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Abstract—The multi-version coding problem described pre-
viously by Wang and Cadambe is motivated by applications
to distributed storage and computing. Here, we consider a
modification to the previously described multi-version coding
problem that retains the essence of the earlier definition, and
show that our modification leads to a reduced storage cost.
We consider a setting where there are n servers that aim to
store ν versions of a message, where there is a total ordering
on the versions from the earliest to the latest. We assume that
each message version has size log2M bits. Each server can
receive any subset of the ν versions and stores over an alphabet
of size q a function of the message versions it receives. The
(n, c, ν,M, q) multi-version code we consider ensures that, a
decoder that connects to any c of the n servers can recover
the message corresponding to the latest common version stored
among those servers, or a message corresponding to a version
that is later than the latest common version. Unlike our earlier
paper, we allow for the message version that is decoded to be
one that is later than the latest common version. Through an
achievable scheme and a tight converse, we describe the optimal
multi-version code for ν = 2 versions from the perspective of
the storage cost log2 q

log2M
. In particular, we show that for ν = 2,

the optimal multi-version code has a storage cost of 2
c+1

when
c is odd and 2(c+1)

c(c+2)
when c is even. We also present achievable

code constructions for arbitrary values of the parameter ν.

I. INTRODUCTION

In this paper, we consider a modification to the multi-
version coding problem presented in [1]. Consider storing a
message of size log2M bits in a distributed storage system
with n server nodes, where the storage capacity of each
server is log2 q bits. To accommodate for the possibility
that the message changes with time, assume that it has
two versions, the old version and the new version. We are
interested in a coding scheme that allows a client to connect
to c of the n servers and decode the latest common version
among the c servers, or a version that is later than the latest
common version. To begin with, assume that the old version
is dispersed to all the servers, and every server contains at
most log2 q bits of an encoded form of the old version. We
require that from any c servers, the old version is recoverable
in this state (see Figure 1 (a)). Then the new version is
dispersed to the servers, and due to network failures or
delays, only a subset of the servers get the new version.
Every server contains a total of at most log2 q bits, which are

obtained by encoding its received message versions. In this
new state, we require that from any c servers that received
the new version, the client should recover the new version
which is the latest common version among the c servers
(see Figure 1 (b)). If any of the c servers did not receive
the new version, the latest common version among the c
servers is the old version, and the client should decode either
the old or the new version (see Figure 1 (c)). We measure
the performance of the code by the storage cost defined as
log2 q
log2M

.
A multi-version code is a generalization of the above set-

ting to accommodate an arbitrary number ν ≥ 2 of versions.
Multi-version coding promises to have many applications
in distributed storage and computing. Specifically, it could
be useful for shared memory emulation [2]–[8], which in
turn has applications in multiprocessor programming [9] and
as key-value stores in distributed storage systems [4]. For
a more detailed description of the motivation behind our
formulation, we refer the readers to [1].

Our description of the multi-version code here is a
modification of the definition in reference [1], where the
latest common version was forced to be recoverable. That
is, reference [1] omitted the possibility that a message
version which is later than the latest common version can
be recovered by the client. For example, in Figure 1 (c)
the code in [1] only recovers the old version. We note
that our modified definition does not alter the spirit of the
multi-version code definition of [1], and is relevant to all its
potential applications. Interestingly, however, we show here
that our modification leads to significant savings in terms of
storage cost.

Two straight-forward solutions to our problem are as
follows: (i) replication, where every server stores log2M
bits of its latest version, and any c servers suffice to recover
the latest version among the servers; and (ii) simple MDS
code, where every server stores log2M/c bits of every
version it has, and the latest common version is recoverable.
Here we present coding schemes that outperform both these
solutions. It is worth noting that replication does not neces-
sarily recover the latest common version since it sometimes
returns a version that is later than the latest common version.
Therefore replication does not fit in the definition of [1],
but is a multi-version code as per the definition we consider



Fig. 1. Storing a file with 2 version in n = 4 nodes. From any c = 2 nodes, the code should recover the latest common version or something later. We
denote the old and new versions as Version 1 and Version 2 respectively.

here.
The main contributions of the paper are: (i) an appropriate

modification to the multi-version coding problem of [1],
(ii) an information-theoretic lower bound for the storage
cost of the multi-version code for all possible values of the
parameters n, c, ν, q,M , and (iii) a code construction for
arbitrary number of versions, which is optimal for ν = 2
versions.

