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ABSTRACTWe study the running time of distributed algorithms de-ployed in a widely distributed setting over the Internet usingTCP. We onsider a simple primitive that orresponds to aommuniation round in whih every host sends informationto every other host; this primitive ours in numerous dis-tributed algorithms. We experiment with four algorithmsthat typially implement this primitive. We run our experi-ments on ten hosts at geographially disperse loations overthe Internet. We observe that message loss has a large im-pat on algorithm running times, whih auses leader-basedalgorithms to usually outperform deentralized ones.
1. INTRODUCTIONIt is hallenging to predit the end-to-end running timeof a distributed algorithm running over TCP/IP in a wide-area setting. It is also often not obvious whih algorithmwould work best in a given setting. E.g., would a deentral-ized algorithm outperform a leader-based one? Answeringsuh questions is diÆult for a number of reasons. Firstly,beause end-to-end Internet performane itself is extremelyhard to analyze, predit, and simulate [7℄. Seondly, end-to-end performane observed on the Internet exhibits greatdiversity [17, 26℄, and thus di�erent algorithms an provemore e�etive for di�erent topologies, and also for di�erenttime periods on the same topology. Finally, di�erent algo-rithms an prove better under di�erent performane metris.In this paper, we study the running time of distributed al-gorithms over the Internet. Our experiments span ten hosts,widely distributed over the Internet { in Korea, Taiwan, theNetherlands, and several hosts aross the US, some at aa-demi institutions and others on ommerial ISP networks.We present data that was gathered over several weeks. Thehosts ommuniate using TCP/IP. TCP is a ommonly used�This work was supported by Air Fore Aerospae Researh(OSR) ontrat F49620-00-1-0097 and MURI award F49620-00-1-0327, and Nippon Telegraph and Telephone (NTT)grant MIT9904-12.
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protool on the Internet, and therefore evaluating systemsthat use it is of interest. Moreover, it was feasible for us todeploy a TCP-based system beause TCP does not generateexessive traÆ at times of ongestion, and beause �rewallsat some of the hosts we use blok UDP traÆ.We onsider a �xed set of hosts engaged in a distributedalgorithm. We evaluate a simple primitive that propagatesa small amount of information from every host to all otherhosts that are onneted to it. This primitive orrespondsto a ommuniation round exeuted by a distributed algo-rithm. The primitive an be initiated by any one of thehosts, alled the initiator, and it terminates one informa-tion from every host has propagated to all of the hosts. Com-muniation rounds of this sort are employed by many di�er-ent algorithms and systems, e.g., Byzantine agreement [16℄,atomi ommit [8, 23, 11℄, state-mahine repliation [15℄,group membership [13℄, and updates of routing tables. Thus,our study has broad appliability. We evaluate the followingommonly used algorithms implementing the primitive.� all-to-all , where the initiator sends a message to allother hosts, and eah host that learns that the al-gorithm has been initiated sends messages to all theother hosts. This algorithm is strutured like deen-tralized two-phase ommit, some group membershipalgorithms (e.g., [13℄), and the �rst phases in deen-tralized three-phase ommit algorithms, (e.g., [23, 9℄).The algorithm ow is depited in Figure 1(a).� leader , where the initiator ats as the leader. Afterthe initiator sends a message to all other hosts, thehosts respond by sending messages to the leader. Theleader aggregates the information from all the hosts,and sends a message summarizing all the inputs to allthe hosts. This algorithm is strutured like two-phaseommit [8℄, and like the �rst two of three ommunia-tion phases in three-phase ommit algorithms, e.g., [23,11℄. The algorithm ow is depited in Figure 1(b).� seondary leader , where a designated host (di�erentfrom the initiator) ats as the leader. The initiatorsends a message to the leader, whih then initiates theleader-based algorithm. The algorithm ow is depitedin Figure 1(). This algorithm struture is essentially aspanning tree of depth one, with the seondary leaderbeing the root and all other hosts being leaves. Sineour system onsists of ten hosts, we did not see theneed for a deeper spanning tree.� logial ring , where messages propagate along the edgesof a logial ring. This algorithm struture ours in



Stage 1 Stage 2(a) The all-to-all algorithm. Stage 1 Stage 2 Stage 3(b) The leader algorithm.
Stage 1 Stage 2 Stage 3 Stage 4() The seondary leader algorithm. Round 1

