The BG Distributed Simulation Algorithm*

Elizabeth Borowsky Eli Gafni
Hewlett-Packard Laboratories Computer Science Department

Palo-Alto, CA 94303 University of California, Los Angeles

borowsky@hpl.hp.com CA 90024
eli@cs.ucla.edu
Nancy Lynchf Sergio Rajshaum?
Laboratory for Computer Science Instituto de Matematicas, UNAM
Massachusetts Institute of Technology Ciudad Universitaria
Cambridge, MA 02139 D.F. 04510, México
lynch@theory.lcs.mit.edu raj shaum@servidor.unam.mx

December 8, 1997

Abstract

A snapshot shared memory algorithm is presented, allowing a set of f + 1 processes, any f of which may
exhibit stopping failures, to “simulate” alarger number » of processes, also with at most f failures.

One application of this simulation algorithm is to convert an arbitrary k-fault-tolerant »-process solution for
the k-set-agreement problem into await-free & + 1-process solution for the same problem. Sincethe & + 1-process
k-set-agreement problem has been shown to have no wait-free solution [4, 16, 24], thistransformation impliesthat
thereis no k-fault-tolerant solution to the n-process k-set-agreement problem, for any n.

More generally, the algorithm satisfies the requirements of a fault-tolerant distributed simulation. The dis-
tributed simulation implements a notion of fault-tolerant reducibility between decision problems. These notions
are defined, and examples of their use are provided.

The algorithm is presented and verified in terms of 1/0 automata. The presentation has a great deal of inter-
esting modularity, expressed by 1/0 automaton composition and both forward and backward simulation relations.
Composition is used to include a safe agreement modul e as a subroutine. Forward and backward simulation rela-
tions are used to view the algorithm asimplementing a multi-try snapshot strategy.

The main algorithm works in snapshot shared memory systems; a simple modification of the algorithm that
worksin read/write shared memory systemsis also presented.

*Preliminary versions of this paper appearedin [4, 20].

T Supported by Air Force Contracts AFOSR F49620-92-J-0125 and F49620-97-1-0337, and NSF contract 9225124CCR and CCR-9520298,
and DARPA contracts NO0014-92-J-4033 and F19628-95-C-0118.

4Part of this work was done at the L aboratory for Computer Science of MIT and at the Cambridge Research Laboratory of DEC. Supported
by DGAPA and CONACYT Projects.

1 Introduction

Consider an asynchronous snapshot shared memory system. We describe an a gorithm, the BG-simulation algo-
rithm, that allows a set of f + 1 processes, any f of which may exhibit stopping failures, to “simulate” a larger
number n of processes, also with at most f failures.

Asan example of an application of the BG-simul ation al gorithm, consider the n-process %-set agreement prob-
lem[7], inwhich al »n processes propose values and decide on at most & of the proposed values. We use the BG-
simulation agorithm to convert an arbitrary k-fault-tolerant »-process solution for the %-set-agreement problem
into a wait-free k& + 1-process solution for the same problem. (A wait-free algorithm is one in which any non-
failing process terminates, regardless of the failure of any number of the other processes.) Sincethe k + 1-process
k-set-agreement problem has been shown to have no wait-free solution[4, 16, 24], thistransformation impliesthat
thereis no k-fault-tolerant solution to the n-process k-set-agreement problem, for any ».

Asanother application, we show how the BG-simul ation algorithm can be used to obtain resultsof [11, 15] about
the computability of some decision problems. Other applications of the algorithm (or variants of it) have appeared
in[5, 6], and morerecently, in [8, 19].

These examples suggest that the BG-simulation a gorithmisa powerful tool for proving solvability and unsolv-
ability resultsfor fault-proneasynchronous systems. Thus, it isimportant to understand what exactly the algorithm
guarantees. In this paper, we present a complete and careful description of the BG-simulation agorithm, plus a
careful description of what it accomplishes, plus a proof of its correctness.

In order to specify what the BG-simulation agorithm accomplishes, we define a notion of fault-tolerant re-
ducihbility between decision problems, and a notion of fault-tolerant simulation between shared memory systems.
We show that, in a precise sense, any algorithmthat implements the fault-tol erant simul ation between two systems
also implements the reducibility between decision problems solved by the systems. Then we describe a specific
version of the BG-simulation algorithm that implementsthe simulation. Although these notionsof reducibility and
simulation are quite natural, they are specially tailored to the BG-simulation al gorithm; we do not propose them as
genera notionsof reducibility between decision problems and simulation between systems.

We give some examples of pairs of decision problems that do and do not satisfy our notion of fault-tolerant
reducibility. For example, then-process k-set-agreement problemis f-reducibleto the n’-process k’-set-agreement
problemif k > &’ and f < min {n, n’}. On the other hand, these problems are not reducibleif k¥ < f < k’. The
moral isthat one must be careful in applying the simulation — it does not work for al pairs of problems, but only
those that satisfy the reducibility.

We present and verify the BG-simulation a gorithmin terms of 1/0 automata [21]. The presentation has a great
deal of interesting modularity, expressed by 1/0 automaton composition and both forward and backward simula-
tion relations (see [22], for example, for definitions). Composition is used to include a safe agreement module, a
simplification of onein [4], as a subroutine. Forward and backward simulation relations are used to view the algo-
rithm as implementing a multi-try snapshot strategy. The most interesting part of the proof isthe safety argument,
which is handled by the forward and backward simulation relations; once that is done, the liveness argument is
straightforward.

Our main version of the BG-simulation al gorithm worksin snapshot shared memory systems. Wealso present a
version that worksin read/write shared memory systems. Essentialy, theversion for read/write systemsisobtained
by replacing each snapshot operation by a sequence of reads in arbitrary order. The correctness of the resulting
read/write systemsis proved by arguments anal ogous to those used for snapshot systems, combined with a specia
argument showing that the result of a sequence of readsis the same as theresult of a snapshot taken somewherein
theinterval of the reads.

The original idea of the BG-simulation algorithm and its application to set agreement are due to Borowsky and
Gafni [4]. The first precise description of the simulation, including a decomposition into modules, the notion of
fault-tol erant reducibility between decision problems, and a proof of correctness appeared in Lynch and Rajsbaum
[20]. The present paper combinestheresultsof [4] and [20], and addstheabstract notion of fault-tol erant simulation,
extensions for read/write systems, and computability results.

Borowsky and Gafni extended the BG-simulation algorithm to systems including set agreement variables[5];
Chaudhuri and Reiners later formalized this extension in [9, 23], following the techniques of [20]. In the context
of consensus, variants of the BG-simulation were used in [8, 19] to simulate systems with access to general shared
objects.

This paper isorganized as follows. We start with the model in Section 2. In Section 3 we define decision prob-
lems, what it means to solve a decision problem, reducibility between decision problems, and simulation between
shared memory systemsthat solvedecision problems. In Section 4 we describe asafe agreement modul ethat i sused
in the BG-simulation algorithm. In Section 5 we present the BG-simulation algorithm. In Section 6 we present the
formal proof of correctness for the BG-simulationalgorithm. Thisimplies Theorem 6.10, our main result, which as-
serts the existence of a distributed al gorithm that implements the reducibility and simulation notions of Section 3.
In Section 7 we show how to modify the BG-simulation algorithm (for snapshot shared memory), to work in a
read/write memory system. In Section 8 several applicationsof the BG-simulation algorithm are described. A fina
discussion appears in Section 9.

2 TheModel

The underlying model isthe I/O automaton mode of Lynch and Tuttle[21], as described, for example, in Chapter
8 of [17]. Briefly, an I/O automaton is a state machine whose transitions are labelled with actions. Actions are
classified as input, output, or internal. The automaton need not be finite-state, and may have multiple start states.
For expressing liveness, each automaton is equipped with a task structure (formally, a partition of its non-input
actions), and the execution is assumed to givefair turnsto each task. The trace of an execution is the sequence of
external actions occurring in that execution.

Most of the systemsin this paper are asynchronous shared memory systems, as defined, for example, in Chap-
ter 9 of [17]. Briefly, an n-process asynchronous shared memory system consists of n processes interacting via
instantaneously-accessible shared variables. We alow finitely many or infinitely many shared variables. (Allow-
ing infinitely many shared variables is a slight generalization over what appears in [17], but it does not affect any
of the propertieswe require.) Formally, we model the system asasingle I/O automaton, whose state consists of all
the processloca state information plusthe values of the shared variables, and whose task structure respects the di-
vision into processes. When we discuss fault-tol erance properties, we model process stopping explicitly by means
of stop; input actions, one for each process ¢. The effect of the action stop, isto disableall future non-input actions
involving processi. When we discuss safety properties only, we omit consideration of the stop actions.

In most of this paper, we focus on shared memory systems with snapshot shared variables. A snapshot vari-
able for an n-process system takes on values that are length »n vectors of e ements of some basic datatype R. Itis
accessi ble by update and snap operations. An update(¢,) operation has the effect of changing the ¢’th component
of the vector to r; we assume that it can be invoked only by processi. A snap operation can be invoked by any
process; it returns the entire vector.

We often assume that the i’ th component of asnapshot variableisitself dividedinto components. For example,
we use a snapshot variable mem, and denote the i’ th component by mem(:); this component includes a component

sim-mem(;), denoted mem(¢).sim-mem(j), for each j in somerange. We sometimes allow process ¢ to change only
one of its components, say mem(7).sim-mem(j,), with an update operation; thisis permissible since process ¢ can
remember all the other components and overwrite them.

As we have defined it, a snapshot system may have more than one snapshot shared variable. However, any
system with more than one snapshot variable (even with infinitely many snapshot variables) can easily be“imple-
mented” by a system with only a single snapshot variable, with no change in any externally-observable behavior
(including behavior in the presence of failures) of the system. Likewise, a system using snapshot shared memory
can be “implemented” in terms of single-writer multi-reader read/write shared variables, again with no change in
externally-observable behavior; see, e.g., [1] for a construction.

In Section 7 we also consider shared memory systems with single-writer multi-reader read/write shared vari-
ables (as defined, for example, in [17]).

3 Decision Problems, Reducibility and Simulation

In Section 3.1 we define decision problems and in Section 3.2 we say what it means for asystem to solveadecision
problem. In Section 3.3 we define the fault-tolerant reducibility between decision problems. In Section 3.4 we
present the notion of simulation.

Whilethe notion of reducibility rel ates decision problems, we show that the notion of simulationisthe equiva-
lent counterpart that relates systems. Thefollowing diagram representsthesere ations, where D and D’ aredecision
problems, and P and P’ are systems.

D reducible D

1 solves 1 solves
simulates ’
P ule P

We usethefollowing notation. A relationfrom X to Y isasubset of X x Y. Arelation R from X toY istotal
if for every x € X, thereissome y € Y suchthat (2, y) € R. Wewrite R(z) as shorthand for {y : (z,y) € R}.
For arelation R from X toY', and arelation S from Y to 7, R - S denotesthe relational composition of £ and .S,
whichisarelationfrom X to 7.

3.1 Decison Problems

Let V bean arbitrary set of values; we usethe same V' astheinput and output domain for all the decision problems
in this paper. An n-port decision problem D = (Z, O, A) consists of aset 7 of input vectors, 7 C V", aset O of
output vectors, O C V", and A, atotal relationfromZ to O.

Examplel Inthen-process k-set-agreement problemover aset of values V', |V| > k + 1, whichwe abbreviate as
the (n, k)-set-agreement problem, 7 istheset of all length» vectorsover V', and O isthe set of all length n vectors
over V' containing at most different values. For any w € Z, A(w) isthe set of all vectorsin O whose values are
included among thosein w.

