
The BG Distributed Simulation Algorithm�
Elizabeth Borowsky

Hewlett-Packard Laboratories
Palo-Alto, CA 94303

borowsky@hpl.hp.com

Eli Gafni
Computer Science Department

University of California, Los Angeles
CA 90024

eli@cs.ucla.edu

Nancy Lynchy
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

lynch@theory.lcs.mit.edu

Sergio Rajsbaumz
Instituto de Matemáticas, UNAM

Ciudad Universitaria
D.F. 04510, México

rajsbaum@servidor.unam.mx

December 8, 1997

Abstract

A snapshot shared memory algorithm is presented, allowing a set of f + 1 processes, any f of which may
exhibit stopping failures, to “simulate” a larger number n of processes, also with at most f failures.

One application of this simulation algorithm is to convert an arbitrary k-fault-tolerant n-process solution for
the k-set-agreement problem into a wait-free k+1-process solution for the same problem. Since the k+1-processk-set-agreement problem has been shown to have no wait-free solution [4, 16, 24], this transformation implies that
there is no k-fault-tolerant solution to the n-process k-set-agreement problem, for any n.

More generally, the algorithm satisfies the requirements of a fault-tolerant distributed simulation. The dis-
tributed simulation implements a notion of fault-tolerant reducibility between decision problems. These notions
are defined, and examples of their use are provided.

The algorithm is presented and verified in terms of I/O automata. The presentation has a great deal of inter-
esting modularity, expressed by I/O automaton composition and both forward and backward simulation relations.
Composition is used to include a safe agreement module as a subroutine. Forward and backward simulation rela-
tions are used to view the algorithm as implementing a multi-try snapshot strategy.

The main algorithm works in snapshot shared memory systems; a simple modification of the algorithm that
works in read/write shared memory systems is also presented.�Preliminary versions of this paper appeared in [4, 20].ySupported by Air Force Contracts AFOSR F49620-92-J-0125 and F49620-97-1-0337, and NSF contract 9225124CCR and CCR-9520298,

and DARPA contracts N00014-92-J-4033 and F19628-95-C-0118.zPart of this work was done at the Laboratory for Computer Science of MIT and at the Cambridge Research Laboratory of DEC. Supported
by DGAPA and CONACYT Projects.

1 Introduction

Consider an asynchronous snapshot shared memory system. We describe an algorithm, the BG-simulation algo-
rithm, that allows a set of f + 1 processes, any f of which may exhibit stopping failures, to “simulate” a larger
number n of processes, also with at most f failures.

As an example of an application of the BG-simulation algorithm, consider the n-process k-set agreement prob-
lem [7], in which all n processes propose values and decide on at most k of the proposed values. We use the BG-
simulation algorithm to convert an arbitrary k-fault-tolerant n-process solution for the k-set-agreement problem
into a wait-free k + 1-process solution for the same problem. (A wait-free algorithm is one in which any non-
failing process terminates, regardless of the failure of any number of the other processes.) Since the k + 1-processk-set-agreement problem has been shown to have no wait-free solution [4, 16, 24], this transformation implies that
there is no k-fault-tolerant solution to the n-process k-set-agreement problem, for any n.

As another application, we show how the BG-simulationalgorithm can be used to obtain results of [11, 15] about
the computability of some decision problems. Other applications of the algorithm (or variants of it) have appeared
in [5, 6], and more recently, in [8, 19].

These examples suggest that the BG-simulation algorithm is a powerful tool for proving solvability and unsolv-
ability results for fault-prone asynchronous systems. Thus, it is important to understand what exactly the algorithm
guarantees. In this paper, we present a complete and careful description of the BG-simulation algorithm, plus a
careful description of what it accomplishes, plus a proof of its correctness.

In order to specify what the BG-simulation algorithm accomplishes, we define a notion of fault-tolerant re-
ducibility between decision problems, and a notion of fault-tolerant simulation between shared memory systems.
We show that, in a precise sense, any algorithm that implements the fault-tolerant simulation between two systems
also implements the reducibility between decision problems solved by the systems. Then we describe a specific
version of the BG-simulation algorithm that implements the simulation. Although these notions of reducibility and
simulation are quite natural, they are specially tailored to the BG-simulation algorithm; we do not propose them as
general notions of reducibility between decision problems and simulation between systems.

We give some examples of pairs of decision problems that do and do not satisfy our notion of fault-tolerant
reducibility. For example, the n-process k-set-agreement problem is f-reducible to then0-process k0-set-agreement
problem if k � k0 and f � minfn; n0g. On the other hand, these problems are not reducible if k � f < k0. The
moral is that one must be careful in applying the simulation – it does not work for all pairs of problems, but only
those that satisfy the reducibility.

We present and verify the BG-simulation algorithm in terms of I/O automata [21]. The presentation has a great
deal of interesting modularity, expressed by I/O automaton composition and both forward and backward simula-
tion relations (see [22], for example, for definitions). Composition is used to include a safe agreement module, a
simplification of one in [4], as a subroutine. Forward and backward simulation relations are used to view the algo-
rithm as implementing a multi-try snapshot strategy. The most interesting part of the proof is the safety argument,
which is handled by the forward and backward simulation relations; once that is done, the liveness argument is
straightforward.

Our main version of the BG-simulation algorithm works in snapshot shared memory systems. We also present a
version that works in read/write shared memory systems. Essentially, the version for read/write systems is obtained
by replacing each snapshot operation by a sequence of reads in arbitrary order. The correctness of the resulting
read/write systems is proved by arguments analogous to those used for snapshot systems, combined with a special
argument showing that the result of a sequence of reads is the same as the result of a snapshot taken somewhere in
the interval of the reads.

2

The original idea of the BG-simulation algorithm and its application to set agreement are due to Borowsky and
Gafni [4]. The first precise description of the simulation, including a decomposition into modules, the notion of
fault-tolerant reducibility between decision problems, and a proof of correctness appeared in Lynch and Rajsbaum
[20]. The present paper combines the results of [4] and [20], and adds the abstract notionof fault-tolerant simulation,
extensions for read/write systems, and computability results.

Borowsky and Gafni extended the BG-simulation algorithm to systems including set agreement variables [5];
Chaudhuri and Reiners later formalized this extension in [9, 23], following the techniques of [20]. In the context
of consensus, variants of the BG-simulation were used in [8, 19] to simulate systems with access to general shared
objects.

This paper is organized as follows. We start with the model in Section 2. In Section 3 we define decision prob-
lems, what it means to solve a decision problem, reducibility between decision problems, and simulation between
shared memory systems that solve decision problems. In Section 4 we describe a safe agreement module that is used
in the BG-simulation algorithm. In Section 5 we present the BG-simulation algorithm. In Section 6 we present the
formal proof of correctness for the BG-simulationalgorithm. This implies Theorem 6.10, our main result, which as-
serts the existence of a distributed algorithm that implements the reducibility and simulation notions of Section 3.
In Section 7 we show how to modify the BG-simulation algorithm (for snapshot shared memory), to work in a
read/write memory system. In Section 8 several applications of the BG-simulation algorithm are described. A final
discussion appears in Section 9.

2 The Model

The underlying model is the I/O automaton model of Lynch and Tuttle [21], as described, for example, in Chapter
8 of [17]. Briefly, an I/O automaton is a state machine whose transitions are labelled with actions. Actions are
classified as input, output, or internal. The automaton need not be finite-state, and may have multiple start states.
For expressing liveness, each automaton is equipped with a task structure (formally, a partition of its non-input
actions), and the execution is assumed to give fair turns to each task. The trace of an execution is the sequence of
external actions occurring in that execution.

Most of the systems in this paper are asynchronous shared memory systems, as defined, for example, in Chap-
ter 9 of [17]. Briefly, an n-process asynchronous shared memory system consists of n processes interacting via
instantaneously-accessible shared variables. We allow finitely many or infinitely many shared variables. (Allow-
ing infinitely many shared variables is a slight generalization over what appears in [17], but it does not affect any
of the properties we require.) Formally, we model the system as a single I/O automaton, whose state consists of all
the process local state information plus the values of the shared variables, and whose task structure respects the di-
vision into processes. When we discuss fault-tolerance properties, we model process stopping explicitly by means
of stopi input actions, one for each process i. The effect of the action stopi is to disable all future non-input actions
involving process i. When we discuss safety properties only, we omit consideration of the stop actions.

In most of this paper, we focus on shared memory systems with snapshot shared variables. A snapshot vari-
able for an n-process system takes on values that are length n vectors of elements of some basic data type R. It is
accessible by update and snap operations. An update(i; r) operation has the effect of changing the i’th component
of the vector to r; we assume that it can be invoked only by process i. A snap operation can be invoked by any
process; it returns the entire vector.

We often assume that the i’th component of a snapshot variable is itself divided into components. For example,
we use a snapshot variable mem, and denote the i’th component by mem(i); this component includes a component

3

sim-mem(j), denoted mem(i):sim-mem(j), for each j in some range. We sometimes allow process i to change only
one of its components, say mem(i):sim-mem(j0), with an update operation; this is permissible since process i can
remember all the other components and overwrite them.

As we have defined it, a snapshot system may have more than one snapshot shared variable. However, any
system with more than one snapshot variable (even with infinitely many snapshot variables) can easily be “imple-
mented” by a system with only a single snapshot variable, with no change in any externally-observable behavior
(including behavior in the presence of failures) of the system. Likewise, a system using snapshot shared memory
can be “implemented” in terms of single-writer multi-reader read/write shared variables, again with no change in
externally-observable behavior; see, e.g., [1] for a construction.

In Section 7 we also consider shared memory systems with single-writer multi-reader read/write shared vari-
ables (as defined, for example, in [17]).

3 Decision Problems, Reducibility and Simulation

In Section 3.1 we define decision problems and in Section 3.2 we say what it means for a system to solve a decision
problem. In Section 3.3 we define the fault-tolerant reducibility between decision problems. In Section 3.4 we
present the notion of simulation.

While the notion of reducibility relates decision problems, we show that the notion of simulation is the equiva-
lent counterpart that relates systems. The followingdiagram represents these relations, whereD andD0 are decision
problems, and P and P 0 are systems. D reducible�! D0" solves " solvesP simulates�! P 0

We use the following notation. A relation from X to Y is a subset of X �Y . A relationR fromX to Y is total
if for every x 2 X, there is some y 2 Y such that (x; y) 2 R. We write R(x) as shorthand for fy : (x; y) 2 Rg.
For a relation R from X to Y , and a relation S from Y to Z, R � S denotes the relational composition of R and S,
which is a relation from X to Z.

3.1 Decision Problems

Let V be an arbitrary set of values; we use the same V as the input and output domain for all the decision problems
in this paper. An n-port decision problem D = hI;O;�i consists of a set I of input vectors, I � V n, a set O of
output vectors, O � V n, and �, a total relation from I to O.

Example 1 In the n-process k-set-agreement problem over a set of values V , jV j � k+1, which we abbreviate as
the (n; k)-set-agreement problem, I is the set of all lengthn vectors over V , andO is the set of all length n vectors
over V containing at most k different values. For any w 2 I, �(w) is the set of all vectors in O whose values are
included among those in w.

4

3.2 Solving Decision Problems

Let D = hI;O;�i be an n-port decision problem; we define what it means for an I/O automaton A (in particular,
a shared memory system) to solve D. A is required to have inputs init(v)i and outputs decide(v)i, where v 2 V
and 1 � i � n. We consider A composed with any user automaton U that submits at most one initi on each port i.
We require the following conditions:

Well-formedness: A only produces a decidei if there is a preceding initi, and A never responds more than once
on the same port.

