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ABSTRACT

The focus of this paper is to understand storage costs of em-
ulating an atomic shared memory over an asynchronous, dis-
tributed message passing system. Previous literature has de-
veloped several shared memory emulation algorithms based
on replication and erasure coding techniques, and analyzed
the storage costs of the proposed algorithms. In this pa-
per, we present the first known information-theoretic lower
bounds on the storage costs incurred by shared memory em-
ulation algorithms. Our storage cost lower bounds are uni-
versally applicable, that is, we make no assumption on the
structure of the algorithm or the method of encoding the
data.

We consider an arbitrary algorithm A that implements an
atomic multi-writer-single-reader (MWSR) shared memory
variable whose values come from a finite set V over a system
of N servers connected by point-to-point asynchronous links.
We require that in every fair execution of algorithm A where
the number of server failures is smaller than a parameter f ,
every operation invoked at a non-failing client terminates.
We define the storage cost of a server in algorithm A as the
logarithm (to base 2) of the number of states it can take
on; the total storage cost of algorithm A is the sum of the
storage cost of all servers. Previously, it was known that the
storage cost cannot be smaller than N

N−f
log2 |V|. We develop

three new lower bounds on the storage cost of algorithm A.

• In our first lower bound, we show that if algorithm A
does not use server gossip, then the total storage cost
is lower bounded by 2 N

N−f+1
log2 |V| − o(log2 |V|).

• In our second lower bound we show that the total stor-
age cost is at least 2 N

N−f+2
log2 |V| − o(log2 |V|) even

if the algorithm uses server gossip.

• In our third lower bound, we consider algorithms where
the write protocol sends information about the value in
at most one phase. For such algorithms, we show that
the total storage cost is at least ν∗ N

N−f+ν∗−1
log2(|V|)
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−o(log2(|V|), where ν∗ is the minimum of f + 1 and
the number of active write operations of an execution.

Our first and second lower bounds are approximately twice
as strong as the previously known bound of N

N−f
log2 |V|.

Furthermore, our first two lower bounds apply even for regu-
lar, single-writer-single-reader (SWSR) shared memory em-
ulation algorithms. Our third lower bound is much larger
than our first and second lower bounds, although it is appli-
cable to a smaller class of algorithms where the write proto-
col has certain restrictions. In particular, our third bound
is comparable to the storage cost achieved by most shared
memory emulation algorithms in the literature, which nat-
urally fall under the class of algorithms studied. Our proof
ideas are inspired by recent results in coding theory.

CCS Concepts

•Mathematics of computing → Information theory;
Coding theory; •Information systems→ Storage man-
agement; •Theory of computation → Distributed al-
gorithms;
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1. INTRODUCTION
The emulation of a consistent, fault-tolerant read-write

shared memory in a distributed, asynchronous, storage sys-
tem has been an active area of research in distributed com-
puting theory. In their celebrated paper [3], Attiya, Bar-
Noy, and Dolev devised a fault-tolerant algorithm for em-
ulating a shared memory that achieves atomic consistency
(linearizability) [17, 16]. Consider a distributed system with
server nodes, write client and read client nodes, all of which
are connected by point-to-point asynchronous links. The
ideas of [3] can be used to design server, write and read pro-
tocols that implement an atomic shared memory even if the
write and read operations are invoked concurrently with the
following guarantee: every read or write operation invoked
at a non-failing client terminates so long as the set of servers
that fail is restricted to a minority. The algorithm of [3] used
a replication-based storage scheme at the servers to attain
fault tolerance. Following [3], several papers [15, 13, 1, 4,
21, 12, 5, 2] have developed algorithms that use erasure cod-
ing instead of replication for fault tolerance, with the goal
of improving upon the storage efficiency of [3].



In erasure coding1 which is studied in classical coding
theory, each server stores a function of the value called a
codeword symbol. A decoder that is able to access a suffi-
cient number of codeword symbols recovers the value. The
number of bits used to represent a codeword symbol is typi-
cally much smaller than the number of bits used to represent
the value. As a consequence, erasure coding is well known
to lead to smaller storage costs as compared to replication
in the classical coding-theoretic set-up (See, for example,
[11, 19, 8]). Here, we aim to understand storage costs of
shared memory emulation, where in contrast with the clas-
sical coding-theoretic setup, multiple versions of the data
object are to be stored in a consistent manner.

When erasure coding is used for shared memory emula-
tion, new challenges arise. Since, in erasure coding, each
server stores a codeword symbol and not the entire value,
a read operation has to obtain a sufficient number of code-
word symbols to decode the value being stored. When a
write operation begins to write a new version of the data
object, the old version cannot be deleted from the servers
until a sufficient number of codeword symbols correspond-
ing to the new version have been propagated to the servers.
As a consequence, servers have to store codeword symbols
corresponding to multiple versions of the data object to en-
sure that a reader can decode an atomically consistent ver-
sion. Previous erasure coding based shared memory emu-
lation algorithms [15, 13, 1, 4, 21, 12, 5] have noted that
the number of versions to be stored at a server can be large
if there are a large number of ongoing or failed write oper-
ations whose codeword symbols have not been propagated
sufficiently. Because servers store codeword symbols cor-
responding to multiple versions, the storage cost of using
erasure coding can be large, even if the number of bits in
each codeword symbol is small compared to the number of
bits used to represent the value.

Despite the vast amount of literature in the study of stor-
age costs of shared memory emulation, some compelling and
fundamental questions remain unanswered. Since a server
can store an arbitrary function of all the symbols it receives,
can we develop a sophisticated storage strategy that some-
how compresses multiple versions at the servers and thereby
results in smaller storage costs? If we add multiple phases to
read and write protocols or include other algorithmic novel-
ties, can we reduce the storage cost of shared memory emu-
lation? In our paper, we obtain insights into these questions
by developing novel impossibility results that lower bound
the storage cost of an arbitrary atomic shared memory em-
ulation algorithm.

2. SUMMARY OF RESULTS AND COMPA-

RISONS WITH RELATED WORK
In this section, we first summarize the shared memory

emulation and the classical coding theory set-ups. We then
describe our storage cost lower bounds in Theorems 4.1 and
5.1. Then, we describe our storage cost lower bound of The-
orem 6.5. Finally we compare our results to previously de-
rived storage cost lower bounds.

1Server failures are modeled as erasures of codeword sym-
bols; hence the term, erasure coding.

2.1 Set up
Shared Memory Emulation Set-up: We consider an

arbitrary algorithm A that implements, over a network of N
servers connected by point-to-point asynchronous links, an
atomic multi-writer-single-reader (MWSR) shared memory
variable whose values come from a finite set V. The algo-
rithm A is required to ensure that all operations terminate
so long as the number of server failures is no larger than a
parameter f . The storage cost of a server in algorithm A is
measured as the logarithm of the number of possible states
of the server, and the storage cost of algorithm A is the total
storage cost over all the servers.