3.2 Solving Decision Problems

Let D = (Z, O, A) be an n-port decision problem; we define what it means for an I/O automaton A (in particular,
a shared memory system) to solve D. A isrequired to have inputsinit(v); and outputs decide(v);, wherev € V
and 1 < ¢ < n. Weconsider A composed with any user automaton I/ that submitsat most one init; on each port q.
We require the following conditions:

Well-formedness. A only produces a decide; if there is a preceding init;, and A never responds more than once
on the same port.

Correct answers: If init events occur on al ports, forming avector w € 7, then the outputsthat appear in decide
events can be completed to avector in A(w).

We say that A solves D provided that for any such U, the composition A x U guarantees well-formedness and
correct answers. In addition, we consider aliveness condition expressing fault-tolerance:

f-failuretermination: Inany fair execution of A x U, if init events occur on all ports and stop events occur on
at most f ports, then a decide occurs on every non-failing port.

A issaidto guarantee f-failure termination provided that it satisfies the f-failure termination condition for any U,
and A issaid to guarantee wait-free termination provided that it guarantees n-failure termination (or, equivalently,
n — 1-failuretermination).

3.3 Fault-Tolerant Reducibility

We define the notion of f-reducibility from an n-port decision problem D = (Z, O, A} to an »n’-port decision
problem D' = (7, O’ A"), where 0 < f < n’.

The reducibility is motivated by the way the BG-simulation agorithm operates. In that agorithm, a shared
memory system P simulatesan f-fault-tolerant system P’ that solves D'. The simulating system P is supposed to
solve D, and so it obtains from its environment an input vector w € 7, one component per process. Each process
i, based on its own input value w(7), determines a “proposed” input vector ¢;(w(i)) € Z’. The actua input for
each simulated process j of P’ is chosen arbitrarily from among the j** components of the proposed input vectors.
Thus, for each w € 7, thereisaset G(w) C 7, of possibleinput vectors of the simulated system P’.

When the “subroutine” that solves P’ produces a result (a vector in (0’), different processes of P can obtain
different partia information about thisresult. However, with at most f stopping failures, the only differenceisthat
each process can miss at most f components; the possible variations are captured by the F' relation below. Then
each process i of P usesits partia information z(4) to decide on afinal vaue, h;(z(7)). The values produced in
thisway, combined according to the A relation, must form avector in 0. Theformal definitionsfollow.

For aset W of length n vectorsand index i € {1,...,n}, W (i) denotes {w(i) : w € W}, and I denotesthe
Cartesian product W (1) x W(2) x ... x W(n). Thus, W consistsof all the vectors that can be assembled from
vectorsin W by choosing each component to be the corresponding component of some vector in V.

For alength n vector w of valuesinV, and 0 < f < n, views;(w) denotes the set of length n vectors over
V U {L} that are obtained by changing at most f of the componentsof w to L. If W isaset of length n vectors,
then views; (W) denotes U, ew {Views; (w)}.

Our reducibility is defined in terms of three auxiliary parameterized relations &G, ¥ and H, depicted in thefol-
lowing diagram.

A — 7’

la | a’

o &L roy L o
1. G=0G(g1,92,--.,9n), atota relaion fromZ to Z’; here, each ¢; isafunctionfromZ(:) toZ".
Forany w € Z,let W C Z’ denote the set of al vectors of the form ¢;(w(i)), 1 < 7 < n, and define

G(w) = W. We assume that for esch w € 7, G(w) C Z'.

2. F = F(f), atotd relation from O’ to (views; (O'))".
Forany w € O, F(w) = (viewsy(w))".

3. H = H(f h1,hs,..., hy,), atotd (single-valued) relation from (views;(O'))" to V™; here, each h; isa
function from views; (0’) to O(7).
For any z € (views;(0'))"”, H(x) contains exactly the length » vector w such that w(i) = h,(2(7)) for
every i.

Definition 3.1 (f-Reducibility) Supposethat D = (Z, O, A} isan n-port decision problem, I’ = (Z/, 0, A’} is
an n’-port decision problem, and 0 < f < n’. Then D is f-reducibleto D’ viareationsG = G(g1,92, ..., 9n)
and H = H(f, h1,ha, ..., hy), writtenas D g?’H D', providedthat G - A" - F - H C A.

The following examples give some pairs of decision problemsthat do and do not satisfy the reducibility. Be-
cause the reducibility expresses the power of the BG-simulation algorithm, the examplesindicate situationswhere
the algorithm can and cannot be used.

Example2 (n, k)-set agreement is f-reducibleto (n’, k')-set agreement for £ > &/, f < min{n, n'}.

Thisis verified as follows. For v € V/, define g;(v) to be the vector v™ . Also, for w € views; (V"'), define
hi(w) to bethefirst entry of w different from L. It iseasy to check that Definition 3.1 is satisfied.

Example3 (n, k)-set agreement isnot f-reducibleto (n’, k’)-set agreement if £ < f < &'.

If this reducibility held, then the main theorem of this paper, Theorem 6.10, together with the fact that (n', &')-set
agreement issolvablewhen f < &' [7], would imply the existence of an f-fault-tolerant algorithm to solve (n, k)-
set-agreement. But this contradictsthe results of [4, 10, 16, 24].

3.4 Fault-Tolerant Simulation

We present a specification, inthel/O automataformalism, of afault-tolerant distributed simulation. In Theorem 3.3
we show how this specification correspondsto thereducibility of Section 3.3. The reducibility relatestwo decision
problems, while the simul ation rel ates two shared memory systems.

We start, in Section 3.4.1, by describing the simulated system, P’. Each of the processes in the system, P, that
isgoing to simulate P’ getsits own input. These processes have somehow to produce, out of their inputs, inputs
for the simulated processes. Also, out of the outputs produced by the simulated processes, they have somehow to
produce outputs for themselves. These two (distributed) procedures, of input trandlation and of output translation,
are what is uniqueto the fault-tolerant smulation. Together with the natural, step-by-step smulation of P, they
are modeled by an I/O automata called SmpleSpec, which is described in Section 3.4.2. Finaly, in Section 3.4.3,
we present aformal definition of simulation, and show that it implements our reducibility notion.

3.41 TheSimulated Algorithm P’

We assume that the al gorithmto be simulated isgivenintheform of an »’-process snapshot shared memory system,
P’. It has only asingle snapshot shared variable, caled menm'. We assume that each component of mem' takes on
vauesinaset R, withadistinguishedinitial value ry. Thus, the snapshot shared variable mem has auniqueinitial
value, consisting of r in every component. Furthermore, we assume that P’ solves adecision problem 1. Inthis
subsection and the next, we consider only safety properties, and so we omit the stop actions.

We make some simplifying “determinism” assumptions about P’, without loss of generality: We assume that
each process has only one initial state, and, in any state has at most one non-input action enabled. Moreover, for
any action performed from any state, we assume that there is a uniquely-defined next state. Also, theinitia state of
each processis* quiescent” —no non-input actions are enabled (until an input arrives). For each other state, exactly
onenon-input action isenabled. In any state after aprocess has executed a“ decide’ , only local actionsare enabled.

Thefollowingissomeuseful terminology about system P’. For any state s of aprocess j of P/, define nextop(s)
to be an element of {“init”,“ snap”,“local” } U {(“ update”,) : r € R} U {(" decide’, v) : v € V'}. Specificaly,
for aquiescent state s, nextop(s) = “init”; for astate s in which the next action is a snap, nextop(s) = “snap”;
for astate s in which the next action is an update(i,), nextop(s) = (“ update” , r); for astate s in which the next
actionislocal, nextop(s) = “local” ; and for astate s in which the next action isto decide on value v, nextop(s) =
(“ decide” , v). Our determinism assumptions imply that for each state s, nextop(s) isuniquely defined.

For any state s of a process j such that nextop(s) = “init” and any v € V, define trans-init(s, v) to be the
state that results from applying init(v); to s. For any state s of aprocess j such that nextop(s) = “snap” and any
w € R™, define trans-snap(s, w) to be the state that results from performing the snapshot operation from state
s, with the return value for the snapshot being «w. Finaly, for any state s of a process j such that nextop(s) is an
“update”, “local”, or “ decide” pair, define trang(s) to be the state of j that results from performing the operation
from state s.

3.4.2 The SmpleSpec Automaton

Consider algorithm P’, which solves problem D’ guaranteeing f-failure termination, together with relations G
and H. The definition of what we mean by a simulation is based on a safety specification expressed by the
S’mpleSpec?’H (‘P") automaton, or simply SimpleSpec. A system of n processes, P, which is supposed to simu-
late P’, should implement SimpleSpec, in a sense described in Section 3.4.3.

The SimpleSpec automaton directly simulates system P’ in a centralized manner. Repeatedly, a process j of
‘P’ ischosen nondeterministically and its next step smulated. The only unusual festure isthe way of choosing the
inputs for the P’ processes and the outputs for the P processes, using G and H relations. In order to determine
an input v for a process j of P’, aprocess i is chosen nondeterministically from among those that have received

their inputs, and v is set to the j-th component of the vector g;(input(z)). At any time after at least n’ — f of the j
processes of P’ have produced decision values, outputs can be produced, using the functions 4;.
We give aformal description of the S mpleSpec automaton.

SmpleSpec:
Signature:
Input: Internal:
init(v);,: € {1,...,n} siminity, j € {1,...,n/}
Output: smsnap;, j € {1,...,n'}
decide(v);, 7 € {1,...,n} smupdate;, j € {1,...,n'}
simtlocal;, j € {1,...,n'}
sim-decide;, 7 € {1,...,n'}
States:

sim-mem, amemory of P’ (an element of R"'), initially theinitial memory (ro)"'
foreach: € {1,...,n}:

input(¢) € V-u {L}, initidly L

reported(:), a Boolean, initially false
foreachj € {1,...,n'}:

sm-state(5), astate of 7, initialy theinitial state

sim-decision(;) € V U {L},initialy L

Transitions:
init(v); sim-local;
Effect: Precondition:
input(z) := v nextop(sim-state(5)) = “local”
Effect:
sim-init; sim-state(7) := trans(sim-state(;))
Precondition:
nextop(sim-state(5)) = “init” sim-decide;
for some: Precondition:
input(z) #L nextop(sim-state(7)) = (“ decide”, v)
v = g;(input(s))(s) Effect:
Effect: smstate(5) := trans(sim-state(;))
sm-state(7) := trans-init(sim-state(;), v) sim-decision(y) := v
sim-snap; decide(v);
Precondition: Precondition:
nextop(sim-state(5)) = “snap” input(z) #L
Effect: reported(:) = false
sm-state() := w isa"subvector” of sim-decision
trans-snap(sim-state(7) , sSim-mem) |lw| >n' = f
v = hi(w)
sim-update; Effect:
Precondition: reported(s) := true
nextop(sim-state(7)) = (“update”, r)
Effect:
sim-state(5) := trans(sim-state(5))
smmem(j) :=r
Tasks:

Arbitrary. They are not used in the proof.

A simrinit; action is used to simulate an init step of process j. To simulate any other step of j, the function
nextop is used to determine what the next operation is; “init”, “snap”, (“ update”,), “local”, or (“ decide” , v).
Then thestatetransition specified by P’ isperformed, using the appropriatefunction: trans-init, trans-snap or trans.
Once thesimulation of at least n’ — f processes has been completed a decision valuefor 7 can be produced, using
h;. Inthe codethisis expressed by a“ subvector” of sim-decision, where* subvector” means replacing zero or more

entries of the vector sim-decisionby L, and |w| isthe number of entries different from L.

Theorem 3.1 Assume P’ solves D’ and D g?’H D
Then SimpIeSpec?’H(P’) solves D.

Proof: FollowingSection 3.2, weconsider Smpl eS:)ec?’H (P'") composed withany user automaton I that submits
at most oneinit; on each port i.

To provewel [-formedness, we notethat it followsdirectly from the code that S mpl eSpec?’H (‘P") only produces
adecide; if thereisapreceding init;, and it never responds more than once on the same port.