Correct answers: If init events occur on all ports, forming a vector w 2 I, then the outputs that appear in decide
events can be completed to a vector in �(w).

We say that A solves D provided that for any such U , the composition A � U guarantees well-formedness and
correct answers. In addition, we consider a liveness condition expressing fault-tolerance:f-failure termination: In any fair execution of A � U , if init events occur on all ports and stop events occur on

at most f ports, then a decide occurs on every non-failing port.A is said to guarantee f-failure termination provided that it satisfies the f-failure termination condition for any U ,
and A is said to guarantee wait-free termination provided that it guarantees n-failure termination (or, equivalently,n� 1-failure termination).

3.3 Fault-Tolerant Reducibility

We define the notion of f-reducibility from an n-port decision problem D = hI;O;�i to an n0-port decision
problem D0 = hI0;O0;�0i, where 0 � f � n0.

The reducibility is motivated by the way the BG-simulation algorithm operates. In that algorithm, a shared
memory system P simulates an f-fault-tolerant system P 0 that solves D0. The simulating system P is supposed to
solve D, and so it obtains from its environment an input vector w 2 I, one component per process. Each processi, based on its own input value w(i), determines a “proposed” input vector gi(w(i)) 2 I 0. The actual input for
each simulated process j of P0 is chosen arbitrarily from among the jth components of the proposed input vectors.
Thus, for each w 2 I, there is a set G(w) � I0, of possible input vectors of the simulated system P 0.

When the “subroutine” that solves P 0 produces a result (a vector in O0), different processes of P can obtain
different partial information about this result. However, with at most f stopping failures, the only difference is that
each process can miss at most f components; the possible variations are captured by the F relation below. Then
each process i of P uses its partial information x(i) to decide on a final value, hi(x(i)). The values produced in
this way, combined according to the H relation, must form a vector in O. The formal definitions follow.

For a set W of length n vectors and index i 2 f1; : : : ; ng, W (i) denotes fw(i) : w 2 Wg, and �W denotes the
Cartesian product W (1) �W (2) � : : :�W (n). Thus, �W consists of all the vectors that can be assembled from
vectors in W by choosing each component to be the corresponding component of some vector in W .

For a length n vector w of values in V , and 0 � f � n, viewsf (w) denotes the set of length n vectors overV [f?g that are obtained by changing at most f of the components of w to ?. If W is a set of length n vectors,
then viewsf (W) denotes [w2W fviewsf (w)g.

Our reducibility is defined in terms of three auxiliary parameterized relations G, F and H, depicted in the fol-
lowing diagram.

5

I G�! I 0# � # �0O H � F (O0) F � O0
1. G = G(g1; g2; : : : ; gn), a total relation from I to I 0; here, each gi is a function from I(i) to I0.

For any w 2 I, let W � I0 denote the set of all vectors of the form gi(w(i)), 1 � i � n, and defineG(w) = �W . We assume that for each w 2 I, G(w) � I 0.
2. F = F (f), a total relation fromO0 to (viewsf (O0))n.

For any w 2 O0, F (w) = (viewsf (w))n.

3. H = H(f; h1; h2; : : : ; hn), a total (single-valued) relation from (viewsf (O0))n to V n; here, each hi is a
function from viewsf (O0) to O(i).
For any x 2 (viewsf (O0))n, H(x) contains exactly the length n vector w such that w(i) = hi(x(i)) for
every i.

Definition 3.1 (f-Reducibility) Suppose that D = hI;O;�i is an n-port decision problem, D0 = hI0;O0;�0i is
an n0-port decision problem, and 0 � f � n0. Then D is f-reducible to D0 via relations G = G(g1; g2; : : : ; gn)
and H = H(f; h1; h2; : : : ; hn), written as D �G;Hf D0, provided that G ��0 � F �H � �.

The following examples give some pairs of decision problems that do and do not satisfy the reducibility. Be-
cause the reducibility expresses the power of the BG-simulation algorithm, the examples indicate situations where
the algorithm can and cannot be used.

Example 2 (n; k)-set agreement is f-reducible to (n0; k0)-set agreement for k � k0, f < minfn; n0g.
This is verified as follows. For v 2 V , define gi(v) to be the vector vn0

. Also, for w 2 viewsf (V n0), definehi(w) to be the first entry of w different from?. It is easy to check that Definition 3.1 is satisfied.

Example 3 (n; k)-set agreement is not f-reducible to (n0; k0)-set agreement if k � f < k0.
If this reducibility held, then the main theorem of this paper, Theorem 6.10, together with the fact that (n0; k0)-set
agreement is solvable when f < k0 [7], would imply the existence of an f-fault-tolerant algorithm to solve (n; k)-
set-agreement. But this contradicts the results of [4, 10, 16, 24].

3.4 Fault-Tolerant Simulation

We present a specification, in the I/O automata formalism, of a fault-tolerant distributed simulation. In Theorem 3.3
we show how this specification corresponds to the reducibility of Section 3.3. The reducibility relates two decision
problems, while the simulation relates two shared memory systems.

6

We start, in Section 3.4.1, by describing the simulated system, P 0. Each of the processes in the system, P, that
is going to simulate P0 gets its own input. These processes have somehow to produce, out of their inputs, inputs
for the simulated processes. Also, out of the outputs produced by the simulated processes, they have somehow to
produce outputs for themselves. These two (distributed) procedures, of input translation and of output translation,
are what is unique to the fault-tolerant simulation. Together with the natural, step-by-step simulation of P0, they
are modeled by an I/O automata called SimpleSpec, which is described in Section 3.4.2. Finally, in Section 3.4.3,
we present a formal definition of simulation, and show that it implements our reducibility notion.

3.4.1 The Simulated Algorithm P0
We assume that the algorithm to be simulated is given in the form of an n0-process snapshot shared memory system,P 0. It has only a single snapshot shared variable, called mem0. We assume that each component of mem0 takes on
values in a set R, with a distinguished initial value r0. Thus, the snapshot shared variable mem0 has a unique initial
value, consisting of r0 in every component. Furthermore, we assume that P0 solves a decision problemD0. In this
subsection and the next, we consider only safety properties, and so we omit the stop actions.

We make some simplifying “determinism” assumptions about P 0, without loss of generality: We assume that
each process has only one initial state, and, in any state has at most one non-input action enabled. Moreover, for
any action performed from any state, we assume that there is a uniquely-defined next state. Also, the initial state of
each process is “quiescent” – no non-input actions are enabled (until an input arrives). For each other state, exactly
one non-input action is enabled. In any state after a process has executed a “decide”, only local actions are enabled.

The following is some useful terminologyabout systemP0. For any state s of a process j ofP0, define nextop(s)
to be an element of f“init”; “snap”; “local”g[f(“update”; r) : r 2 Rg[f(“decide”; v) : v 2 V g. Specifically,
for a quiescent state s, nextop(s) = “init”; for a state s in which the next action is a snap, nextop(s) = “snap”;
for a state s in which the next action is an update(i; r), nextop(s) = (“update”; r); for a state s in which the next
action is local, nextop(s) = “local”; and for a state s in which the next action is to decide on value v, nextop(s) =(“decide”; v). Our determinism assumptions imply that for each state s, nextop(s) is uniquely defined.

For any state s of a process j such that nextop(s) = “init” and any v 2 V , define trans-init(s; v) to be the
state that results from applying init(v)j to s. For any state s of a process j such that nextop(s) = “snap” and anyw 2 Rn0

, define trans-snap(s; w) to be the state that results from performing the snapshot operation from states, with the return value for the snapshot being w. Finally, for any state s of a process j such that nextop(s) is an
“update”, “local”, or “decide” pair, define trans(s) to be the state of j that results from performing the operation
from state s.
3.4.2 The SimpleSpec Automaton

Consider algorithm P 0, which solves problem D0 guaranteeing f-failure termination, together with relations G
and H. The definition of what we mean by a simulation is based on a safety specification expressed by the
SimpleSpecG;Hf (P 0) automaton, or simply SimpleSpec. A system of n processes, P, which is supposed to simu-
late P 0, should implement SimpleSpec, in a sense described in Section 3.4.3.

The SimpleSpec automaton directly simulates system P0, in a centralized manner. Repeatedly, a process j ofP 0 is chosen nondeterministically and its next step simulated. The only unusual feature is the way of choosing the
inputs for the P 0 processes and the outputs for the P processes, using G and H relations. In order to determine
an input v for a process j of P 0, a process i is chosen nondeterministically from among those that have received

7

their inputs, and v is set to the j-th component of the vector gi(input(i)). At any time after at least n0 � f of the j
processes of P0 have produced decision values, outputs can be produced, using the functions hi.

We give a formal description of the SimpleSpec automaton.

SimpleSpec:
Signature:

Input:
init(v)i, i 2 f1; : : : ; ng

Output:
decide(v)i, i 2 f1; : : : ; ng Internal:

sim-initj , j 2 f1; : : : ; n0g
sim-snapj , j 2 f1; : : : ; n0g
sim-updatej , j 2 f1; : : : ; n0g
sim-localj , j 2 f1; : : : ; n0g
sim-decidej , j 2 f1; : : : ; n0g

States:

sim-mem, a memory of P 0 (an element of Rn0
), initially the initial memory (r0)n0

for each i 2 f1; : : : ; ng:
input(i) 2 V [f?g, initially ?
reported(i), a Boolean, initially false

for each j 2 f1; : : : ; n0g:
sim-state(j), a state of j, initially the initial state
sim-decision(j) 2 V [f?g, initially ?

Transitions:

init(v)i
Effect:

input(i) := v
sim-initj

Precondition:
nextop(sim-state(j)) = “init”
for some i

input(i) 6=?v = gi(input(i))(j)
Effect:

sim-state(j) := trans-init(sim-state(j); v)
sim-snapj

Precondition:
nextop(sim-state(j)) = “snap”

Effect:
sim-state(j) :=

trans-snap(sim-state(j); sim-mem)
sim-updatej

Precondition:
nextop(sim-state(j)) = (“update”; r)

Effect:
sim-state(j) := trans(sim-state(j))
sim-mem(j) := r

sim-localj
Precondition:

nextop(sim-state(j)) = “local”
Effect:

sim-state(j) := trans(sim-state(j))
sim-decidej

Precondition:
nextop(sim-state(j)) = (“decide”; v)

Effect:
sim-state(j) := trans(sim-state(j))
sim-decision(j) := v

decide(v)i
Precondition:

input(i) 6=?
reported(i) = falsew is a “subvector” of sim-decisionjwj � n0 � fv = hi(w)

Effect:
reported(i) := true

Tasks:

8

Arbitrary. They are not used in the proof.

A sim-initj action is used to simulate an init step of process j. To simulate any other step of j, the function
nextop is used to determine what the next operation is: “init”, “snap”, (“update”; r), “local”, or (“decide”; v).
Then the state transition specified byP 0 is performed, using the appropriate function: trans-init, trans-snap or trans.
Once the simulation of at least n0 � f processes has been completed a decision value for i can be produced, usinghi. In the code this is expressed by a “subvector” of sim-decision, where “subvector” means replacing zero or more
entries of the vector sim-decision by ?, and jwj is the number of entries different from?.

Theorem 3.1 Assume P0 solves D0 and D �G;Hf D0.
Then SimpleSpecG;Hf (P 0) solves D.

Proof: FollowingSection 3.2, we consider SimpleSpecG;Hf (P 0) composed with any user automatonU that submits
at most one initi on each port i.