Round 2(d) The ring algorithm.Figure 1: The message ow of the four algorithms. Initiator shown in gray.several group ommuniation systems, e.g., [1℄. Thealgorithm ow is depited in Figure 1(d).We run a single proess at eah geographial loation. Wedo not address issues related to saling the number of pro-esses, as we believe that suh issues are orthogonal to ourstudy. Using a 2-level hierarhy, algorithms of the sort weonsider an be made to work e�etively with several hun-dreds of proesses. Suh a hierarhy is used, e.g., in [13, 10℄,where the top level of the hierarhy onsists of 5{20 repre-sentatives (servers) at disperse geographial loations. Eahrepresentative gathers information from and propagates in-formation to proesses that are proximate to it. Algorithmslike those onsidered here are typially run among the rep-resentatives. Thus, our study is appliable to systems thatimplement salability in this manner. Our study is howevernot appliable to systems that implement massive salabil-ity, e.g., using gossip-based algorithms.We measure the overall running time of an algorithm fromthe time it starts at some host until it terminates at all hosts,as well as the loal running time at a given host.The typial theoretial metri used to analyze the runningtime of distributed algorithms is the number of message ex-hange rounds the algorithm performs, or the number ofommuniation steps in ase of a non-synhronous system(e.g., [21, 12, 13℄). Aording to this metri, we get the fol-lowing overall running times: 2 ommuniation steps for theall-to-all algorithm; 3 ommuniation steps for the leaderalgorithm; 4 ommuniation steps for seondary leader; and2n�1 steps for the ring algorithm in a system with n hosts.In ontrast to what this metri suggests, in Setion 5 we ob-serve that in ertain settings the seondary leader algorithmahieves the best overall running time, whereas all-to-all of-ten performs the worst. The running time of ring was usuallyless than double the running times of the other algorithms.Why does the ommuniation step metri fail to apture

atual algorithm behavior over the Internet? First, not allommuniation steps have the same ost, e.g., a messagefrom MIT to Cornell an arrive within 20 ms., while a mes-sage from MIT to Taiwan may take 125 ms. Seond, thelateny on TCP links depends not only on the underlyingmessage lateny, but also on the loss rate. If a message sentover a TCP link is lost, the message is retransmitted aftera timeout whih is larger than the average round-trip time(RTT) on the link. Therefore, if one algorithm message islost, the algorithm's overall running time an be more thandoubled. Sine algorithms that exhange less messages areless suseptible to message loss, they are more likely to per-form well when loss rates are high. This explains why theoverall running time of all-to-all is miserable in the preseneof lossy links. Additionally, message latenies and loss rateson di�erent ommuniation paths on the Internet often donot preserve the triangle inequality [20, 13, 3℄ beause therouting poliies of Internet routers often do not hoose anoptimal path between two hosts. This explains why se-ondary leader an ahieve better performane by refrainingfrom sending messages on very lossy or slow paths.We analyze our experimental results, and explain the ob-served algorithm running times in terms of the underlyingnetwork harateristis { lateny and loss rates. Due tothe great variability of running times, the average runningtime is not indiative of an algorithm's typial behavior. Wetherefore fous on the distribution of running times.The ommuniation step metri is widely used due to itsease-of-use. Several other performane models, e.g., [6, 25,18℄, have been used to analyze distributed or parallel algo-rithms (f. Setion 2). However, these do not realistiallymodel algorithm behavior over the Internet. At the end ofthis paper, we suggest a re�nement to the standard met-ri, whih gives a more realisti aount of an algorithm'seÆieny, and at the same time is easy to work with.



The rest of this paper is organized as follows: Setion 2disusses related work. Setion 3 desribes the experimentsetup and methodology. Setion 4 presents the mathemati-al model we use to analyze our results. The following twosetions present and analyze experimental results: Setion 5disusses the impat of message loss on the running timesof the all-to-all, leader, and seondary leader algorithms.Setion 6 disusses the impat of lateny; it studies the all-to-all, leader, and ring algorithms. Setion 7 onludes thepaper and suggests an alternative performane metri.
2. RELATED WORKObtaining data on di�erent aspets of Internet ommu-niation is an emerging researh diretion. Some ative re-searh in this area fouses on measuring and analyzing theonstany of Internet path harateristis suh as routing,loss, and throughput [26, 17℄. Suh researh fouses primar-ily on point-to-point ommuniation, and not on the perfor-mane of distributed algorithms. Another related projet,pursued by Chandra et al. [4℄, studies the nature of om-muniation failures { duration and loation { and how theye�et the end-to-end availability of wide-area servies. An-other study, by Amir and Wool [2℄, evaluates the availabil-ity of di�erent quorum systems over the Internet. Theseresearh e�orts are orthogonal and omplementary to ours.The fat that Internet routing often does not selet opti-mal paths was previously observed by a number of projets{ Detour [20, 19℄, Moshe [13℄, and RON [3℄. These projetsonstrut overlay networks and improve performane by rout-ing messages over these overlays on better paths than wouldbe hosen by Internet routing. In ontrast, we neither as-sume an overlay infrastruture, nor route messages throughhosts that are not partiipating in the urrent instane ofthe algorithm. Moreover, the aforementioned projets useoverlays in order to �nd better paths for point-to-point om-muniation only. When an overlay is used at the routinglevel, as in these projets, messages from the same sourethat are routed through the same host to di�erent destina-tions are not merged into a single message. E.g., onsider theall-to-all algorithm running over an overlay that routes mes-sages from Taiwan to the Netherlands via Cornell. Taiwanwould send idential messages to Cornell and the Nether-lands, whih would be sent as two separate messages on thelink from Taiwan to Cornell. Likewise, the overlay wouldnot ombine the information sent from Taiwan and Cornellto the Netherlands into a single message. Suh sending ofmultiple messages inreases the probability of some messagebeing lost, whih inreases the average running time.Another line of researh fouses on providing a theoretialframework for prediting and evaluating the performane ofparallel and distributed algorithms. A number of papers,e.g. [6, 25, 18, 22℄, fous on settings where message pro-essing overhead is signi�ant, and show that this favorsalgorithms that send fewer messages. While our results alsoillustrate the advantage of sending fewer messages, the rea-sons for this are di�erent: in our setting, it is due to highvariability of message lateny (due to loss) rather than pro-essing overhead, whih is negligible in our setting. Theonlusions from suh studies do not, in general, apply toour setting. E.g., leader has a high proessing overhead (atthe leader), but this does not hamper it's performane in oursetting. Moreover, these analyses assume that the evaluatedalgorithm is the only soure of overhead in the system. In