Classical Coding Theory Set-up: Consider a system
with N servers, where a single version of a data object whose
values come from a finite set V is to be stored. The value of
the data object must be recoverable, so long as the number of
server failures is no larger than a parameter f . The classical
Singleton bound [18, 20] in coding theory implies that the

total storage cost is at least
N log

2
|V|

N−f
bits2. The lower bound

of
N log

2
|V|

N−f
on the storage cost is known to be tight in the

classical coding-theoretic set-up for large values of |V| [20,
18].

The power of erasure coding is transparent when we want
to design a storage system that tolerates failures of f server
nodes and the number of server nodesN can be chosen freely.
If we use replication, every server stores log2 |V| bits. Since
we need at least f + 1 servers to tolerate f server failures,
the total storage cost of the system is at least (f+1) log2 |V|
bits. In contrast, if we use erasure coding, the total storage

cost of the system is N log
2
|V|

N−f
, which approaches log2 |V| as

N increases. If N is sufficiently large, the storage cost of
replication is approximately f + 1 times the storage cost of
erasure coding.

2.2 Motivation and Summary - Theorems 4.1
and 5.1

Motivation: The classical coding-theoretic model does
not model clients or channels, and therefore differs signifi-
cantly from the shared memory emulation model. However,

the storage cost lower bound of
log

2
|V|

N−f
described by the Sin-

gleton bound is, in fact, applicable in the context of shared
memory emulation as well. We provide the first formal proof
of the lower bound in the extended paper [7]; in particular,
we show that for any SWSR regular shared memory emu-
lation algorithm that implements a read write data object
whose values come from a set V, the total storage cost is at

least N log
2
|V|

N−f
. The natural lower bound of N log

2
|V|

N−f
inspires

the following question.

Question 1: Does there exist an atomic shared mem-
ory emulation algorithm whose storage cost is equal to

N
N−f

log2 |V|?

Summary of Theorems 4.1 and 5.1: In this paper, we
answer the above question in the negative by proving stor-
age cost lower bounds that are stronger than N

N−f
log2 |V|.

In Theorems 4.1 and 5.1 we show that the total-storage
cost of single-writer-single-reader (SWSR) regular shared
memory emulation algorithm is at least 2N

N−f+2
log2 |V| −

2For the sake of the discussion here, we assume that |V| is
a power of 2. We refer the reader to [18, 6] for more details
about erasure coding.



o(log2 |V|). In particular, if f is fixed and N is chosen freely,
the total-storage cost lower bound of Theorems 4.1 and 5.1
approach 2N

N−f
log2 |V| − o(| log2 |V|) as N increases; there-

fore the bounds of Theorems 4.1 and 5.1 are twice as large
as the previously known lower bound. Recall that regu-
larity [17] is a weaker consistency model as compared with
atomicity. Since Theorems 4.1 and 5.1 apply for regular
SWSR shared memory emulation algorithm, they automati-
cally apply for atomic MWSR shared memory emulation al-
gorithms. Theorem 4.1 describe a storage cost lower bound
for algorithms which do not use server gossip. Theorem 5.1
describes a lower bound for any shared memory emulation
algorithm, including algorithms that use server gossip. Our
storage cost lower bounds are universal in nature, that is,
we make no assumption on the structure of the protocols or
the method of data storage. Because we answer Question
1 in the negative, an important implication is that there
is an unavoidable price, in terms of storage cost, to ensure
regularity in a shared memory emulation system. We next
discuss the tightness of Theorems 4.1 and 5.1 in the context
of previously derived storage cost upper bounds.

2.3 Motivation and Summary - Theorem 6.5
In the sequel, we define the number of active write oper-

ations at point P of an execution as the number of write
operations which have begun before the point P but not yet
terminated or failed at point P . The number of active write
operations of an execution is the supremum, over all points
of the execution, of the number of active write operations at
the points of the execution.

Motivation: There is a growing body of literature re-
lated to erasure coding based shared memory emulation al-
gorithms [15, 13, 1, 4, 21, 12, 6, 5, 2, 22]. These algorithms
differ in their structure, liveness conditions on operation ter-
mination, and their communication costs. A common insight
that applies to all the algorithms of [15, 13, 1, 4, 21, 12, 6, 5,
2, 22] is that, among the class of all executions with at most
ν active write operations, the worst case storage cost of im-
plementing an atomic shared memory object whose values

come from a finite set V is at least ν
N log

2
|V|

N−f
. In fact, refer-

ences [13, 5, 2, 4] conduct a formal analysis of the incurred
storage cost and show that the storage cost incurred3 is ap-

proximately ν
N log

2
|V|

N−f
. While the prior works highlight the

benefit of erasure coding when the number of active writes
is small, the storage cost benefits of erasure coding vanish
as the number of active writes increases. In particular, for a
sufficiently large value of ν, erasure coding based algorithms
can even have a higher storage cost as compared to replica-
tion based algorithms [3, 14], which incur a storage cost of
Θ(f) log2 |V| irrespective of the number of active writes.

In contrast with the storage cost upper bounds in litera-
ture, our lower bounds of Theorem 4.1 and 5.1 do not de-
pend on the number of active writes. Furthermore, if f is
proportional to N, then storage cost lower bounds of The-
orem 4.1 and 5.1 are both o(f) log2 |V| + o(log2 |V|). Prior
literature in conjunction with our results of Theorems 4.1
and 5.1 motivates the following question:

3There are subtle differences in the storage cost incurred by
the algorithms of [6, 5, 2, 4, 13]. Nonetheless, ν N

N−f
log2 |V|

is a lower bound on the cost incurred by these algorithms
in the worst case, among executions where the number of
active writes is bounded by ν.

Question 2: Can we develop an algorithm whose stor-
age cost, when f is proportional to N , is as small as
o(f) log2 |V| and does not grow with the number of ac-
tive writes?

Summary of Theorem 6.5: We provide partial answer
to Question 2 in our lower bound presented in Theorem 6.5.
The lower bound states that the answer to Question 2 is
negative, if the write protocol of the algorithm satisfies cer-
tain technical conditions described in Section 6. Informally
speaking, the technical conditions in Section 6 imply that
the write operation is executed in phases, and a message
containing information about the value is sent to the servers
in at most one phase per write operation. For any atomic
MWSR algorithm that ensures that all operations terminate
in every execution where the active number of write oper-
ations is at most ν and the number of server failures is at
most f , Theorem 6.5 shows that if the write protocol satis-
fies the conditions stated in Section 6, then the storage cost

cannot be smaller than ν∗ log
2
|V|

N−f+ν∗−1
− o(log |V|), where ν∗

is the minimum of {f + 1, ν}.
Theorem 6.5 is interesting from a conceptual viewpoint

since it captures the dependence of the storage cost on the
degree of concurrency that has been noticed in the upper
bounds of [13, 6, 5, 2, 4]. In particular, the bound of The-
orem 6.5 can be much larger than the bounds of Theorems
4.1 and 5.1, if the parameters ν and f are sufficiently large.
If the number of active write operations exceeds (f + 1),
then our storage cost lower bound of Theorem 6.5, which
equals (f + 1) log2 |V| − o(log2 |V|), implies that replication
based algorithms are approximately optimal in the class of
algorithms described in the theorem.