II. SYSTEM MODEL AND MAIN RESULTS

A. The multi-version code

We begin with some notation. We write [i] :=
{1, 2, . . . , i}, for integer i ∈ N+. For any set S =
{s1, s2, . . . , s|S|} ⊂ Z where s1 < s2 < . . . < s|S|, and
for any ensemble of variables {Xi : i ∈ S}, we denote the
tuple (Xs1

, Xs2
, . . . , Xs|S|

) by XS .
We now define the multi-version coding problem, which

is essentially a relaxation of the definition of [1]. We begin
with an informal definition, and present the formal definition
in Definition 1. The multi-version coding problem that we
study is parameterized by positive integers n, c, ν,M and q.
We consider a setup with n servers. Our goal is to store ν
independent versions of the message, where each version of
the message is drawn from the set [M ]. We denote the value
of the ith version of the message by Wi ∈ [M ] for i ∈ [ν].
The symbols of the codewords come from the set [q], so
the quantity log2 q can be interpreted as the number of bits
stored in each server in the system. Each server receives an
arbitrary subset of the versions. We denote S(i) ⊆ [ν] to
be the set of versions received by the ith server. We refer
to the set S(i) as the state of the ith server. We refer to
S = (S(1), . . . ,S(n)) ∈ P([ν])n as the state of the system,
where P([ν]) denotes the power set of [ν]. For the ith server,
denoting its state S(i) as S = S(i) = {s1, s2, . . . , s|S|}
where s1 < s2 < . . . < s|S|, the ith symbol of the codeword
is generated by an encoding function ϕ(i)

S that takes an input,
WS = (Ws1

,Ws2
, . . . ,Ws|S|

), and outputs an element in
[q].

We assume that there is a total ordering ≺ on the versions,
with Wi ≺ Wj if i < j. For any set of servers T ⊆ [n],
we refer to max∩i∈TS(i) as the latest common version
in the set of servers T . The purpose of multi-version code
design is to generate encoding functions such that, for every
subset T ⊆ [n] of c servers, a message Wm should be
decodable from the set T , where m ≥ max∩i∈TS(i) for
every system state. The goal of the problem is to find
the smallest possible storage cost per bit stored, or more
precisely, to find the smallest possible value of log2 q

log2M
over

all possible (n, c, ν,M, q) codes.
We present a formal definition next.
Definition 1 (Multi-version code): An (n, c, ν,M, q)

multi-version code consists of
• encoding functions

ϕ
(i)
S : [M ]|S| → [q],

for every i ∈ [n] and every S ⊆ [ν], and
• decoding functions

ψ
(T )
S : [q]c → [M ] ∪ {∅},

for every set S ∈ P([ν])n and set T ⊆ [n] where
|T | = c,

that satisfy

ψ
(T )
S

(
ϕ

(t1)

S(t1)
(WS(t1)

), . . . , ϕ
(tc)

S(tc)
(WS(tc)

)
)

=

{
Wm for some m ≥ max∩i∈TS(i), if ∩i∈T S(i) 6= φ,

∅, o.w.,
.

for every W[ν] ∈ [M ]
ν , where T = {t1, t2, . . . , tc}, t1 < · · · <

tc.
Definition 2 (Storage Cost of an (n, c, ν,M, q) multi-

version code): The storage cost of an (n, c, ν,M, q) multi-
version code is defined to be equal to logq

log2M
.

Note that replication, where the latest version is stored in
every server, i.e., ϕ(i)

Si
(WSi

) = Wmax(S(i)) incurs a storage
cost of 1. An alternate strategy would be to separately
encode every version using an MDS code of length n and
dimension c, with each server storing an MDS codeword



symbol corresponding to every version that it has received.
Such a coding scheme would achieve a storage cost of ν/c.

B. Main Results
Theorem 1: Given parameters (n, c, ν), there exists an

(n, c, ν,M, q) multi-version code with a storage cost that is
equal to

max

{
νt− ν + 1

tc
,
1

t

}
,

where

t =

{ ⌈
c−1
ν

⌉
+ 1, if c ≥ (ν − 1)2,⌈

c
ν−1

⌉
, if c < (ν − 1)2.

Theorem 2: The storage cost of an (n, c, ν,M, q) multi-
version code satisfies

log2 q

log2M
≥

{
2
c+1 , if c is odd,
2(c+1)
c(c+2) , if c is even.