To prove well-formedness, we note that it follows directly from the code that SimpleSpecG;Hf (P 0) only produces
a decidei if there is a preceding initi, and it never responds more than once on the same port.

To prove correct answers, assume init events occur on all ports, forming a vector w 2 I. Then the code for
sim-init guarantees that the inputs for P 0 that are produced can be completed to a vector w0 2 G(w). Then the code
of SimpleSpecG;Hf (P 0) simulates a centralized execution of P0 with these inputs, and hence the vector w00 of output
values that is stored in sim-decision can be completed to a vector in �0(w0). Then the code for decide guarantees
that the outputs that appear in decide events can be completed to a vector in H(F (w00)). It follows that the outputs
appearing in decide events can be completed to a vector in H(F (�0(G(w)))), and hence (since D �G;Hf D0) to a

vector in �(w). Thus, SimpleSpecG;Hf (P 0) produces correct answers.

3.4.3 Definition of Simulation

We now define a notion of fault-tolerant simulation; our definition includes both safety and liveness conditions.
We need a preliminary definition and lemma. Suppose thatA and B are two I/O automata with the same inputs

init(v)i and outputs decide(v)i, v 2 V , 1 � i � n. We consider A and B composed with any user automaton U
that submits at most one initi on each port i. We say that A solves B provided that for any such U , every trace of
the composition A� U is also a trace of the composition B � U .

Lemma 3.2 Suppose that A and B are two I/O automata with the same inputs init(v)i and outputs decide(v)i,v 2 V , 1 � i � n. If A solves B and B solves an n-port decision problem D then A solves D.

Proof: By assumption, every trace of A � U is also a trace of B � U . Since B solves D, every trace of B � U
satisfies well-formedness and correct answers. Therefore, every trace ofA�U satisfies well-formedness and correct
answers, so A solves D.

Definition 3.2 (fault-tolerant simulation) Suppose that P is an n-process shared memory system, P0 is an n0-
process shared memory system, and 0 � f � n0. Then P f-simulates P0 via relations G = G(g1; g2; : : : ; gn) andH = H(f; h1; h2; : : : ; hn), written as P simulatesG;Hf P 0, provided that both of the following hold:

(1) P solves SimpleSpecG;Hf (P 0).
(2) If P 0 guarantees f-failure termination then P guarantees f-failure termination.

9

Note that condition (1) involves safety only, and so we follow the convention (of Section 2) of not including
the stop actions in P and P 0. However, condition (2) is a fault-tolerance condition, and so we assume there that the
stop actions are included, according to the convention.

The relationship between our simulation and reducibility notions is as follows:

Theorem 3.3 Assume P0 solves D0 and guarantees f-failure termination. Assume that D �G;Hf D0 and P
simulatesG;Hf P0. Then P solves D and guarantees f-failure termination.

Proof: We first show that P solves D. Theorem 3.1 implies that SimpleSpecG;Hf (P 0) solves D. By property (1)

of the definition of f-simulation, we have that P solves SimpleSpecG;Hf (P 0). Therefore, Lemma 3.2 implies thatP solves D, as needed.
Now we show thatP guarantees f-failure termination. We know thatP0 guarantees f-failure termination. SinceP simulatesG;Hf P 0, property (2) of the definition of f-simulation implies that P guarantees f-failure termination,

as needed.

Later we use Theorem 3.3 to show that if P 0 solves D0 with f-failure termination and D �G;Hf D0, then there
exists a snapshot shared memory systemP that solves D with f-failure termination. The proof consists of describ-
ing a specific snapshot shared memory systemP such thatP simulatesG;Hf P 0. This result is stated in Theorem 6.10;
the corresponding version for read/write shared memory systems is stated in Theorem 7.5.

Notice that this simulation specification deals only with external behaviors, and does not require that the pro-
gram given by P 0 be simulated step-by-step. This requirement is sufficient for the applications we present.

4 A Safe Agreement Module

The simulation algorithm uses a component that we call a safe agreement module. This module solves a variant of
the ordinary agreement problem and guarantees failure-free termination. In addition, it guarantees a nice resiliency
property: its susceptibility to failure on each port is limited to a designated “unsafe” portion of an execution. If no
failure occurs during these unsafe intervals, then decisions are guaranteed on all non-failing ports on which invo-
cations occur.

Formally, we assume that the module communicates with its “users” on a set ofn ports numbered 1; : : : ; n. Each
port i supports input actions of the form propose(v)i, v 2 V , by which a user at port i proposes specific values for
agreement, and output actions of the form safei and agree(v)i, v 2 V . The safei action is an announcement to the
user at port i that the unsafe portion of the execution corresponding to port i has been completed, and the agree(v)i
is an announcement on port i that the decision value is v. In addition, we assume that port i supports an input action
stopi, representing a stopping failure.

We say that a sequence of proposei, safei and agreei actions is well-formed for i provided that it is a prefix
of a sequence of the form propose(v)i; safei; agreei. We assume that the users preserve well-formedness on every
port, i.e., there is at most one proposei event for any particular i. Then we require the following properties of any
execution of the module together with its users:

Well-formedness: For any i, the interactions between the module and its users on port i are well-formed for i.
Agreement: All agreement values are identical.

10

Validity: Any agreement value must be proposed.

In addition, we require two liveness conditions, which are stated in terms of fair executions. The first condition says
that any propose event on a non-failing port eventually receives a safe announcement. This guarantee is required
in spite of any failures on other ports.

Wait-free progress: In any fair execution, for any i, if a proposei event occurs and no stopi event occurs, then a
safei event occurs.

The second liveness condition says that if the execution does not remain unsafe for any port, then any propose event
on a non-failing port eventually receives an agree announcement.

Safe termination: In any fair execution, if there is no j such that proposej occurs and safej does not occur, then
for any i, if a proposei event occurs and no stopi event occurs, then agreei occurs.

An I/O automaton with the appropriate interface is said to be a safe agreement module provided that it guarantees
all the preceding conditions (for all users).

We now describe a simple design (using snapshot shared memory) for a safe agreement module. It is a slight
simplification of the one in [4].

The snapshot shared memory contains a val component and a level component for each process i. When processi receives a propose(v)i, it records the value v in its val component and raises its level to 1. Then i uses a snapshot
to determine the level’s of the other processes. If i sees that any process has attained level = 2, then it backs off
and resets its level to 0, and otherwise, it raises its level to 2.

Next, process i enters a wait loop, repeatedly taking snapshots until it sees a situation where no process has
level = 1. When this happens, the set of processes that it sees with level = 2 is nonempty. Let v be the val value
of the process with the smallest index with level = 2. Then process i performs an agree(v)i output.

In the following code, we do not explicitly represent the stopi actions. We assume that the stopi action just puts
process i in a special “stopped” state, from which no further non-input steps are enabled, and after which any input
causes no changes.

SafeAgreement:
Shared variables:x, a length n snapshot value; for each i, x(i) has components:

level 2 f0;1;2g, initially 0
val 2 V [f?g, initially ?

Actions of i:
Input:

propose(v)i, v 2 V
Output:

safei
agree(v)i Internal:

update1i
snap1i
update2i
waiti

States of i:
11

input 2 V [f?g, initially ?
output 2 V [f?g, initially ?
x-local, a snapshot value; for each j, x-local(j) has components:

level 2 f0;1;2g, initially 0
val 2 V [f?g, initially ?

status 2 fidle; update1; snap1;update2; safe;wait; reportg, initially idle

Transitions of i:
propose(v)i

Effect:
input := v
status := update1

update1i
Precondition:

status = update1
Effect:x(i):level := 1x(i):val := input

status := snap1

snap1i
Precondition:

status = snap1
Effect:

x-local := x
status := update2

update2i
Precondition:

status = update2
Effect:

if 9j : x-local(j):level = 2
then x(i):level := 0
else x(i):level := 2
status := safe

safei
Precondition:

status = safe
Effect:

status := wait

waiti
Precondition:

status = wait
Effect:

if 6 9j : x(j):level = 1
and 9j : x(j):level = 2 thenk := minfj : x(j):level = 2 g

output := x(k):val
status := report

agree(v)i
Precondition:

status = reportv = output
Effect:

status := idle

Tasks of i:
All actions comprise a single task.

Theorem 4.1 SafeAgreement is a safe agreement module.

Proof: Well-formedness and validity are easy to see. We argue agreement, using an operational argument. Sup-
pose that process i is the first to perform a successful wait step, that is, one that causes it to decide, and suppose that
it decides on the val of process k. Let � be the successful waiti step; then at step �, process i sees that x(j):level 6= 1
for all j, and k is the smallest index such that x(k):level = 2.

We claim that no process j subsequently sets x(j):level := 2. Suppose for the sake of contradiction that processj does subsequently set x(j):level := 2 in an update2j step, �. Since x(j):level 6= 1 when � occurs, it must be that
process j must perform an update1j and a snap1j after � and before �. But then process j must see x(k):level = 2

12

when it performs its snap1j, which causes it to back off, setting x(j):level := 0. This is a contradiction, which
implies that no process j subsequently sets x(j):level := 2. But this implies that any process that does a successful
wait step will also see k as the smallest index such that x(k):level = 2, and will therefore also decide on k’s val.

The wait-free progress property is immediate, because process i proceeds without any delay until it performs
its safei output action.

To see the safe termination property, assume that there is no j such that proposej occurs and safej does not
occur. Then there is no j such that x(j):level remains equal to 1 forever, so eventually all the level values are inf0; 2g. Then any non-failing process i will succeed in any subsequent waiti statement, and so eventually performs
an agreei output action.

5 The BG Simulation Algorithm

In this section, we present the basic snapshot shared memory simulation algorithm, which we will show satisfies
Definition 3.2.

We present the algorithm as an n-process snapshot shared memory systemQwith a single snapshot shared vari-
able. This algorithm is assumed to interact not only with the usual environment, via init and decide actions, but also
with a two-dimensional array of safe agreement modules Aj;`, j 2 f1; : : : ; n0g, ` 2 N , N = f0; 1; 2; : : :g. In the
final version of the simulation algorithm, systemP, these safe agreement modules are replaced by implementations
and the whole thing implemented by a snapshot shared memory system with a single shared variable. The systemQ is assumed to interact with each Aj;` via outputs propose(w)j;`;i and inputs safej;`;i and agree(w)j;`;i. Here, we
subscript the safe agreement actions by the particular instance of the protocol. For ` = 0, we have w 2 V . For` 2 N+, we have w 2 Rn0

.
System Q simulates the n0 processes of P 0 (P0 is described in Section 3.4.1), using a safe agreement protocolAj;0 to allow all processes of Q to agree on the input of each process j, and also a safe agreement protocol Aj;`,` 2 N+ to allow all processes to agree on the value returned by the `’th simulated snapshot statement of each

process j. Other steps are simulated directly, with no agreement protocol. Each process i ofQ simulates the steps
of each process j of P0 in order, waiting for each to complete before going on to the next one. Process i works
concurrently on simulating steps of different processes of P 0. However, it is only permitted to be in the “unsafe”
portion of its execution for one process j of P 0 at a time.

To simulate process j, process i keeps locally the current value of the state of j, in sim-state(j), the number
of steps that it has simulated for j, in sim-steps(j), and the number of snapshots that it has simulated for j, in
sim-snaps(j). The shared memory ofQ is a single snapshot variable mem, containing a portionmem(i) for each pro-
cess i ofQ. In its component, process i keeps track of the latest values of all the components of the snapshot variable
of P 0, according to i’s local simulation of P 0. Process i keeps the value of j’s component in mem(i):sim-mem(j).
Along with this value, it keeps a counter in mem(i):sim-steps(j), which counts the number of steps that it has sim-
ulated for j, up to and including the latest step at which process j of P 0 updated its component.