To prove correct answers, assume init events occur on al ports, forming avector w € Z. Then the code for
simrinit guaranteesthat theinputsfor P’ that are produced can be completed to avector «’ € G/(w). Then thecode
of Smpl eS:)ec?’H(P’) simulatesa centralized execution of P’ with theseinputs, and hence the vector w'’ of output
valuesthat is stored in sim-decision can be completed to avector in A’(w’). Then the code for decide guarantees
that the outputsthat appear in decide events can be completed to avector in A (F'(w")). It followsthat the outputs
appearing in decide events can be completed to avector in H (F(A/(G(w)))), and hence (since D g?’H D')toa

vector in A(w). Thus, Smpl eS:)ec?’H (P’ produces correct answers.]

3.4.3 Definition of Simulation

We now define a notion of fault-tolerant simulation; our definition includes both safety and liveness conditions.

We need a preliminary definition and lemma. Supposethat A and B are two 1/O automata with the same inputs
init(v); and outputsdecide(v);, v € V, 1 < i < n. Weconsider A and B composed with any user automaton U/
that submitsat most oneinit; on each port . We say that A solves B provided that for any such U/, every trace of
the composition A x U isalso atrace of the composition B x U.

Lemma3.2 Supposethat A and B are two 1/0 automata with the same inputs init(v); and outputs decide(v);,
veV,1<i<n If Asolves B and B solves an n-port decision problem 1) then A solves D.

Proof: By assumption, every traceof A x U isasoatraceof B x /. Since B solves D, every traceof B x U
satisfieswell-formednessand correct answers. Therefore, every traceof A x U satisfieswell-formednessand correct
answers, so A solves D. [|

Definition 3.2 (fault-tolerant smulation) Suppose that P is an n-process shared memory system, P’ isan n'-
process shared memory system, and 0 < f < »n’. Then? f-simulatesP’ viarelationsG = G(g1, g2, - - -, gn) and
H = H(f hi,ha,... hy), writtenasP simulates?’H P’, provided that both of the following hold:

(1) P solves Smpl eS:)ec?’H(P’).

(2) If P’ guarantees f-failure termination then P guarantees f-failure termination.

Note that condition (1) involves safety only, and so we follow the convention (of Section 2) of not including
thestop actionsin 7 and P’. However, condition (2) isafault-tolerance condition, and so we assume there that the
stop actions are included, according to the convention.

The relationship between our simulation and reducibility notionsis as follows:

Theorem 3.3 Assume P’ solves 1D’ and guarantees f-failure termination. Assume that D g?’H D’ and P

simulates?’H ‘P’. Then P solves D and guarantees f-failure termination.

Proof: Wefirst show that P solves D. Theorem 3.1 implies that Smpl eS:)ec?’H(P’) solves D. By property (1)

of the definition of f-simulation, we have that P solves Smpl eS:)ec?’H(P’). Therefore, Lemma 3.2 implies that
P solves D, as needed.

Now we show that P guarantees f-failuretermination. Weknow that P’ guarantees f-failuretermination. Since
P s muIates?’H P’, property (2) of the definition of f-simulation impliesthat P guarantees f-failure termination,
as needed. [|

Later we use Theorem 3.3 to show that if P’ solves D’ with f-failure termination and D g?’H D', then there
exists asnapshot shared memory system P that solves D with f-failure termination. The proof consists of describ-
ing aspecific snapshot shared memory systemP such that 7 simul ates?’H P’. Thisresultisstatedin Theorem 6.10;
the corresponding version for read/write shared memory systems is stated in Theorem 7.5.

Notice that this simulation specification deals only with externa behaviors, and does not require that the pro-
gram given by P’ be simulated step-by-step. This requirement is sufficient for the applications we present.

4 A Safe Agreement Module

The simulation algorithm uses a component that we call a safe agreement module. Thismodule solves avariant of
the ordinary agreement problem and guaranteesfailure-free termination. In addition, it guarantees anice resiliency
property: itssusceptibility to failure on each port islimited to adesignated “unsafe’ portion of an execution. If no
failure occurs during these unsafe intervals, then decisions are guaranteed on al non-failing ports on which invo-
cations occur.

Formally, we assumethat the modulecommunicateswithits" users’ onaset of » portsnumbered 1, . . ., n. Each
port ¢ supportsinput actions of the form propose(v);, v € V', by which auser at port ¢ proposes specific values for
agreement, and output actions of the form safe; and agree(v);, v € V. The safe; action is an announcement to the
user at port ¢ that the unsafe portion of the execution corresponding to port ¢ has been completed, and the agree(v);
isan announcement on port ; that thedecision valueisv. In addition, we assume that port ¢ supportsan input action
stop;, representing a stopping failure.

We say that a sequence of propose;, safe; and agree; actionsis well-formed for : provided that it is a prefix
of a sequence of the form propose(v),, safe;, agree;. We assume that the users preserve well-formedness on every
port, i.e,, there is at most one propose; event for any particular :. Then we require the following properties of any
execution of the modul e together with its users:

Well-formedness: For any i, the interactions between the module and itsusers on port i are well-formed for ;.

Agreement: All agreement values areidentical.

10

Validity: Any agreement value must be proposed.

In addition, werequiretwo liveness conditions, which are stated interms of fair executions. Thefirst condition says
that any propose event on a non-failing port eventually receives a safe announcement. This guarantee is required
in spite of any failures on other ports.

Wait-free progress: Inany fair execution, for any z, if a propose; event occurs and no stop, event occurs, then a
safe, event occurs.

The second liveness condition saysthat if the execution does not remain unsafefor any port, then any propose event
on anon-failing port eventually receives an agree announcement.

Safetermination: Inany fair execution, if thereisno j such that propose; occurs and safe; does not occur, then
for any ¢, if apropose; event occurs and no stop; event occurs, then agree; occurs.

An 1/O automaton with the appropriate interface is said to be a safe agreement modul e provided that it guarantees
all the preceding conditions (for al users).

We now describe a simple design (using snapshot shared memory) for a safe agreement module. It isa dight
simplification of the onein [4].

The snapshot shared memory containsaval component and alevel component for each process:. When process
i receives apropose(v);, it recordsthevalue v initsval component and raisesitslevel to 1. Then ¢ uses asnapshot
to determine the level’s of the other processes. If ¢ sees that any process has attained level = 2, then it backs off
and resetsitslevel to 0, and otherwisg, it raisesitslevel to 2.

Next, process i enters await loop, repeatedly taking snapshots until it sees a situation where no process has
level = 1. When this happens, the set of processes that it sees with level = 2 isnonempty. Let v be theval value
of the process with the smallest index with level = 2. Then process ¢ performs an agree(v); output.

In the following code, we do not explicitly represent the stop; actions. We assume that the stop; action just puts
process i inaspecia “stopped” state, from which no further non-input steps are enabled, and after which any input
causes no changes.

SafeAgreement:
Shared variables:

z, alength . snapshot value; for each ¢, z(¢) has components:
level € {0,1,2}, initidly 0
val € V u {L}, initialy L

Actionsof ¢:
Input: Internal:
proposg(v);, v € V updatel,
Output: snapl;
safe; update2;
agree(v); wait;
States of 4:

1

input € V u {L},initially L

output € V U { L}, initially L

x-local, a snapshot value; for each j, x-local(j) has components:
level € {0,1,2}, initidly 0
val € V u {L}, initialy L

status € {idle, updatel, snapl, update2, safe, wait, report}, initially idle

Transitions of 4:

propose(v);
Effect:
input := v
status := updatel

updatel,
Precondition:
status = updatel
Effect:
z(¢).level ;=1
z(¢).val := input
status := snapl
snapl;
Precondition:
status = snapl
Effect:
x-local := =

status := update2

update2;

Precondition:
status = update2

Effect:
if 37 : x-local(y).level = 2
then z(¢).level := 0
elsez(i).level := 2
status := safe

Tasksof ::
All actions comprise asingle task.

safe;
Precondition:
status = safe
Effect:
status := wait

wait;
Precondition:
status = wait
Effect:
if A7:z(5).level =1
and3j : z(j5).level = 2 then
k:=min{j : z(j).level = 2 }
output := x(k).val
status := report

agree(v);
Precondition:
status = report
v = output
Effect:
status := idle

Theorem 4.1 SafeAgreement is a safe agreement module.

Proof:

Well-formedness and validity are easy to see. We argue agreement, using an operationa argument. Sup-
posethat process: isthefirst to perform asuccessful wait step, that is, onethat causes it to decide, and suppose that
it decidesontheval of processk. Let m bethesuccessful wait; step; then at step =, processi seesthat «(j).level £ 1

forall j, and £ isthe smallest index such that z(k).level = 2.

We claim that no process j subsequently setsz(j).level := 2. Supposefor the sake of contradictionthat process
j does subsequently set z(j).level := 2 inan update2; step, ¢. Sincez(j).level # 1 when « occurs, it must be that
process j must perform an updatel; and asnapl; after = and before ¢. But then process j must see z(k).level = 2

12

when it performs its snapl;, which causes it to back off, setting z(j).level := 0. Thisisa contradiction, which
impliesthat no process j subsequently sets z(j).level := 2. But thisimpliesthat any process that does a successful
wait step will also see k as the smallest index such that z(k).level = 2, and will therefore also decide on 4’sval.

The wait-free progress property isimmediate, because process i proceeds without any delay until it performs
its safe, output action.

To see the safe termination property, assume that there is no j such that propose; occurs and safe; does not
occur. Then thereisno j such that z(j).level remains equal to 1 forever, so eventually al the level vduesarein
{0, 2}. Then any non-failing process : will succeed in any subsequent wait; statement, and so eventually performs
an agree; output action.]

5 TheBG Simulation Algorithm

In this section, we present the basic snapshot shared memory simulation a gorithm, which we will show satisfies
Definition 3.2.

We present the al gorithmas an n-process snapshot shared memory system @ with asingle snapshot shared vari-
able. Thisagorithmisassumed tointeract not only withthe usua environment, viainit and decide actions, but also
with atwo-dimensional array of safe agreement modules 4; ., j € {1,...,n'}, £ € N, N = {0,1,2,...}. Inthe
final version of the simulation algorithm, system P, these safe agreement modul es are repl aced by implementations
and the whol e thing implemented by a snapshot shared memory system with a single shared variable. The system
Q isassumed to interact witheach A; , viaoutputspropose(w); ¢ ; and inputssafe; , ; and agree(w); ¢ ;. Here, we
subscript the safe agreement actions by the particular instance of the protocol. For ¢ = 0, wehavew € V. For
e Nt wehavew € R,

System @ simulates the n’ processes of P’ (P’ is described in Section 3.4.1), using a safe agreement protocol
A; o todlow al processes of Q to agree on the input of each process j, and also a safe agreement protocol A4; ¢,
¢ € NT toadlow al processes to agree on the value returned by the ¢'th simulated snapshot statement of each
process j. Other steps are simulated directly, with no agreement protocol. Each process i of @ simulatesthe steps
of each process j of P’ in order, waiting for each to complete before going on to the next one. Process 7 works
concurrently on simulating steps of different processes of P’. However, it is only permitted to be in the “unsafe”’
portion of its execution for one process j of P’ a atime.

To simulate process j, process ¢ keeps locally the current value of the state of j, in sim-state(j), the number
of steps that it has simulated for j, in sim-steps(j), and the number of snapshots that it has simulated for j, in
sim-snaps(j). Theshared memory of @ isasingle snapshot variable mem, containing a portionmem(:) for each pro-
cessi of Q. Initscomponent, processi keepstrack of thelatest valuesof all thecomponentsof the snapshot variable
of P/, according to ¢’s local simulation of P’. Process i keeps the value of j's component in mem(s).sim-mem(;).
Along withthisvaue, it keeps a counter in mem(¢).sim-steps(j), which counts the number of stepsthat it has sim-
ulated for 7, up to and including the latest step at which process j of P’ updated its component.