We make some remarks before proceeding.
Remark 1: Theorems 2 implies that the code construction

that achieves the storage cost described in Theorem 1 is
optimal from the perspective of storage cost if ν = 2.
The multi-version coding problem remains open for ν > 2
version.

Remark 2: The achievable scheme of Theorem 1 strictly
outperforms replication, simple MDS codes, and the scheme
of [1].

Remark 3: It is worth noting that, under the relaxed defi-
nition of multi-version coding presented here, the converse
of [1] is not applicable. In fact, the achievable scheme of
Theorem 1 achieves a storage cost that is lower than the
storage cost lower bound of [1] by exploiting the fact that a
version that is later than the latest common version can be
recovered.

III. PROOF OF THEOREM 1 - CODE CONSTRUCTION

We first describe our construction. After describing our
construction, we show that our construction is a multi-
version code in Theorem 3.

In our construction, each server encodes different versions
separately. So that the total number of bits stored at a server
is the sum of the storage costs of each of the versions it has
in that state. The encoding strategy at the servers satisfies the
following property: Suppose that Server i stores αi,v log2M
bits of Version v, then Version v can be recovered from the
c servers i1, i2, ...ic, so long as

c∑
j=1

αij ,v ≥ 1.

Note that such an encoding function can be found for a suf-
ficiently large value of q using standard coding techniques1.

1In fact, using random linear coding suffices to satisfy this property with
non-zero probability, implying that there exists a coding scheme with the
property.

State {1, 2} State {1} State {2}
Ver 1 α− 1/t α
Ver 2 1/t 1/t

TABLE I
Storage allocations for code construction with ν = 2 versions. Note that
t = d c−1

2
e+ 1, and the storage size is α = 2t−1

tc
. More specifically,

α = 1/t for odd values of c and α =
2(c+1)
c(c+2)

for even values of c.

We also note that, in our approach, the storage allocation
αi,v only depends on the server state but not on the server
index. Therefore, we can write αi,v = α(S(i))

v for any Server
i at a nonempty state S(i) ⊆ [ν].

To describe our construction, we only need to specify the
parameter α(S)

v for every possible server state S ⊆ [ν] and
every v ∈ S, that is, we only need to specify the amount
of Version v stored at a server in state S. We denote α =
log2 q
log2M

. Note that we have α = maxS⊆[ν]
∑
v∈S α

(S)
v . In our

description, for every possible system state, we partition our
servers into ν+1 groups. For i ∈ [ν], Group i has the set of
servers which have Version i as the latest version. So, for
instance, if ν = 2, Group 1 has the servers in state {1}, and
Group 2 contains the servers in states {2} and {1, 2}.

Before giving the general construction, we start by de-
scribing our construction for the case of ν = 2 versions.
Define t = d c−12 e + 1, and construct code as in Table I.
The storage size is α = 2t−1

tc . It is easy to check that
the code works for odd values of c. In this case α = 1/t,
t = (c+1)/2, and a server in Group i stores 2

c+1 of Version
i. For any subset of c servers, note that we have at least
(c+1)/2 servers in Group 1, or at least (c+1)/2 servers in
Group 2. Because α = 2

c+1 , in the former case Version 1 is
recoverable, and in the latter case Version 2 is recoverable.
Finally, we note that the latest common version or a version
that is later than the latest common version is recovered
using this strategy.

For even values of c, the validity of the construction can
be verified as follows.
• If the latest common version is Version 2, then all the c

servers are in Group 2. Since we have c ≥ t servers, and
each server contains 1/t amount of Version 2, Version
2 is recoverable.

• If the latest common version is Version 1, then the c
servers may be in state {1} or state {1, 2}.
If there are at least t servers in state {1, 2}, then we can
recover Version 2. Otherwise, there are at most t − 1
servers in state {1, 2}, and at least c− t+1 servers in
state {1}. Thus the total amount of Version 1 in these
servers is at least

(c− t+ 1)α+ (t− 1)(α− 1/t) = 1,

so we can recover Version 1.
Table II is an example with c = 7, ν = 3, α = 1/3.

Notice in this case, each server only stores (a function of) the



State {1} State {2} State {1, 2} State {3} State {1, 3} State {2, 3} State {1, 2, 3}
Version 1 1/3 0 0 0
Version 2 1/3 1/3 0 0
Version 3 1/3 1/3 1/3 1/3

TABLE II
Storage allocations for code with c = 7, ν = 3, α = 1/3.

latest version it receives, and does not store any information
about any of the older versions. It is easy to see that when
connected to c = 7 servers with a common version, at least
one version, say Version i, can be decoded from 3 servers
in Group i.