ontrast, over the Internet, the evaluated algorithms havelittle impat on the total overhead of the system.
3. METHODOLOGYWe use the following hosts in our experiments. Universi-ties in the US: MIT, at the Massahusetts Institute of Teh-nology, Cambridge, MA; UCSD, at the University of Cali-fornia San Diego; CU, at Cornell University, NY; NYU, atNew York University, NY; and Emulab, at the University ofUtah. Hosts at US ommerial ISP networks: CA in Califor-nia and UT1 and UT2 in Utah. International hosts: KR inKorea, TW, at National Taiwan University in Taiwan; andNL, at Vrije University in the Netherlands. All the hostsrun either FreeBSD or Linux operating systems.
3.1 Server ImplementationAt every host we run a server, implemented in Java, op-timized with the GCJ ompiler. Eah server has knowledgeof the IP addresses and ports of all the potential servers inthe system. Every server keeps an ative TCP onnetion toevery other server that it an ommuniate with. We disableTCP's default waiting before sending small pakets (f. Na-gle algorithm, [24, Ch. 19℄). The system implements asyn-hronous I/O using threads. Every 5 minutes, eah serverattempts to set up onnetions with other servers to whihit is not urrently onneted. A rontab monitors the sta-tus of the server, and restarts it if it is down. Thus, wheneither a server or ommuniation failure is repaired, onne-tion is promptly reestablished. In ase the ommuniation isnot transitive, di�erent hosts an have di�erent views of theurrent set of partiipants. Here, we present performaneresults only for periods during whih all the hosts had iden-tial pereptions of the set of onneted hosts. In ase ofhost or ommuniation failures, an instane of the algorithmmay fail to terminate. This situation an be deteted by thefailure of a TCP onnetion or by a timeout.Eah server has ode implementing the four algorithms.The server periodially invokes eah algorithm: it sleeps fora random period, and then invokes one of the algorithms,in round-robin order. Eah invoation of an algorithm isalled a session. We use randomness in order to redue theprobability of di�erent sessions running at the same timeand delaying eah other; this is easier than synhronizing theinvoations, as the hosts do not have synhronized loks.We onstantly run ping from eah host to eah of the otherhosts, sending a ping probe one a minute, in order to trakthe lateny and loss rate of the underlying network. Theping proess is also monitored by a rontab.
3.2 Running Times and Clock SkewsWe use two measures of running time:� The loal running time of a session at a partiular hostis the lok time elapsing from when this host beginsthis session and until the same host terminates thesession. Where we present performane measurements,we give loal running times at the initiator only.� The overall running time of a session is the time elaps-ing from when the initiator begins this session until allthe hosts terminate this session.Eah host writes to log its starting time and terminationtime for eah session, aording to its loal lok. Sine



we do not own the hosts used in our experiments, we werenot able to synhronize their loks. Therefore, in order todedue the overall running time from the log �les, we needto know the skews between di�erent hosts' loks.We now explain how we estimate the lok di�erenes.Whenever a host A sends a message to host B, it inludesin the message its loal lok time. When host B reeivesthe message, it omputes the di�erene between its loallok time and the time in the message, and writes thisvalue to log. Denote this value by �AB. Assume that B'slok is dAB time ahead of A's, and assume that the averagemessage lateny from A to B and from B to A is lAB . Thenon average, �AB = lAB + dAB and symmetrially, �BA =lAB � dAB. Therefore, �AB � �BA is, on average, 2dAB .We approximate the lok di�erene between A and B as:(average(�AB)� average(�BA))=2This approximation method has some limitations: sinemessages are exhanged over TCP, the lateny an vary sub-stantially in ase of message loss. Therefore, if a pair of hostsommuniate over a lossy link, this method an give a badapproximation for the lok di�erene. Moreover, we dis-overed that when the average lok skew is omputed overa long interval, results an be inonsistent, beause somehosts experiene lok drifts. So instead of taking the aver-age over all samples, we ompute the average over samplesobtained in shorter intervals (15 minutes long).The next step is to �x a host h, and ompute the lok dif-ferenes between h and every other host per every 15 minutetime interval. Then, all logged running times in this inter-val are adjusted to h's lok, and the overall running time isinferred from the adjusted initiation and termination times.In order to minimize the e�et of TCP retransmission de-lays, it is preferable to hose a host that has reliable linksto every other host. In order to hek the onsisteny ofour results, we omputed the overall running times usingthree di�erent hosts: MIT, Emulab, and Cornell. We hosethese hosts sine the links to them from all hosts were fairlyreliable and exhibited a low variation of lateny.Having omputed the running times three di�erent ways,we found the results to be fairly onsistent: The distribu-tions of overall running times as omputed with eah of thethree hosts were similar. Moreover, for over 90% of the ses-sions with overall running times up to 2 seonds, the threeomputed running times were within 20 ms. of eah other.
4. THE MATH: RUNNING TIME DISTRI-