The class of algorithms that satisfy the conditions stated
in Section 6 include a majority of the algorithms in literature
[13, 1, 4, 21, 12, 5]. We refer the reader to Section 6 for a
more detailed justification. Theorem 6.5, in the stated form,
does not apply to a few algorithms [2, 15] because these
protocols send messages related to the value of the write
operation in two phases; one phase is used to send a hash
of the value for client verification purposes, and a second
phase is used to send codeword symbols corresponding to
the value.

We provide sketches of proofs in this paper. Full proofs
of our results are provided in the extended version of our
paper [7].

2.4 Comparison with Prior Storage Cost
Lower Bounds

We refer the reader to the extended version of the paper
[7] for a comparison with some related works [9, 10, 14, 23,
24]. Here we discuss reference [22], which describes interest-
ing, non-trivial lower bounds on shared memory emulation
algorithms where the server and client storage schemes sat-
isfy certain restrictions. Reference [22] assumed that every
bit stored in the system is associated uniquely with a write
operation, and showed that under such a storage scheme,
the worst case total storage cost of the system is at least
Ω(min(f, ν) log |V|). The implication of [22] is that in the
worst case, if the degree of concurrency is infinite and the
server storage scheme is restricted in a particular manner,
then the replication based algorithms of [3, 14] are approxi-
mately optimal.



The assumption of [22] that every bit stored is associated
with a unique write operation is restrictive and does not ap-
ply to all possible storage methods. To see this, consider a
scenario where V is a finite field. Let v1, v2 ∈ V be values
corresponding to two different write operations. Suppose in
some algorithm A, at some point of an execution, a server
stores v1 + v2, where + denotes the addition operator over
the field. Then a bit stored by the server cannot be uniquely
associated with any of the write operations in an unambigu-
ous way. Therefore, the proof technique and the result of
[22] fails to provide any insight on the storage cost of the al-
gorithm A. Put differently, the storage method of [22] does
not allow for server storage techniques that potentially com-
press the values of different versions together (See extended
paper [7] for more details). In contrast, the results of The-
orems 4.1, 5.1 are universal and would automatically apply
to algorithm A. The result of Theorem 6.5 does not impose
any structure on the storage method, and could also apply
to algorithm A if its write protocol satisfies the appropriate
restrictions. In our concluding section, Section 7, we provide
a summary of the state of the art based on the main results
of our paper and of [22].

3. PRELIMINARIES
We study the emulation of a shared atomic memory in an

asynchronous message passing network. Our setting consists
of a set of N server nodes and a possibly infinite set of client
nodes. Without loss of generality, we let the set of server
nodes be {1, 2, . . . , N}. We denote the set of client nodes
as C. We assume a multi-writer single-reader (MWSR) set-
ting, that is, we assume that C has a single read client; the
remaining clients in C are write clients, denoted by Cw. If C
has exactly one write client and one read client, we refer to
the setting as a single-writer-single-reader (SWSR) setting.
Each client node is connected to all the server nodes, and
the servers are connected to each other via point-to-point
reliable asynchronous channels. Read clients receive read re-
quests (invocations) from some external source and respond
with object values. Write clients receive write-requests and
respond with acknowledgements. Every new invocation at
a client waits for a response of a preceding invocation at
the same client. The goal of a shared memory emulation
algorithm A studied in this paper is to design the client and
server protocols that implement a read-write register of a
data object which can take values from a finite set V, with
the following safety and liveness properties.

Safety Properties: The algorithms must emulate a SWSR
regular registers [17]. Informally a regular shared memory
object requires that every read operation returns either the
value written by the latest write operation that terminates
before the invocation of the read operation, or the value of
a write operation that overlaps with the read operation. In
Section 6 we further consider multi-writer single-reader al-
gorithms, and we require the algorithm to be atomic [17].
Informally, in an atomic algorithm, the observed external
behavior of every execution looks like the execution of a
serial variable type. Recall that SWSR execution of an
atomic shared memory emulation is also regular, so our lower
bounds for regular algorithms in Theorems 4.1 and 5.1 also
apply to atomic emulation algorithms.

Liveness Properties: An operation of a non-failed client
must terminate in a fair execution, so long as the number of
server failures in the execution is bounded by a parameter

f. We consider algorithms with weaker liveness properties
as well in Section 6, where we ensure termination of opera-
tions in executions if the number of active write operations
is bounded. A formal statement of the weaker liveness prop-
erties is provided in Section 6.

Storage Cost Definition: Informally speaking, the stor-
age cost of an algorithm is the total number of bits stored
by the servers. In general, for an algorithm where the state
of server node i ∈ {1, 2, . . . , N} can take values from a set
Si, we define the storage cost of the server to be equal to
log2 |Si| bits. The total-storage cost of the algorithm is de-

fined to be TotalStorage(A) =
∑N

i=1 log2 |Si| bits.

4. STORAGE COST LOWER BOUND FOR

ALGORITHMS WITHOUT GOSSIP
Our main result of this section is a storage cost lower

bound, assuming that servers do not gossip. Specifically, in
this section, we assume that every message is sent from a
client to a server, or from a server to a client. We state
Theorem 4.1, provide an informal description of the proof,
followed by a more detailed description.

Theorem 4.1. Let A be a single-writer-single-reader
shared memory emulation algorithm that implements a reg-
ular read-write object whose values come from a finite set V.
Suppose that in A, every message is sent from a server to
a client, or from a client to a server. Suppose that the al-
gorithm A satisfies the following liveness property: In a fair
execution of A, if the number of server failures is no bigger
than f , f ≥ 2, then every operation invoked at a non-failing
client terminates. Then, for every subset N ⊂ {1, 2, . . . , N}
where |N | = N − f ,

∑

n∈N

log2 |Si|+max
n∈N

log2 |Si|

≥log2 |V|+ log2 (|V| − 1))− log2(N − f). (1)

TotalStorage(A)

≥
N(log2 |V|+ log2(|V| − 1)− log2(N − f))

N − f + 1
. (2)

Informal Proof Sketch: We show in the extended paper
[7] that inequality (2) is a simple consequence of (1). Here we
prove (1). Informally speaking, our lower bound argument
is as follows. For every subset N ⊂ {1, 2, . . . , N} where
|N | = N − f , we construct an execution where the servers
in {1, 2, . . . , N} − N fail at the beginning of the execution.
The execution has two write operations for values v1 and
v2, where v1 6= v2 ∈ V. The second write operation which
writes value v2 begins after the termination of the first write
operation, which has value v1.