A function latest is used in the snap action to combine the information in the various components of mem to
produceasinglelength n’ vector of R values, representing the latest valueswritten by all the processes of P’. This
function operates “pointwise” for each j, selecting the sim-mem(j) value associated with the highest sim-steps(7).
More precisely, assume k = max; {mem(i).sim-steps(j) }. Then, let : be an index such that mem(:).sim-steps(j) =
k. Thefunction latest sdlects, for 7, thevalue mem(:).sim-mem(j). Aswe shall see (in Lemma6.3), thisvalue must
be unique.

When process ¢ simulates a decision step of j, it stores the decision valuein the local variable sim-decision(y).

13

Once process ¢ has simulated decision steps of at least n’ — f processes, that is, when |[sim-decision| > »n' — f, it
computes a decision value v for itself, using the function 4;, that is, v := h;(sim-decision).

In thefollowing code, we do not represent the stop actions, since the difficult part of the correctness proof isthe
safety argument. After the safety argument we give the fault-tol erance argument, and introduce the stop actions.

Simulation System Q:
Shared variables:
mem, alength n. snapshot value; for each ¢, mem(z) has components:
sim-mem, avector in B™, initially everywhererq
sim-steps, avector in N7, initially everywhere0

Actionsof ¢:

Input: Internal:
init(v);, v e V. sim-update; ;
safe; o ;, £ € N snap; ;
agreg(v); ¢, { =0andv € V, sim-localy ;

orte Nt andv € R™ sim-decide; ;

Output:

deCide(U),‘, vEeEV
propose(v); ¢, £ = 0 andv € V,
or{e Nt andv € R™

States of :

input € V u {L},initialy L

reported, aBoolean, initialy false

for each j:
sm-state(5), astate of 7, initialy theinitial state
simsteps(j) € N, initially 0
simsnaps(;) € N, initialy 0
status(s) € {idle, propose unsafe, safe}, initialy idle
simmem-local(5) € R™ initially arbitrary
simdecision(;) € V U {L}, initidly L

Transitions of 4:

14

init(v); agree(w); ¢, £ € Nt

Effect: Effect:
input := v sm-state() :=
trans-snap(sim-state(5), w)
propose(v) .0 ; simsteps(;) := simsteps(;) + 1
Precondition: simsnaps(;) := sim-snaps(j) + 1
status(s) = idle status(7) := idle
Ak : status(k) = unsafe
nextop(sim-state(5)) = “init” sim-update; ;
input # L Precondition:
v = g;(input)(5) nextop(sim-state(7)) = (* update”, r)
Effect: Effect:
status(;) := unsafe sim-state(7) := trans(sim-state(j))
simsteps(;) := simsteps(;) + 1
safe; , ; mem(i).sim-mem(;) := r
Effect: mem(¢).sim-steps(7) := sim-steps(;)
status(j) := safe
sim-local; ;
agree(v);.0,; Precondition:
Effect: nextop(sim-state(;)) = “local”
sm-state() := Effect:
trans-init(sim-state(), v) sim-state(7) := trans(sim-state(;j))
simsteps(;) := 1 simsteps(;) := simsteps(;) + 1
status() := idle
sim-decide;
snap; Precondition:
Precondition: nextop(sim-state(;)) = (“decide”, v)
nextop(sim-state(j)) = “ snap” Effect:
status(s) = idle sim-state(7) := trans(sim-state(;))
Effect: simsteps(;) := simsteps(;) + 1
sim-mem-local () := latest(mem) sim-decision(j) := v
status(s) := propose
decide(v);
proposg(w); ¢, ¢ € Nt Precondition:
Precondition: input # L
status(;) = propose reported = false
Ak : status(k) = unsafe |sim-decision| > n' — f
smsnaps(j) =£—1 v = h;(sim-decision)
w = simmem-local(5) Effect:
Effect: reported := true
status(s) := unsafe
Tasks of <
{decide(v); : v € V'}
for each j:

al non-input actions involving 5

15

6 CorrectnessProof

The liveness proof, which isquite simple, is postponed to the end of thissection. We start with the proofs of safety
propertiesfor the main simulation algorithm. For these, we use invariantsinvolvingthe states of the saf e agreement
modules. Since we do not want these invariants to depend on any particular implementation of safe agreement,
we add abstract state information, in the form of history variables that are definable for all correct safe agreement
implementations:

proposed-vals C V, initidly §
agreed-val € VU {L},initialy L
proposed-procs C {1,...,n},initidly 0
agreed-procs C {1,...,n},initialy 0

These history variables are maintained by adding the following new effects to actions:

propose(v); agree(v);
Effect: Effect:
proposed-vals := proposed-valsU {v} agreed-val := v
proposed-procs := proposed-procsu {4} agreed-procs := agreed-procsu {4}

For the safety part of the proof, we use three levels of abstraction, related by forward and backward simulation
relations. Forward and backward simulation rel ations are notions used to show that one I/O automaton implements
another [22], or in our case, that one I/O automaton solves another; they have nothing to do with “simulations”
in the sense of the BG simulation algorithm. The first level of abstraction is the specification itself; that is, the
S mpleSpec automaton. The second leve of abstractionisthe DelayedSpec automaton described next in Section 6.1.
Thethirdlevel of abstractionisthesimulationalgorithm P itself (obtai ned by composing Q with safe agreement im-
plementations). Wewill provein Section 6.1 that DelayedSpec solves S mpleSpec, and in Section 6.2 that P solves
DelayedSpec. Thisimpliesthat P solves SmpleSpec, which iswhat isneeded for the safety part of Definition 3.2.

6.1 The DelayedSpec Automaton

Our second level of abstraction isthe DelayedSpec automaton. Thisis a dight modification of SmpleSpec, which
replaces each snapshot step of aprocess j of P’ (simrsnap;) with aseries of snap-try; stepsduring which snapshots
are taken and their values recorded, followed by one snap-succeed; step in which one of the recorded snapshot
valuesis chosen for actual use.

The DelayedSpec automaton i sthe same as S mpleSpec, except for the snapshot attempts. Thereisan extrastate
component snap-set(;j), which keeps track of the set of snapshot vectors that result from doing snap-try; actions.
The sim-snap actions are omitted.

DelayedSpec:

Signature:

16

Input: Internal:

Asin SmpleSpec Asin SmpleSpecbut instead of sim-snap;, 7 € {1,...,7'}:
Outpuit: snap-try;
Asin SmpleSpec snap-succeed;

States:
Asin SmpleSpec but in addition:
snap-set(7), aset of vectorsin R%, initially empty

Transtions: Asin SmpleSpec but instead of sim-snap; :

snap-try; snap-succeed;
Precondition: Precondition:
nextop(sim-state(5)) = “snap” nextop(sim-state(5)) = “ snap”
Effect: w € snap-set(7)
snap-set(7) := snap-set(;7) U {sim-mem} Effect:
sim-state(7) := trans-snap(sim-state(;), w)
snap-set(j) := 0
Tasks:
Asin SmpleSpec

It should not be hard to believe that DelayedSpec solves S mpleSpec—the result of a sequence of snap-try steps plus
one snap-succeed step isthe same asif a single sim-snap occurred at the point of the selected snapshot. Formally,
we use a backward simulation to prove the implementation relationship. The reason for the backward simulation
isthat the decision of which snapshot is selected is made after the point of the simulated snapshot step.

The backward simul ation relation we use (for any fixed /) istherelation & from states of DelayedSpec x U to
states of SmpleSpecx U that isdefined asfollows. If s isastate of DelayedSpec x U/ and v isa state of SmpleSpec x
U, then (s, u) € b provided that thefollowing all hold:

1. Thestateof U isthe samein« and s.
2. v.Smmem= s.sSmmem.

3. Foreach ¢,

(8 w.input(?) = s.input(¢).
(b) w.reported() = s.reported(s).

4. For each j,

(@) u.smdtate(j) € {s.sim-statg(j)} U {trans-snap(s.sim-state(j), w) : w € s.snap-set(;j)}.
(b) w.sim-decision(j) = s.sim-decision(j).

17

That is, all state componentsarethesameinw and s, withthe soleexceptionthat «.sim-state(j) € {s.sim-state(j) }U
{trans-snap(s.sim-state(j), w) : w € s.snap-set(j)}, that is, uv.sm-statgj) is either s.sim-state(j), or else the
result of applying oneof thesnapshot resultsto s.simrstate(j). Each sim-step; step of SmpleSpecis*implemented”
by a chosen snap-try; step of Delayed Spec.

Lemma6.1 Relation b isa backward simulation from DelayedSpecx U/ to SmpleSpecx U.

Sketch of proof: Let (s, 7, s') beastep of DelayedSpec, and let (s’, u) € b. We produce a corresponding execu-
tion fragment of SimpleSpec, from « to «’, with (s, «) € b. The constructionisin cases based on the type of action.
The interesting cases are snap-try and snap-succeed:

1 7 = snap-try;.

Let = denote s.sim-mem. If «’.sim-state(j) = trans-snap(s’.simstate(j), «), then let the corresponding exe-
cution fragment be (u, sim-snap;, u’'), where u isthesame asu’, except that u.sim-state(j) = s.sim-state(j).
Thisisan execution fragment because s.sim-state(j) = s'.sim-state().

Otherwise, let the corresponding execution fragment be just the single state w’. That is, v =
«'. Then we know that, either (i) «'.smstatej) = s’ .smstate(j), or (ii) v .smdatej) €
{trans-snap(s’.smstate(j), w) : w € s .snap-set(j),w # «}. Sinceu = u', we need to prove that
v’ .dmdtate(j) isinthe set {s.sim-state(j)} U {trans-snap(s.sim-state(j), w) : w € s.snap-set(j)}. Case
(i) follows easily from the fact that s.sim-state(j) = s’.sim-state(j). Hence, assume case (ii) holds. We
know that s.snap-set(j) O s’.snap-set(j) — {«}, so v’ .sim-state(j) = trans-snap(s’.sim-state(j), w), where
w € s.snap-set(j). The proof followssince s.sim-state(j) = s’ .sim-state(;).

2. m = snap-succeed, .

The corresponding execution fragment consists of only the single state v’. We must show that (s, w’) € b.
Fix « € s.snap-set(j) to be the snapshot value selected in the step we are considering.

Everything carries over immediately, except for the equation involving the «'.sim-state(j) component.
For this, we know that «'.sm-state(j) € {s'.sm-state(j)} U {trans-snap(s’.sim-state(j), w) @ w €
s'.snap-set(j)}. But by the code for snap-succeed;, the set s'.snap-set(j) is empty. So it must be that
o .simstate(j) = ¢’ .sim-state(5).

Now, the code implies that s'.simstate(j) = trans-snap(s.sm-state(j), #), which implies that

u .dmdate(j) = transsnap(s.simstate(j),). Therefore, v’ .simstate(j) € {s.smstate(j)} U
{trans-snap(s.sim-state, w) : w € s.snap-set(j)}, as needed.

Thislemmaimpliesthat every trace of DelayedSpec x U isatrace of SmpleSpec x U [22], that is(recall the
definition of “solves’ in Section 3.4.3):

Corollary 6.2 DelayedSpec solves SimpleSpec.

18

6.2 The System Q with Safe Agreement Modules

Our third and final level isthe system Q, composed with arbitrary safe agreement modules, and with the propose
and agree actionsreclassified as internal. We show that this system, composed with auser U that submits at most
oneinit; actionon each port, implements DelayedSpec x U inthe sense of traceinclusion; that is, this system solves
DelayedSpec x U (in the sense of Section 3.4.3). Theideais that individual processes of Q that are simulating a
snapshot step of a process j of P’ “try” to perform the simulated snapshot at the point where they take their actual
snapshots. At the point where the appropriate safe agreement module chooses the winning actual snapshot, the
simulated snapshot “succeeds’. Asinthe DelayedSpec, this choice is made after the snapshot attempts.