BUTION OVER TCP/IPWe now explain the mathematial model that underliesthe analysis of the experimental results in this paper.After TCP sends a message, it waits for an aknowledge-ment. If an aknowledgement does not arrive for a desig-nated retransmission time-out, TCP retransmits the mes-sage. TCP's initial retransmission time-out is the estimatedaverage RTT on the link plus four times the mean deviationof the RTT, where both the average and the mean deviationare omputed over reent values. If the seond opy is alsolost, TCP waits twie the amount of time it waited beforeretransmitting the �rst lost opy, and this ontinues to growexponentially with number of lost opies. [24, Ch. 21℄We estimate the distribution of the TCP lateny based onthe underlying link lateny d and loss probability p. Assume

�rst that d is half the RTT, that losses are independent, andthat the lateny does not vary, so the RTT's mean deviationis 0. Then the TCP lateny is d with probability 1 � p, 3dwith probability p(1 � p), 7d with probability p2(1 � p),and so on. This is a rough estimate, as it does not addressvariations in lateny and loss. Correlated loss auses the�rst peak (at lateny d) to our with higher probability,and auses the tail of the distribution to be sparser; thiswill be most signi�ant on links with high loss rates. A highvariation of lateny will shift all the peaks exept the �rst.We use this estimate to analyze the distribution of therunning time of a stage of an algorithm. Let pi be the prob-ability that the lateny of a message sent on link i is at mostD (as omputed above). Then the probability that an al-gorithm stage takes at most D time is the produt of theprobabilities pi for all the links traversed in this stage. Moregenerally, the running time of a stage is a random variablerepresenting the maximum value of the random variablesrepresenting the TCP link latenies, with distributions de-�ned by the RTT and loss rate as explained above. Asthe number of random variables over whih the maximumis omputed grows, the expeted maximum value inreases.This explains why all-to-all, whih sends O(n2) messages ineah stage performs muh worse than leader, whih sendsO(n). A similar observation was made in [18℄.
5. THE EFFECT OF MESSAGE LOSSThis setion presents two experiments, eah of whih lastedthree and a half days. Ring was not tested in these exper-iments. Eah of the other three algorithms was initiatedby eah of the hosts every 7.5 minutes on average, and intotal, roughly 650 times. Setion 5.1, presents ExperimentI, in whih the TW host had two links with very high lossrates. We then exluded the TW host, and ran ExperimentII, whih we present in Setion 5.2.
5.1 Experiment IThe NL and UT1 hosts were exluded from this experi-ment. Table 1 presents the average RTT and loss rate fromevery host to every other host during the experiment, as ob-served by ping. The loss rates from TW to UT2 and CA arevery high (37% and 42%, resp.), and all the other loss ratesare up to 8%. Losses sometimes our in bursts, where fora period of several minutes all the messages sent on a par-tiular link are lost. The latenies generally vary less, butoasionally we observe periods during whih the lateny issigni�antly higher than average.In this experiment MIT serves as the seondary leader forTW, KR, CU, UT2, NYU, and Emulab. Emulab is the se-ondary leader for the rest. We hose seondary leaders thathad relatively reliable links to all hosts. We used seondaryleaders for all hosts in order to have a meaningful ompar-ison. In pratie, seondary leaders would only be used forhosts that have poor links.Due to oasional loss bursts and TCP's exponential bak-o�, some running times are very high (several minutes long).Thus, the average running time is not representative. In Ta-ble 2, we present statistial data about the running times,both overall and loal, of the three algorithms. We presentthe average running time (in milliseonds) taken over runsthat omplete within 2 seonds. Most runs that experieneno more than 2 onseutive losses are inluded in this aver-age. In Figure 2, we present histograms of the distribution