A function latest is used in the snap action to combine the information in the various components of mem to
produce a single length n0 vector of R values, representing the latest values written by all the processes ofP 0. This
function operates “pointwise” for each j, selecting the sim-mem(j) value associated with the highest sim-steps(j).
More precisely, assume k = maxifmem(i):sim-steps(j)g. Then, let î be an index such that mem(̂i):sim-steps(j) =k. The function latest selects, for j, the value mem(̂i):sim-mem(j). As we shall see (in Lemma 6.3), this value must
be unique.

When process i simulates a decision step of j, it stores the decision value in the local variable sim-decision(j).
13

Once process i has simulated decision steps of at least n0 � f processes, that is, when jsim-decisionj � n0 � f , it
computes a decision value v for itself, using the function hi, that is, v := hi(sim-decision).

In the following code, we do not represent the stop actions, since the difficult part of the correctness proof is the
safety argument. After the safety argument we give the fault-tolerance argument, and introduce the stop actions.

Simulation System Q:
Shared variables:

mem, a length n snapshot value; for each i, mem(i) has components:
sim-mem, a vector in Rn0

, initially everywhere r0
sim-steps, a vector in Nn0

, initially everywhere 0
Actions of i:

Input:
init(v)i, v 2 V
safej;`;i , ` 2 N
agree(v)j;`;i , ` = 0 and v 2 V ,

or ` 2 N+ and v 2 Rn
Output:

decide(v)i, v 2 V
propose(v)j;`;i , ` = 0 and v 2 V ,

or ` 2 N+ and v 2 Rn0 Internal:
sim-updatej;i
snapj;i
sim-localj;i
sim-decidej;i

States of i:
input 2 V [f?g, initially ?
reported, a Boolean, initially false

for each j:
sim-state(j), a state of j, initially the initial state
sim-steps(j) 2 N , initially 0
sim-snaps(j) 2 N , initially 0
status(j) 2 fidle; propose; unsafe; safeg, initially idle

sim-mem-local(j) 2 Rn0
, initially arbitrary

sim-decision(j) 2 V [f?g, initially ?
Transitions of i:

14

init(v)i
Effect:

input := v
propose(v)j;0;i

Precondition:
status(j) = idle6 9k : status(k) = unsafe
nextop(sim-state(j)) = “init”
input 6=?v = gi(input)(j)

Effect:
status(j) := unsafe

safej;`;i
Effect:

status(j) := safe

agree(v)j;0;i
Effect:

sim-state(j) :=
trans-init(sim-state(j); v)

sim-steps(j) := 1
status(j) := idle

snapj;i
Precondition:

nextop(sim-state(j)) = “snap”
status(j) = idle

Effect:
sim-mem-local(j) := latest(mem)
status(j) := propose

propose(w)j;`;i , ` 2 N+
Precondition:

status(j) = propose6 9k : status(k) = unsafe
sim-snaps(j) = `� 1w = sim-mem-local(j)

Effect:
status(j) := unsafe

agree(w)j;`;i, ` 2 N+
Effect:

sim-state(j) :=
trans-snap(sim-state(j);w)

sim-steps(j) := sim-steps(j) + 1
sim-snaps(j) := sim-snaps(j) + 1
status(j) := idle

sim-updatej;i
Precondition:

nextop(sim-state(j)) = (“update”; r)
Effect:

sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1
mem(i):sim-mem(j) := r
mem(i):sim-steps(j) := sim-steps(j)

sim-localj;i
Precondition:

nextop(sim-state(j)) = “local”
Effect:

sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1

sim-decidej;i
Precondition:

nextop(sim-state(j)) = (“decide”; v)
Effect:

sim-state(j) := trans(sim-state(j))
sim-steps(j) := sim-steps(j) + 1
sim-decision(j) := v

decide(v)i
Precondition:

input 6=?
reported = falsejsim-decisionj � n0 � fv = hi(sim-decision)

Effect:
reported := true

Tasks of i:fdecide(v)i : v 2 V g
for each j:

all non-input actions involving j
15

6 Correctness Proof

The liveness proof, which is quite simple, is postponed to the end of this section. We start with the proofs of safety
properties for the main simulation algorithm. For these, we use invariants involving the states of the safe agreement
modules. Since we do not want these invariants to depend on any particular implementation of safe agreement,
we add abstract state information, in the form of history variables that are definable for all correct safe agreement
implementations:

proposed-vals � V , initially ;
agreed-val 2 V [f?g, initially?
proposed-procs � f1; : : : ; ng, initially ;
agreed-procs � f1; : : : ; ng, initially ;

These history variables are maintained by adding the following new effects to actions:

propose(v)i
Effect:

proposed-vals := proposed-vals[fvg
proposed-procs := proposed-procs[fig agree(v)i

Effect:
agreed-val := v
agreed-procs := agreed-procs[fig

For the safety part of the proof, we use three levels of abstraction, related by forward and backward simulation
relations. Forward and backward simulation relations are notions used to show that one I/O automaton implements
another [22], or in our case, that one I/O automaton solves another; they have nothing to do with “simulations”
in the sense of the BG simulation algorithm. The first level of abstraction is the specification itself; that is, the
SimpleSpec automaton. The second level of abstraction is the DelayedSpec automaton described next in Section 6.1.
The third level of abstraction is the simulationalgorithmP itself (obtained by composingQwith safe agreement im-
plementations). We will prove in Section 6.1 that DelayedSpec solves SimpleSpec, and in Section 6.2 that P solves
DelayedSpec. This implies that P solves SimpleSpec, which is what is needed for the safety part of Definition 3.2.

6.1 The DelayedSpec Automaton

Our second level of abstraction is the DelayedSpec automaton. This is a slight modification of SimpleSpec, which
replaces each snapshot step of a process j ofP 0 (sim-snapj) with a series of snap-tryj steps during which snapshots
are taken and their values recorded, followed by one snap-succeedj step in which one of the recorded snapshot
values is chosen for actual use.

The DelayedSpec automaton is the same as SimpleSpec, except for the snapshot attempts. There is an extra state
component snap-set(j), which keeps track of the set of snapshot vectors that result from doing snap-tryj actions.
The sim-snap actions are omitted.

DelayedSpec:
Signature:

16

Input:
As in SimpleSpec

Output:
As in SimpleSpec

Internal:
As in SimpleSpec but instead of sim-snapj , j 2 f1; : : : ; n0g:

snap-tryj
snap-succeedj

States:

As in SimpleSpec but in addition:
snap-set(j), a set of vectors in Rn0

, initially empty

Transitions: As in SimpleSpec but instead of sim-snapj :

snap-tryj
Precondition:

nextop(sim-state(j)) = “snap”
Effect:

snap-set(j) := snap-set(j)[fsim-memg snap-succeedj
Precondition:

nextop(sim-state(j)) = “snap”w 2 snap-set(j)
Effect:

sim-state(j) := trans-snap(sim-state(j);w)
snap-set(j) := ;

Tasks:

As in SimpleSpec

It should not be hard to believe that DelayedSpec solves SimpleSpec– the result of a sequence of snap-try steps plus
one snap-succeed step is the same as if a single sim-snap occurred at the point of the selected snapshot. Formally,
we use a backward simulation to prove the implementation relationship. The reason for the backward simulation
is that the decision of which snapshot is selected is made after the point of the simulated snapshot step.

The backward simulation relation we use (for any fixed U) is the relation b from states of DelayedSpec� U to
states of SimpleSpec�U that is defined as follows. If s is a state of DelayedSpec�U and u is a state of SimpleSpec�U , then (s; u) 2 b provided that the following all hold:

1. The state of U is the same in u and s.
2. u:sim-mem = s:sim-mem.

3. For each i,
(a) u:input(i) = s:input(i).
(b) u:reported(i) = s:reported(i).

4. For each j,
(a) u:sim-state(j) 2 fs:sim-state(j)g [ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g.
(b) u:sim-decision(j) = s:sim-decision(j).

17

That is, all state components are the same inu and s, with the sole exception thatu:sim-state(j) 2 fs:sim-state(j)g[ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g, that is, u:sim-state(j) is either s:sim-state(j), or else the
result of applying one of the snapshot results to s:sim-state(j). Each sim-stepj step of SimpleSpec is “implemented”
by a chosen snap-tryj step of Delayed Spec.

Lemma 6.1 Relation b is a backward simulation from DelayedSpec�U to SimpleSpec�U .

Sketch of proof: Let (s; �; s0) be a step of DelayedSpec, and let (s0; u0) 2 b. We produce a corresponding execu-
tion fragment of SimpleSpec, from u to u0, with (s; u) 2 b. The construction is in cases based on the type of action.
The interesting cases are snap-try and snap-succeed:

1. � = snap-tryj.
Let x denote s:sim-mem. If u0:sim-state(j) = trans-snap(s0:simstate(j); x), then let the corresponding exe-
cution fragment be (u; sim-snapj; u0), where u is the same as u0, except that u:sim-state(j) = s:sim-state(j).
This is an execution fragment because s:sim-state(j) = s0:sim-state(j).
Otherwise, let the corresponding execution fragment be just the single state u0. That is, u =u0. Then we know that, either (i) u0:sim-state(j) = s0:sim-state(j), or (ii) u0:sim-state(j) 2ftrans-snap(s0:sim-state(j); w) : w 2 s0:snap-set(j); w 6= xg. Since u = u0, we need to prove thatu0:sim-state(j) is in the set fs:sim-state(j)g [ftrans-snap(s:sim-state(j); w) : w 2 s:snap-set(j)g. Case
(i) follows easily from the fact that s:sim-state(j) = s0:sim-state(j). Hence, assume case (ii) holds. We
know that s:snap-set(j) � s0:snap-set(j)�fxg, so u0:sim-state(j) = trans-snap(s0:sim-state(j); w), wherew 2 s:snap-set(j). The proof follows since s:sim-state(j) = s0:sim-state(j).

2. � = snap-succeedj.
The corresponding execution fragment consists of only the single state u0. We must show that (s; u0) 2 b.
Fix x 2 s:snap-set(j) to be the snapshot value selected in the step we are considering.

Everything carries over immediately, except for the equation involving the u0:sim-state(j) component.
For this, we know that u0:sim-state(j) 2 fs0:sim-state(j)g [ftrans-snap(s0:sim-state(j); w) : w 2s0:snap-set(j)g. But by the code for snap-succeedj, the set s0:snap-set(j) is empty. So it must be thatu0:sim-state(j) = s0:sim-state(j).
Now, the code implies that s0:sim-state(j) = trans-snap(s:sim-state(j); x), which implies thatu0:sim-state(j) = trans-snap(s:sim-state(j); x). Therefore, u0:sim-state(j) 2 fs:sim-state(j)g [ftrans-snap(s:sim-state; w) : w 2 s:snap-set(j)g, as needed.

This lemma implies that every trace of DelayedSpec� U is a trace of SimpleSpec� U [22], that is (recall the
definition of “solves” in Section 3.4.3):

Corollary 6.2 DelayedSpec solves SimpleSpec.

18

6.2 The SystemQ with Safe Agreement Modules

Our third and final level is the system Q, composed with arbitrary safe agreement modules, and with the propose
and agree actions reclassified as internal. We show that this system, composed with a user U that submits at most
one initi action on each port, implements DelayedSpec�U in the sense of trace inclusion; that is, this system solves
DelayedSpec � U (in the sense of Section 3.4.3). The idea is that individual processes ofQ that are simulating a
snapshot step of a process j of P0 “try” to perform the simulated snapshot at the point where they take their actual
snapshots. At the point where the appropriate safe agreement module chooses the winning actual snapshot, the
simulated snapshot “succeeds”. As in the DelayedSpec, this choice is made after the snapshot attempts.