Formally, we use aweak forward simulation[22]. Theword “weak” simply indicatesthat the proof usesinvari-
ants. We need the invariantsfor the definition as well as for the proof of the forward simulation: strictly speaking,
the definition of the forward simulation we use is ambiguous without them.

Lemma 6.3 gives “coherence” invariants, asserting consistency among three things: information kept by the
processes of @, information in the safe agreement modules, and a “run” (as defined just below) of an individual
process j of P’. Notethat Lemma 6.3 does not talk about globa executions of P/, but only about runs of an indi-
vidual process of P’.

Define arun of process j of P’ to be a sequence of theform p = s, c1, 51, ¢2, 82, .. ., s, where each s; isa
state of process j, and each ¢; isa“change’, that is, one of thefollowing: (“init”, v), (“snap”, w), (“ update”, r),
“local”, (“ decide” | v); thefirst stateisthe uniquestart state, and each change yieldsatransition fromthe preceding
to the succeeding state.

A consequence of the next lemmalisthat every process: that simulates steps of a process j simulates the same
run of j. Aswe shall see, therun is determined by the : process that is furthest ahead in the simulation of j; thus,
only such an i process can affect the outcome of the next step of j. Moreover, it can affect only the outcome of
snapshot steps. Once the outcome of a snapshot step is determined, ¢ can proceed with the simulation of j locally
(without reading the shared variable), up to the next snapshot step.

Invariant 1 relates the information in the processes of Q and the safe agreement modules. Invariants 2 and 3
relate the processes of @ and agiven run p of process ;. Invariants4 and 5 relate p and the safe agreement modul es.
Invariant 6 relates al three types of information: it relates information in certain processes of @ (those that are
“current” intheir simulation of j, according to p) and the safe agreement modules.

Lemma 6.3 For every reachable state of @ composed with abstract safe agreement modulesand a user ¢/, and for
each process j, thereisarun p = sy, ¢1, 1, . . ., s Of process j such that:

1. For any::

(@) sm-steps(j); > 1ifandonlyif: € agreed-procs; ;.
(b) Forany? > 1,sim-snaps(j); > ¢ifandonlyif: € agreed-procs; ,.

(c) i € proposed-procs; , — agreed-procs; , if and only if nextop(sim-state(j);) = “init” and status(;); €
{unsafe, safe}.

(d) Forany¢ > 1, € proposed-procs; , — agreed-procs; , if and only if nextop(sim-state(j);) = “snap”,
sim-snaps(j); = ¢ — 1, and status(j); € {unsafe, safe}.

2. k = max;{sim-steps(j); }.

3. For any 4, if sm-steps(j); = ¢ then:

19

(@) sim-state(j); = sq.

(b) sim-snaps(;); isthe number of “snap”’samong ¢y, . . ., ¢p.

(c) mem(7).sim-mem(j) isthevaluewritteninthelast “update’” among ey, .. ., ¢, if any, else rg.
(d) mem(¢).sim-steps(j) isthe number of thelast “update’ among ¢y, . . ., ¢, if any, ese 0.

4. (a) (“init”,v) appearsin p if and only if agreed-val; , = v.
(b) (“snap”, w) isthe ¢'th snapshotin p if and only if agreed-val; , = w.

5. If proposed-vals; , # § and agreed-val; , =L then

(@) If ¢ = 0 then p consists of only one state s, and nextop(s) = “init”.
(b) If ¢ > 1, then nextop(s;) = “snap”, and the number of snapsinpis¢ — 1.

6. Forany ¢ > 1, if nextop(s;) = “snap” and the number of “snaps” in p is ¢ — 1, then proposed-vals; , =
{sim-mem-loca(j); : sm-steps(j); = k and status(j); € {unsafe, safe} }.

Proof: Let s be any reachable state of @ composed with abstract safe agreement modules and auser /. For s
equa totheinitial stateit is simpleto check that thelemma holds. Assumeit holdsfor some state s, and we prove
that it holdsfor any state s/, after astep (s, 7, s’). Let p = sg, ¢1, 51, .. ., s bearun of process j, corresponding
to s, whose existence is guaranteed by the lemma. We provethereisarun p’ corresponding to s’, that satisfies the
requirements of the lemma. The run p’ will be either equa to p, or else obtained from p by appending a change
cr+1 and astate s; 1. We skip the proof of invariant 1, which is simple and does not talk about p.

For state s, ¥ = max{s.smsteps(j);}. Let &’ be the corresponding value in s'; that is &' =
max; {s’.sim-steps(;); }-

First assume ¥’ = k + 1. Then, for some i, = must be one of: agree(w); o, agree(w); ¢, for ¢ € N,
sm-update; ;, sim-local; ;, or sim-decide; ;, since these are the only cases that increment a sim-steps component.
Moreover, ssim-steps(j); = &, and hence, by part 3(a) of the lemma, s; = ssim-state(j);. For each one of
these possibilities, o’ is obtained from p by appending the corresponding change: (“init”, w) for an agree(w); o ;;
(“snap”,w) for an agree(w); (i, £ € N*T ; (“update’,r) for a smupdate; ;; “local” for a sim-local; ;;
(“ decide” , v) for asim-decide; ;, and after thechange, appending totherunthestate sy 11 , resulting from the corre-
sponding transition function (trans-init, trans-snap, or trans) appliedto s;,. Thatis, s;+; = s’.Sm-state(j);. Thus,
ins’, process ¢ is the first one to finish the simulation of the &’-th step of j and s’.sim-steps(j); = &'; while for
every other process ¢/, s’.sim-steps(j);» < k.

First noticethat part 2 of thelemmaclearly holdsfor s’. Consider thecase of = = agree(w); ¢ ; for{ € Nt (we
omit the proofs of the other cases, which are analogous). For part 3 of thelemma, we need to consider only the case
of £ = k+1,sincethecases of ¢ < &+ 1 hold by theinduction hypothesis. Thus, we need to consider only process
i. Part (8) holds by the definition of s;41. Part (b) holds because s.sim-snaps(); is the number of snap’s among
€1, ..., ¢, and s’ .simsnaps(j); = s.amsnaps(j); + 1, whilecp 1 = (“snap”, w). Part (), (d), and part 4(a) of
the lemma hold by induction hypothesis. For part 4(b) of the lemma, notice that thereare £ — 1 snap’sin p. Thus,
in p’ there are ¢ snap’s, and indeed agreed-val; , = w. Part 5 holdstrivially because process : isthe first one to
finish the simulation of the ¢-th snap of j, and hence proposed-vals; ,, # () and agreed-val,; ,, #L for ¢ < ¢, while
proposed-vals; ,, = () and agreed-val ;o =L for&” > ¢, Finaly, consider part 6. Sincein s’ there are no processes
i withsmrsteps(j);» = k+ 1 and status(j),» € {unsafe, safe}, then we have to provethat proposed-vals; ,,, = 0.

20

Observe that s.sim-snaps(;);; = £ — 1 for any ¢ with s.sim-steps(j);; = k. Then, s.sim-snaps(;);» < ¢ foral ¢/,
and hence no i’ has yet executed a propose(w); r41.

Now assume k' = k. Inthiscase, o' = p. Clearly part 2 of the lemma holds. The cases of = equad to
agree(w); o,i, agree(w); ¢;, £ € N*, simrupdate; ;, sim-local; ;, or sim-decide; ;, are similar to each other. Let us
consider themost interesting: = = agree(w); ¢ ;. We havethat s.sim-snaps(;j); = £ — 1 and s’.sim-snapsj); = ¢.
Assume s.sSim-steps(j); = k1, k1 < k. To provepart 3take ¢ = k1 + 1. Part (a) followsbecause s.sim-state(j); =
s, and w € agreed-val; ,, so that the effect of = when trans-snap is applied gives sy, .1 = s’.simrstate(j);. Part
(b) follows because s.sim-snaps(j); is the number of snap’'samong ¢y, ...,¢; — 1, and ¢, is a snap, and hence
s'.simrsnaps(j); = s.simrsnaps(j); + 1 isthe number of snap’samong ¢4, . . ., ¢;. The other parts of the lemma
follow easily by induction.

Another case iswhen 7 is propose(v); q,i, OF propose(w); ¢, ¢ € NT. Consider the second possibility. To
check part 5 of the lemma assume s’.proposed-vals; , # () and s".agreed-val; , =L, while s.proposed-vals; , =
0 and s.agreed-val, , =1. Then, 7 is the first propose for j and ¢, and hence k¥ = s.Smsteps(j);. Also,
s’ .nextop(sim-state(j);) = “snap” because s.status(j) = propose. Thus nextop(s;) = “snap”. To complete the
proof of the claim notice that the number of snapsin p is¢ — 1, by theinduction hypothesisfor part 3 (a) and (b).
Finally, part 6 of thelemmais easy to check because w = s.sim-mem-local(;); isadded to the set proposed-vals; .

[|

Theforward simulationrelation weuseistherelation f from states of Q composed with safe agreement modul es
and U to states of DelayedSpec x U that is defined as follows. If s is a state of the Q system and « is a state of
DelayedSpec x U, then (s, u) € f provided that the following all hold:

1. Thestateof U isthe samein« and s.
2. u.sm-mem= latest(s.mem).

3. For every ¢,

(8@ w.input(é) = s.input;.
(b) w.reported(¢) = s.reported,.

4. For every j,

(@ u.simstate(j) = s.sm-state(j);, where i isthe index of the maximum value of s.sim-steps(;).

(b) If thereexistsi withs.sim-decision(j); #.L thenu.sim-decision(j) = s.sim-decision(j); for somesuch
i, else u.sm-decision(j) =.L.

(c) If nextop(u.sim-state(j)) = “snap” then w.snap-set(j) = {s.sim-mem-local(j); : s.simsteps(j); =
maxy {s.Smsteps(j)x } and s.status(j); # idle} else u.snap-set(j) = 0.

Thus, the simulated memory «.sim-memis determined by the latest information that any of the processes of @ has
about the memory, and likewise for the simulated process states and simulated decisions. Also, the snapshot sets
u.snap-set(j) are determined by the snapshot values saved in local process states, in Q.

Each snap-try step of DelayedSpec is“implemented” by a current snap of Q. Each snap-succeed step isimple-
mented by thefirst agree step of the appropriate safe agreement module, and likewise for each sim-init step. Each
sim-update step is implemented by thefirst step at which some process simulates that update, and likewise for the
other types of simulated process steps.

21

Lemma6.4 Relation f isa weak forward simulation from @ composed with safe agreement modules and U to
DelayedSpecx U

Sketch of proof: Let (s, 7,s") be astep of the Q system, and let « be any state of DelayedSpec x U such that
(s,u) € f. We produce an execution fragment of DelayedSpec x U, from u to a state ', such that (s, u') € f.
The proof is by cases, according to =. These are the most interesting cases:

1 7 =snap; ;.

If sim-steps(;j); is the maximum value of sim-steps(;j) (in both s and s”), then this simulates snap-try;, else
it simulates no steps.

Assume thefirst case: that sim-steps(;j); is the maximum value of sim-steps(j). The corresponding execu-
tion fragment is (u, snap-try;, v'), where v’ is the same as u except that «’.snap-set(j) = u.snap-set(j) U
{u.simmem}. Since (s, m, s') isastep of Q, the preconditionfor 7 holdsin s and nextop(s.sim-state(j);) =
“snap”. Since(s,u) € f, it followsthat nextop(u.sim-state(j)) = “snap”, by 4(a8) of the definition of f.
Therefore, the precondition for snap-try; holdsin «, and (u, snap-try;, u’) isan execution fragment.

