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ABSTRACTWe study the running time of distributed algorithms de-ployed in a widely distributed setting over the Internet usingTCP. We 
onsider a simple primitive that 
orresponds to a
ommuni
ation round in whi
h every host sends informationto every other host; this primitive o

urs in numerous dis-tributed algorithms. We experiment with four algorithmsthat typi
ally implement this primitive. We run our experi-ments on ten hosts at geographi
ally disperse lo
ations overthe Internet. We observe that message loss has a large im-pa
t on algorithm running times, whi
h 
auses leader-basedalgorithms to usually outperform de
entralized ones.
1. INTRODUCTIONIt is 
hallenging to predi
t the end-to-end running timeof a distributed algorithm running over TCP/IP in a wide-area setting. It is also often not obvious whi
h algorithmwould work best in a given setting. E.g., would a de
entral-ized algorithm outperform a leader-based one? Answeringsu
h questions is diÆ
ult for a number of reasons. Firstly,be
ause end-to-end Internet performan
e itself is extremelyhard to analyze, predi
t, and simulate [7℄. Se
ondly, end-to-end performan
e observed on the Internet exhibits greatdiversity [17, 26℄, and thus di�erent algorithms 
an provemore e�e
tive for di�erent topologies, and also for di�erenttime periods on the same topology. Finally, di�erent algo-rithms 
an prove better under di�erent performan
e metri
s.In this paper, we study the running time of distributed al-gorithms over the Internet. Our experiments span ten hosts,widely distributed over the Internet { in Korea, Taiwan, theNetherlands, and several hosts a
ross the US, some at a
a-demi
 institutions and others on 
ommer
ial ISP networks.We present data that was gathered over several weeks. Thehosts 
ommuni
ate using TCP/IP. TCP is a 
ommonly used�This work was supported by Air For
e Aerospa
e Resear
h(OSR) 
ontra
t F49620-00-1-0097 and MURI award F49620-00-1-0327, and Nippon Telegraph and Telephone (NTT)grant MIT9904-12.
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proto
ol on the Internet, and therefore evaluating systemsthat use it is of interest. Moreover, it was feasible for us todeploy a TCP-based system be
ause TCP does not generateex
essive traÆ
 at times of 
ongestion, and be
ause �rewallsat some of the hosts we use blo
k UDP traÆ
.We 
onsider a �xed set of hosts engaged in a distributedalgorithm. We evaluate a simple primitive that propagatesa small amount of information from every host to all otherhosts that are 
onne
ted to it. This primitive 
orrespondsto a 
ommuni
ation round exe
uted by a distributed algo-rithm. The primitive 
an be initiated by any one of thehosts, 
alled the initiator, and it terminates on
e informa-tion from every host has propagated to all of the hosts. Com-muni
ation rounds of this sort are employed by many di�er-ent algorithms and systems, e.g., Byzantine agreement [16℄,atomi
 
ommit [8, 23, 11℄, state-ma
hine repli
ation [15℄,group membership [13℄, and updates of routing tables. Thus,our study has broad appli
ability. We evaluate the following
ommonly used algorithms implementing the primitive.� all-to-all , where the initiator sends a message to allother hosts, and ea
h host that learns that the al-gorithm has been initiated sends messages to all theother hosts. This algorithm is stru
tured like de
en-tralized two-phase 
ommit, some group membershipalgorithms (e.g., [13℄), and the �rst phases in de
en-tralized three-phase 
ommit algorithms, (e.g., [23, 9℄).The algorithm 
ow is depi
ted in Figure 1(a).� leader , where the initiator a
ts as the leader. Afterthe initiator sends a message to all other hosts, thehosts respond by sending messages to the leader. Theleader aggregates the information from all the hosts,and sends a message summarizing all the inputs to allthe hosts. This algorithm is stru
tured like two-phase
ommit [8℄, and like the �rst two of three 
ommuni
a-tion phases in three-phase 
ommit algorithms, e.g., [23,11℄. The algorithm 
ow is depi
ted in Figure 1(b).� se
ondary leader , where a designated host (di�erentfrom the initiator) a
ts as the leader. The initiatorsends a message to the leader, whi
h then initiates theleader-based algorithm. The algorithm 
ow is depi
tedin Figure 1(
). This algorithm stru
ture is essentially aspanning tree of depth one, with the se
ondary leaderbeing the root and all other hosts being leaves. Sin
eour system 
onsists of ten hosts, we did not see theneed for a deeper spanning tree.� logi
al ring , where messages propagate along the edgesof a logi
al ring. This algorithm stru
ture o

urs in
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(d) The ring algorithm.Figure 1: The message 
ow of the four algorithms. Initiator shown in gray.several group 
ommuni
ation systems, e.g., [1℄. Thealgorithm 
ow is depi
ted in Figure 1(d).We run a single pro
ess at ea
h geographi
al lo
ation. Wedo not address issues related to s
aling the number of pro-
esses, as we believe that su
h issues are orthogonal to ourstudy. Using a 2-level hierar
hy, algorithms of the sort we
onsider 
an be made to work e�e
tively with several hun-dreds of pro
esses. Su
h a hierar
hy is used, e.g., in [13, 10℄,where the top level of the hierar
hy 
onsists of 5{20 repre-sentatives (servers) at disperse geographi
al lo
ations. Ea
hrepresentative gathers information from and propagates in-formation to pro
esses that are proximate to it. Algorithmslike those 
onsidered here are typi
ally run among the rep-resentatives. Thus, our study is appli
able to systems thatimplement s
alability in this manner. Our study is howevernot appli
able to systems that implement massive s
alabil-ity, e.g., using gossip-based algorithms.We measure the overall running time of an algorithm fromthe time it starts at some host until it terminates at all hosts,as well as the lo
al running time at a given host.The typi
al theoreti
al metri
 used to analyze the runningtime of distributed algorithms is the number of message ex-
hange rounds the algorithm performs, or the number of
ommuni
ation steps in 
ase of a non-syn
hronous system(e.g., [21, 12, 13℄). A