Formally, we use a weak forward simulation [22]. The word “weak” simply indicates that the proof uses invari-
ants. We need the invariants for the definition as well as for the proof of the forward simulation: strictly speaking,
the definition of the forward simulation we use is ambiguous without them.

Lemma 6.3 gives “coherence” invariants, asserting consistency among three things: information kept by the
processes of Q, information in the safe agreement modules, and a “run” (as defined just below) of an individual
process j of P 0. Note that Lemma 6.3 does not talk about global executions of P 0, but only about runs of an indi-
vidual process of P0.

Define a run of process j of P 0 to be a sequence of the form � = s0; c1; s1; c2; s2; : : : ; sk, where each si is a
state of process j, and each ci is a “change”, that is, one of the following: (“init”; v), (“snap”; w), (“update”; r),
“local”, (“decide”; v); the first state is the unique start state, and each change yields a transition from the preceding
to the succeeding state.

A consequence of the next lemma is that every process i that simulates steps of a process j simulates the same
run of j. As we shall see, the run is determined by the i process that is furthest ahead in the simulation of j; thus,
only such an i process can affect the outcome of the next step of j. Moreover, it can affect only the outcome of
snapshot steps. Once the outcome of a snapshot step is determined, i can proceed with the simulation of j locally
(without reading the shared variable), up to the next snapshot step.

Invariant 1 relates the information in the processes of Q and the safe agreement modules. Invariants 2 and 3
relate the processes ofQ and a given run � of process j. Invariants 4 and 5 relate � and the safe agreement modules.
Invariant 6 relates all three types of information: it relates information in certain processes of Q (those that are
“current” in their simulation of j, according to �) and the safe agreement modules.

Lemma 6.3 For every reachable state ofQ composed with abstract safe agreement modules and a user U , and for
each process j, there is a run � = s0; c1; s1; : : : ; sk of process j such that:

1. For any i:
(a) sim-steps(j)i � 1 if and only if i 2 agreed-procsj;0.
(b) For any ` � 1, sim-snaps(j)i � ` if and only if i 2 agreed-procsj;`.
(c) i 2 proposed-procsj;0 � agreed-procsj;0 if and only if nextop(sim-state(j)i) = “init” and status(j)i 2funsafe; safeg.
(d) For any ` � 1, i 2 proposed-procsj;` � agreed-procsj;` if and only if nextop(sim-state(j)i) = “snap”,

sim-snaps(j)i = ` � 1, and status(j)i 2 funsafe; safeg.
2. k = maxifsim-steps(j)ig.
3. For any i, if sim-steps(j)i = ` then:

19

(a) sim-state(j)i = s`.
(b) sim-snaps(j)i is the number of “snap”’s among c1; : : : ; c`.
(c) mem(i):sim-mem(j) is the value written in the last “update” among c1; : : : ; c`, if any, else r0.

(d) mem(i):sim-steps(j) is the number of the last “update” among c1; : : : ; c`, if any, else 0.

4. (a) (“init”; v) appears in � if and only if agreed-valj;0 = v.

(b) (“snap”; w) is the `’th snapshot in � if and only if agreed-valj;` = w.

5. If proposed-valsj;` 6= ; and agreed-valj;` =? then

(a) If ` = 0 then � consists of only one state s, and nextop(s) = “init”.

(b) If ` � 1, then nextop(sk) = “snap”, and the number of snaps in � is ` � 1.

6. For any ` � 1, if nextop(sk) = “snap” and the number of “snaps” in � is ` � 1, then proposed-valsj;` =fsim-mem-local(j)i : sim-steps(j)i = k and status(j)i 2 funsafe; safegg.
Proof: Let s be any reachable state of Q composed with abstract safe agreement modules and a user U . For s
equal to the initial state it is simple to check that the lemma holds. Assume it holds for some state s, and we prove
that it holds for any state s0, after a step (s; �; s0). Let � = s0; c1; s1; : : : ; sk be a run of process j, corresponding
to s, whose existence is guaranteed by the lemma. We prove there is a run �0 corresponding to s0, that satisfies the
requirements of the lemma. The run �0 will be either equal to �, or else obtained from � by appending a changeck+1 and a state sk+1. We skip the proof of invariant 1, which is simple and does not talk about �.

For state s, k = maxifs:sim-steps(j)ig. Let k0 be the corresponding value in s0; that is k0 =
maxifs0:sim-steps(j)ig.

First assume k0 = k + 1. Then, for some i, � must be one of: agree(w)j;0;i, agree(w)j;`;i for ` 2 N+,
sim-updatej;i, sim-localj;i, or sim-decidej;i, since these are the only cases that increment a sim-steps component.
Moreover, s.sim-steps(j)i = k, and hence, by part 3(a) of the lemma, sk = s.sim-state(j)i. For each one of
these possibilities, �0 is obtained from � by appending the corresponding change: (“init”; w) for an agree(w)j;0;i;(“snap”; w) for an agree(w)j;`;i, ` 2 N+ ; (“update”; r) for a sim-updatej;i; “local” for a sim-localj;i;(“decide”; v) for a sim-decidej;i, and after the change, appending to the run the state sk+1, resulting from the corre-
sponding transition function (trans-init, trans-snap, or trans) applied to sk. That is, sk+1 = s0:sim-state(j)i. Thus,
in s0, process i is the first one to finish the simulation of the k0-th step of j and s0:sim-steps(j)i = k0; while for
every other process i0, s0:sim-steps(j)i0 < k0.

First notice that part 2 of the lemma clearly holds for s0. Consider the case of � = agree(w)j;`;i for ` 2 N+ (we
omit the proofs of the other cases, which are analogous). For part 3 of the lemma, we need to consider only the case
of ` = k+1, since the cases of ` < k+1 hold by the induction hypothesis. Thus, we need to consider only processi. Part (a) holds by the definition of sk+1. Part (b) holds because s:sim-snaps(j)i is the number of snap’s amongc1; : : : ; ck, and s0:sim-snaps(j)i = s:sim-snaps(j)i + 1, while ck+1 = (“snap”; w). Part (c), (d), and part 4(a) of
the lemma hold by induction hypothesis. For part 4(b) of the lemma, notice that there are ` � 1 snap’s in �. Thus,
in �0 there are ` snap’s, and indeed agreed-valj;` = w. Part 5 holds trivially because process i is the first one to
finish the simulation of the `-th snap of j, and hence proposed-valsj;`0 6= ; and agreed-valj;`0 6=? for `0 � `, while
proposed-valsj;`0 = ; and agreed-valj;`0 =? for `0 > `. Finally, consider part 6. Since in s0 there are no processesi0 with sim-steps(j)i0 = k+1 and status(j)i0 2 funsafe; safeg, then we have to prove that proposed-valsj;`+1 = ;.

20

Observe that s:sim-snaps(j)i0 = ` � 1 for any i0 with s:sim-steps(j)i0 = k. Then, s:sim-snaps(j)i0 < ` for all i0,
and hence no i0 has yet executed a propose(w)j;`+1.

Now assume k0 = k. In this case, �0 = �. Clearly part 2 of the lemma holds. The cases of � equal to
agree(w)j;0;i, agree(w)j;`;i; ` 2 N+, sim-updatej;i, sim-localj;i, or sim-decidej;i, are similar to each other. Let us
consider the most interesting: � = agree(w)j;`;i. We have that s:sim-snaps(j)i = `� 1 and s0:sim-snaps(j)i = `.
Assume s:sim-steps(j)i = k1, k1 < k. To prove part 3 take ` = k1+1. Part (a) follows because s:sim-state(j)i =sk1 , and w 2 agreed-valj;`, so that the effect of � when trans-snap is applied gives sk1+1 = s0:sim-state(j)i. Part
(b) follows because s:sim-snaps(j)i is the number of snap’s among c1; : : : ; c` � 1, and c` is a snap, and hences0:sim-snaps(j)i = s:sim-snaps(j)i + 1 is the number of snap’s among c1; : : : ; c`. The other parts of the lemma
follow easily by induction.

Another case is when � is propose(v)j;0;i, or propose(w)j;`;i; ` 2 N+. Consider the second possibility. To
check part 5 of the lemma assume s0:proposed-valsj;` 6= ; and s0:agreed-valj;` =?, while s:proposed-valsj;` =; and s:agreed-valj;` =?. Then, � is the first propose for j and `, and hence k = s:sim-steps(j)i. Also,s0:nextop(sim-state(j)i) = “snap” because s:status(j) = propose. Thus nextop(sk) = “snap”. To complete the
proof of the claim notice that the number of snaps in � is ` � 1, by the induction hypothesis for part 3 (a) and (b).
Finally, part 6 of the lemma is easy to check because w = s:sim-mem-local(j)i is added to the set proposed-valsj;`.

The forward simulation relation we use is the relation f from states ofQ composed with safe agreement modules
and U to states of DelayedSpec � U that is defined as follows. If s is a state of the Q system and u is a state of
DelayedSpec� U , then (s; u) 2 f provided that the following all hold:

1. The state of U is the same in u and s.
2. u:sim-mem = latest(s:mem).
3. For every i,

(a) u:input(i) = s:inputi.
(b) u:reported(i) = s:reportedi.

4. For every j,
(a) u:sim-state(j) = s:sim-state(j)i, where i is the index of the maximum value of s:sim-steps(j).
(b) If there exists iwith s:sim-decision(j)i 6=? thenu:sim-decision(j) = s:sim-decision(j)i for some suchi, else u:sim-decision(j) =?.

(c) If nextop(u:sim-state(j)) = “snap” then u:snap-set(j) = fs:sim-mem-local(j)i : s:sim-steps(j)i =maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg else u:snap-set(j) = ;.
Thus, the simulated memory u:sim-mem is determined by the latest information that any of the processes ofQ has
about the memory, and likewise for the simulated process states and simulated decisions. Also, the snapshot setsu:snap-set(j) are determined by the snapshot values saved in local process states, inQ.

Each snap-try step of DelayedSpec is “implemented” by a current snap ofQ. Each snap-succeed step is imple-
mented by the first agree step of the appropriate safe agreement module, and likewise for each sim-init step. Each
sim-update step is implemented by the first step at which some process simulates that update, and likewise for the
other types of simulated process steps.

21

Lemma 6.4 Relation f is a weak forward simulation from Q composed with safe agreement modules and U to
DelayedSpec�U .

Sketch of proof: Let (s; �; s0) be a step of the Q system, and let u be any state of DelayedSpec � U such that(s; u) 2 f . We produce an execution fragment of DelayedSpec � U , from u to a state u0, such that (s0; u0) 2 f .
The proof is by cases, according to �. These are the most interesting cases:

1. � = snapj;i.
If sim-steps(j)i is the maximum value of sim-steps(j) (in both s and s0), then this simulates snap-tryj , else
it simulates no steps.

Assume the first case: that sim-steps(j)i is the maximum value of sim-steps(j). The corresponding execu-
tion fragment is (u; snap-tryj ; u0), where u0 is the same as u except that u0:snap-set(j) = u:snap-set(j) [fu:sim-memg. Since (s; �; s0) is a step ofQ, the precondition for � holds in s and nextop(s:sim-state(j)i) =
“snap”. Since (s; u) 2 f , it follows that nextop(u:sim-state(j)) = “snap”, by 4(a) of the definition of f .
Therefore, the precondition for snap-tryj holds in u, and (u; snap-tryj ; u0) is an execution fragment.