To describe our general construction, we use an auxiliary
parameter t defined as follows.

t =

{
d c−1ν e+ 1, c > (ν − 1)2,

d c
ν−1e, c ≤ (ν − 1)2.

(1)

It is useful to note that if c > (ν − 1)2, then t ≥ ν and if
c ≤ (ν − 1)2, then t < ν.

Construction 1: Given the above parameters, we construct
the (n, c, ν,M, q) code with storage cost

α =
log2 q

log2M
= max

{
νt− ν + 1

tc
,
1

t

}
.

For state S, the parameter α(S)
v is set as follows:

• If Version j, j ≥ 2, is the latest version in state S, then
α
(S)
j = 1

t , that is, store 1
t log2M bits of Version j.

• If Version 1 is the latest version, namely S = {1}, then
α
(S)
1 = α. That is, store α log2M bits of Version 1.

• If Version 1 is not the latest version in state S,
and {1} ∈ S, then, α(S)

1 = α − 1
t , that is, store(

α− 1
t

)
log2M bits of Version 1.

Note that in our construction, a server in Group j only stores
encoded symbols of Version j and Version 1.

Remark 4: It can be easily verified that the storage cost of
Construction 1 can be expressed more explicitly as follows:

α =

{
1
t , if c ∈ [(t− 1)ν + 1, (ν − 1)t], t < ν,
νt−ν+1

tc , otherwise.

where t is defined as in (1).
Remark 5: We note that when ν|(c − 1), t = c−1

ν + 1
irrespective of whether c is bigger then ν − 1 or not. As a
result, we have α = ν

c+ν−1 when ν|(c− 1).
In Figure 2 we show the storage size of the construction

with ν = 5 versions, we can see the advantage of the
proposed code compared to previous results.

Table III is an example for t = 3, c = 5, ν = 3, α =
7/15. In this example, the storage size of the states are not
equal, but one can simply treat the worst-case size as α. One
can check that the above code recovers the latest common
version, or a version that is later than the latest common
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Fig. 2. Comparison between the construction for the code in Construction
1, the code in [1], and the smaller of replication and the simple MDS code.
We fix ν = 5 versions and plot results for different number of connected
servers, c.

version. For example, suppose the latest common version is
Version 1.
• If at least three of the c servers are in Group 2, then

Version 2 is recoverable.
• If at least three of the c servers are in Group 3, then

Version 3 is decodable.
• Otherwise, among the c servers, at most two servers

are in Group 2, at most two servers are in Group 3,
and at least one server is in state {1}. The amount of
information of Version 1 in these c servers is at least
7/15 + 2/15× 4 = 1, which implies that Version 1 is
recoverable.

Theorem 3: The code in Construction 1 is a multi-version
code.

Proof: To show a version is recoverable, it suffices to
show that the total storage allocation for that version in the
connected servers is at least 1. Let j be the latest common
version among c servers. Note that there are at most ν−j+1
groups, since Group 1, Group 2, . . . , Group j−1 are empty.
• When j ≥ 2, there exists a group, say Group k, with

at least d c
ν−j+1e ≥ d

c
ν−1e servers. In our construction,

each server in Group k stores 1
t of Version k. To prove

the theorem, it suffices to show that d c
ν−1e ≥ t, since

this implies that Version k is recoverable from the
servers in Group k. When c ≤ (ν−1)2, then d c

ν−1e = t.



State {1} State {2} State {1, 2} State {3} State {1, 3} State {2, 3} State {1, 2, 3}
Version 1 7/15 2/15 2/15 2/15
Version 2 1/3 1/3 0 0
Version 3 1/3 1/3 1/3 1/3

TABLE III
Server storage allocations for c = 5, ν = 3, α = 7/15.

Therefore, we need to show this for c > (ν−1)2. When
c > (ν − 1)2, we have t = d c−1v e + 1. Therefore, we
have c ∈ [ν(t− 2) + 2, ν(t− 1) + 1]. Notice also that
c ≥ ν. These imply the following.

d c

ν − 1
e

≥dν(t− 2) + 2

ν − 1
e

=dt− 1 +
t− ν + 1

ν − 1
e

≥dt− 1 +
1

ν − 1
e

=t.