ording to this metri
, we get the fol-lowing overall running times: 2 
ommuni
ation steps for theall-to-all algorithm; 3 
ommuni
ation steps for the leaderalgorithm; 4 
ommuni
ation steps for se
ondary leader; and2n�1 steps for the ring algorithm in a system with n hosts.In 
ontrast to what this metri
 suggests, in Se
tion 5 we ob-serve that in 
ertain settings the se
ondary leader algorithma
hieves the best overall running time, whereas all-to-all of-ten performs the worst. The running time of ring was usuallyless than double the running times of the other algorithms.Why does the 
ommuni
ation step metri
 fail to 
apture

a
tual algorithm behavior over the Internet? First, not all
ommuni
ation steps have the same 
ost, e.g., a messagefrom MIT to Cornell 
an arrive within 20 ms., while a mes-sage from MIT to Taiwan may take 125 ms. Se
ond, thelaten
y on TCP links depends not only on the underlyingmessage laten
y, but also on the loss rate. If a message sentover a TCP link is lost, the message is retransmitted aftera timeout whi
h is larger than the average round-trip time(RTT) on the link. Therefore, if one algorithm message islost, the algorithm's overall running time 
an be more thandoubled. Sin
e algorithms that ex
hange less messages areless sus
eptible to message loss, they are more likely to per-form well when loss rates are high. This explains why theoverall running time of all-to-all is miserable in the presen
eof lossy links. Additionally, message laten
ies and loss rateson di�erent 
ommuni
ation paths on the Internet often donot preserve the triangle inequality [20, 13, 3℄ be
ause therouting poli
ies of Internet routers often do not 
hoose anoptimal path between two hosts. This explains why se
-ondary leader 
an a
hieve better performan
e by refrainingfrom sending messages on very lossy or slow paths.We analyze our experimental results, and explain the ob-served algorithm running times in terms of the underlyingnetwork 
hara
teristi
s { laten
y and loss rates. Due tothe great variability of running times, the average runningtime is not indi
ative of an algorithm's typi
al behavior. Wetherefore fo
us on the distribution of running times.The 
ommuni
ation step metri
 is widely used due to itsease-of-use. Several other performan
e models, e.g., [6, 25,18℄, have been used to analyze distributed or parallel algo-rithms (
f. Se
tion 2). However, these do not realisti
allymodel algorithm behavior over the Internet. At the end ofthis paper, we suggest a re�nement to the standard met-ri
, whi
h gives a more realisti
 a

ount of an algorithm'seÆ
ien
y, and at the same time is easy to work with.



The rest of this paper is organized as follows: Se
tion 2dis
usses related work. Se
tion 3 des
ribes the experimentsetup and methodology. Se
tion 4 presents the mathemati-
al model we use to analyze our results. The following twose
tions present and analyze experimental results: Se
tion 5dis
usses the impa
t of message loss on the running timesof the all-to-all, leader, and se
ondary leader algorithms.Se
tion 6 dis
usses the impa
t of laten
y; it studies the all-to-all, leader, and ring algorithms. Se
tion 7 
on
ludes thepaper and suggests an alternative performan
e metri
.
2. RELATED WORKObtaining data on di�erent aspe
ts of Internet 
ommu-ni
ation is an emerging resear
h dire
tion. Some a
tive re-sear
h in this area fo
uses on measuring and analyzing the
onstan
y of Internet path 
hara
teristi
s su
h as routing,loss, and throughput [26, 17℄. Su
h resear
h fo
uses primar-ily on point-to-point 
ommuni
ation, and not on the perfor-man
e of distributed algorithms. Another related proje
t,pursued by Chandra et al. [4℄, studies the nature of 
om-muni
ation failures { duration and lo
ation { and how theye�e
t the end-to-end availability of wide-area servi
es. An-other study, by Amir and Wool [2℄, evaluates the availabil-ity of di�erent quorum systems over the Internet. Theseresear
h e�orts are orthogonal and 
omplementary to ours.The fa
t that Internet routing often does not sele
t opti-mal paths was previously observed by a number of proje
ts{ Detour [20, 19℄, Moshe [13℄, and RON [3℄. These proje
ts
onstru
t overlay networks and improve performan
e by rout-ing messages over these overlays on better paths than wouldbe 
hosen by Internet routing. In 
ontrast, we neither as-sume an overlay infrastru
ture, nor route messages throughhosts that are not parti
ipating in the 
urrent instan
e ofthe algorithm. Moreover, the aforementioned proje
ts useoverlays in order to �nd better paths for point-to-point 
om-muni
ation only. When an overlay is used at the routinglevel, as in these proje
ts, messages from the same sour
ethat are routed through the same host to di�erent destina-tions are not merged into a single message. E.g., 
onsider theall-to-all algorithm running over an overlay that routes mes-sages from Taiwan to the Netherlands via Cornell. Taiwanwould send identi
al messages to Cornell and the Nether-lands, whi
h would be sent as two separate messages on thelink from Taiwan to Cornell. Likewise, the overlay wouldnot 
ombine the information sent from Taiwan and Cornellto the Netherlands into a single message. Su
h sending ofmultiple messages in
reases the probability of some messagebeing lost, whi
h in
reases the average running time.Another line of resear
h fo
uses on providing a theoreti
alframework for predi
ting and evaluating the performan
e ofparallel and distributed algorithms. A number of papers,e.g. [6, 25, 18, 22℄, fo
us on settings where message pro-
essing overhead is signi�
ant, and show that this favorsalgorithms that send fewer messages. While our results alsoillustrate the advantage of sending fewer messages, the rea-sons for this are di�erent: in our setting, it is due to highvariability of message laten
y (due to loss) rather than pro-
essing overhead, whi
h is negligible in our setting. The
on
lusions from su
h studies do not, in general, apply toour setting. E.g., leader has a high pro
essing overhead (atthe leader), but this does not hamper it's performan
e in oursetting. Moreover, these analyses assume that the evaluatedalgorithm is the only sour
e of overhead in the system. In