To prove that (s',u') € f, the only nontrivial part of the definition of f to check is 4(c); since
nextop(w’ .sim-state(j)) = “snap”, we do have to verify that «' satisfies part 4(c) of the definition
of f. We know that u.snap-set(j) is equal to the set {s.simrmem-local(j); : s.sSimsteps(j); =
max{s.simsteps(j)y } and s.status(j); # idle}, because (s,u) € f. Now, v .snap-set(j) =
u.snap-set(j) U {u.simmem}. Also, u.sim-mem = latest(s.mem), by part 3 of the definition of f. Af-
ter the snap; ;, we get latest(s.mem) = s’.sim-mem-local(j);. It follows that u'.snap-set(;) is equal to
u.snap-set(y) U {s’.sim-mem-local(j); }, and hence, «'.snap-set(j) is equa to {s’.sim-mem-local(;);

s’ .simsteps(j); = maxy {s’.Sim-steps(j) } and s’ .status(j); # idle}, asdesired.

The case where sim-steps(j); is not the maximum value of sim-steps(j) istrivial.

2. 7 =agree(w); ¢, L € NT.

If thisincreases the maximum value of sim-steps(j) then it simulates snap-succeed; with a decision value of
w, else simulates no steps.

Consider the case where 7 increases the maximum value of sim-steps(j). Let k = max; {s.sSim-steps(j); }.
Then, s.sim-steps(j); = &, and s’.sim-steps(j); = k + 1. By Lemma 6.3, for state s, thereisarun
forj, p = so,c1,81,...,s5 With s, = s.smstatgj);. Now, part 1(d) of Lemma 6.3 implies that
nextop(s.sim-state(j);) = “snap”, s.simsnaps(j); = ¢ — 1, and s.status(j); € {unsafe safe}. Since
(s,u) € f, usmdtate(j) = s.sm-state(;);, and hence, nextop(u.sim-state(j);) = “snap”. We want to
prove that (u, snap-succeed,, ') with a decision value of w is an execution fragment. Since we aready
proved that nextop(u.sim-state(j);) = “snap”, to prove that the precondition of the snap-succeed; holds
it remains to show that w € w.snap-set(;).

To prove that w € wu.snap-set(j), recal that s.simrsnaps(j); = ¢ — 1, and hence, ¢ — 1 is the num-
ber of “ snap”’sin p, by part 3(b) of Lemma 6.3. Thus, the hypothesis of part 6 of Lemma 6.3 holds, and
s.proposed-vals; , = {s.smrmem-local(j); : s.Sm-steps(j); = k and s.status(j); € {unsafe safe}}. We
know that w must be in the set s.proposed-vals; ,, because (s, agree(w); ¢, s") isan execution fragment.
Thus, w = s.simmem-local(j);, for some i’ with s.sim-steps(j);, = k and s.status(j);» € {unsafe, safe}.
To complete the proof of the claim, notice that part 4(c) of the definition of f impliesthat «.snap-set(j) =

22

{s.smmem-local(j); : s.sim-steps(j); = maxy{s.Sim-steps(j); } and s.status(j); # idle}. Therefore, w
must bein «.snap-set(;).

Finaly, it iseasy to verify that (s', u') € f: we need only to check conditions4(a) and 4(c) of the definition
of f. Clearly 4(a) holds. For 4(c) observe that v'.snap-set(j) = 0. If nextop(vw’.sm-state(j)) # “ snap”
then 4(c) holds. But if nextop(«’.sim-state(j)) = “ snap” 4(c) also holds, since i isthe only one achieving
the maximum of max; {s’.sim-steps(j) }, and s’.status(j); = idle.

The case where 7 does not increase themaximum value of sim-steps(j) issimple. Hereno stepsare simulated
and u = . Toseethat (s',u') € f, weneed to check only that parts 4(a) and 4(c) of the definition of f
hold. Thisfollowseasily from thefact that (s, «) € f, and that the maximum value of sim-steps(j) does not
change.

We conclude that every trace of @ composed with safe agreement modules and a user U is a trace of
DelayedSpec x U:

Corollary 6.5 Q composed with safe agreement modul es solves Del ayedSpec.
Combining Corollaries 6.5 and 6.2, we obtain:
Corollary 6.6 Q composed with safe agreement modul es solves SmpleSpec.

Corollary 6.6 is amost, but not quite, what we need. It remains to compose the @ automaton with snapshot
shared memory systemsthat implement all the safe agreement modules, then to merge al the processes of all these
various components systems in order to form a single shared memory system. The resulting system has infinitely
many snapshot shared variables, we combine al theseto yield a system P with a single snapshot shared variable.
We concludethat for every user U that submitsat most oneinit; action on each port, every trace of P x U isatrace
of SmpleSpec x U. That is,

Lemma6.7 P solves SmpleSpec.

Lemma 6.7 yields the safety requirements of a fault-tolerant simulation, as expressed by part (1) of Defini-
tion 3.2. Now we prove the fault-tol erance requirements, as expressed by part (2) of Definition 3.2. The argument
isreasonably straightforward, based on the fact that each process of Q can, at any time, be in the unsafe region of
code for a most one process of P’. As before, since we are reasoning about fault-tolerance, we consider explicit
stop actions.

Lemma6.8 If P’ guarantees f-failure termination then P guarantees f-failure termination.

Proof: Assume that P’ guarantees f-failure termination.

Each process i of P simulatesthe steps of each process 5 of P’ in order, waiting for each step to complete before
going on to the next one. Process 7 works concurrently on simulating steps of different processes of P’. However,
itisonly permitted to bein the “unsaf€e’ portion of its execution for one process j of P’ at atime.

Recall that the specification of safe-agreement stipulatesthat if a non-failing process i executes a propose; ; ;
action it will get an agree; ; ; action, unless some other process i, simulating step ! of j, failswhen “unsafe.” In

23

thiscase ¢ could block the simulation of j. However, since:’ isalowed to participatein this safe agreement only
if it isnot currently in the “unsafe” portion of any other safe agreement execution, then 7' can block at most one
simulated process. 1n any execution inwhich at most f simulator processes fail, at most f simulated processes are
blocked, and each non-failing simulator 7 can complete thesimulation of at least n’ — f processes. Therefore, since
P’ satisfies f-failure termination, a non-failing simulator will eventualy execute its decide step. Thus the whole
system satisfies f-failure termination.]

Lemmas 6.7 and 6.8 yield:
Theorem 6.9 P isan f-simulation of P’ viarelations G and H.
Now, from Theorem 6.9 and Theorem 3.3 we get the result that leads to the applicationsin Section 8:

Theorem 6.10 Supposethat there existsa snapshot shared memory system that solves D’ and guarantees f-failure
termination, and suppose that 1D g?’H D’. Then there exists a snapshot shared memory system that solves D and
guarantees f-failure termination.

7 Simulation in Read/Write Systems

A system using snapshot shared memory can beimplemented in await-free manner in terms of single-writer multi-
reader read/write shared variables [1]. It follows that Theorem 6.10 extends to read/write systems. However, in
this section we provide adirect construction, showing how to produce a read/write shared memory system P that
J-simulates a read/write shared memory system P’. The read/write simulation algorithmis essentially the same as
the snapshot simulation algorithm, except that a snapshot operation is replaced by a sequence of readsin arbitrary
order.

The reasons why we presented the snapshot simulation algorithm first are that it is simpler, and that the correct-
ness proof of the read/write simulation algorithmis based on that of the snapshot a gorithm.

We assume that the system we want to simulate, P, , is an n’-process read/write shared memory system. We
describe an n-process read/write simul ating system Q gy . Asbefore, thisalgorithmis assumed to interact withthe
usua environment, viainit and decide actions, and aso with atwo-dimensional array of safe agreement modules
Aijed{l,...,n'}, £ e N, N = {0,1,2,...}. Inthe complete version of the simulation agorithm, denoted
Prw , these safe agreement modul es are replaced by read/write memory implementations and the whole thingim-
plemented by a read/write shared memory system.

The simulated system P4y, has asequence men of »’ read/write shared variables. Each variablemen(j) isa
single-writer multi-reader variable, written by process j of Pk, taking on valuesin R, and with initial value rq.
Furthermore, we assume that P’ solves a decision problem D’, guaranteeing f-failure termination.

We use terminology about system P4, which is similar to that of system P’, as described in Section 3.4.1.
Namely, for any state s of a process j of Pfy,, define nextop(s) to be an eement of {“init”,“local” } U
{(“read”,j) : 1 < j/ < n'}U{(“update’,r) : r € R} U {(“decide’ ,v) : v € V}. Asbefore, our deter-
minism assumptions imply that each state s has a well defined and unique value of nextop(s). For any state s of
aprocess j such that nextop(s) = “init” and any v € V, define trans-init(s, v) to be the state that results from
applying init(v); to s. For any state s of aprocess j such that nextop(s) = (“read”, j') and any w € R, define
trans-read(s, w) to be the state that results from performing the read operation of the j'th variable from state s,
with thereturn valuefor theread being w. Finally, for any state s of aprocess j such that nextop(s) isan“ update”,

24

“local”, or “ decide” pair, define trang(s) to be the state of j that results from performing the operation from state
S.

The system Q gy is assumed to interact with each A; , via outputs propose(w); ¢ ; and inputs safejyzyi and
agree(w); ¢;. Infact, Qry isvery similar to Q. The differenceis that each snapshot operation used by Q (the
only place snapshots are used isin the computation of latest) isreplaced by a sequence of read operationsin Q gy,
as described next.

The shared memory of Qg consists of a sequence mem-RW of n read/write shared variables. Each variable
mem-RW(7) isasingle-writer multi-reader variable, written by process i of Qg . In mem-RW(¢), process i keeps
track of the latest valuesin al the variables of P, according to i’slocal simulation of Pfy, . Along with each
such value, sm-mem(j), it keeps atag sim-steps(;j), which counts the number of steps that it has simulated for j,
up to and including the latest step at which process j of Py, updated its register.

The code of Qrw has the same transitions as those of Q, except that the snap is replaced by reading and
read-done, and the necessary syntactic modifications are made to the propose and agree transitions. The for-
mal description appears below. Process : smulates a “read” of variable 5’ by process j, by reading al the vari-
ables in mem-RW and combining the information in these variables to produce a single value in R: the value
produced is the latest value written by any of the processes of Qgrw in its copy of the shared variable of 5.
More precisely, process i executes a series of n reading; ; actionsin arbitrary order, one for each 7, selecting the
mem-RW(¢).sim-mem(;) val ue associated with the highest mem-RW(:').sim-steps(;') (thisvalue must be unique).
In the code below, m(;) keeps track of the highest mem-RW(#').sim-steps(j*) encountered so far. m(j) isinitial-
ized to —1, because mem-RW(i’).sim-steps(j/) takes values grester or equal than 0. Thereisalso read-set(;j) which
keeps track of the indexes of processes that have been considered. Thus, read-set(;) isinitially empty. Once the
n components of mem-RW have been read, read-set(j) = {1,...,n} and read-done; ; can be executed. Thisin
turn allows completion of the simulation of the “read” with the execution of the propose(w); ¢ ; and agree(w); ¢ ;
actions.