From To KR TW MIT UCSD CU NYU CA UT2 EmulabKR Avg. RTT 387 291 272 265 267 168 479 258Loss Rate | 6% 7% 2% 0% 0% 1% 1% 2%TW Avg. RTT 388 243 177 211 220 221 267 186Loss Rate 5% | 8% 3% 3% 4% 41% 37% 4%MIT Avg. RTT 300 253 115 40 34 112 99 80Loss Rate 6% 8% | 5% 6% 6% 6% 5% 5%UCSD Avg. RTT 289 195 125 91 102 42 105 61Loss Rate 2% 4% 5% | 0% 0% 0% 0% 0%CU Avg. RTT 266 211 47 73 9 88 101 47Loss Rate 0% 4% 5% 0% | 0% 1% 0% 0%NYU Avg. RTT 267 220 39 83 9 70 78 56Loss Rate 0% 4% 5% 0% 0% | 0% 0% 0%CA Avg. RTT 168 223 121 32 88 75 54 78Loss Rate 1% 42% 5% 0% 1% 0% | 0% 0%UT2 Avg. RTT 479 266 97 88 100 78 50 13Loss Rate 1% 37% 5% 0% 0% 0% 0% | 3%Emulab Avg. RTT 258 186 76 48 47 57 74 14Loss Rate 2% 4% 5% 0% 0% 0% 0% 3% |Table 1: Network harateristis during experiment I.of overall running times under 1.3 seonds observed at threeof the hosts { MIT whih has no lossy links, UT2 whih hasone lossy link, and TW whih has two. The �rst peak ineah histogram represents the overall running time of loss-free runs. The size of the peak illustrates the perentageof the runs of that partiular algorithm that were loss-free.The running times over 1 seond were sparsely distributed.To illustrate this, we give the perentage of runs that exeed2, 4, and 6 seonds in Table 2.
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Figure 2: Histograms of overall running times, Ex-periment I, runs up to 1.3 seonds.

The overall running time of all-to-all is poor: less thanhalf the runs are under 2 seonds. This is beause every in-stane of all-to-all sends two messages over eah lossy link,regardless of the initiator. Thus, most instanes experienemultiple onseutive losses. Leader has a better overall run-ning time exept in TW. This is beause eah instane ofleader initiated at TW traverses eah lossy link three times.Instanes of leader running from other hosts traverse eitherone or no lossy links. At the three hosts that have lossylinks (TW, UT2, and CA), seondary leader ahieves thebest overall performane by bypassing the lossy links.All-to-all has the best loal running time at hosts that donot have lossy links. It has a better loal running time thanleader due to ases in whih the triangle inequality does nothold. E.g., when UT2 initiates all-to-all, CA reeives the�rst message, on average, after 25 ms., and sends a responseto all hosts. KR reeives this response, on average, after 84ms., that is, 109 ms. after UT2 sent the �rst message. Thisis earlier than the average time it takes UT2's message to getto KR (240 ms.). Therefore, KR engages in all-to-all fromUT2 earlier than in leader from UT2. Similarly, when the�rst stage message to some host is lost, all-to-all in essenesends it also by a number of alternate paths, one whih anprove more e�etive. This is why the loal running time ofall-to-all at TW is dramatially better than that of leader.In the absene of paket loss, the overall running time ofleader should be roughly three times the one-way lateny onthe longest link from the leader, or 1.5 times the RTT. FromMIT, the longest link, to KR, has an average RTT of 300ms. Indeed, the �rst peak is entered around 400{450 ms.Sine all links to MIT other than from TW and KR havesigni�antly shorter latenies (up to 115 ms.), this runningtime should be experiened whenever there are no losses onthe TW and KR links, and at most one or two on eah ofthe other links. Sine three messages are sent on eah link,and the loss rates of the longest links are 6% and 8%, theprobability of no loss ourring on either of the long linksis: :943 � :923 � :65. Indeed, running times up to 450 ms.our in 429 out of 659 runs, i.e., 65%.The longest link from TW is to KR, and its average RTTis 388 ms. Therefore, as expeted, the �rst peak of leader



Algorithm All-to-all Leader SeondaryInitiator Overall Loal Overall Loal Overall LoalKR Avg. (runs under 2 se) 922 550 873 592 695 613% runs over 2 se 55% 6% 15% 8% 12% 6%% runs over 4 se 42% 3% 9% 4% 7% 3%% runs over 6 se 37% 3% 7% 3% 5% 3%TW Avg. (runs under 2 se) 866 645 1120 844 679 607% runs over 2 se 54% 24% 64% 43% 13% 7%% runs over 4 se 40% 19% 43% 30% 7% 4%% runs over 6 se 36% 18% 37% 25% 6% 3%MIT Avg. (runs under 2 se) 811 295 541 335 585 408% runs over 2 se 55% 3% 13% 6% 9% 3%% runs over 4 se 42% 3% 8% 4% 5% 2%% runs over 6 se 37% 3% 6% 3% 4% 2%UCSD Avg. (runs under 2 se) 860 328 473 332 602 420% runs over 2 se 51% 2% 6% 2% 8% 3%% runs over 4 se 41% 2% 5% 2% 5% 1%% runs over 6 se 35% 2% 4% 2% 4% 1%CU Avg. (runs under 2 se) 831 320 577 357 578 392% runs over 2 se 53% 1% 6% 1% 12% 5%% runs over 4 se 40% 2% 4% 1% 8% 4%% runs over 6 se 35% 2% 4% 1% 6% 3%NYU Avg. (runs under 2 se) 860 319 562 348 598 408% runs over 2 se 54% 2% 8% 3% 12% 6%% runs over 4 se 41% 3% 6% 2% 8% 3%% runs over 6 se 35% 2% 5% 2% 6% 3%CA Avg. (runs under 2 se) 850 450 777 553 618 450% runs over 2 se 51% 17% 30% 24% 9% 3%% runs over 4 se 40% 13% 21% 16% 6% 2%% runs over 6 se 35% 11% 19% 15% 5% 2%UT2 Avg. (runs under 2 se) 872 513 1031 689 636 452% runs over 2 se 52% 25% 45% 36% 13% 6%% runs over 4 se 42% 21% 34% 28% 8% 4%% runs over 6 se 36% 17% 29% 23% 6% 3%Emulab Avg. (runs under 2 se) 844 320 544 356 633 448% runs over 2 se 52% 2% 8% 3% 10% 5%% runs over 4 se 41% 2% 5% 2% 6% 3%% runs over 6 se 37% 2% 4% 2% 5% 2%Table 2: Measured running times, milliseonds, experiment I.from TW is entered around roughly 1.5 times this RTT, atthe 550{600 ms. range. This peak inludes only 65 of 643runs (10%). We now explain why. First, observe that if anyof the three messages sent on the link to KR or to UT2 islost, the running time exeeds the peak. The probabilityof no loss on the KR link is :953 � :86 and the probabilityof no loss on the UT2 link is :633 � :25. Next, onsiderthe link to CA. In the absene of losses, the response fromCA to TW in the seond stage arrives after about 221 ms.(the RTT), and the response from KR to TW arrives afterabout 388 ms. One TW sends the �nal stage message to allhosts, the algorithm terminates at all hosts within half theRTT on the longest link, or roughly 194 ms. If either the�rst message from TW to CA or CA's response is lost one,then the response arrives roughly after 450 ms., assuminglow mean deviation of RTTs. This is suÆiently lose tothe 388 ms. TW has to wait for KR's message, so it falls inthe �rst peak. However, if the �nal stage message from TWto CA is lost, then CA terminates 332 ms. after TW sendsthe last message, whih adds 138 ms. to the overall runningtime, and pushes it out of the �rst peak. Two losses on thelink to CA always push this session away from the peak.The last message to CA is not lost with probability 58%.The probability that at most one of the previous messages