ontrast, over the Internet, the evaluated algorithms havelittle impa
t on the total overhead of the system.
3. METHODOLOGYWe use the following hosts in our experiments. Universi-ties in the US: MIT, at the Massa
husetts Institute of Te
h-nology, Cambridge, MA; UCSD, at the University of Cali-fornia San Diego; CU, at Cornell University, NY; NYU, atNew York University, NY; and Emulab, at the University ofUtah. Hosts at US 
ommer
ial ISP networks: CA in Califor-nia and UT1 and UT2 in Utah. International hosts: KR inKorea, TW, at National Taiwan University in Taiwan; andNL, at Vrije University in the Netherlands. All the hostsrun either FreeBSD or Linux operating systems.
3.1 Server ImplementationAt every host we run a server, implemented in Java, op-timized with the GCJ 
ompiler. Ea
h server has knowledgeof the IP addresses and ports of all the potential servers inthe system. Every server keeps an a
tive TCP 
onne
tion toevery other server that it 
an 
ommuni
ate with. We disableTCP's default waiting before sending small pa
kets (
f. Na-gle algorithm, [24, Ch. 19℄). The system implements asyn-
hronous I/O using threads. Every 5 minutes, ea
h serverattempts to set up 
onne
tions with other servers to whi
hit is not 
urrently 
onne
ted. A 
rontab monitors the sta-tus of the server, and restarts it if it is down. Thus, wheneither a server or 
ommuni
ation failure is repaired, 
onne
-tion is promptly reestablished. In 
ase the 
ommuni
ation isnot transitive, di�erent hosts 
an have di�erent views of the
urrent set of parti
ipants. Here, we present performan
eresults only for periods during whi
h all the hosts had iden-ti
al per
eptions of the set of 
onne
ted hosts. In 
ase ofhost or 
ommuni
ation failures, an instan
e of the algorithmmay fail to terminate. This situation 
an be dete
ted by thefailure of a TCP 
onne
tion or by a timeout.Ea
h server has 
ode implementing the four algorithms.The server periodi
ally invokes ea
h algorithm: it sleeps fora random period, and then invokes one of the algorithms,in round-robin order. Ea
h invo
ation of an algorithm is
alled a session. We use randomness in order to redu
e theprobability of di�erent sessions running at the same timeand delaying ea
h other; this is easier than syn
hronizing theinvo
ations, as the hosts do not have syn
hronized 
lo
ks.We 
onstantly run ping from ea
h host to ea
h of the otherhosts, sending a ping probe on
e a minute, in order to tra
kthe laten
y and loss rate of the underlying network. Theping pro
ess is also monitored by a 
rontab.
3.2 Running Times and Clock SkewsWe use two measures of running time:� The lo
al running time of a session at a parti
ular hostis the 
lo
k time elapsing from when this host beginsthis session and until the same host terminates thesession. Where we present performan
e measurements,we give lo
al running times at the initiator only.� The overall running time of a session is the time elaps-ing from when the initiator begins this session until allthe hosts terminate this session.Ea
h host writes to log its starting time and terminationtime for ea
h session, a

ording to its lo
al 
lo
k. Sin
e



we do not own the hosts used in our experiments, we werenot able to syn
hronize their 
lo
ks. Therefore, in order todedu
e the overall running time from the log �les, we needto know the skews between di�erent hosts' 
lo
ks.We now explain how we estimate the 
lo
k di�eren
es.Whenever a host A sends a message to host B, it in
ludesin the message its lo
al 
lo
k time. When host B re
eivesthe message, it 
omputes the di�eren
e between its lo
al
lo
k time and the time in the message, and writes thisvalue to log. Denote this value by �AB. Assume that B's
lo
k is dAB time ahead of A's, and assume that the averagemessage laten
y from A to B and from B to A is lAB . Thenon average, �AB = lAB + dAB and symmetri
ally, �BA =lAB � dAB. Therefore, �AB � �BA is, on average, 2dAB .We approximate the 
lo
k di�eren
e between A and B as:(average(�AB)� average(�BA))=2This approximation method has some limitations: sin
emessages are ex
hanged over TCP, the laten
y 
an vary sub-stantially in 
ase of message loss. Therefore, if a pair of hosts
ommuni
ate over a lossy link, this method 
an give a badapproximation for the 
lo
k di�eren
e. Moreover, we dis-
overed that when the average 
lo
k skew is 
omputed overa long interval, results 
an be in
onsistent, be
ause somehosts experien
e 
lo
k drifts. So instead of taking the aver-age over all samples, we 
ompute the average over samplesobtained in shorter intervals (15 minutes long).The next step is to �x a host h, and 
ompute the 
lo
k dif-feren
es between h and every other host per every 15 minutetime interval. Then, all logged running times in this inter-val are adjusted to h's 
lo
k, and the overall running time isinferred from the adjusted initiation and termination times.In order to minimize the e�e
t of TCP retransmission de-lays, it is preferable to 
hose a host that has reliable linksto every other host. In order to 
he
k the 
onsisten
y ofour results, we 
omputed the overall running times usingthree di�erent hosts: MIT, Emulab, and Cornell. We 
hosethese hosts sin
e the links to them from all hosts were fairlyreliable and exhibited a low variation of laten
y.Having 
omputed the running times three di�erent ways,we found the results to be fairly 
onsistent: The distribu-tions of overall running times as 
omputed with ea
h of thethree hosts were similar. Moreover, for over 90% of the ses-sions with overall running times up to 2 se
onds, the three
omputed running times were within 20 ms. of ea
h other.
4. THE MATH: RUNNING TIME DISTRI-