In this execution, after the point of termination of the first
write, a reader can return v1 because of regularity. Simi-
larly, after the termination of the second write operation, a
reader can return v2. Therefore, the value v1 is returnable
from the servers at a point before the invocation of the sec-
ond write operation and v2 is returnable from the servers
at a point after the completion of second write operation.
Furthermore, at every point in the interval of the second
write operation, at least one of v1 or v2 are returnable. This
implies that, in the interval of the second write operation,



there are two consecutive points P and P ′ such that v1 must
be returnable from the non-failing servers at point P and
v2 must be returnable from the non-failing servers at point
P ′. Since (v1, v2) can be any ordered pair of distinct val-
ues from V, there must be a one-to-one mapping between
the set {(v1, v2) : (v1, v2) ∈ V × V, v1 6= v2} and the set
of possible configurations of server states at points P and
P ′. This implies that the number of possible server states at
points P and P ′ is at least (|V|)(|V|−1). Since P and P ′ are
consecutive, at most one non-failing server changes its state
between these two points. At least N − f − 1 non-failing
servers have the same state at point P as at point P ′. We
use this fact to show that the number of elements in the
set of possible server states at two consecutive points is at
most

∏

n∈N |Si|×maxn∈N |Sn|× (N−f). Therefore, we get
∏

n∈N |Si| ×maxn∈N |Sn| × (N − f) ≥ (|V|)(|V| − 1), which
implies the lower bound.

4.1 Formal Proof of Theorem 4.1
Consider an arbitrary subset N ⊂ {1, 2, . . . , N} such that

|N | = N − f . We construct |V| × (|V| − 1) executions of the
algorithm A. In particular, for every tuple (v1, v2) ∈ V × V

where v1 6= v2, we create an execution α(v1,v2) of algorithm
A. In our proof, we first describe execution α(v1,v2) in Sec-
tion 4.1.1. Then we present some properties of execution
α(v1,v2) in Section 4.1.2. We use the results of Section 4.1.2
to prove Theorem 4.1 in Section 4.1.3.

4.1.1 Execution α(v1,v2)

In execution α(v1,v2) the reader and the channels from
and to the reader do not perform any actions. Among the
set of write clients Cw, only one write client takes actions.
The f servers in {1, 2, . . . , N} − N fail at the beginning
of the execution. No further server failures occur in the
execution. A write π1 is invoked at a write client with value
v1. All the components of the system except the reader,
and the channels from and to the reader, take turns in a fair
manner until the completion of π1. Immediately after the
termination of π1, a write operation π2 with value v2 begins.
All the components of the system except the reader and the
channels from and to the reader take turns in a fair manner
until the completion of π2. The execution α(v1,v2) ends after
the termination of π2.

4.1.2 Properties of Execution α(v1,v2)

Let P
(v1,v2)
0 , P

(v1,v1)
1 , P

(v1,v2)
2 , . . . , P

(v1,v2)
M be the adjacent

points (or points after successive steps) of the constructed

execution α(v1,v2), where P
(v1,v2)
0 is an arbitrary point after

the termination of π1 and before the invocation of π2 and
P

(v1,v2)
M is an arbitrary point after the point of termination

of π2, and M is a positive integer. By the liveness property,
we can choose M to be finite. For i ∈ {0, 1, 2, . . . ,M}, we

denote by α
(v1,v2)
i , the execution between the initial point

of α(v1,v2) and point P
(v1,v2)
i . We next define the notions of

1-valent and 2-valent points.

Definition 4.2 (k-valent, k ∈ {1, 2}). For i ∈ {0, 1,

2, . . . ,M}, a point P
(v1,v2)
i in execution α

(v1,v2)
i is said to

be k-valent if we can extend α
(v1,v2)
i to an execution β as

follows: After P
(v1,v2)
i in β, all the messages from and to

the writer are delayed indefinitely. A read operation starts at

point P
(v1,v2)
i and all the components, except the writer and

the channels from and to the writer, perform actions until
the read operation terminates. The read operation returns
vk.

It should be noted that a point of an execution can be
both 1-valent and 2-valent.

Lemma 4.3. For i ∈ {0, 1, 2, . . . ,M}, a point P
(v1,v2)
i

that is not 1-valent is 2-valent.

Lemma 4.3 is a natural consequence of Lemma 4.4 which
informally states that a reader that begins after the termi-
nation of the write π1 should return v1 or v2.

Lemma 4.4. Consider an execution β which is an exten-

sion of α
(v1,v2)
i . In β, after point P

(v1,v2)
i , the writer stops

taking steps and all messages from and to the writer are
delayed indefinitely. A read operation begins at some point

after point P
(v1,v2)
i and terminates in β. Then, the read

operation returns either v1 or v2.

The lemma is a natural consequence of the regularity of
algorithm A.

Lemma 4.5. There exists some integer i ∈ {0, 2, . . . ,M −

1} such that P
(v1,v2)
i is 1-valent and P

(v1,v2)
i+1 is not 1-valent.

We can show by regularity that (i) Point P
(v1,v2)
0 is 1-valent,

and (ii) point P
(v1,v2)
M is not 1-valent. Among all the num-

bers in {0, 1, 2, . . . ,M}, let i denote the largest number such

that P
(v1,v2)
i is 1-valent. If (i) is true, we note that the num-

ber i exists. If (ii) is true, then i < M . Since i is the largest

number such that P
(v1,v2)
i is 1-valent, we infer that P

(v1,v2)
i

is 1-valent, but P
(v1,v2)
i+1 is not 1-valent. The point P

(v1,v2)
i

therefore satisfies the statement of the lemma. Next, we
present the definition of a pair of critical points of execution
α(v1,v2).

Definition 4.6 (Critical points). Let Q1, Q2 be two

points in execution α(v1,v2). The pair of points (Q1, Q2) is
defined to be a pair of critical points if there exists a number

i in {0, 2, . . . ,M−1} such that Q1 = P
(v1,v2)
i , Q2 = P

(v1,v2)
i+1 ,

Q1 is 1-valent, and Q2 is not 1-valent.

Lemma 4.5 implies that every execution α(v1,v2) has at
least one pair of critical points. Lemma 4.3 implies that if
(Q1, Q2) is a pair of critical points in α(v1,v2), then point Q2

is 2-valent in α(v1,v2). We need the following lemma before
proceeding to prove Theorem 4.1.

Lemma 4.7. Let (Q1, Q2) be a pair of critical points of

execution α(v1,v2). Then, the reader, and the channels be-
tween the reader and the servers, are all in the same state
at point Q2 as at point Q1. Also, there is at most one non-
failing server s such that its state at Q1 is different from its
state at Q2.