is lost, and if it is lost, the retransmission is not lost, is::582+2� :42� :582 � :62. So the probability of the �rst peakshould be :86 � :25 � :58 � :62 � :08. This is slightly lowerthan the observed 10%; we hypothesize that this is due toorrelated loss, whih is signi�ant here due to the high lossrates involved.The longest link from UT2 is to KR, with an average RTTof 479 ms. Therefore, the peak is around 700{850. We nowtry to explain why 36% of the runs (230 of 640) are in thisrange. The probability of having no losses on the KR link is97%. The link from UT2 to TW is quite errati. Althoughthe average RTT is 266 ms., the RTT oasionally jumpsas high as 800 ms., and standard deviation of RTTs for theentire experiment period is 139 ms. In periods with low RTTvariations, when the mean deviation omputed by TCP islow, a run with a single loss to TW in one of the �rst twostages of the algorithm will fall in the �rst peak. A lossduring a period with a high mean deviation or a loss in thelast stage of the algorithm pushes the running time out ofthe peak. The probability that the last message on this linkis not lost is 63%. We hypothesize that the mean deviationis low enough to keep us in the peak approximately half thetime. With this assumption, we get that the probability ofa loss in one of the �rst two stages not pushing us out of



the peak is 54%, and the probability of the peak should be::97 � :63 � :54 � :33, whih is lose to the observed 36%.
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Figure 3: Histograms of loal running times, Exper-iment I, runs up to 1.3 seonds.Sine TW uses MIT as a seondary leader, we expet se-ondary leader from TW to behave the same as leader ini-tiated at MIT, with an additional delay of 120 ms. (halfthe RTT between TW and MIT). Indeed, the �rst peak isentered around 500{550, and inludes roughly the sameperentage of the runs as leader at MIT (440/643 = 68%).All-to-all's peak exhibits the lowest overall running time,but the perentage of runs in the �rst peak is very low, andis the same for all initiators.Figure 3 shows the loal running times at the same hosts.The loal running time for all-to-all initiated by MIT has ahigher peak, as it does not involve any lossy links.
5.2 Experiment II: Excluding the Lossiest HostWe repeated the experiment above without the TW host,whih was an end-point on both lossy links. We also ex-luded UCSD beause it was overloaded at the time of theexperiment, and we added UT1. The network harateris-tis are presented in Table 3.The running times observed in this experiment are sum-marized in Table 4. In this experiment at least 88% of theruns are under 2 seonds, for all algorithms and all initia-tors. Even in this setting, all-to-all does not have the bestoverall running time for any initiator, beause even the rel-atively low loss rates get ampli�ed by the fat that so manymessages are sent. Seondary leader works best for mosthosts, exept for those that are themselves optimal leaders.