BUTION OVER TCP/IPWe now explain the mathemati
al model that underliesthe analysis of the experimental results in this paper.After TCP sends a message, it waits for an a
knowledge-ment. If an a
knowledgement does not arrive for a desig-nated retransmission time-out, TCP retransmits the mes-sage. TCP's initial retransmission time-out is the estimatedaverage RTT on the link plus four times the mean deviationof the RTT, where both the average and the mean deviationare 
omputed over re
ent values. If the se
ond 
opy is alsolost, TCP waits twi
e the amount of time it waited beforeretransmitting the �rst lost 
opy, and this 
ontinues to growexponentially with number of lost 
opies. [24, Ch. 21℄We estimate the distribution of the TCP laten
y based onthe underlying link laten
y d and loss probability p. Assume

�rst that d is half the RTT, that losses are independent, andthat the laten
y does not vary, so the RTT's mean deviationis 0. Then the TCP laten
y is d with probability 1 � p, 3dwith probability p(1 � p), 7d with probability p2(1 � p),and so on. This is a rough estimate, as it does not addressvariations in laten
y and loss. Correlated loss 
auses the�rst peak (at laten
y d) to o

ur with higher probability,and 
auses the tail of the distribution to be sparser; thiswill be most signi�
ant on links with high loss rates. A highvariation of laten
y will shift all the peaks ex
ept the �rst.We use this estimate to analyze the distribution of therunning time of a stage of an algorithm. Let pi be the prob-ability that the laten
y of a message sent on link i is at mostD (as 
omputed above). Then the probability that an al-gorithm stage takes at most D time is the produ
t of theprobabilities pi for all the links traversed in this stage. Moregenerally, the running time of a stage is a random variablerepresenting the maximum value of the random variablesrepresenting the TCP link laten
ies, with distributions de-�ned by the RTT and loss rate as explained above. Asthe number of random variables over whi
h the maximumis 
omputed grows, the expe
ted maximum value in
reases.This explains why all-to-all, whi
h sends O(n2) messages inea
h stage performs mu
h worse than leader, whi
h sendsO(n). A similar observation was made in [18℄.
5. THE EFFECT OF MESSAGE LOSSThis se
tion presents two experiments, ea
h of whi
h lastedthree and a half days. Ring was not tested in these exper-iments. Ea
h of the other three algorithms was initiatedby ea
h of the hosts every 7.5 minutes on average, and intotal, roughly 650 times. Se
tion 5.1, presents ExperimentI, in whi
h the TW host had two links with very high lossrates. We then ex
luded the TW host, and ran ExperimentII, whi
h we present in Se
tion 5.2.
5.1 Experiment IThe NL and UT1 hosts were ex
luded from this experi-ment. Table 1 presents the average RTT and loss rate fromevery host to every other host during the experiment, as ob-served by ping. The loss rates from TW to UT2 and CA arevery high (37% and 42%, resp.), and all the other loss ratesare up to 8%. Losses sometimes o

ur in bursts, where fora period of several minutes all the messages sent on a par-ti
ular link are lost. The laten
ies generally vary less, buto

asionally we observe periods during whi
h the laten
y issigni�
antly higher than average.In this experiment MIT serves as the se
ondary leader forTW, KR, CU, UT2, NYU, and Emulab. Emulab is the se
-ondary leader for the rest. We 
hose se
ondary leaders thathad relatively reliable links to all hosts. We used se
ondaryleaders for all hosts in order to have a meaningful 
ompar-ison. In pra
ti
e, se
ondary leaders would only be used forhosts that have poor links.Due to o

asional loss bursts and TCP's exponential ba
k-o�, some running times are very high (several minutes long).Thus, the average running time is not representative. In Ta-ble 2, we present statisti
al data about the running times,both overall and lo
al, of the three algorithms. We presentthe average running time (in millise
onds) taken over runsthat 
omplete within 2 se
onds. Most runs that experien
eno more than 2 
onse
utive losses are in
luded in this aver-age. In Figure 2, we present histograms of the distribution