Therefore, the theorem is proved for the case where
j ≥ 2.

• When j = 1 is the latest common version, if Group i
has at least t servers for any 2 ≤ i ≤ ν, then Version
i is recoverable and therefore the theorem is proved.
Otherwise, there are at most t− 1 servers in Group i,
for all 2 ≤ i ≤ ν, each of which stores α − 1

t size of
Version 1; and thus at least c− (ν − 1)(t− 1) servers
in Group 1, each storing α size of Version 1. The total
storage size for Version 1 in these servers is at least

(α− 1

t
)(ν − 1)(t− 1) + α(c− (ν − 1)(t− 1)).

And by the choice of α, we know the above amount is
at least 1. Therefore, Version 1 can be recovered.

We have thus completed the proof.
We would like to mention here that in fact, the construc-

tion in this section is inspired by computer search for ν = 3
and small values of c using integer linear programming.

IV. CONVERSE: PROOF OF THEOREM 2

From the definitions, note that an (n, c, ν,M, q) multi-
version code is also an (n, c, 2,M, q) multi-version code.
Therefore, it suffices to prove the theorem for the special
case where ν = 2. Consider any (n, c, 2,M, q) multi-version
code, and consider the first c servers2. For any arbitrary state
S ∈ P([ν])n, let S[c] denote the projection of the state onto
the first c servers. To prove the converse, we first make the
following claim.

2We note that an arbitrary set of c servers can be considered for the
converse. We consider the first c servers without loss of generality.

A. Proof of Theorem 2 when c is odd

We first consider the case where c is odd, whose converse
proof is simpler. We begin with the following claim.

Claim 1: For any achievable (n, c, 2,M, q) code, there are
two states S1,S2 ∈ P([ν])

n such that

• The c-length tuples S
[c]
1 and S

[c]
2 differ only in one

element, that is, they differ only with respect to the
state of one of the first c servers

• The decoding function ψ
([c])
S1

outputs the first version
W1, whereas the decoding function ψ

([c])
S2

outputs the
second version W2.

In other words, from the perspective of the first c servers,
states S1 and S2 differ only in the state of one server.
Furthermore, W1 is decodable from the symbols stored
among the first c servers in state S1, and W2 is decodable
from the symbols stored in the first c symbols in state S2..

Proof of Claim 1: To prove Claim 1, consider the set of all
states where every server has version 1. That is, consider the
set of states ({{1}, {1, 2}})n. Notice that for this set, every
subset of c servers has Version 1 or Version 2 as the latest
common version. This means that, for every state in this set,
the corresponding decoding function must return Version 1
or Version 2. We partition this set of states into two parti-
tions. The first partition P1 ⊂ ({{1}, {1, 2}})n is one where
the decoding function returns the first version W1 from the
first c servers. The second partition P2 ⊂ ({{1}, {1, 2}})n is
one where the decoding function returns the second version
W2 from the first c servers. Consider a state with the smallest
number of occurrences of {1, 2} in partition P2 and denote
this state as S2. In other words,

S2 = arg min
S∈P2

|{i : S(i) = {1, 2}}|.

Let S1 be a state obtained by replacing one of the occur-
rences of {1, 2} of S2 by {1}. Notice that, since the number
of occurrences of {1, 2} in the state tuple S1 is smaller than
the number occurrences of S2, the state S1 does not lie in
P2. Furthermore state S1 lies in ({{1}, {1, 2}})n. Therefore
S1 lies in P1. It is easy to verify that states S1 and S2 satisfy
the conditions of the claim.

Informal proof of Theorem 2 for odd c: Based on the
conditions of Claim 1, Version 1 is decodable from the c
servers in state S1, and Version 2 is decodable from the first
c servers in state S2. But, notice that the encoded symbols of
the servers 2, 3, . . . , c are the same in both states S1 and S2.
This implies that both Version 1 and Version 2 are decodable



from the following c+ 1 symbols: the c codeword symbols
of first c servers in state S1, and the codeword symbol of the
first server in state S2. Since 2 versions, each of alphabet
size M are decodable from c+1 symbols from an alphabet
of size q, we need that (c+ 1) log2 q ≥ 2 log2M. This gives
the bound for odd c.