4.1.3 Proof of Theorem 4.1

For given (v1, v2), fix (Q
(v1,v2)
1 , Q

(v1,v2)
2 ) to be a pair of

critical points in execution α(v1,v2). From Lemma 4.7, we
note that there is at most one non-failing server that changes

state between Q
(v1,v2)
1 and Q

(v1,v2)
2 . Let s denote the server

which changes state between points Q
(v1,v2)
1 and Q

(v1,v2)
2 ,



if there is one; if not, let s denote an arbitrary non-failing
server. If s′ ∈ N , s′ 6= s, the state of the server s′ is the

same at points Q
(v1,v2)
1 and Q

(v1,v2)
2 .

Let ~S(v1,v2) be an element of
∏

n∈N Sn × N × ∪n∈NSn

as follows. The first N − f components of ~S(v1,v2) denote

the states of the N − f servers in N at point Q
(v1,v2)
1 . The

(N − f +1)st component of ~S(v1,v2) denote the server index
s, and the (N − f + 2)nd component is the state of server s

at point Q
(v1,v2)
2 . Note that the number of elements in the

set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)} is at most
∏

i∈N |Si| × (N −

f) ×maxi∈N |Si|.
To prove Theorem 4.1, we show that, if (v1, v2) and (v′1, v

′
2)

are two distinct elements of the set {(x, y) : (x, y) ∈ V ×

V, x 6= y}, then ~S(v1,v2) 6= ~S(v′

1
,v′

2
). If we show this, then it

implies that the number of elements in the set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)}

is at least equal to the number of elements in the set {(x, y) :
(x, y) ∈ V × V, x 6= y}, which is equal to (|V|) × (|V| − 1).
This implies the following inequality:

∏

n∈N

|Sn| × (N − f)×max
n∈N

|Sn| ≥ (|V|) × (|V| − 1)

which implies the theorem. Suppose, for contradiction, there
are two distinct tuples (v1, v2) and (v′1, v

′
2) in {(x, y) : (x, y) ∈

V × V, x 6= y} and ~S(v1,v2) = ~S(v′

1
,v′

2
).

Let i denote an integer such that Q
(v1,v2)
1 is the point

P
(v1,v2)
i in α(v1,v2). Because the point Q

(v1,v2)
1 is 1-valent,

there is an execution β
(v1,v2)
1 that extends α

(v1,v2)
i such that,

after point Q
(v1,v2)
1 in β

(v1,v2)
1 , all the messages from and to

the writer are delayed indefinitely, and a read operation be-

gins and returns v1. Similarly, because the point Q
(v1,v2)
2 is

2-valent, there is an execution β
(v1,v2)
2 that extends α

(v1,v2)
i+1

such that, after point Q
(v1,v2)
2 , all the messages from and to

the writer are delayed indefinitely, and a read operation be-
gins and returns v2. The following lemma describes a useful

property of executions β
(v1,v2)
1 and β

(v1,v2)
2 .

Lemma 4.8. Let ~S(v1,v2) = ~S(v′

1
,v′

2
). Consider the com-

posite automaton A formed by the servers, the reader and
the channels between the reader and servers. For k ∈ {1, 2},
every component of the automaton A has the same state at

point Q
(v1,v2)
k in β

(v1,v2)
k as at point Q

(v′

1
,v′

2
)

k in execution

β
(v′

1
,v′

2
)

k .

We now use Lemma 4.8 to obtain a contradiction. Because
(v1, v2) and (v′1, v

′
2) are distinct ordered pairs, there are only

two possibilities: (I) v′1 6= v1, v
′
1 6= v2, (II) v

′
2 6= v1, v

′
2 6= v2,

or v′2 = v1, v
′
1 = v2, both of which imply that v′2 6= v2. We

handle these possibilities separately.
Case (I): v′1 6= v1, v

′
1 6= v2. We create an execution γ of

the algorithm A which contradicts Lemma 4.4. Let i be an

integer such that Q
(v1,v2)
1 = P

(v1,v2)
i in execution α(v1,v2).

The execution γ extends execution α
(v1,v2)
i , that is, it follows

execution α(v1,v2) until point Q
(v1,v2)
1 . After point Q

(v1,v2)
1 ,

the writer, and the channels from and to the writers do not

perform any actions, After point Q
(v1,v2)
1 , the servers, reader

and the channels between the servers and reader in γ follow

the same steps as the corresponding components in β
(v′

1
,v′

2
)

1 .

Lemma 4.8 implies that γ is an execution of algorithm A. In

particular, γ is an extension of α
(v1,v2)
i , where, after point

P
(v1,v2)
i , the writer and channels from and to the writer

do not perform any actions, a read begins and terminates
returning v′1. However, according to Lemma 4.4, the read
operation in γ should return either v1 or v2,. Since v1 6=
v′1, v2 6= v′1, this is a contradiction.

Case (II): v′2 6= v2. We create an execution γ of the
algorithm A that leads to a contradiction as follows. The

execution γ extends execution α
(v1,v2)
i+1 , that is, it follows exe-

cution α(v1,v2) until point Q
(v1,v2)
2 . After point Q

(v1,v2)
2 , the

writer does not take any steps, and the messages from and

to the writer are delayed indefinitely. After point Q
(v1,v2)
2 ,

the servers, reader and the channels between the servers
and reader in γ follow the same steps as the corresponding

components in β
(v′

1
,v′

2
)

2 . Lemma 4.8 implies that γ is an ex-

ecution of algorithm A. Since γ follows β
(v′

1
,v′

2
)

2 from point

Q
(v1,v2)
2 , a read operation begins in γ and returns v′2. How-

ever, according to Lemma 4.3 and the fact that Q
(v1,v2)
2 is

not 1-valent, Q
(v1,v2)
2 is 2-valent, and the read operation in

γ should return v2. This is a contradiction.

5. UNIVERSAL STORAGE COST LOWER

BOUND
Our main result of this section is a storage cost lower

bound that is applicable to any regular SWSR shared mem-
ory emulation algorithm, even if it uses server gossip.