From To KR TW MIT UCSD CU NYU CA UT2 EmulabKR Avg. RTT 387 291 272 265 267 168 479 258Loss Rate | 6% 7% 2% 0% 0% 1% 1% 2%TW Avg. RTT 388 243 177 211 220 221 267 186Loss Rate 5% | 8% 3% 3% 4% 41% 37% 4%MIT Avg. RTT 300 253 115 40 34 112 99 80Loss Rate 6% 8% | 5% 6% 6% 6% 5% 5%UCSD Avg. RTT 289 195 125 91 102 42 105 61Loss Rate 2% 4% 5% | 0% 0% 0% 0% 0%CU Avg. RTT 266 211 47 73 9 88 101 47Loss Rate 0% 4% 5% 0% | 0% 1% 0% 0%NYU Avg. RTT 267 220 39 83 9 70 78 56Loss Rate 0% 4% 5% 0% 0% | 0% 0% 0%CA Avg. RTT 168 223 121 32 88 75 54 78Loss Rate 1% 42% 5% 0% 1% 0% | 0% 0%UT2 Avg. RTT 479 266 97 88 100 78 50 13Loss Rate 1% 37% 5% 0% 0% 0% 0% | 3%Emulab Avg. RTT 258 186 76 48 47 57 74 14Loss Rate 2% 4% 5% 0% 0% 0% 0% 3% |Table 1: Network 
hara
teristi
s during experiment I.of overall running times under 1.3 se
onds observed at threeof the hosts { MIT whi
h has no lossy links, UT2 whi
h hasone lossy link, and TW whi
h has two. The �rst peak inea
h histogram represents the overall running time of loss-free runs. The size of the peak illustrates the per
entageof the runs of that parti
ular algorithm that were loss-free.The running times over 1 se
ond were sparsely distributed.To illustrate this, we give the per
entage of runs that ex
eed2, 4, and 6 se
onds in Table 2.
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Figure 2: Histograms of overall running times, Ex-periment I, runs up to 1.3 se
onds.

The overall running time of all-to-all is poor: less thanhalf the runs are under 2 se
onds. This is be
ause every in-stan
e of all-to-all sends two messages over ea
h lossy link,regardless of the initiator. Thus, most instan
es experien
emultiple 
onse
utive losses. Leader has a better overall run-ning time ex
ept in TW. This is be
ause ea
h instan
e ofleader initiated at TW traverses ea
h lossy link three times.Instan
es of leader running from other hosts traverse eitherone or no lossy links. At the three hosts that have lossylinks (TW, UT2, and CA), se
ondary leader a
hieves thebest overall performan
e by bypassing the lossy links.All-to-all has the best lo
al running time at hosts that donot have lossy links. It has a better lo
al running time thanleader due to 
ases in whi
h the triangle inequality does nothold. E.g., when UT2 initiates all-to-all, CA re
eives the�rst message, on average, after 25 ms., and sends a responseto all hosts. KR re
eives this response, on average, after 84ms., that is, 109 ms. after UT2 sent the �rst message. Thisis earlier than the average time it takes UT2's message to getto KR (240 ms.). Therefore, KR engages in all-to-all fromUT2 earlier than in leader from UT2. Similarly, when the�rst stage message to some host is lost, all-to-all in essen
esends it also by a number of alternate paths, one whi
h 
anprove more e�e
tive. This is why the lo
al running time ofall-to-all at TW is dramati
ally better than that of leader.In the absen
e of pa
ket loss, the overall running time ofleader should be roughly three times the one-way laten
y onthe longest link from the leader, or 1.5 times the RTT. FromMIT, the longest link, to KR, has an average RTT of 300ms. Indeed, the �rst peak is 
entered around 400{450 ms.Sin
e all links to MIT other than from TW and KR havesigni�
antly shorter laten
ies (up to 115 ms.), this runningtime should be experien
ed whenever there are no losses onthe TW and KR links, and at most one or two on ea
h ofthe other links. Sin
e three messages are sent on ea
h link,and the loss rates of the longest links are 6% and 8%, theprobability of no loss o

urring on either of the long linksis: :943 � :923 � :65. Indeed, running times up to 450 ms.o

ur in 429 out of 659 runs, i.e., 65%.The longest link from TW is to KR, and its average RTTis 388 ms. Therefore, as expe
ted, the �rst peak of leader