To prove that (s0; u0) 2 f , the only nontrivial part of the definition of f to check is 4(c); since
nextop(u0:sim-state(j)) = “snap”, we do have to verify that u0 satisfies part 4(c) of the definition
of f . We know that u:snap-set(j) is equal to the set fs:sim-mem-local(j)i : s:sim-steps(j)i =maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg, because (s; u) 2 f . Now, u0:snap-set(j) =u:snap-set(j) [fu:sim-memg. Also, u:sim-mem = latest(s:mem), by part 3 of the definition of f . Af-
ter the snapj;i, we get latest(s:mem) = s0:sim-mem-local(j)i. It follows that u0:snap-set(j) is equal tou:snap-set(j) [fs0:sim-mem-local(j)ig, and hence, u0:snap-set(j) is equal to fs0:sim-mem-local(j)i :s0:sim-steps(j)i = maxkfs0:sim-steps(j)kg and s0:status(j)i 6= idleg, as desired.

The case where sim-steps(j)i is not the maximum value of sim-steps(j) is trivial.

2. � = agree(w)j;`;i, ` 2 N+.

If this increases the maximum value of sim-steps(j) then it simulates snap-succeedj with a decision value ofw, else simulates no steps.

Consider the case where � increases the maximum value of sim-steps(j). Let k = maxifs:sim-steps(j)ig.
Then, s:sim-steps(j)i = k, and s0:sim-steps(j)i = k + 1. By Lemma 6.3, for state s, there is a run
for j, � = s0; c1; s1; : : : ; sk, with sk = s:sim-state(j)i. Now, part 1(d) of Lemma 6.3 implies that
nextop(s:sim-state(j)i) = “snap”, s:sim-snaps(j)i = ` � 1, and s:status(j)i 2 funsafe; safeg. Since(s; u) 2 f , u:sim-state(j) = s:sim-state(j)i, and hence, nextop(u:sim-state(j)i) = “snap”. We want to
prove that (u; snap-succeedj; u0) with a decision value of w is an execution fragment. Since we already
proved that nextop(u:sim-state(j)i) = “snap”, to prove that the precondition of the snap-succeedj holds
it remains to show that w 2 u:snap-set(j).
To prove that w 2 u:snap-set(j), recall that s:sim-snaps(j)i = ` � 1, and hence, ` � 1 is the num-
ber of “snap”’s in �, by part 3(b) of Lemma 6.3. Thus, the hypothesis of part 6 of Lemma 6.3 holds, ands:proposed-valsj;` = fs:sim-mem-local(j)i : s:sim-steps(j)i = k and s:status(j)i 2 funsafe; safegg. We
know that w must be in the set s:proposed-valsj;`, because (s; agree(w)j;`;i; s0) is an execution fragment.
Thus, w = s:sim-mem-local(j)i0 , for some i0 with s:sim-steps(j)i0 = k and s:status(j)i0 2 funsafe; safeg.
To complete the proof of the claim, notice that part 4(c) of the definition of f implies that u:snap-set(j) =

22

fs:sim-mem-local(j)i : s:sim-steps(j)i = maxkfs:sim-steps(j)kg and s:status(j)i 6= idleg. Therefore, w
must be in u:snap-set(j).
Finally, it is easy to verify that (s0; u0) 2 f : we need only to check conditions 4(a) and 4(c) of the definition
of f . Clearly 4(a) holds. For 4(c) observe that u0:snap-set(j) = ;. If nextop(u0:sim-state(j)) 6= “snap”
then 4(c) holds. But if nextop(u0:sim-state(j)) = “snap” 4(c) also holds, since i is the only one achieving
the maximum of maxkfs0:sim-steps(j)kg, and s0:status(j)i = idle.

The case where � does not increase the maximum value of sim-steps(j) is simple. Here no steps are simulated
and u = u0. To see that (s0; u0) 2 f , we need to check only that parts 4(a) and 4(c) of the definition of f
hold. This follows easily from the fact that (s; u) 2 f , and that the maximum value of sim-steps(j) does not
change.

We conclude that every trace of Q composed with safe agreement modules and a user U is a trace of
DelayedSpec� U :

Corollary 6.5 Q composed with safe agreement modules solves DelayedSpec.

Combining Corollaries 6.5 and 6.2, we obtain:

Corollary 6.6 Q composed with safe agreement modules solves SimpleSpec.

Corollary 6.6 is almost, but not quite, what we need. It remains to compose the Q automaton with snapshot
shared memory systems that implement all the safe agreement modules, then to merge all the processes of all these
various components systems in order to form a single shared memory system. The resulting system has infinitely
many snapshot shared variables; we combine all these to yield a system P with a single snapshot shared variable.
We conclude that for every user U that submits at most one initi action on each port, every trace of P�U is a trace
of SimpleSpec� U . That is,

Lemma 6.7 P solves SimpleSpec.

Lemma 6.7 yields the safety requirements of a fault-tolerant simulation, as expressed by part (1) of Defini-
tion 3.2. Now we prove the fault-tolerance requirements, as expressed by part (2) of Definition 3.2. The argument
is reasonably straightforward, based on the fact that each process ofQ can, at any time, be in the unsafe region of
code for at most one process of P 0. As before, since we are reasoning about fault-tolerance, we consider explicit
stop actions.

Lemma 6.8 If P 0 guarantees f-failure termination then P guarantees f-failure termination.

Proof: Assume that P0 guarantees f-failure termination.
Each process i ofP simulates the steps of each process j ofP 0 in order, waiting for each step to complete before

going on to the next one. Process i works concurrently on simulating steps of different processes of P0. However,
it is only permitted to be in the “unsafe” portion of its execution for one process j of P 0 at a time.

Recall that the specification of safe-agreement stipulates that if a non-failing process i executes a proposej;l;i
action it will get an agreej;l;i action, unless some other process i0, simulating step l of j, fails when “unsafe.” In

23

this case i0 could block the simulation of j. However, since i0 is allowed to participate in this safe agreement only
if it is not currently in the “unsafe” portion of any other safe agreement execution, then i0 can block at most one
simulated process. In any execution in which at most f simulator processes fail, at most f simulated processes are
blocked, and each non-failing simulator i can complete the simulation of at least n0�f processes. Therefore, sinceP 0 satisfies f-failure termination, a non-failing simulator will eventually execute its decide step. Thus the whole
system satisfies f-failure termination.

Lemmas 6.7 and 6.8 yield:

Theorem 6.9 P is an f-simulation of P0 via relations G and H.

Now, from Theorem 6.9 and Theorem 3.3 we get the result that leads to the applications in Section 8:

Theorem 6.10 Suppose that there exists a snapshot shared memory system that solves D0 and guarantees f-failure
termination, and suppose that D �G;Hf D0. Then there exists a snapshot shared memory system that solves D and
guarantees f-failure termination.

7 Simulation in Read/Write Systems

A system using snapshot shared memory can be implemented in a wait-free manner in terms of single-writer multi-
reader read/write shared variables [1]. It follows that Theorem 6.10 extends to read/write systems. However, in
this section we provide a direct construction, showing how to produce a read/write shared memory system P thatf-simulates a read/write shared memory system P 0. The read/write simulation algorithm is essentially the same as
the snapshot simulation algorithm, except that a snapshot operation is replaced by a sequence of reads in arbitrary
order.

The reasons why we presented the snapshot simulation algorithm first are that it is simpler, and that the correct-
ness proof of the read/write simulation algorithm is based on that of the snapshot algorithm.

We assume that the system we want to simulate, P 0RW , is an n0-process read/write shared memory system. We
describe an n-process read/write simulating systemQRW . As before, this algorithm is assumed to interact with the
usual environment, via init and decide actions, and also with a two-dimensional array of safe agreement modulesAj;`, j 2 f1; : : : ; n0g, ` 2 N , N = f0; 1; 2; : : :g. In the complete version of the simulation algorithm, denotedPRW , these safe agreement modules are replaced by read/write memory implementations and the whole thing im-
plemented by a read/write shared memory system.

The simulated system P 0RW has a sequence mem0 of n0 read/write shared variables. Each variable mem0(j) is a
single-writer multi-reader variable, written by process j of P 0RW , taking on values in R, and with initial value r0.
Furthermore, we assume that P 0 solves a decision problem D0, guaranteeing f-failure termination.

We use terminology about system P 0RW which is similar to that of system P 0, as described in Section 3.4.1.
Namely, for any state s of a process j of P 0RW , define nextop(s) to be an element of f“init”; “local”g [f(“read”; j0) : 1 � j0 � n0g [f(“update”; r) : r 2 Rg [f(“decide”; v) : v 2 V g. As before, our deter-
minism assumptions imply that each state s has a well defined and unique value of nextop(s). For any state s of
a process j such that nextop(s) = “init” and any v 2 V , define trans-init(s; v) to be the state that results from
applying init(v)j to s. For any state s of a process j such that nextop(s) = (“read”; j0) and any w 2 R, define
trans-read(s; w) to be the state that results from performing the read operation of the j0th variable from state s,
with the return value for the read beingw. Finally, for any state s of a process j such that nextop(s) is an “update”,

24

“local”, or “decide” pair, define trans(s) to be the state of j that results from performing the operation from states.
The system QRW is assumed to interact with each Aj;` via outputs propose(w)j;`;i and inputs safej;`;i and

agree(w)j;`;i. In fact, QRW is very similar to Q. The difference is that each snapshot operation used by Q (the
only place snapshots are used is in the computation of latest) is replaced by a sequence of read operations inQRW ,
as described next.

The shared memory of QRW consists of a sequence mem-RW of n read/write shared variables. Each variable
mem-RW(i) is a single-writer multi-reader variable, written by process i ofQRW . In mem-RW(i), process i keeps
track of the latest values in all the variables of P 0RW , according to i’s local simulation of P0RW . Along with each
such value, sim-mem(j), it keeps a tag sim-steps(j), which counts the number of steps that it has simulated for j,
up to and including the latest step at which process j of P 0RW updated its register.

The code of QRW has the same transitions as those of Q, except that the snap is replaced by reading and
read-done, and the necessary syntactic modifications are made to the propose and agree transitions. The for-
mal description appears below. Process i simulates a “read” of variable j0 by process j, by reading all the vari-
ables in mem-RW and combining the information in these variables to produce a single value in R: the value
produced is the latest value written by any of the processes of QRW in its copy of the shared variable of j0.
More precisely, process i executes a series of n readingj;i actions in arbitrary order, one for each i0, selecting the
mem-RW(i0):sim-mem(j0) value associated with the highest mem-RW(i0):sim-steps(j0) (this value must be unique).
In the code below, m(j) keeps track of the highest mem-RW(i0):sim-steps(j0) encountered so far. m(j) is initial-
ized to�1, because mem-RW(i0):sim-steps(j0) takes values greater or equal than 0. There is also read-set(j) which
keeps track of the indexes of processes that have been considered. Thus, read-set(j) is initially empty. Once then components of mem-RW have been read, read-set(j) = f1; : : : ; ng and read-donej;i can be executed. This in
turn allows completion of the simulation of the “read” with the execution of the propose(w)j;`;i and agree(w)j;`;i
actions.