Theorem 5.1. Let A be a single-writer-single-reader
shared memory emulation algorithm that implements a reg-
ular read-write object whose values come from a finite set V.
Suppose that the algorithm A satisfies the following liveness
property: In a fair execution of A, if the number of server
failures is no bigger than f , then every operation invoked
at a non-failing client terminates. Then, for every subset
N ⊂ {1, 2, . . . , N}, |N | = N − f ,

2max
n∈N

log2 |Si|+
∑

n∈N

log2 |Si|

≥ log2 |V|+ log2 (|V| − 1)− 2 log2(N − f), (3)

TotalStorage(A)

≥
N(log2 |V|+ log2 |V − 1| − 2 log2(N − f))

N − f + 2
. (4)

Informal Proof Sketch: The proof of Theorem 5.1 shares
many common elements with the proof of Theorem 4.1. The
main difference is that, here, we need to carefully handle the
actions performed by the channels between servers. Like our
proof of Theorem 4.1, for every subset N ⊂ {1, 2, . . . , N}

where |N | = N−f , we construct an execution α(v1,v2) where
the servers in {1, 2, . . . , N} −N fail at the beginning of the
execution. The execution has two write operations for dis-
tinct values v1 and v2. The second write operation which
writes value v2 begins after the termination of the first write
operation, which has value v1.



After the point of termination of the first write, if we
let the channels between servers deliver all the gossip mes-
sages, and begin a read operation after the delivery of these
messages, the read can return v1. Similarly, after the ter-
mination of the second write operation, if we let the chan-
nels between servers deliver all the gossip messages, a read
can return v2. This implies that, in the interval of the sec-
ond write operation, there are two consecutive points Q1

and Q2 as follows: for i ∈ {1, 2, }, if at point Qi we stop
the writers and the channels from the writers and let the
channels between servers deliver all the gossip messages to
arrive at point Qi, then vi must be returnable by a read
operation that begins at point Qi. By ensuring that gos-
sip messages are delivered in the same order after Qi, we
can ensure that after the delivery of the messages, at most
2 servers differ in their states. We use this fact to show
that the number of elements in the set of possible server
states after the delivery of the gossip messages is at most
∏

n∈N |Si|×maxn∈N |Sn|×maxn∈N |Sn|×(N−f)2. There-

fore, we get
∏

n∈N |Si| × (maxn∈N |Sn|)
2 × (N − f)2 ≥

(|V|)(|V| − 1), which implies the lower bound.

5.1 Detailed Proof Sketch of Theorem 5.1
We provide a proof sketch of Theorem 5.1 here. Omitted

details can be found in [7].

5.1.1 Execution α(v1,v2)

Let N be an arbitrary subset of {1, 2, . . . , N} with N − f
elements. Like the proof of Theorem 4.1, for every tuple
(v1, v2) ∈ V × V where v1 6= v2, we create an execution

α(v1,v2) of algorithm A. The f servers in {1, 2, . . . , N} − N

fail at the beginning of α(v1,v2). The execution α(v1,v2) has
two complete write operations π1 and π2 with values v1 and
v2, with π2 being invoked after the termination of π1.

Let P
(v1,v2)
0 , P

(v1,v1)
1 , P

(v1,v2)
2 , . . . , P

(v1,v2)
M be a sequence

of consecutive points in execution α(v1,v2), where P
(v1,v2)
0

is an arbitrary point after the termination of π1 and before

the invocation of π2, and P
(v1,v2)
M is an arbitrary point af-

ter the point of termination of π2. We denote by α
(v1,v2)
i ,

the execution between the initial point of α(v1,v2) and point

P
(v1,v2)
i .

5.1.2 Properties of Execution α(v1,v2)

The definition of k-valent points are similar to Definitions
4.2, k = 1, 2, with the exception that we allow the channels
the servers to deliver their messages before the invocation of
the read operation.

Definition 5.2 (k-valent, k ∈ {1, 2}). For i ∈ {0, 1,

2, . . . ,M}, a point P
(v1,v2)
i in the constructed α

(v1,v2)
i is said

to be k-valent if we can extend α
(v1,v2)
i to an execution β

as follows: After P
(v1,v2)
i all the messages from and to the

writer are delayed indefinitely. At P
(v1,v2)
i all the channels

between the servers act, delivering all their messages. Af-
ter the delivery of the messages in the channels between the
servers, a read operation starts and all the components, ex-
cept the writer and the channels from and to the writer, exe-
cute their protocols until the read operation terminates. The
read operation returns vk.

We inherit the definition of critical points from Definition
4.6. The only change is that the terms k-valent points use

the modified definition. Results analogous to Lemmas 4.3,
4.4 and 4.5 in the Section 4 hold, with the modified defi-
nition of k-valent points. Lemma 4.7 requires some minor
modifications as follows.

Lemma 5.3 (Analogous to Lemma 4.7). Let (Q1, Q2)

be a pair of critical points of execution α(v1,v2). Then, (i)
the readers, and the channels between the readers and the
servers, are all in the same state at point Q2 as at point Q1;
(ii) there is at most one non-failing server such that its state
at Q1 is different from its state at Q2; (iii) among all the
channels between the servers, there is at most one channel
whose state at Q1 is different from its state at Q2.

5.1.3 Proof of Theorem 5.1

From Lemma 5.3, we note that there is at most one non-
failing server and one channel that changes its state between

a pair of critical points Q
(v1,v2)
1 and Q

(v1,v2)
2 . Let s denote

the non-failing server which changes state between points

Q
(v1,v2)
1 and Q

(v1,v2)
2 , if there is one; if not, let s denote an

arbitrary non-failing server. Let s′ be a non-failing server
such that the channel from s′′ to s′ change its state between

Q
(v1,v2)
1 and Q

(v1,v2)
2 , for some server s′′, if there is such a

server 4; let s′ be an arbitrary non-failing server if there is
not.

We next present constructions of two executions, β
(v1,v2)
1

and β
(v1,v2)
2 . We know that Q

(v1,v2)
1 is the point P

(v1,v2)
i for

some i ∈ {0, 1, . . . ,M − 1}. Create β
(v1,v2)
1 as an extension

of α
(v1,v2)
i . At point P

(v1,v2)
i , the writer and channels from

the writer stop performing actions, the channels between
the servers deliver all their messages. Denote this point by

R
(v1,v2)
1 . A read operation begins after R

(v1,v2)
1 and returns

v1. Such an execution exits because Q
(v1,v2)
1 is 1-valent.

The execution β
(v1,v2)
2 follows α(v1,v2) until point Q

(v1,v2)
2 .

At point Q
(v1,v2)
2 , all the channels between the servers act

delivering all their messages. For a server j in {1, 2, . . . , N−
f}−{s, s′}, the channels with destination j are at the same

state at Q
(v1,v2)
2 as they are at Q

(v1,v2)
1 ; these channels act

and deliver their messages in the same order as they do

after point Q
(v1,v2)
1 in β1(v1, v2). At point Q

(v1,v2)
2 , server

j ∈ N − {s, s′′} is at the same state as it was at point

Q
(v1,v2)
1 . Also, at point Q

(v1,v2)
2 , server j receives messages

in the same order as it does at point Q
(v1,v2)
1 in β

(v1,v2)
1 ;

on receiving each message, server j takes the same action in

β
(v1,v2)
2 as it does in β

(v1,v2)
1 . The channels with destinations

s or s′ deliver messages in some arbitrary order, and servers
s and s′ perform actions based on the protocol specified by

algorithm A. We denote this point as R
(v1,v2)
2 . It is worth

noting that at point R
(v1,v2)
2 , all the channels are empty, and

every server in N−{s, s′} is at the same state as it is at point

R
(v1,v2)
1 in β

(v1,v2)
1 . At R

(v1,v2)
2 , a read operation begins, all

the components except the writer and the channels from
and to the writer act in a fair manner until the read returns.
Because the point Q

(v1,v2)
2 is 2-valent but not 1-valent, the

read returns v2 in β
(v1,v2)
2 .