Algorithm All-to-all Leader Se
ondaryInitiator Overall Lo
al Overall Lo
al Overall Lo
alKR Avg. (runs under 2 se
) 922 550 873 592 695 613% runs over 2 se
 55% 6% 15% 8% 12% 6%% runs over 4 se
 42% 3% 9% 4% 7% 3%% runs over 6 se
 37% 3% 7% 3% 5% 3%TW Avg. (runs under 2 se
) 866 645 1120 844 679 607% runs over 2 se
 54% 24% 64% 43% 13% 7%% runs over 4 se
 40% 19% 43% 30% 7% 4%% runs over 6 se
 36% 18% 37% 25% 6% 3%MIT Avg. (runs under 2 se
) 811 295 541 335 585 408% runs over 2 se
 55% 3% 13% 6% 9% 3%% runs over 4 se
 42% 3% 8% 4% 5% 2%% runs over 6 se
 37% 3% 6% 3% 4% 2%UCSD Avg. (runs under 2 se
) 860 328 473 332 602 420% runs over 2 se
 51% 2% 6% 2% 8% 3%% runs over 4 se
 41% 2% 5% 2% 5% 1%% runs over 6 se
 35% 2% 4% 2% 4% 1%CU Avg. (runs under 2 se
) 831 320 577 357 578 392% runs over 2 se
 53% 1% 6% 1% 12% 5%% runs over 4 se
 40% 2% 4% 1% 8% 4%% runs over 6 se
 35% 2% 4% 1% 6% 3%NYU Avg. (runs under 2 se
) 860 319 562 348 598 408% runs over 2 se
 54% 2% 8% 3% 12% 6%% runs over 4 se
 41% 3% 6% 2% 8% 3%% runs over 6 se
 35% 2% 5% 2% 6% 3%CA Avg. (runs under 2 se
) 850 450 777 553 618 450% runs over 2 se
 51% 17% 30% 24% 9% 3%% runs over 4 se
 40% 13% 21% 16% 6% 2%% runs over 6 se
 35% 11% 19% 15% 5% 2%UT2 Avg. (runs under 2 se
) 872 513 1031 689 636 452% runs over 2 se
 52% 25% 45% 36% 13% 6%% runs over 4 se
 42% 21% 34% 28% 8% 4%% runs over 6 se
 36% 17% 29% 23% 6% 3%Emulab Avg. (runs under 2 se
) 844 320 544 356 633 448% runs over 2 se
 52% 2% 8% 3% 10% 5%% runs over 4 se
 41% 2% 5% 2% 6% 3%% runs over 6 se
 37% 2% 4% 2% 5% 2%Table 2: Measured running times, millise
onds, experiment I.from TW is 
entered around roughly 1.5 times this RTT, atthe 550{600 ms. range. This peak in
ludes only 65 of 643runs (10%). We now explain why. First, observe that if anyof the three messages sent on the link to KR or to UT2 islost, the running time ex
eeds the peak. The probabilityof no loss on the KR link is :953 � :86 and the probabilityof no loss on the UT2 link is :633 � :25. Next, 
onsiderthe link to CA. In the absen
e of losses, the response fromCA to TW in the se
ond stage arrives after about 221 ms.(the RTT), and the response from KR to TW arrives afterabout 388 ms. On
e TW sends the �nal stage message to allhosts, the algorithm terminates at all hosts within half theRTT on the longest link, or roughly 194 ms. If either the�rst message from TW to CA or CA's response is lost on
e,then the response arrives roughly after 450 ms., assuminglow mean deviation of RTTs. This is suÆ
iently 
lose tothe 388 ms. TW has to wait for KR's message, so it falls inthe �rst peak. However, if the �nal stage message from TWto CA is lost, then CA terminates 332 ms. after TW sendsthe last message, whi
h adds 138 ms. to the overall runningtime, and pushes it out of the �rst peak. Two losses on thelink to CA always push this session away from the peak.The last message to CA is not lost with probability 58%.The probability that at most one of the previous messages

is lost, and if it is lost, the retransmission is not lost, is::582+2� :42� :582 � :62. So the probability of the �rst peakshould be :86 � :25 � :58 � :62 � :08. This is slightly lowerthan the observed 10%; we hypothesize that this is due to
orrelated loss, whi
h is signi�
ant here due to the high lossrates involved.The longest link from UT2 is to KR, with an average RTTof 479 ms. Therefore, the peak is around 700{850. We nowtry to explain why 36% of the runs (230 of 640) are in thisrange. The probability of having no losses on the KR link is97%. The link from UT2 to TW is quite errati
. Althoughthe average RTT is 266 ms., the RTT o

asionally jumpsas high as 800 ms., and standard deviation of RTTs for theentire experiment period is 139 ms. In periods with low RTTvariations, when the mean deviation 
omputed by TCP islow, a run with a single loss to TW in one of the �rst twostages of the algorithm will fall in the �rst peak. A lossduring a period with a high mean deviation or a loss in thelast stage of the algorithm pushes the running time out ofthe peak. The probability that the last message on this linkis not lost is 63%. We hypothesize that the mean deviationis low enough to keep us in the peak approximately half thetime. With this assumption, we get that the probability ofa loss in one of the �rst two stages not pushing us out of



the peak is 54%, and the probability of the peak should be::97 � :63 � :54 � :33, whi
h is 
lose to the observed 36%.
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Figure 3: Histograms of lo
al running times, Exper-iment I, runs up to 1.3 se
onds.Sin
e TW uses MIT as a se
ondary leader, we expe
t se
-ondary leader from TW to behave the same as leader ini-tiated at MIT, with an additional delay of 120 ms. (halfthe RTT between TW and MIT). Indeed, the �rst peak is
entered around 500{550, and in
ludes roughly the sameper
entage of the runs as leader at MIT (440/643 = 68%).All-to-all's peak exhibits the lowest overall running time,but the per
entage of runs in the �rst peak is very low, andis the same for all initiators.Figure 3 shows the lo
al running times at the same hosts.The lo
al running time for all-to-all initiated by MIT has ahigher peak, as it does not involve any lossy links.
5.2 Experiment II: Excluding the Lossiest HostWe repeated the experiment above without the TW host,whi
h was an end-point on both lossy links. We also ex-
luded UCSD be
ause it was overloaded at the time of theexperiment, and we added UT1. The network 
hara
teris-ti
s are presented in Table 3.The running times observed in this experiment are sum-marized in Table 4. In this experiment at least 88% of theruns are under 2 se
onds, for all algorithms and all initia-tors. Even in this setting, all-to-all does not have the bestoverall running time for any initiator, be
ause even the rel-atively low loss rates get ampli�ed by the fa
t that so manymessages are sent. Se
ondary leader works best for mosthosts, ex
ept for those that are themselves optimal leaders.