Simulation System QRW
Same as Q but with the following changes:
Shared variables:

As in Q but instead of mem:
mem-RW, a sequence of n read/write variables; for each i, mem-RW(i) has components:

sim-mem, a vector in Rn0
, initially everywhere r0

sim-steps, a vector in Nn0
, initially everywhere 0

Actions of i:
Input:

As in Q
Output:

As in Q Internal:
As in Q but instead of snapj;i:
readingj;i
read-donej;i

States of i:
As in Q except for:
for each j,
instead of sim-snaps:

sim-reads(j) 2 N , initially 0
instead of sim-mem-local:

25

sim-mem-local-RW 2 R, initially arbitrary
and in addition:

read-set(j) a set of integers, initially emptym(j) 2 N [f�1g, initially �1
Transitions of i:

As inQ but instead of snapj;i,
readingj;i

Precondition:
nextop(sim-state(j)) = (“read”; j0)
status(j) = idlei0 2 f1; : : : ; ng � read-set(j)

Effect:
read-set(j) := read-set(j) [i0
if mem-RW(i0):sim-steps(j0) > m(j) then

sim-mem-local-RW(j) :=
mem-RW(i0):sim-mem(j0)m(j) := mem-RW(i0):sim-steps(j0)

read-donej;i
Precondition:

nextop(sim-state(j)) = (“read”; j0)
status(j) = idle
read-set(j) = f1; : : : ; ng

Effect:
read-set(j) := ;m(j) := �1
status(j) := propose

propose(w)j;`;i, ` 2 N+
Precondition:

status(j) = propose6 9k : status(k) = unsafe
sim-reads(j) = `� 1w = sim-mem-local-RW(j)

Effect:
status(j) := unsafe

agree(w)j;`;i, ` 2 N+
Effect:

sim-state(j) :=
trans-read(sim-state(j);w)

sim-steps(j) := sim-steps(j) + 1
sim-reads(j) := sim-reads(j) + 1
status(j) := idle

Tasks of i:
As in Q.

To prove the correctness of the read/write simulation algorithm, we define an intermediate system, SnapSim.
The only difference between QRW and SnapSim is that to simulate a read action of the j0th component, SnapSim
performs a snapshot of mem-RW and applies a function latestsnp to the result, instead of performing a series of reads.
The function latestsnp for j0 is defined as follows. It returns a single value ofR, representing the latest value written
by all the processes in the mem-RW variable of j0. That is, let k = maxi0fmem-RW(i0):sim-steps(j0)g, and choose
any i00 such that mem-RW(i00):sim-steps(j0) = k. Then latestsnp(mem-RW; j0) = mem-RW(i00):sim-mem(j0). (We
claim this is uniquely defined.) In the code of SnapSim the reading and read-done transitions are replaced by a read
transition:

Simulation System SnapSim.:
Shared variables:

As in QRW
26

Actions of i:
Input:

As in QRW
Output:

As in QRW Internal:
As in QRW , except that readingj;i and read-donej;i are replaced by readj;i

States of i:
As in QRW

Transitions of i:
As inQRW , except that readingj;i and read-donej;i are replaced by readj;i:

readj;i
Precondition:

nextop(sim-state(j)) = (“read”; j0)
status(j) = idle

Effect:
sim-mem-local-RW(j) := latestsnp(mem-RW; j0)
status(j) := propose

Tasks of i:
As in QRW .

It is not hard to verify that an execution of QRW corresponds to an execution of SnapSim: Con-
sider a read-donej;i and the corresponding readingj;i’s, for some fixed values j; i. Thus the precondition
nextop(sim-state(j)) = (“read”; j0) holds for some particular j0’; fix j0. Also, sim-reads(j) = ` � 1 for some
value of `. Thus, for the rest of the argument, we have fixed values of `; i; j; j0.

Replace all of these read-donej;i and readingj;i’s by a single readj;i, which occurs somewhere between
the first readingj;i and the last readingj;i, at a point when the highest sim-steps(j0) takes the value recorded
by the read-donej;i. That is, the read is placed at a point where maxi0fmem-RW(i0):sim-steps(j0)g is equal
to the value of m(j) at the point of the read-done. Such a point exists because the sim-steps variables in-
crease by one unit at a time, and because the final value of m(j) satisfies the following: it is at least the
value of maxi0fmem-RW(i0):sim-steps(j0)g at the moment of the first readingj;i, and at most the value ofmaxi0fmem-RW(i0):sim-steps(j0)g at the moment of the last readingj;i.

Note that the value of sim-mem-local-RW(j) at the point of the read-done (which is the value returned by the
sequence of reading steps in QRW) is the same as the value of mem-RW(i00):sim-mem(j0) at the point where the
read is placed, for any i00 with mem-RW(i00):sim-steps(j0) = maxi0fmem-RW(i0):sim-steps(j0)g.

It follows that every trace of QRW with safe-agreement modules and U is also a trace of SnapSim with safe-
agreement modules and U . Now, the same proof technique that we used to proof that every trace of Q with safe-
agreement modules and U is a trace of DelayedSpec � U can also be used to prove that every trace of SnapSim
with safe-agreement modules and U is a trace of DelayedSpecRW � U , where DelayedSpecRW is the read/write
memory version of DelayedSpec. Also, the proof technique used for Corollary 6.2 can be used to prove that every

27

trace of DelayedSpecRW � U is a trace of SimpleSpecRW � U , the read/write memory version of SimpleSpec.
Combining all these facts, we see that every trace of QRW with safe-agreement modules and U is also a trace of
SimpleSpecRM � U . Therefore:

Lemma 7.1 QRW composed with safe agreement modules solves SimpleSpecRW .

As before, we compose QRW with read/write shared memory systems that implement all the safe agreement
modules, and then merge all the processes of all these various components systems in order to form a single shared
memory system, PRW . We see that, for every user U that submits at most one initi action on each port, every trace
of PRW � U is a trace of SimpleSpecRW � U . That is:

Lemma 7.2 PRW solves SimpleSpecRW .

The fault-tolerance argument is analogous to the one for snapshot shared memory systems:

Lemma 7.3 If P 0RW guarantees f-failure termination then PRW guarantees f-failure termination.

Now Lemmas 7.2 and 7.3 yield (restating Definition 3.2, the definition of f-simulation, in terms of
SimpleSpecRW):

Theorem 7.4 PRW is an f-simulation of P 0RW via relations G and H.

And we get the analogue of Theorem 6.10 (using the analogue of Theorem 3.3 for read/write systems):

Theorem 7.5 Suppose that there exists a read/write shared memory system that solvesD0 and guarantees f-failure
termination, and suppose thatD �G;Hf D0. Then there exists a read/write shared memory system that solves D and
guarantees f-failure termination.

8 Applications

In Section 8.1, we describe the notion of a convergence task [15], which is used to specify a family of decision
problems, one for each number of processes. For example, binary consensus is a convergence task – it yields a
decision problem for any number of processes. In Theorem 8.1, we show that one decision problem in the family
of problems specified by a convergence task is solvable if and only if any other problem in the family is solvable.
The proof is based on Theorem 6.10.

In Section 8.2 we use this theorem to obtain various possibilityand impossibility results for read/write and snap-
shot shared memory systems.

8.1 Convergence Tasks

In Section 3.1 we defined an n-port decision problem in terms of two sets of n-vectors, I andO, and a total relation� from I toO. Thus, a decision problem is specified for a certain number of processes, n. For the applications in
the next subsection, we would like to talk about a “problem” in general, without specifying the number of processes.
For example, in the binary consensus problem, any number of processes start with binary inputs, and have to agree

28

on some process’ input value. Strictly speaking, this is not a decision problem, but a family of decision problems,
one for each n.

In principle, one could define a family of decision problems, in a way that for two different values of n, the
corresponding decision problems are completely unrelated. But this is not what one would mean by a “family.” We
now describe a way of defining a family of decision problems called convergence tasks [15]. We prove that it is a
“family” in the sense, roughly, that one decision problem in the family is solvable if and only if any other is.

For defining convergence tasks, it will be convenient to talk about sets instead of vectors, since the position
of an element in the vector will be immaterial. That is, in the kind of decision problems we will be considering,
any permutation of an input (output) vector will also be an input (output) vector. We call a set a simplex, to follow
the notation of topology. An element of a simplex is a vertex. A complex is a family of simplexes closed under
containment.1

For a complex K, skelk(K) denotes the subcomplex formed by all simplexes of K of size at most k + 1. For
example, skel0(K) consists of all the vertices of K, and skel1(K) consists of all the vertices and all the simplexes
of size two. Thus skel1(K) can be thought of as a graph, with simplexes of size 2 as edges and simplexes of size 1
as vertices.

Informally, if S is an input simplex of a convergence task, each process can receive as input value any vertex ofS, such that the input values are a subset of S (two processes may receive the same vertex). The convergence task
specifies a set of legal output simplexes for S, denoted 	(S). Each process has to choose an output a vertex (two
processes may choose the same vertex), such that the vertices form an output simplex of 	(S). Let n-vectors(S)
be the set of n-vectors of values from S. Thus, if S is an input simplex, then n-vectors(S) are input vectors, and
if L is an output simplex then n-vectors(S) are output vectors.

Let K be a complex. The corresponding n-port vector set eKn is defined as follows. h~v1; : : : ; ~vni is a vector ineKn if and only if ~v1; : : : ; ~vn (not necessarily distinct) form a simplex inK; that is, eKn = [S2K n-vectors(S). For
a vector w, let set(w) be the simplex of values of w. Thus, if w 2 eKn then set(w) 2 K.

Formally, a convergence task [L;K;] consists of two arbitrary complexes, L and K, called the input complex
and the output complex, respectively, and a relation 	 carrying each simplex of L to a non-empty subcomplex ofK, such that if L0 is a face of L1, then 	(L0) � 	(L1).

For each n, the n-port decision problem of [L;K;] is h eLn; eKn; e	i, where e	 is as follows: e	(w) contains
every n-vector w0 such that w0 2 n-vectors(S), for S 2 	(set(w)).

In the next subsection, we consider the following convergence tasks.

1. TheN -consensus convergence task is [SN�1; skel0(SN�1); skel0], where SN�1 consists of a simplex of sizeN , N > 1, and its subsimplexes. Thus, for each n, it yields a consensus decision problem [10] for n pro-
cesses, where the processes start with N possible input values, which are the vertices of SN�1. If the pro-
cesses start with values that form an input simplexS 2 SN�1, they have to decide values that form a simplex
in skel0(S). Since the only simplexes of skel0(S) are the vertices of S, the processes have to decide on the
same vertex, that is, they all have to agree on one of the input vertices of S.

2. The (N; k)-set agreement convergence task, 0 < k < N , is [SN�1; skelk�1(SN�1); skelk�1]. Thus, for
each n, it yields an n-process k-set-agreement problem over a set SN�1 of N values (see Example 1).1Thus the complexes we consider here are “colorless,” as opposed the colored complexes considered usually in the topology approach to

distributed computing (e.g. [6, 16, 14]), where each element of a simplex has associated a process id.

29

3. The loop agreement convergence task [15] is [S2;K;�], where S2 is the 2-simplex (~s0; ~s1; ~s2) and its sub-
simplexes,K is an arbitrary finite complex with three distinguished vertices ~v0; ~v1; ~v2, �(~si) = ~vi, �(~si; ~sj)
is some path (simplexes of size 1 and 2) �ij with end-points ~vi and ~vj, and �(S2) = K.

Other examples of convergence tasks appear in [15], like uncolored simplex agreement, barycentric agreement,
and �-agreement.

Theorem 8.1 For a convergence task [L;K;], letD = hI;O;�i be the corresponding n-port decision problem,D0 = hI 0;O0;�0i the n0-port decision problem, and f < minfn; n0g. If there exists a snapshot shared memory
system that solves D and guarantees f-failure termination then there exists a snapshot shared memory system that
solves D0 and guarantees f-failure termination.