4Between Q
(v1,v2)
1 , Q

(v1,v2)
2 , if there is a server s that changes

its state, and a channel between two servers s′′ and s′ that
changes its state, it is easy to show that s ∈ {s′, s′′}. We
nonetheless use distinct notation for servers s, s′, s′′ since it
simplifies presentation.



Let ~S(v1,v2) be an element of
∏

n∈N Sn ×N ×∪n∈NSn ×
N × ∪n∈NSn as follows. The first N − f components of
~S(v1,v2) denote the states of the N − f servers in N at point

R
(v1,v2)
1 . The (N − f + 1)st component of ~S(v1,v2) denotes

the server index s and (N − f + 2)nd component denotes

the state of server s at point R
(v1,v2)
2 in α(v1,v2). The (N −

f + 3)nd component denotes the server index s′ and the
(N − f + 4)th component denotes the state of server s′ at

point R
(v1,v2)
2 in execution β

(v1,v2)
2 . Note that the number

of elements in the set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)} is at most

∏

i∈N |Si| × (N − f)2 × (maxi∈N |Si|)
2.

To prove Theorem 5.1, we show that, if (v1, v2) and (v′1, v
′
2)

are two distinct elements of the set {(x, y) : (x, y) ∈ V ×

V, x 6= y}, then ~S(v1,v2) 6= ~S(v′

1
,v′

2
). If we show this, then it

implies that the number of elements in the set
⋃

(v1,v2)∈V×V,v1 6=v2

{~S(v1,v2)}

is at least equal to the number of elements in the set {(x, y) :
(x, y) ∈ V × V, x 6= y}, which is equal to (|V|) × (|V| − 1).
This leads to the following inequality:

∏

n∈N

|Sn| × (N − f)2 × (max
n∈N

|Sn|)
2 ≥ (|V|)× (|V| − 1)

which implies the theorem.
The following lemma is analogous to Lemma 4.8.

Lemma 5.4. Let ~S(v1,v2) = ~S(v′

1
,v′

2
). Consider the com-

posite automaton formed by the servers, the readers, the
channels between the servers, and the channels between the
readers and servers. For k ∈ {1, 2}, every component of this

system at point R
(v1,v2)
k in β

(v1,v2)
k is identical to the state of

the corresponding component at point R
(v′

1
,v′

2
)

k in execution

β
(v′

1
,v′

2
)

k .

Using the above lemma and similar arguments as in The-
orem 4.1, we can prove that for two distinct tuples (v1, v2)
and (v′1, v

′
2) in {(x, y) : (x, y) ∈ V × V, x 6= y}, we have

~S(v1,v2) 6= ~S(v′

1
,v′

2
). Therefore, the proof of Theorem 5.1 is

completed.

6. STORAGE LOWER BOUND FOR A RE-

STRICTED CLASS OF ALGORITHMS
In this section, we study a restricted class of MWSR al-

gorithms where the write protocols have specific structure.
In our restricted class, the write protocols consist of a fixed
number of phases. During an operation the writer performs
black-box actions that handle objects obliviously, without
regard to the actual value. We assume that there is only
one phase where a message containing information about
the actual value is sent to the servers. The formal state-
ment of our assumptions on the write protocol in Section
6.1 is somewhat technically involved. However the write
protocols of most previous algorithms [13, 1, 4, 21, 12, 6,
5] satisfy our assumptions. After stating our assumptions,
we state in Theorem 6.5 in Section 6.2, a storage cost lower
bound that applies to the class of algorithms that we study.
The lower bound of Theorem 6.5 is much larger than the
bound of Theorems 4.1 and 5.1, and is close to the costs of
previously developed algorithms.

6.1 Protocol Assumptions
Assumption 1: The state of a write client during a write

operation is of the form (v,m, h(v,m)) where v ∈ V is the
value of the write operation, m is an element of a set M, and
h(m, v) is the value of function h whose domain is V × M
and range is a finite set.

The set M is referred to as the metadata set of the write
protocol of the algorithm. The function h(m, v) can contain
components of the send buffers that depend on the value,
and hashed values used for verification to handle Byzantine
adversaries [2, 15, 12]. To describe Assumption 2, we first
define the notion of a quorum system and a phase. A quorum
system Q is a collection of subsets of {1, 2, . . . , N}.

Definition 6.1 (Phase). For an arbitrary subset N ⊆
{1, 2, . . . , N} and a quorum system Q, a (N ,Q)-phase con-
sists of a sequence of actions at a write client as follows: (i)
Send message mn to server node n for every n ∈ N . (ii)
Wait for responses from least one subset of servers in the
collection Q. (iii) Perform internal actions, and finish the
phase.

Definition 6.2 (Decomposable into phases). We
say a write protocol is decomposable into phases if, on the
invocation of a write operation, it invokes a phase, and on
the termination of a phase, it either invokes another phase,
or terminates the write operation.

Assumption 2: The write protocol is decomposable into
phases.

Before we state Assumption 3, we state the notion of the
black-box action. Informally, actions treat the data object
obliviously without regard to the actual value of the object.
Recall that the write protocol is specified as a set of transi-
tions (old-state, action, new-state).

Definition 6.3 (Black-box action). An internal or
output action σ performed by a write client is said to be a
black-box action if the following holds: if, for some value
v ∈ V, the action σ is enabled when the client’s state is
(m, v, h(m, v)) for some m ∈ M, and can result in the
transition of the client’s state from (m, v, h(m, v)) to (m′, v,
h(m, v)) for some m′ ∈ M, then, for every value v′ ∈ V, the
action σ is enabled when the client’s state is (m, v′, h(m, v′)),
and can result in the transition of the client’s state from
(m, v′, h(m, v′)) to (m′, v′, h(m′, v′)).

A write client’s output actions are send and return. Send
actions are categorized as below.

Definition 6.4 (Value-dependent send actions).
A black-box send action σ that is enabled during a write
operation is said to be value-independent if the message sent
does not depend on the value of the operation. A send action
that is not a value-independent send action is referred to as
a value-dependent send action.

Messages sent by value-dependent and value-independent
send actions are respectively referred to as value-dependent
and value-independent messages.