When one 
onsiders the metri
 of lo
al running time, weobserve that the lo
al running time of all-to-all is alwayssuperior to that of leader, regardless of the quality of links.Although they both traverse the same links the same numberof times, all-to-all has the advantage that its 
ommuni
ationstages may overlap. E.g., when the message from the ini-tiator to one of the hosts is delayed due to loss, that host
an hear from another host that the algorithm has initiatedbefore re
eiving the initiator's late message. In the presen
eof very lossy links, se
ondary leader outperforms the othertwo algorithms both lo
ally and globally sin
e it is the onlyone that avoids the lossy links altogether.
6. THE IMPACT OF LATENCYWe now present results from Experiment III. In this ex-periment, we evaluated the all-to-all, leader, and ring al-gorithms. All the hosts ex
ept UT1 parti
ipated in thisexperiment. Ea
h host ran about 510 sessions of ea
h algo-rithm. Table 5 shows the network 
hara
teristi
s during theexperiment. Table 6 summarizes the overall and lo
al run-ning times of the three algorithms. Table 6 gives the averagerunning time for runs under 3 se
onds, and the per
entageof runs under 3 se
onds. We use a threshold of 3 se
ondsbe
ause link laten
ies in this experiment are higher than inthe previous two. In analyzing the results, we highlight theimpa
t of laten
y on algorithm performan
e. In Se
tion 6.1,we dis
uss the running time of the ring algorithm. In Se
-tion 6.2, we show how the highest laten
y link in the systema�e
ts the running time of all-to-all. In Se
tion 6.3, we dis-
uss the impa
t of a link's laten
y on the signi�
an
e of losson that link. Se
tion 6.4 dis
usses the fa
t that the triangleinequality does not hold and the impa
t this has.
6.1 The Running Time of RingThe message 
ow in the ring-based algorithm follows thefollowing sequen
e where ea
h host pre
edes its neighbor andthe �rst host is the neighbor of the last: NL, Emulab, UT2,CU, NYU, KR, MIT, TW, UCSD, CA. This above ring was
hosen based on laten
y and loss rate measurements from aprevious experiment. The 
hosen ring is nearly optimal andthe loss rates on all the ring links are low.Ring has the highest average running time in the absen
eof message loss. However, ring has some ni
e properties:First, the ring algorithm is least a�e
ted by message loss.From the network 
hara
teristi
s depi
ted in Table 5, weobserve that in the absen
e of message loss, the total time ittakes a message to 
ir
ulate around the ring twi
e is about1900 ms. Unlike leader and all-to-all, the average overallrunning time for ring is 
lose to this expe
tation. The rea-son for this is that ring sends the fewest messages and usesthe most reliable links. Se
ond, the 
hoi
e of initiator doesnot have a big impa
t on the performan
e of ring, sin
e mes-sages travel over the same links. The only di�eren
e betweeninitiating ring from di�erent hosts is that the initiator onlyre
eives a message on
e. This explains why ring sessionsinitiated at KR have a slightly better overall running timesin
e KR has the longest link. Finally, noti
e that ring'soverall running time is not exa
tly twi
e the lo
al runningtime sin
e the se
ond round is shorter than the �rst.
6.2 Latency Changes over TimeThe longest links in the system were between KR andTW and KR and the NL. The laten
y of these two links



From To KR MIT Cornell NYU CA UT2 Emulab UT1KR Avg. RTT 294 261 257 165 452 275 500Loss Rate | 3% 1% 3% 0% 1% 3% 1%MIT Avg. RTT 298 43 38 117 117 82 86Loss Rate 2% | 1% 1% 1% 2% 3% 2%Cornell Avg. RTT 269 46 16 89 101 47 87Loss Rate 1% 1% | 0% 1% 1% 3% 1%NYU Avg. RTT 257 38 16 69 76 60 60Loss Rate 3% 1% 0% | 0% 0% 2% 1%CA Avg. RTT 165 115 92 75 47 79 85Loss Rate 0% 2% 1% 0% | 1% 2% 1%UT2 Avg. RTT 454 109 101 77 47 14 31Loss Rate 1% 2% 1% 0% 0% | 6% 1%Emulab Avg. RTT 275 83 47 60 74 15 50Loss Rate 4% 4% 2% 2% 2% 6% | 4%UT1 Avg. RTT 503 82 82 60 86 30 52Loss Rate 1% 1% 1% 1% 1% 1% 5% |Table 3: Network 
hara
teristi
s during experiment II.Algorithm: All-to-all Leader Se
ondaryInitiator Overall Lo
al Overall Lo
al Overall Lo
alKR Avg. (runs under 2 se
) 588 509 758 551 407 388% runs over 2 se
 12% 7% 11% 6% 9% 4%MIT Avg. (runs under 2 se
) 524 278 465 296 442 311% runs over 2 se
 11% 4% 10% 5% 10% 6%CU Avg. (runs under 2 se
) 532 277 440 277 471 315% over 2 se
 11% 4% 9% 5% 10% 5%NYU Avg. (runs under 2 se
) 519 291 449 291 446 296% over 2 se
 12% 5% 10% 5% 10% 5%CA Avg. (runs under 2 se
) 535 222 378 219 486 367% over 2 se
 11% 5% 10% 5% 9% 6%UT2 Avg. (runs under 2 se
) 500 265 866 498 494 383% over 2 se
 10% 5% 11% 6% 9% 5%Emulab Avg. (runs under 2 se
) 526 287 506 316 480 338% over 2 se
 12% 5% 9% 6% 8% 4%UT1 Avg. (runs under 2 se
) 495 295 982 571 481 367% runs over 2 se
 11% 4% 11% 5% 10% 6%Table 4: Measured overall and lo
al running times, experiment II.varied dramati
ally in the 
ourse of the experiment. Wenow divide the data gathered in this experiment into twoperiods. In the �rst period, the link from KR to the NL hadan average RTT of 754 ms., and the link from KR to TWhad an average RTT of 683 ms. In the se
ond period, theaverage RTTs from KR to the NL and to TW dropped to355 ms. and 385 ms., resp. So the average one-way messagelaten
y on the longest link dropped by 185 ms. This wasthe only notable di�eren
e between the two periods.In Figure 4, we show histograms of the measured overallrunning times of all-to-all from all initiators during ea
h ofthe two periods. The histograms show runs up to 2 se
onds;this in
ludes 23% of the runs during the longer laten
y pe-riod, and 60% of the runs during the shorter laten
y period.We observe that in the period with high laten
ies, the bestrunning times are around 500 ms. In the period of low la-ten
ies, the �rst peak o