Simulation System Q gy
Sameas @ but with the following changes:
Shared variables:

Asin Q but instead of mem:

mem-RW, a sequence of n read/write variables; for each :, mem-RW(<) has components:
sim-mem, avector in B™', initially everywhererq
sim-steps, avector in N7, initially everywhere0

Actionsof ¢:
Input: Internal:
Asin @ Asin Q butinstead of snap; ;:
Output: reading; ;
Asin @ read-done; ;
States of 4:
Asin Q exceptfor:
for each 7,

instead of sim-snaps:
simreads(j) € N, initidly 0
instead of sim-mem-local:

25

sim-mem-local-RW € R, initially arbitrary
and in addition:

read-set(;) aset of integers, initially empty

m(j) € N u{-1},initially —1

Transitions of ¢:

Asin Q but instead of snap; ;,

reading; ;
Precondition:
nextop(sim-state(5)) = (“read”, ;')
status(s) = idle
i €{1,...,n} — read-set(5)
Effect:
read-set(;) := read-set(;) U ¢’
if mem-RW(:').sim-steps(;’) > m () then
sim-mem-local-R\V(j) :=
mem-RW(<’).sim-mem(;')
m(7) = mem-RW(z).sim-steps(;’)

read-done; ;

Precondition:
nextop(sim-state(;)) = (“read”, ;')
status(s) = idle
read-set(j) = {1,...,n}

Effect:
read-set(;j) := 0
m(7):= -1
status(s) := propose

Tasksof 7:
Asin Q.

propose(w); ¢, £ € Nt
Precondition:
status(j) = propose
Ak : status(k) = unsafe
smreads(j) = £—1
w = simmem-local-R\(;)
Effect:
status(s) := unsafe

agree(w); ¢, £ € NT
Effect:
sm-state(5) :=
trans-read(sim-state(7), w)
simsteps(;) := simsteps(;) + 1
simreads(;) := simreads(;) + 1
status() := idle

To prove the correctness of the read/write simulation a gorithm, we define an intermediate system, ShapSm.
The only difference between Q ri and ShapSimisthat to simulate aread action of the j'th component, ShapSm
performsasnapshot of mem-RWand appliesafunctionlatest,,,, to theresult, instead of performing aseriesof reads.
Thefunctionlatest,,, for j’ isdefined asfollows. It returnsasinglevalueof R, representing thelatest valuewritten
by all the processesin themem-RW varigbleof j/. Thatis, let & = max; {mem-RW(i').sim-steps(;’) }, and choose
any "’ such that mem-RW(¢").sim-steps(j) = k. Then latest,,,,(mem-RW, ;') = mem-RW(¢").sim-mem(;’). (We
claim thisisuniquely defined.) In the code of ShapS mthe reading and read-donetransitionsare replaced by aread

transition:

Simulation System ShapSm.:
Shared variables:

Asin Qrw

26

Actionsof 7:

Input: Internal:
Asin Qpw Asin Q pyy, exceptthat reading; ; and read-done; ; arereplaced by read; ;
Output:
Asin Qrw
States of <:
Asin Qrw

Transitions of 4:

Asin Qg , except that readingjyi and read-done; ; are replaced by read; ;:

read; ;
Precondition:
nextop(sim-state(7)) = (“read”, ;')
status(j) = idle
Effect:
sim-mem-local-RW(7) := latestenp, (Mem-RW, 5/)
status(s) := propose

Tasksof 7:
Asin Qryw.

It is not hard to verify that an execution of Qpgry corresponds to an execution of ShapSm: Con-
sider a read-done; ; and the corr%pondmg reading; ;'s, for some fixed values j,i. Thus the precondition
nextop(sim-state(;)) = (“read”, ;') holds for some part|cular J7; fix j'. Also, sm—reads(j) = ¢ — 1 for some
valueof £. Thus, for therest of the argument, we have fixed valuesof ¢, 1, j, 7.

Replace al of these read-done; ; and reading] ,’s by a single read; ;, which occurs somewhere between
the first reading; ;, and the last reading; ;, a a point when the highest sim-steps(;j’) takes the value recorded
by the read- done] ;. That is, the read is placed at a point where max; {mem-RW(¢').sim-steps(j’)} is equa
to the vaue of m(j) at the point of the read-done. Such a point exists because the sim-steps variables in-
crease by one unit at a time, and because the final value of m(j) satisfies the following: it is at least the
value of max; {mem-RW(i').simrsteps(j’)} a the moment of the first reading; ;, and a most the value of
max; {Mmem-RW(i").simrsteps(j*) } a the moment of the last reading; ;.

Note that the value of sim-mem-local-RW(;) at the point of the read done (which is the value returned by the
sequence of reading steps in Qrw) isthe same as the value of mem-RW(:").sim-mem(j’) at the point where the
read is placed, for any '/ with mem-RW(i"").sim-steps(j’) = max; {mem-RW(¢').sim-steps(j/) }.

It follows that every trace of Q gy With safe-agreement modules and U is aso atrace of ShapSmwith safe-
agreement modules and U/. Now, the same proof technique that we used to proof that every trace of Q with safe-
agreement modules and U is atrace of DelayedSpec x U/ can aso be used to prove that every trace of ShapSm
with safe-agreement modules and U isatrace of DelayedSpecy,, x U, where DelayedSpecy,,, isthe read/write
memory version of DelayedSpec. Also, the proof technique used for Corollary 6.2 can be used to provethat every

27

trace of DelayedSpecyy,, x U isatrace of SmpleSpecsy,, x U, the read/write memory version of SimpleSpec.
Combining all these facts, we see that every trace of Qg With safe-agreement modules and U is aso a trace of
SmpleSpecy,, x U. Therefore:

Lemma7.1 Qry composed with safe agreement modul es solves SmpleSpecgy

As before, we compose @ gy With read/write shared memory systems that implement all the safe agreement
modul es, and then merge all the processes of al these various components systems in order to form asingle shared
memory system, Pry . We see that, for every user U that submits at most oneinit; action on each port, every trace
of Prw x U isatrace of SmpleSpec,y,, x U. Thatis:

Lemma7.2 Prw solves SmpleSpecyyy .
The fault-tolerance argument is anal ogous to the one for snapshot shared memory systems:
Lemma7.3 If Pgy, guarantees f-failure termination then Py guarantees f-failure termination.

Now Lemmas 7.2 and 7.3 yield (restating Definition 3.2, the definition of f-simulation, in terms of
SimpleSpecyyy):

Theorem 7.4 Prw isan f-simulation of Py, viareationsG and H.
And we get the analogue of Theorem 6.10 (using the analogue of Theorem 3.3 for read/write systems):

Theorem 7.5 Supposethat there exists aread/write shared memory systemthat solves 1’ and guarantees f-failure
termination, and supposethat D g?’H D’. Then there exists a read/write shared memory system that solves D and
guarantees f-failure termination.

8 Applications

In Section 8.1, we describe the notion of a convergence task [15], which is used to specify a family of decision
problems, one for each number of processes. For example, binary consensus is a convergence task — it yields a
decision problem for any number of processes. In Theorem 8.1, we show that one decision problem in the family
of problems specified by a convergence task is solvable if and only if any other problem in the family is solvable.
The proof is based on Theorem 6.10.

In Section 8.2 we usethistheorem to obtain vari ous possi bility and impossi bility resultsfor read/write and snap-
shot shared memory systems.

8.1 Convergence Tasks

In Section 3.1 we defined an n-port decision problemin terms of two sets of n-vectors, Z and O, and atotal relation
A fromZ to O. Thus, adecision problem is specified for a certain number of processes, n. For the applicationsin
the next subsection, wewouldliketo talk about a“problem” in general, without specifying the number of processes.
For example, in the binary consensus problem, any number of processes start with binary inputs, and haveto agree

28

on some process’ input value. Strictly speaking, thisis not a decision problem, but a family of decision problems,
onefor each n.

In principle, one could define a family of decision problems, in away that for two different values of =, the
corresponding decision problems are completely unrelated. But thisisnot what one would mean by a“family.” We
now describe away of defining afamily of decision problems called convergence tasks[15]. We provethat itisa
“family” in the sense, roughly, that one decision problem in the family is solvableif and only if any other is.

For defining convergence tasks, it will be convenient to talk about sets instead of vectors, since the position
of an element in the vector will be immaterial. That is, in the kind of decision problems we will be considering,
any permutation of an input (output) vector will also be an input (output) vector. We call a set asimplex, to follow
the notation of topology. An element of asimplex isavertex. A complex is afamily of simplexes closed under
containment.

For acomplex K, skel’“(IC) denotes the subcomplex formed by all simplexesof K of size at most k¥ + 1. For
example, skel’(K) consists of al the vertices of K, and skel' (K) consists of all the vertices and al the simplexes
of sizetwo. Thusskel' (K) can be thought of as a graph, with simplexes of size 2 as edges and simplexes of size 1
as vertices.

Informally, if S isan input simplex of aconvergence task, each process can receive asinput value any vertex of
S, such that the input values are a subset of .S’ (two processes may receive the same vertex). The convergence task
specifies a set of legal output simplexesfor .S, denoted ¥(.S). Each process has to choose an output a vertex (two
processes may choose the same vertex), such that the vertices form an output simplex of ¥(S). Let n-vectors(S)
be the set of n-vectors of vauesfrom S. Thus, if S isan input simplex, then n-vectors(.S) are input vectors, and
if L isan output simplex then n-vectors(S) are output vectors.

Let K be acomplex. The corresponding n-port vector set K, is defined as follows. (¥h,...,0U,) isavectorin
K, if and onlyif vy, ..., ¥, (not necessarily distinct) formasimplex in ; that is, K, = Usex n-vectors(S). For
avector w, let set(w) bethe simplex of values of w. Thus, if w € K, then set(w) € K.

Formally, a convergence task [£, K, ¥] consists of two arbitrary complexes, £ and K, called the input complex
and the output complex, respectively, and arelation ¥ carrying each simplex of £ to a non-empty subcomplex of
K, suchthat if Ly isafaceof Ly, then ¥(Lg) C ¥(L,).

For each n, the n-port decision problem of [£, K, W] is (£, K., ¥), where ¥ is as follows: ¥(w) contains
every n-vector v’ such that w’ € n-vectors(S), for S € ¥(set(w)).

In the next subsection, we consider the following convergence tasks.

1. The N-consensus convergence taskis[SV !, skel®(SV~1), skel’], where SV —! consistsof asimplex of size
N, N > 1, and its subsimplexes. Thus, for each n, it yields a consensus decision problem [10] for n pro-
cesses, where the processes start with NV possible input values, which are the vertices of S¥~. If the pro-
cesses start with valuesthat forman input simplex S € SV ~1, they haveto decidevalues that form asimplex
inske”(S). Sincethe only simplexes of skel(.S) are the vertices of S, the processes have to decide on the
same vertex, that is, they all have to agree on one of the input vertices of S.

2. The (N, k)-set agreement convergence task, 0 < &k < N, is[SN~1 skd®~1(§N-1) sked*~1]. Thus, for
each n, it yields an n-process k-set-agreement problem over aset SV~ of V values (see Example 1).

1 Thus the complexes we consider here are “colorless,” as opposed the colored complexes considered usually in the topology approach to
distributed computing (e.g. [6, 16, 14]), where each element of a simplex has associated a processid.

29

3. The loop agreement convergence task [15] is [S?, K, A], where §? isthe 2-simplex (55, 51, 52) and its sub-
simplexes, K isan arbitrary finite complex with three distinguished vertices vy, @1, v, A(5;) = ¥, A(55, 5;)
is some path (simplexes of size 1 and 2) A;; with end-points4; and @;, and A(S?) = K.

Other examples of convergence tasks appear in [15], like uncol ored simplex agreement, barycentric agreement,
and c¢-agreement.

Theorem 8.1 For aconvergencetask [, K, ¥],let D = (Z, O, A} bethe corresponding n-port decision problem,
D' = (T',0', A") the n’-port decision problem, and f < min{n,n’}. If there exists a snapshot shared memory
system that solves D and guarantees f-failure termination then there exists a snapshot shared memory system that
solves D’ and guarantees f-failure termination.

Proof: By Theorem 6.10, it suffices to show that D <SH D' for some G = G(91,92,---,9n) nd H =
H(f, h1,ho, ..., hy). Define g;(v) to be the n'-vector with al entries equal to v, and k;(w) to be any of the -
ements of w different from L.