Formal proof of Theorem 2 for odd c: Let S1 and S2

be two states that satisfy Claim 1. Notice that among
the first c servers, S1 and S2 differ with respect to the
state of only 1 server. Without loss of generality, assume
that S1(1) 6= S2(1). Therefore S1(j) = S2(j), j =

2, 3, . . . , c. For W1,W2, let Xi = ϕ
(i)
S1
(WS2(i)

) and Y =

ϕ
(1)
S2

(WS2(1)
), where ϕS represents the encoding functions

of the (n, c, 2,M, q) multi-version code. By the system
model, W1,W2 are independent. Since the code should
work for any distribution for each version Wi over [M ],
we consider the case when W1,W2 are each uniformly
distributed over [M ]. Denoting the binary entropy function
by H(.), note that

H(W1|X1, X2, . . . , Xc) = 0 = H(W2|Y,X2, . . . , Xc).

The above equality implies that

H(W1,W2|Y,X[c]) = 0.

⇒ H(Y,X[c])
(a)
= H(W1,W2)
= 2 log2M.

⇒ H(Y ) +
∑c
i=1H(X[i]) ≥ 2 log2M.

⇒ max(H(Y ), H(X1), . . . ,H(Xc)) ≥ 2 log2M
c+1 .

⇒ log2 q ≥ 2 log2M
c+1 .

Here (a) follows from the fact that H(Y,X[c]|W1,W2) = 0,
and the final inequality follows because log2 q ≥ H(Xi) for
all i ∈ [c] and log2 q ≥ H(Y ) for any distribution on the
random variables X[c], Y . The above argument completes
the proof for odd c.

B. Proof of Theorem 2 when c is even

Notice that the proof of the lower bound for the case
where c is odd did not use the fact that c is odd. The
argument is valid for the case where c is even as well.
Therefore, we automatically have

log2 q

log2M
≥ 2

c+ 1
.

We aim to prove the stronger bound stated in the theorem for
the case where c is even. We begin by strengthening Claim
1. As in the proof of Claim 1, we partition ({{1}, {1, 2}})n
into two partitions P1 and P2. The partition P1 contains
the set of states where the decoding function ψ

[c]
S returns

the first version W1 from the first c servers. Partition P2

contains the set of states where the decoding function on
the first c servers returns the second version. Now, we make
the following claim.

Claim 2: For any (n, c, ν,M, q) multi-version code if
({{1}, {1, 2}})n is partitioned into two partitions P1,P2 as
described above, and

a = min
S∈P2

|{i : S(i) = {1, 2}, i ∈ [c]}|,

we have
(i) log2 q ≥

(
2− 1

a

) log2M
c ,

(ii) a ≥ log2M
log2 q

.

The desired storage bound simply follows from the above
claim. In particular, suppose as a contradiction, we have

log2 q

log2M
<

2(c+ 1)

c(c+ 2)
. (2)

Then, combining (2) with (i) of Claim 2, we have a <
(c+ 2)/2. Now, since a is an integer, this implies that

a ≤ c/2. (3)

However, combining (2) with (ii) in Claim 2, we have

a ≥ log2M

log2 q
>
c(c+ 2)

2(c+ 1)
> c/2,

which contradicts with (3). Therefore, we cannot have
log2 q
log2M

< 2(c+1)
c(c+2) .

We now aim to prove Claim 2.
Let

S2 = arg min
S∈P2

|{i : S(i) = {1, 2}}|.

Now, note that in state S2, a of the first c servers are in states
{1, 2}, and the remaining c − a servers are in state {1}.
Without loss of generality, assume that the first a servers
are in state {1, 2}, that is, the codeword symbols of the first
a servers are functions of both W1,W2, and the codeword
symbols of the remaining c− a servers are functions of W1

alone. Denote Xi to be the ith codeword symbol in state
S2. Claim 2 follows from the following three lemmas.

Lemma 1: For any subset P ⊂ [a], such that |P | = a− 1

I(XP ;W1) ≥ log2M − (c− a+ 1) log2 q.

Lemma 2 (Han [10]):∑
P⊂[a],|P |=a−1

H(XP |W1) ≥ (a− 1)H(X[a]|W1).

The above lemma, also known as the subset entropy inequal-
ity, has been shown in [10].

Lemma 3:
H(X[a]|W1) = log2M.

Proof of Lemma 1: For a given set P, define state S1 as
follows:

S1(i) =

{
S2(i), i ∈ P or i ∈ {a+ 1, a+ 2 . . . , c},
{1}, otherwise.