urs at 300 ms., or roughly 200 ms.earlier, whi
h is 
lose to the de
rease in the one-way laten
yon the longest link. As we see, the all-to-all algorithm fromall initiators is a�e
ted by the in
rease in laten
y. In 
on-trast, the only instan
es of the leader algorithm that werea�e
ted by this laten
y 
hange were those initiated at TW,KR, or the NL. Other instan
es of the leader algorithm were

una�e
ted. E.g., the �rst peak of the leader algorithm ini-tiated at Emulab o

urs at 300{350 ms. for both periods.
6.3 Latency and LossThe loss rates from TW to CA and UT2 are 43% and49% resp. This 
auses the running times of leader fromthese hosts to be very high (at least 44% of the runs ex
eed3 se
onds). The loss rates from CU to CA and UT2 are alsofairly high (49% and 31% resp.). In spite of this, only 8% ofthe runs of leader from CU last over 3 se
onds. We see thatthe lossy links from CU do not impa
t the overall runningtime as do the lossy links from TW. This is be
ause thelaten
ies of the lossy links from CU are only about one sixththe longest link laten
y. Therefore, even two 
onse
utivelosses on these links do not impa
t the overall running time.
6.4 The Triangle InequalityThe average RTT from UCSD to KR is 526 ms. and theaverage RTT from UCSD to CA is 49 ms., while the averageRTT from CA to KR is 152 ms. Although UCSD and CAare geographi
ally 
lose, the average RTT from UCSD toKR is more than 3 times the average RTT from CA to KR.The laten
y from UCSD to KR 
an be redu
ed to less than



From To KR TW MIT UCSD CU NYU CA UT2 Emulab NLKR Avg. RTT 643 547 526 587 588 152 446 521 701Loss Rate | 9% 6% 6% 4% 4% 1% 3% 7% 8%TW Avg. RTT 639 235 178 212 222 219 258 187 322Loss Rate 10% | 4% 3% 4% 3% 43% 49% 4% 4%MIT Avg. RTT 549 236 97 32 28 98 78 71 150Loss Rate 8% 3% | 0% 0% 0% 1% 2% 1% 0%UCSD Avg. RTT 526 179 96 73 84 49 91 48 172Loss Rate 6% 3% 0% | 0% 0% 0% 2% 1% 0%CU Avg. RTT 588 211 32 73 9 85 88 47 138Loss Rate 4% 4% 0% 0% | 0% 49% 31% 1% 0%NYU Avg. RTT 587 222 28 83 9 70 70 57 138Loss Rate 4% 4% 0% 0% 0% | 0% 2% 1% 0%CA Avg. RTT 152 219 102 31 94 78 54 81 161Loss Rate 0% 42% 1% 0% 31% 0% | 2% 4% 1%UT2 Avg. RTT 446 262 77 91 88 71 50 13 154Loss Rate 3% 48% 2% 2% 31% 2% 2% | 6% 2%Emulab Avg. RTT 522 187 70 48 47 57 75 14 145Loss Rate 8% 5% 1% 1% 1% 1% 4% 6% | 1%NL Avg. RTT 697 324 155 175 141 143 165 157 49Loss Rate 7% 3% 0% 0% 1% 0% 1% 2% 1% |Table 5: Network 
hara
teristi
s during experiment III.
All-to-All: high latency period
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All-to-All: low latency period
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Figure 4: Histograms of overall running times, runsup to 2 se
onds, experiment III.a half by routing messages indire
tly through CA.
7. CONCLUSIONSWe measured and analyzed the performan
e of four 
om-mon information propagation algorithms over the Internet.We explained the distribution of the algorithms' runningtimes in terms of underlying link laten
ies and loss rates.One important lesson one 
an learn from our observationsis that loss rates over the Internet are not negligible. Con-sequently, algorithms that send many messages often havea high running time, even if the messages are sent in par-allel in one 
ommuni
ation step. More generally, we learnthat some 
ommuni
ation steps are more 
ostly than oth-ers. E.g., it is evident that propagating information fromonly one host to all other hosts is faster than propagatinginformation from every host to ea
h of the other hosts.We suggest to re�ne the 
ommuni
ation step metri
 asto en
ompass di�erent kinds of steps. One 
ost parame-

ter, �1, 
an be asso
iated with the overall running time of astep that propagates information from all hosts to all hosts1.This step 
an be implemented using any of the algorithmsanalyzed in this paper. A di�erent (assumed smaller) 
ostparameter, �2, 
an be asso
iated with a step that propa-gates information from one host to all other hosts. Another
ost parameter, �3 
an be asso
iated with propagating in-formation from a quorum of the hosts to all the hosts2, et
.This more re�ned metri
 
an then be used to revisit knownlower and upper bound results. E.g., [12℄ presents a tightlower bound of two 
ommuni
ation steps for failure-free ex-e
utions of 
onsensus in pra
ti
al models. Under the morere�ned metri
, the lower bound is 2�1, whereas known al-gorithms (e.g., [14, 5℄) a
hieve running times of �2 +�3.
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