Now we prove the requirement G - A’ - F' - H C A of Definition 3.1. Take any input vector w € Z. Thus
set(w) € L. Forany wy € G(w),

set(wy) C set(w), 1)
and hence, set(wy) € £, since £ isclosed under containment. That is, wy € 7.

Now, take any ws € A’(wy). Thus set(ws) € ¥(set(wy)). By definitionof H and F', any ws € H(F(w2))
satisfies set(ws) C set(wq). Thus, set(ws) € W(set(wy)), Since set(w) € ¥(set(wy)) and ¥(set(wy)) is(a
complex) closed under containment.

Finaly, we need to prove that set(ws) € ¥(w), since thisimplies that ws € A(w). This holds because
U(set(wy)) C U(set(w)), by Equation 1. [|

Applying Theorem 7.5 (instead of Theorem 6.10), we get the same result for read/write systems.

8.2 Possbility and Impossibility Results

Theorem 8.1 can be used to extend resultsthat are knownfor asmall number of processestolarger numbers, for fixed
f. Inthissection we present several applications of thiskind. All the applications we present hold for read/write
memory systems and for snapshot memory systems, since one can use the read/write memory or the snapshot mem-
ory version of Theorem 8.1.

Consensus. It isknown [10, 18] that the consensus decision problem is not solvable with f-failure termination,
when f > 1. In particular, wait-free 2-process consensusisunsolvable[12]. Itispossibleto useonly thisparticul ar
result, and Theorem 8.1 to prove the following:

Corollary 8.2 The consensus problemisnot solvablefor f > 1.

Set Agreement. It isknown from [4, 24, 16] that the (n, k)-set agreement problem is not wait-free solvable. This
result together with Theorem 8.1 implies:

Corollary 8.3 Thereisno algorithmthat solvesthe(n, k)-set agreement problemwith f-failureterminationif f >
k.

Computability. It is known [11] that the problem of telling if a decision problem for n processes, n > 3, hasa
wait-free solution is not computable (i.e., is undecidable). Thiswas proved? in[15] by showing that the following

2Infact, in [15], the result of Corollary 8.4 is proved directly, and in more general models of shared memory.

30

problem is not computable: Given a loop agreement convergence task, tell if the n-port corresponding decision
problem has a wait-free solution. This result, together with Theorem 8.1, implies the following:

Corollary 8.4 Let 2 < f < n. Theproblem of telling if an n-port |oop agreement decision problem has a solution
with f-failure terminationis not computable.

Also, when f = 1, it was proved in [3] that the problem of telling if an arbitrary decision problem has solution
with f-failure termination is computable. In particular, the problem is computable for any 2-port decision problem
obtained from a convergence task. It is possible to use only this particular result, and Theorem 8.1, to prove the
following:

Corollary 8.5 The problem of telling if an n-port decision problem corresponding to a convergence task 7 hasa
solution with 1-failuretermination is computable.

Noticethat theresultsin[3] apply to general decision problems, whilethiscorollary isabout decision problems
produced by convergence tasks. Also, we stress that Corollary 8.5 follows from the results of [3]. The point here
isthat Corollary 8.5 can be proved by showing only the computability for n-port, n = 2, decision problems; a
problem conceivably easier than to proveit directly for arbitrary n.

9 Discussion

We have introduced a general way of simulating a distributed algorithm for some number of processes and some
fault-tolerance, by a distributed system with a different number of processes and the same fault-tol erance. We have
presented a preci se description of a version of thisfault-tolerant simulation algorithm, plus a careful description of
what it accomplishes, plus a proof of correctness.

In particular, we have defined a notion of fault-tolerant reducibility between decision problems, and showed
that the algorithm implements this reducibility. The reducibility is specific to the simulation algorithm; it is not
intended as a genera notion of reducibility between decision problems. An important mora of thiswork is that
one must be careful in applying the simulation algorithm— it does not work for al pairs of problems, but only for
those that satisfy the reducibility. Nevertheless, we have shown that the simulation a gorithmis a powerful tool for
obtai ning possibility and impossibility results.

Similarly, we have presented a specification of what it means for one shared memory system to simul ate anothe,
in afault-tolerant manner. Again, thisisnot avery general notion of simulation, but isintended to capture the type
of smulationthat isstudied in thispaper. We have given afull and detail ed description of aversion of thesimulation
algorithm for snapshot memory systems. We have proved that this algorithm satisfies the requirements of afault-
tolerant simulation.

We have a so shown how to extend this basi c snapshot memory simulation a gorithmto read/write shared mem-
ory, and hence, have shown that it isuseful for proving properties of these systems as well. A reason we chose to
present in this paper first the snapshot al gorithm and then the read/write variant isthat the correctness proof is more
modular, and the whol e presentation clearer.

We have presented severa applications of the simulation algorithm to a class of problems that satisfy the re-
ducihility, including consensus and set agreement, defined by convergence tasks [15]. The applications extend re-
sults about a system with some number of processes and f failures, to a system with any number of processes and
the same number of failures. Further applicationsare described in[6].

31

Some possiblevariationson the simulation a gorithm of thispaper are: (a) Allow each processi of Q tosimulate
only a (statically determined) subset of the processes of P’ rather than all the processes of P’. (b) Allow more
complicated rules for determining the smulated inputs of P’ and the actua outputs of Q; these rules can include
f-fault-tolerant distributed protocols among the processes of Q.

We believe that an important contribution of this paper is providing the basis for the devel opment of an inter-
esting variety of extensionsto the simulation algorithm. One extension is proposed in [5, 6], and later formalized
(following our techniques) in [9, 23], where the processes of @ simulate a system P’ that has access to set agree-
ment variables. Other variants of the simulation, for consensus problemsin systems with access to general shared
objects appear in [8] and in[19].

Reducibilities between problems have proved to be useful elsewhere in computer science (e.g., in recursive
function theory and complexity theory of sequential agorithms), for classifying problems according to their solv-
ability and computational complexity. One would expect that reducibilities would aso be useful in distributed
computing theory, for example, for classifying decision problemsaccording to their solvahility in fault-proneasyn-
chronous systems. Our reducibility appears somewhat too specially tailored to the simulation algorithm presented
to serve as a useful general notion. Further research is needed to determine the limitations of this reducibility and
to define a more general -purpose notion.

Stronger notionsof reducibility (or fault-tolerant simulation) might include a closer, “ step-by-step” correspon-
dence between the execution of the simulating system P and thesimulated system P’. Such a stronger notion seems
to be needed to obtainresults[6] relating thetopol ogical structureof the executionsof P and P’. Theseresults seem
toindicatethat the simulation plays an interesting rolein the newly emerging topol ogy approach to distributed com-
puting (e.g. [6, 16, 14]).

References

[1] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt and N. Shavit, “Atomic snapshots of shared memory,”
Journal of the ACM, Voal. 40, No. 4, September 1993, 873-890.

[2] Hagit Attiya, Amotz Bar-Noy, Danny Dolev, David Peleg, and Rudiger Reischuk, “Renaming in an asyn-
chronous environment,” Journal of the ACM, Vol. 37, No. 3, July 1990, 524-548.

[3] O.Biran, S. Moran, S. Zaks, “A combinatorial characterization of the distributed 1-solvable tasks,” Journal
of Algorithms, vol. 11, 1990, 420-440.

[4] E.Borowsky and E. Gafni, “ Generalized FL P impossibility result for ¢-resilient asynchronous computations,”
in Proceedings of the 1993 ACM Symposium on Theory of Computing, May 1993, 91-100.

[5] E. Borowsky and E. Gafni, “The implication of the Borowsky-Gafni simulation on the set consensus hierar-
chy,” Technical Report 930021, UCLA Computer Science Dept., 1993.

[6] E. Borowsky, “Capturing the power of resiliency and set consensus in distributed systems,” Ph.D. Thesis,
University of California, Los Angeles, October 15, 1995.

[7] S. Chaudhuri, “More choices alow more faults: set consensus problems in totally asynchronous systems,”
Information and Computation, Vol. 105, 1993, 132-158.

32

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

T. Chandra, V. Hadzil acos, P. Jayanti, S. Toueg, “Wait-freedom vs. ¢-resiliency and the robustness of wait-free
hierarchies,” in Proceedings of the 13th Annual ACM Symposium on Principles of Distributed Computing,
August 1994, 334-343.

S. Chaudhuri, P. Reiners, “Understanding the set consensus partial order using the Borowsky-Gafni ssimula-
tion,” 10th International Workshop on Distributed Algorithms, Oct. 9-11, 1996. Lecture Notes in Computer
Science 1151, Springer-Verlag, 362—379.

M.J. Fischer, N.A. Lynch, M.S. Paterson, “Impossibility of distributed consensus with one faulty process,”
Journal of the ACM, Vol. 32, No. 2, April 1985, 374-382.

E. Gafni and E. Koutsoupias, “3-processor tasks are undecidable,” brief announcement in Proceedings of the
14th Annual ACM Symposium on Principles of Distributed Computing, August 1995, p. 271. Full version
submitted for publication.

M.P. Herlihy, “Wait-free synchronization,” ACM Transactions on Programming Languages and Systems,
13(1):123-149, January 1991.

M.P. Herlihy and S. Rajsbaum, “ Set consensus using arbitrary objects,” 13th ACM Symposium on Principles
of Distributed Computing (PODC '94), Aug. 14-17, Los Angeles, 1994, pp. 324-333.

M.P. Herlihy and S. Rajsbaum, “A Primer on Algebraic Topology and Distributed Computing,” in Computer
Science Today, Jan van Leeuwen (Ed.), LNCS Vol. 1000, Springer Verlag, 1995, p. 203-217.

M.P. Herlihy and S. Rajsbaum, “On the decidability of distributed decision tasks,” 29th ACM Symp. on the
Theory of Computation (STOC), May 1997, p. 589-598. Brief Announcement in 15th ACM Symposium on
Principles of Distributed Computing (PODC), 1996, p. 279.

M.P. Herlihy and N. Shavit, “ The asynchronous computability theorem for ¢-resilient tasks,” In Proceedings
of the 1993 ACM Symposium on Theory of Computing, May 1993, 111-120.

N.A. Lynch, Distributed Algorithms, Morgan Kaufmann Publishers, Inc. 1996.

M.C. Loui and H.H. Abu-Amara, “Memory requirements for agreement among unreliabl e asynchronous pro-
cesses,” in F. P. Preparata (ed.), Parallel and Distributed Computing, vol. 4 of Advances in Computing Re-
search, 163-183. JAI Press, Greenwich, Conn., 1987.

W. Lo and V. Hadzilacos, “On the power of shared object types to implement one-resilient consensus,” in
Proceedings of the 16th Annual ACM Symposium on Principles of Distributed Computing, pages 101-110,
August 1997.

N.A. Lynch and S. Rajsbaum, “On the Borowsky-Gafni Simulation Algorithm,” In Proceedings of the Fourth
Israel Symposium on Theory of Computing and Systems, June 1996, 4-15.

N.A. Lynch, M.R. Tuttle, “An Introductionto input/output automata,” CWI-Quarterly, Vol. 2, No. 3, Septem-
ber 1989, 219-246. Centrum voor Wiskunde en Informatica, Amsterdam. Also TM-373, MIT Laboratory for
Computer Science, November 1988.

33

[22] Nancy Lynch and Frits Vaandrager. “ Forward and Backward Simulations— Part I: Untimed Systems,” Infor-
mation and Computation, Vol. 121, No. 2, September 1995, 214-233.

[23] P Reiners, “Understanding the Set ConsensusPartial Order usingthe Borowsky-Gafni Simulation,” M.S. The-
sis, lowa State University, 1996.

[24] M. Saksand F. Zaharoglou, “Wait-free k-set agreement isimpossible: The topology of publicknowledge,” In
Proceedings of the 1993 ACM Symposium on Theory of Computing, May 1993, 101-110.

34