Assumption 3: (a) All write client actions are black-box
actions, and (b) in a write operation π in an execution α,
if there is a phase where at least one value-dependent send
action is performed, then every send action in every subse-
quent phase of the write operation π is a value-independent
send action.

In particular, Assumption 3(b) implies that there is at
most one phase where the writer sends value-dependent mes-
sages on behalf of a write operation in any execution.
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Figure 1: Pictorial description of the execution for ν = 3. b1 = 2, b2 = 1, b3 = 3.

6.2 Main Result
In an execution α, a write operation π is said to be active

at point P if the point P is after the point of invocation but
before the point of termination of π.

Theorem 6.5. Let A be a multi-writer-single-reader
shared memory emulation algorithm that implements an atomic
read-write object whose values come from a finite set V. Sup-
pose algorithm A satisfies Assumptions 1, 2, and 3 stated in
Section 6.1, and following liveness property: In a fair execu-
tion of A, if the number of server failures is no bigger than f
and the number of active write operations is no bigger than
ν, then every operation invoked at a non-failing client ter-
minates. Let ν∗ = min(ν, f + 1). Then, for every subset
N ⊆ {1, 2, . . . , N}, |N | = min(N − f + ν − 1, N),

∑

n∈N

log2 |Sn|

≥ log2

(

|V| − 1

ν∗

)

− log2(ν
∗!)− ν

∗ log2(N − f + ν
∗ − 1),

T otalStorage(A) ≥
ν∗N

N − f + ν∗ − 1
log |V| − o(log |V|).

Informal Proof Sketch: For simplicity of exposition,
assume N = {1, 2, . . . , N − f + 2}. For our informal de-
scription, we set the parameter ν = 3, and f ≥ ν − 1 = 2.
Our proof of Theorem 6.5 constructs an execution where the
servers in {N−f+3, N−f+4, . . . , N} fail at the beginning
of the execution. The execution has ν = 3 write operations
π1, π2, π3 with distinct values v1, v2, v3 respectively invoked
at distinct clients C1, C2, C3. We assume that at the be-
ginning of the execution before the invocation of any write
operation, a default initial value v0 can be returned by any
read operation, and that values v1, v2, v3 are distinct from
the default initial value v0.

Operations π1, π2, π3 execute their protocols in a fair man-
ner until they reach their respective phases where they send
the value-dependent messages (refer to Assumption 3). The
3 clients send the value-dependent messages onto the chan-
nels, but the channels do not yet deliver the value-dependent
messages.

Now allow the channels from the clients to the servers to
deliver all the value-dependent messages to the first N − f
servers. It must be the case that the first N−f servers store
“sufficient information” to return at least one of the values
v1, v2 or v3. This is because there are no additional phases
where value-dependent messages are sent, so the servers can-
not receive any additional information related to v1, v2 or v3.
Furthermore, if we let at least one of the operations π1, π2, π3

complete by performing the remaining phases, then, by safety
property, at least one of the values v1, v2 or v3 must be re-
turnable from the first N − f servers after the completion of

the operation. So it must be the case that the servers store
sufficient information to return one of v1, v2 or v3. Let a1

be the smallest number such that, if the channels between
the clients and the first a1 servers deliver all their messages,
then the first a1 servers store sufficient information of value
vb1 for some b1 ∈ {1, 2, 3}. Note that 1 ≤ a1 ≤ N − f ,
and sufficient information of any one of v1, v2 or v3 is not
contained from any of the first a1 − 1 servers.

Now allow the channels from clients {C1, C2, C3}− {Cb1}
deliver their value-dependent messages to servers in {a1 +
1, a1 + 2, . . . , N − f + 1}. After the delivery of the mes-
sages, sufficient information of one of the values vb2 must
be available in the first N − f + 1 servers for some b2 ∈
{1, 2, 3} − {b1}. This is because, if, after the delivery of the
value-dependent messages, server a1 stops taking actions,
and clients {C1, C2, C3} − {Cb1}, and the first N − f + 1
servers apart from server a1 take actions in a fair manner,
then one of the operations π1, π2, π3 completes; safety prop-
erty implies that one of the values v1, v2, v3 is returnable
from the first N − f + 1 servers. However, note that suf-
ficient information related to vb1 is not contained in the
first a1 − 1 servers. As a consequence, vb1 cannot be re-
turnable from the first N − f + 1 servers if server a1 does
not take actions and we do not allow the value-dependent
messages from client Cb1 to be delivered to any one of the
servers {a1 + 1, a1 + 2, . . . , N − f + 1}; therefore a value
vb2 6= vb1 must be returnable from the first N − f + 1
servers. Let a2 be a number with a1 < a2 ≤ N − f + 1 such
that, if all the channels deliver their value-dependent mes-
sages to the first a1 servers and the channels from clients in
{C1, C2, C3}−{Cb1} deliver their value-dependent messages
to the servers in {a1 + 1, a1 + 2, . . . , a2}, then sufficient in-
formation about value vb2 is contained in the first a2 servers
for some b2 6= b1, b2 ∈ {1, 2, 3}.

Similarly, if we let the channels from remaining client in
{C1, C2, C3}−{Cb1 , Cb2} deliver their value-dependent mes-
sages to the servers in {a2+1, a2+2, . . . , N−f+2}, then suf-
ficient information about the value in {v1, v2, v3}−{vb1 , vb2}
is contained from the first N−f+2 servers after the delivery
of the messages. At this point, sufficient information about
all 3 values is contained in the first N − f + 2 servers. We
can show that this implies that there is a one-to-one mapping
from the states of the first N − f +2 servers to the values in
(V − {v0})

3, where v0 is the initial value. This implies that
the storage cost must be at least 3

N−f+2
log2 |V|+o(log2 |V|).

Our proof involves developing an appropriate notion of
sufficient information of a value that is applicable even when
each server stores some arbitrary function of the values of
the different versions it receives. In particular, we cannot
directly borrow from other work [22], whose notion of suf-
ficient information of a value is tied to the storage scheme
imposed by the model studied.



7. CONCLUSION
This paper was motivated by open questions, Question

1 and Question 2 in Section 2. We resolved Question 1 in
the paper in the negative. Although Question 2 remains
open, we obtain the following insights via our results in con-
junction with the result of [22]: If there is an algorithm
whose storage cost is g(ν,N, f) log2 |V| + o(log2 |V|), where
g(ν,N, f) is some real-valued function of parameters ν,N, f
then g(ν,N, f) ≥ 2N

N−f+2
, and

• if g(ν,N, f) <
min(ν,f+1)N

N−f+min(ν,f+1)−1
, then a write opera-

tion sends information about the value of the operation
in multiple phases to the servers;

• if, for given values of parameters N, f , we have g(ν,N,
f) < f + 1 for all values of ν, then, in certain execu-
tions, the servers store symbols which somehow com-
press values across different versions.
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