Proof: By Theorem 6.10, it suffices to show that D �G;Hf D0, for some G = G(g1; g2; : : : ; gn) and H =H(f; h1; h2; : : : ; hn). Define gi(v) to be the n0-vector with all entries equal to v, and hi(w) to be any of the el-
ements of w different from?.

Now we prove the requirement G � �0 � F � H � � of Definition 3.1. Take any input vector w 2 I. Thusset(w) 2 L. For any w1 2 G(w), set(w1) � set(w); (1)

and hence, set(w1) 2 L, since L is closed under containment. That is, w1 2 I0.
Now, take any w2 2 �0(w1). Thus set(w2) 2 	(set(w1)). By definition of H and F , any w3 2 H(F (w2))

satisfies set(w3) � set(w2). Thus, set(w3) 2 	(set(w1)), since set(w) 2 	(set(w1)) and 	(set(w1)) is (a
complex) closed under containment.

Finally, we need to prove that set(w3) 2 	(w), since this implies that w3 2 �(w). This holds because	(set(w1)) � 	(set(w)), by Equation 1.

Applying Theorem 7.5 (instead of Theorem 6.10), we get the same result for read/write systems.

8.2 Possibility and Impossibility Results

Theorem 8.1 can be used to extend results that are known for a small number of processes to larger numbers, for fixedf . In this section we present several applications of this kind. All the applications we present hold for read/write
memory systems and for snapshot memory systems, since one can use the read/write memory or the snapshot mem-
ory version of Theorem 8.1.
Consensus. It is known [10, 18] that the consensus decision problem is not solvable with f-failure termination,
when f � 1. In particular, wait-free 2-process consensus is unsolvable [12]. It is possible to use only this particular
result, and Theorem 8.1 to prove the following:

Corollary 8.2 The consensus problem is not solvable for f � 1.

Set Agreement. It is known from [4, 24, 16] that the (n; k)-set agreement problem is not wait-free solvable. This
result together with Theorem 8.1 implies:

Corollary 8.3 There is no algorithm that solves the (n; k)-set agreement problem with f-failure termination if f �k.

Computability. It is known [11] that the problem of telling if a decision problem for n processes, n � 3, has a
wait-free solution is not computable (i.e., is undecidable). This was proved2 in [15] by showing that the following2In fact, in [15], the result of Corollary 8.4 is proved directly, and in more general models of shared memory.

30

problem is not computable: Given a loop agreement convergence task, tell if the n-port corresponding decision
problem has a wait-free solution. This result, together with Theorem 8.1, implies the following:

Corollary 8.4 Let 2 � f < n. The problem of telling if an n-port loop agreement decision problem has a solution
with f-failure termination is not computable.

Also, when f = 1, it was proved in [3] that the problem of telling if an arbitrary decision problem has solution
with f-failure termination is computable. In particular, the problem is computable for any 2-port decision problem
obtained from a convergence task. It is possible to use only this particular result, and Theorem 8.1, to prove the
following:

Corollary 8.5 The problem of telling if an n-port decision problem corresponding to a convergence task T has a
solution with 1-failure termination is computable.

Notice that the results in [3] apply to general decision problems, while this corollary is about decision problems
produced by convergence tasks. Also, we stress that Corollary 8.5 follows from the results of [3]. The point here
is that Corollary 8.5 can be proved by showing only the computability for n-port, n = 2, decision problems; a
problem conceivably easier than to prove it directly for arbitrary n.

9 Discussion

We have introduced a general way of simulating a distributed algorithm for some number of processes and some
fault-tolerance, by a distributed system with a different number of processes and the same fault-tolerance. We have
presented a precise description of a version of this fault-tolerant simulation algorithm, plus a careful description of
what it accomplishes, plus a proof of correctness.

In particular, we have defined a notion of fault-tolerant reducibility between decision problems, and showed
that the algorithm implements this reducibility. The reducibility is specific to the simulation algorithm; it is not
intended as a general notion of reducibility between decision problems. An important moral of this work is that
one must be careful in applying the simulation algorithm– it does not work for all pairs of problems, but only for
those that satisfy the reducibility. Nevertheless, we have shown that the simulation algorithm is a powerful tool for
obtaining possibility and impossibility results.

Similarly, we have presented a specification of what it means for one shared memory system to simulate another,
in a fault-tolerant manner. Again, this is not a very general notion of simulation, but is intended to capture the type
of simulation that is studied in this paper. We have given a full and detailed description of a version of the simulation
algorithm for snapshot memory systems. We have proved that this algorithm satisfies the requirements of a fault-
tolerant simulation.

We have also shown how to extend this basic snapshot memory simulation algorithm to read/write shared mem-
ory, and hence, have shown that it is useful for proving properties of these systems as well. A reason we chose to
present in this paper first the snapshot algorithm and then the read/write variant is that the correctness proof is more
modular, and the whole presentation clearer.

We have presented several applications of the simulation algorithm to a class of problems that satisfy the re-
ducibility, including consensus and set agreement, defined by convergence tasks [15]. The applications extend re-
sults about a system with some number of processes and f failures, to a system with any number of processes and
the same number of failures. Further applications are described in [6].

31

Some possible variations on the simulation algorithm of this paper are: (a) Allow each process i ofQ to simulate
only a (statically determined) subset of the processes of P0 rather than all the processes of P0. (b) Allow more
complicated rules for determining the simulated inputs of P 0 and the actual outputs of Q; these rules can includef-fault-tolerant distributed protocols among the processes ofQ.

We believe that an important contribution of this paper is providing the basis for the development of an inter-
esting variety of extensions to the simulation algorithm. One extension is proposed in [5, 6], and later formalized
(following our techniques) in [9, 23], where the processes ofQ simulate a system P 0 that has access to set agree-
ment variables. Other variants of the simulation, for consensus problems in systems with access to general shared
objects appear in [8] and in [19].

Reducibilities between problems have proved to be useful elsewhere in computer science (e.g., in recursive
function theory and complexity theory of sequential algorithms), for classifying problems according to their solv-
ability and computational complexity. One would expect that reducibilities would also be useful in distributed
computing theory, for example, for classifying decision problems according to their solvability in fault-prone asyn-
chronous systems. Our reducibility appears somewhat too specially tailored to the simulation algorithm presented
to serve as a useful general notion. Further research is needed to determine the limitations of this reducibility and
to define a more general-purpose notion.

Stronger notions of reducibility (or fault-tolerant simulation) might include a closer, “step-by-step” correspon-
dence between the execution of the simulating systemP and the simulated systemP0. Such a stronger notion seems
to be needed to obtain results [6] relating the topological structure of the executions ofP andP0. These results seem
to indicate that the simulation plays an interesting role in the newly emerging topology approach to distributed com-
puting (e.g. [6, 16, 14]).

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, “Atomic snapshots of shared memory,”
Journal of the ACM, Vol. 40, No. 4, September 1993, 873–890.

[2] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger Reischuk, “Renaming in an asyn-
chronous environment,” Journal of the ACM, Vol. 37, No. 3, July 1990, 524–548.

[3] O. Biran, S. Moran, S. Zaks, “A combinatorial characterization of the distributed 1-solvable tasks,” Journal
of Algorithms, vol. 11, 1990, 420–440.

[4] E. Borowsky and E. Gafni, “Generalized FLP impossibility result for t-resilient asynchronous computations,”
in Proceedings of the 1993 ACM Symposium on Theory of Computing, May 1993, 91–100.

[5] E. Borowsky and E. Gafni, “The implication of the Borowsky-Gafni simulation on the set consensus hierar-
chy,” Technical Report 930021, UCLA Computer Science Dept., 1993.

[6] E. Borowsky, “Capturing the power of resiliency and set consensus in distributed systems,” Ph.D. Thesis,
University of California, Los Angeles, October 15, 1995.

[7] S. Chaudhuri, “More choices allow more faults: set consensus problems in totally asynchronous systems,”
Information and Computation, Vol. 105, 1993, 132–158.

32

[8] T. Chandra, V. Hadzilacos, P. Jayanti, S. Toueg, “Wait-freedom vs. t-resiliency and the robustness of wait-free
hierarchies,” in Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing,
August 1994, 334–343.

[9] S. Chaudhuri, P. Reiners, “Understanding the set consensus partial order using the Borowsky-Gafni simula-
tion,” 10th International Workshop on Distributed Algorithms, Oct. 9–11, 1996. Lecture Notes in Computer
Science 1151, Springer-Verlag, 362–379.

[10] M.J. Fischer, N.A. Lynch, M.S. Paterson, “Impossibility of distributed consensus with one faulty process,”
Journal of the ACM, Vol. 32, No. 2, April 1985, 374–382.

[11] E. Gafni and E. Koutsoupias, “3-processor tasks are undecidable,” brief announcement in Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, August 1995, p. 271. Full version
submitted for publication.

[12] M.P. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming Languages and Systems,
13(1):123–149, January 1991.

[13] M.P. Herlihy and S. Rajsbaum, “Set consensus using arbitrary objects,” 13th ACM Symposium on Principles
of Distributed Computing (PODC ’94), Aug. 14–17, Los Angeles, 1994, pp. 324–333.

[14] M.P. Herlihy and S. Rajsbaum, “A Primer on Algebraic Topology and Distributed Computing,” in Computer
Science Today, Jan van Leeuwen (Ed.), LNCS Vol. 1000, Springer Verlag, 1995, p. 203–217.

[15] M.P. Herlihy and S. Rajsbaum, “On the decidability of distributed decision tasks,” 29th ACM Symp. on the
Theory of Computation (STOC), May 1997, p. 589–598. Brief Announcement in 15th ACM Symposium on
Principles of Distributed Computing (PODC), 1996, p. 279.

[16] M.P. Herlihy and N. Shavit, “The asynchronous computability theorem for t-resilient tasks,” In Proceedings
of the 1993 ACM Symposium on Theory of Computing, May 1993, 111–120.

[17] N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, Inc. 1996.

[18] M.C. Loui and H.H. Abu-Amara, “Memory requirements for agreement among unreliable asynchronous pro-
cesses,” in F. P. Preparata (ed.), Parallel and Distributed Computing, vol. 4 of Advances in Computing Re-
search, 163–183. JAI Press, Greenwich, Conn., 1987.

[19] W. Lo and V. Hadzilacos, “On the power of shared object types to implement one-resilient consensus,” in
Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing, pages 101–110,
August 1997.

[20] N.A. Lynch and S. Rajsbaum, “On the Borowsky-Gafni Simulation Algorithm,” In Proceedings of the Fourth
Israel Symposium on Theory of Computing and Systems, June 1996, 4–15.

[21] N.A. Lynch, M.R. Tuttle, “An Introduction to input/output automata,” CWI-Quarterly, Vol. 2, No. 3, Septem-
ber 1989, 219–246. Centrum voor Wiskunde en Informatica, Amsterdam. Also TM-373, MIT Laboratory for
Computer Science, November 1988.

33

[22] Nancy Lynch and Frits Vaandrager. “Forward and Backward Simulations – Part I: Untimed Systems,” Infor-
mation and Computation, Vol. 121, No. 2, September 1995, 214–233.

[23] P. Reiners, “Understanding the Set Consensus Partial Order using the Borowsky-Gafni Simulation,” M.S. The-
sis, Iowa State University, 1996.

[24] M. Saks and F. Zaharoglou, “Wait-free k-set agreement is impossible: The topology of public knowledge,” In
Proceedings of the 1993 ACM Symposium on Theory of Computing, May 1993, 101–110.

34