Note that with respect to the first c servers, states S2 and
S1 differ only in the state of one server - the server in the



singleton set [a]−P . Now, note that among the first c servers,
only a− 1 servers are in states {1, 2} which means that S1

lies in partition P1. This implies that the first version W1

is decodable from XP , X{a+1,...,c} and ϕ(k)
S1(k)

(W1), where
[a] − P = {k} and ϕ represents the encoding function of
the multi-version code. This implies that

I(XP , X{a+1,a+2,...,c}, ϕ
(k)
S1(k)

(W1);W1) = log2M.

⇒ I(XP ;W1)
(b)
= log2M −H(X{a+1,a+2,...,c}, ϕ

(k)
S1(k)

(W1)|XP )

≥ log2M −H(X{a+1,a+2,...,c}, ϕ
(k)
S1(k)

(W1))

≥ log2M − (c− a+ 1) log2 q,

where (b) follows because the servers in {a + 1, a +
2, . . . , c} ∪ ([a] − P ) are in state {1}, meaning that
their codeword symbols are functions of W1, therefore,
H(X{a+1,a+2,...,c}, X[a]−P |W1, XP ) = 0.

Proof of Lemma 3: In state S2, the codeword symbols of
the first a servers depend on both W1 and W2. The remain-
ing c−a codeword symbol of the first c servers depends only
on W1. Furthermore, note that W2 is recoverable from the
first c symbols because S2 is in partition P2. This implies
that, the message W2 must be decodable from X[a] and
W1, since W1 can be used to reconstruct X{a+1,a+2,...,c}.
Therefore, we have

H(W2|X[a],W1) = 0.
⇒ H(W2,W1, X[a]) = H(X[a],W1).

⇒ H(W1,W2)
(c)
= H(W1) +H(X[a]|W1).

⇒ log2M = H(X[a]|W1).

Here (c) follows from the fact that H(X[a]|W1,W2) = 0.
The last equality uses the fact that the two versions are
independent.

Proof of Claim 2: Lemmas 1, 2 and 3 together imply that

a(a− 1) log2 q ≥
∑

P⊂[a],|P |=a−1

H(XP )

=
∑

P⊂[a],|P |=a−1

(I(XP ;W1) +H(XP |W1))

≥ a(log2M − (c− a+ 1) log2 q)

+ (a− 1)H(X[a]|W1)

= a(log2M − (c− a+ 1) log2 q)

+ (a− 1) log2M.

⇒ log2 q ≥
(
2− 1

a

)
log2M

c
.

which proves (i) in Claim 2. The proof of (ii) follows simply
from Lemma 3 as follows:

a log2 q ≥ H(X[a]|W1) = log2M,

which implies that a ≥ log2M
log2 q

.

ACKNOWLEDGMENT

The authors would like to thank Prof. Nancy Lynch,
Prof. Muriel Médard, and Prof. Tsachy Weissman for their
valuable advice and helpful comments.

This work is partially supported by the Center for Science
of Information (CSoI), an NSF Science and Technology
Center, under grant agreement CCF-0939370. Viveck R.
Cadambe acknowledges his startup fund from the Depart-
ment of Electrical Engineering at the Pennsylvania State
University

REFERENCES

[1] Z. Wang and V. Cadambe, “Multi-version coding in distributed
storage,” in Information Theory (ISIT), 2014 IEEE International
Symposium on, pp. 871–875, IEEE, 2014.

[2] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1996.

[3] H. Attiya, A. Bar-Noy, and D. Dolev, “Sharing memory robustly in
message-passing systems,” J. ACM, vol. 42, pp. 124–142, Jan. 1995.

[4] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s highly available key-value store,” in SOSP, vol. 7, pp. 205–
220, 2007.

[5] J. Hendricks, G. R. Ganger, and M. K. Reiter, “Low-overhead
byzantine fault-tolerant storage,” ACM SIGOPS Operating Systems
Review, vol. 41, no. 6, pp. 73–86, 2007.

[6] P. Dutta, R. Guerraoui, and R. R. Levy, “Optimistic erasure-coded
distributed storage,” in Distributed Computing, pp. 182–196, Springer,
2008.

[7] V. R. Cadambe, N. Lynch, M. Medard, and P. Musial, “Coded emu-
lation of shared atomic memory for message passing architectures,”
2013. http://hdl.handle.net/1721.1/79606.

[8] D. Dobre, G. Karame, W. Li, M. Majuntke, N. Suri, and M. Vukolić,
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