When one onsiders the metri of loal running time, weobserve that the loal running time of all-to-all is alwayssuperior to that of leader, regardless of the quality of links.Although they both traverse the same links the same numberof times, all-to-all has the advantage that its ommuniationstages may overlap. E.g., when the message from the ini-tiator to one of the hosts is delayed due to loss, that hostan hear from another host that the algorithm has initiatedbefore reeiving the initiator's late message. In the preseneof very lossy links, seondary leader outperforms the othertwo algorithms both loally and globally sine it is the onlyone that avoids the lossy links altogether.
6. THE IMPACT OF LATENCYWe now present results from Experiment III. In this ex-periment, we evaluated the all-to-all, leader, and ring al-gorithms. All the hosts exept UT1 partiipated in thisexperiment. Eah host ran about 510 sessions of eah algo-rithm. Table 5 shows the network harateristis during theexperiment. Table 6 summarizes the overall and loal run-ning times of the three algorithms. Table 6 gives the averagerunning time for runs under 3 seonds, and the perentageof runs under 3 seonds. We use a threshold of 3 seondsbeause link latenies in this experiment are higher than inthe previous two. In analyzing the results, we highlight theimpat of lateny on algorithm performane. In Setion 6.1,we disuss the running time of the ring algorithm. In Se-tion 6.2, we show how the highest lateny link in the systema�ets the running time of all-to-all. In Setion 6.3, we dis-uss the impat of a link's lateny on the signi�ane of losson that link. Setion 6.4 disusses the fat that the triangleinequality does not hold and the impat this has.
6.1 The Running Time of RingThe message ow in the ring-based algorithm follows thefollowing sequene where eah host preedes its neighbor andthe �rst host is the neighbor of the last: NL, Emulab, UT2,CU, NYU, KR, MIT, TW, UCSD, CA. This above ring washosen based on lateny and loss rate measurements from aprevious experiment. The hosen ring is nearly optimal andthe loss rates on all the ring links are low.Ring has the highest average running time in the abseneof message loss. However, ring has some nie properties:First, the ring algorithm is least a�eted by message loss.From the network harateristis depited in Table 5, weobserve that in the absene of message loss, the total time ittakes a message to irulate around the ring twie is about1900 ms. Unlike leader and all-to-all, the average overallrunning time for ring is lose to this expetation. The rea-son for this is that ring sends the fewest messages and usesthe most reliable links. Seond, the hoie of initiator doesnot have a big impat on the performane of ring, sine mes-sages travel over the same links. The only di�erene betweeninitiating ring from di�erent hosts is that the initiator onlyreeives a message one. This explains why ring sessionsinitiated at KR have a slightly better overall running timesine KR has the longest link. Finally, notie that ring'soverall running time is not exatly twie the loal runningtime sine the seond round is shorter than the �rst.
6.2 Latency Changes over TimeThe longest links in the system were between KR andTW and KR and the NL. The lateny of these two links



From To KR MIT Cornell NYU CA UT2 Emulab UT1KR Avg. RTT 294 261 257 165 452 275 500Loss Rate | 3% 1% 3% 0% 1% 3% 1%MIT Avg. RTT 298 43 38 117 117 82 86Loss Rate 2% | 1% 1% 1% 2% 3% 2%Cornell Avg. RTT 269 46 16 89 101 47 87Loss Rate 1% 1% | 0% 1% 1% 3% 1%NYU Avg. RTT 257 38 16 69 76 60 60Loss Rate 3% 1% 0% | 0% 0% 2% 1%CA Avg. RTT 165 115 92 75 47 79 85Loss Rate 0% 2% 1% 0% | 1% 2% 1%UT2 Avg. RTT 454 109 101 77 47 14 31Loss Rate 1% 2% 1% 0% 0% | 6% 1%Emulab Avg. RTT 275 83 47 60 74 15 50Loss Rate 4% 4% 2% 2% 2% 6% | 4%UT1 Avg. RTT 503 82 82 60 86 30 52Loss Rate 1% 1% 1% 1% 1% 1% 5% |Table 3: Network harateristis during experiment II.Algorithm: All-to-all Leader SeondaryInitiator Overall Loal Overall Loal Overall LoalKR Avg. (runs under 2 se) 588 509 758 551 407 388% runs over 2 se 12% 7% 11% 6% 9% 4%MIT Avg. (runs under 2 se) 524 278 465 296 442 311% runs over 2 se 11% 4% 10% 5% 10% 6%CU Avg. (runs under 2 se) 532 277 440 277 471 315% over 2 se 11% 4% 9% 5% 10% 5%NYU Avg. (runs under 2 se) 519 291 449 291 446 296% over 2 se 12% 5% 10% 5% 10% 5%CA Avg. (runs under 2 se) 535 222 378 219 486 367% over 2 se 11% 5% 10% 5% 9% 6%UT2 Avg. (runs under 2 se) 500 265 866 498 494 383% over 2 se 10% 5% 11% 6% 9% 5%Emulab Avg. (runs under 2 se) 526 287 506 316 480 338% over 2 se 12% 5% 9% 6% 8% 4%UT1 Avg. (runs under 2 se) 495 295 982 571 481 367% runs over 2 se 11% 4% 11% 5% 10% 6%Table 4: Measured overall and loal running times, experiment II.varied dramatially in the ourse of the experiment. Wenow divide the data gathered in this experiment into twoperiods. In the �rst period, the link from KR to the NL hadan average RTT of 754 ms., and the link from KR to TWhad an average RTT of 683 ms. In the seond period, theaverage RTTs from KR to the NL and to TW dropped to355 ms. and 385 ms., resp. So the average one-way messagelateny on the longest link dropped by 185 ms. This wasthe only notable di�erene between the two periods.In Figure 4, we show histograms of the measured overallrunning times of all-to-all from all initiators during eah ofthe two periods. The histograms show runs up to 2 seonds;this inludes 23% of the runs during the longer lateny pe-riod, and 60% of the runs during the shorter lateny period.We observe that in the period with high latenies, the bestrunning times are around 500 ms. In the period of low la-tenies, the �rst peak ours at 300 ms., or roughly 200 ms.earlier, whih is lose to the derease in the one-way latenyon the longest link. As we see, the all-to-all algorithm fromall initiators is a�eted by the inrease in lateny. In on-trast, the only instanes of the leader algorithm that werea�eted by this lateny hange were those initiated at TW,KR, or the NL. Other instanes of the leader algorithm were

