Performance of Multihop Wireless Networks: Shortest Path is Not
Enough. ACM SIGCOMM Computer Communication Review, 33(1):83–88, 2003.

[8] M. Ghaffari, B. Haeupler, N. Lynch, and C. Newport. Bounds on Contention Management in Radio Networks. In
Proceedings of the International Symposium on Distributed Computing, 2012.

[9] K. Kim and K. Shin. On Accurate Measurement of Link Quality in Multi-Hop Wireless Mesh Networks. In Proceedings of
the Annual International Conference on Mobile Computing and Networking, 2006.

[10] F. Kuhn. The Price of Locality: Exploring the Complexity of Distributed Coordination Primitives. PhD thesis, ETH Zurich,
2005.

[11] F. Kuhn, N. Lynch, and C. Newport. Brief Announcement: Hardness of Broadcasting in Wireless Networks with Unreliable
Communication. In Proceedings of the International Symposium on Principles of Distributed Computing, 2009.

[12] F. Kuhn, N. Lynch, and C. Newport. The Abstract MAC Layer. Distributed Computing, 24(3-4):187–206, 2011.

[13] F. Kuhn, N. Lynch, C. Newport, R. Oshman, and A. Richa. Broadcasting in Unreliable Radio Networks. In Proceedings of
the International Symposium on Principles of Distributed Computing, 2010.

[14] F. Kuhn, T. Moscibroda, and R. Wattenhofer. Initializing Newly Deployed Ad Hoc and Sensor Networks. In Proceedings of
the Annual International Conference on Mobile Computing and Networking, 2004.

[15] F. Kuhn and R. Wattenhofer. Constant-Time Distributed Dominating Set Approximation. Distributed Computing,
17(4):303–310, 2005.

[16] F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad hoc Networks Beyond Unit Disk Graphs. Wireless Networks, 14(5):715–729,
2008.

[17] M. Luby. A Simple Parallel Algorithm for the Maximal Independent Set Problem. SIAM Journal on Computing,
15(4):1036–1053, 1986.

[18] T. Moscibroda and R. Wattenhofer. Maximal independent sets in radio networks. In Proceedings of the International
Symposium on Principles of Distributed Computing, 2005.

[19] S. Parthasarathy and R. Gandhi. Distributed Algorithms for Coloring and Domination in Wireless Ad Hoc Networks. In
Proceedings of the Conference on the Foundations of Software Technology and Theoretical Computer Science, 2005.

[20] K. Ramachandran, I. Sheriff, E. Belding, and K. Almeroth. Routing Stability in Static Wireless Mesh Networks. Passive and
Active Network Measurement, pages 73–82, 2007.

[21] K. Srinivasan, M. Kazandjieva, S. Agarwal, and P. Levis. The β-Factor: Measuring Wireless Link Burstiness. In
Proceedings of the Conference on Embedded Networked Sensor System, 2008.

[22] P. Wan, K. Alzoubi, and O. Frieder. Distributed Construction of Connected Dominating Sets in Wireless Ad Hoc Networks.
In Proceedings of the IEEE Conference on Computer Communnications, 2002.

[23] M. Yarvis, W. Conner, L. Krishnamurthy, J. Chhabra, B. Elliott, and A. Mainwaring. Real-World Experiences with an
Interactive Ad Hoc Sensor Network. In Proceedings of the International Conference of Parallel Processing, 2002.

24