una�eted. E.g., the �rst peak of the leader algorithm ini-tiated at Emulab ours at 300{350 ms. for both periods.
6.3 Latency and LossThe loss rates from TW to CA and UT2 are 43% and49% resp. This auses the running times of leader fromthese hosts to be very high (at least 44% of the runs exeed3 seonds). The loss rates from CU to CA and UT2 are alsofairly high (49% and 31% resp.). In spite of this, only 8% ofthe runs of leader from CU last over 3 seonds. We see thatthe lossy links from CU do not impat the overall runningtime as do the lossy links from TW. This is beause thelatenies of the lossy links from CU are only about one sixththe longest link lateny. Therefore, even two onseutivelosses on these links do not impat the overall running time.
6.4 The Triangle InequalityThe average RTT from UCSD to KR is 526 ms. and theaverage RTT from UCSD to CA is 49 ms., while the averageRTT from CA to KR is 152 ms. Although UCSD and CAare geographially lose, the average RTT from UCSD toKR is more than 3 times the average RTT from CA to KR.The lateny from UCSD to KR an be redued to less than



From To KR TW MIT UCSD CU NYU CA UT2 Emulab NLKR Avg. RTT 643 547 526 587 588 152 446 521 701Loss Rate | 9% 6% 6% 4% 4% 1% 3% 7% 8%TW Avg. RTT 639 235 178 212 222 219 258 187 322Loss Rate 10% | 4% 3% 4% 3% 43% 49% 4% 4%MIT Avg. RTT 549 236 97 32 28 98 78 71 150Loss Rate 8% 3% | 0% 0% 0% 1% 2% 1% 0%UCSD Avg. RTT 526 179 96 73 84 49 91 48 172Loss Rate 6% 3% 0% | 0% 0% 0% 2% 1% 0%CU Avg. RTT 588 211 32 73 9 85 88 47 138Loss Rate 4% 4% 0% 0% | 0% 49% 31% 1% 0%NYU Avg. RTT 587 222 28 83 9 70 70 57 138Loss Rate 4% 4% 0% 0% 0% | 0% 2% 1% 0%CA Avg. RTT 152 219 102 31 94 78 54 81 161Loss Rate 0% 42% 1% 0% 31% 0% | 2% 4% 1%UT2 Avg. RTT 446 262 77 91 88 71 50 13 154Loss Rate 3% 48% 2% 2% 31% 2% 2% | 6% 2%Emulab Avg. RTT 522 187 70 48 47 57 75 14 145Loss Rate 8% 5% 1% 1% 1% 1% 4% 6% | 1%NL Avg. RTT 697 324 155 175 141 143 165 157 49Loss Rate 7% 3% 0% 0% 1% 0% 1% 2% 1% |Table 5: Network harateristis during experiment III.
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Figure 4: Histograms of overall running times, runsup to 2 seonds, experiment III.a half by routing messages indiretly through CA.
7. CONCLUSIONSWe measured and analyzed the performane of four om-mon information propagation algorithms over the Internet.We explained the distribution of the algorithms' runningtimes in terms of underlying link latenies and loss rates.One important lesson one an learn from our observationsis that loss rates over the Internet are not negligible. Con-sequently, algorithms that send many messages often havea high running time, even if the messages are sent in par-allel in one ommuniation step. More generally, we learnthat some ommuniation steps are more ostly than oth-ers. E.g., it is evident that propagating information fromonly one host to all other hosts is faster than propagatinginformation from every host to eah of the other hosts.We suggest to re�ne the ommuniation step metri asto enompass di�erent kinds of steps. One ost parame-

ter, �1, an be assoiated with the overall running time of astep that propagates information from all hosts to all hosts1.This step an be implemented using any of the algorithmsanalyzed in this paper. A di�erent (assumed smaller) ostparameter, �2, an be assoiated with a step that propa-gates information from one host to all other hosts. Anotherost parameter, �3 an be assoiated with propagating in-formation from a quorum of the hosts to all the hosts2, et.This more re�ned metri an then be used to revisit knownlower and upper bound results. E.g., [12℄ presents a tightlower bound of two ommuniation steps for failure-free ex-eutions of onsensus in pratial models. Under the morere�ned metri, the lower bound is 2�1, whereas known al-gorithms (e.g., [14, 5℄) ahieve running times of �2 +�3.
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