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tri
al Engineering and Computer S
ien
eon February 11, 2003, in Partial Ful�llment of the Requirements for the Degree ofMaster of Engineering in Ele
tri
al Engineering and Computer S
ien
eAbstra
tWe study the running time of distributed algorithms deployed in a widely distributed set-ting over the Internet using TCP. We 
onsider two simple primitives. Both primitives
orresponds to a 
ommuni
ation round whi
h is employed by many di�erent algorithmsand systems. In the �rst primitive, every host sends information to every other host. These
ond primitive propagates information from a quorum of hosts to a quorum of hosts. Bothprimitives o

ur in numerous distributed algorithms. We experiment with four algorithmsthat typi
ally implement the �rst primitive and two that implement the se
ond. We runour experiments on twenty-eight hosts at geographi
ally disperse lo
ations over the Internet.We observe that message-loss has a large impa
t on algorithm running times, whi
h 
ausesleader-based algorithms to usually outperform de
entralized ones. We also observe thatalgorithms, in whi
h hosts need only to hear from a quorum, are more reliable, eÆ
ient,and tolerant to bad links than algorithms where every host is required to hear from everyother host in the system.Thesis Supervisor: Idit Keidar, Ph.D.Title: Senior Le
turer, The Te
hnion { Israel Institute of Te
hnology
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Chapter 1
Introdu
tion and Ba
kground
1.1 Introdu
tionIt is 
hallenging to predi
t the end-to-end running time of a distributed algorithm operatingover TCP/IP in a wide-area setting. It is often not obvious whi
h algorithm would work bestin a given setting. For instan
e, would a de
entralized algorithm outperform a leader-basedone? Answering su
h questions is diÆ
ult for a number of reasons. Firstly, be
ause end-to-end Internet performan
e itself is extremely hard to analyze, predi
t, and simulate [8℄.Se
ondly, end-to-end performan
e observed on the Internet exhibits great diversity [22, 33℄,and thus di�erent algorithms 
an prove more e�e
tive for di�erent topologies, and also fordi�erent time periods on the same topology. Finally, di�erent algorithms 
an perform betterunder di�erent performan
e metri
s.In this thesis, we study the running time of distributed algorithms over the Internet. Ourexperiments span twenty-eight hosts, widely distributed over the Internet { in Korea, Tai-wan, Israel, Australia, New Zealand, and several hosts a
ross Europe and North Ameri
a.Some of the hosts reside at a
ademi
 institutions and others on 
ommer
ial ISP networks.We present data that was gathered over several months. The hosts 
ommuni
ate usingTCP/IP. TCP is a 
ommonly used proto
ol on the Internet, and therefore evaluating sys-tems that use it is of interest. Moreover, it was feasible for us to deploy a TCP-basedsystem be
ause TCP does not generate ex
essive traÆ
 at times of 
ongestion, and be
ause�rewalls at some of our hosts blo
k UDP traÆ
.We 
onsider a �xed set of hosts engaged in a distributed algorithm. We evaluate twosimple primitives that 
orrespond to a 
ommuni
ation round exe
uted by a distributedalgorithm. Both primitives are employed by many di�erent algorithms and systems, e.g.,Byzantine agreement [18℄, atomi
 
ommit [9, 13, 29℄, state-ma
hine repli
ation [17℄, groupmembership [15℄, and updates of routing tables. Thus, our study has broad appli
ability.First we look at gather-all, whi
h propagates a small amount of information from every13



host to all other hosts that are 
onne
ted to it. The primitive 
an be initiated by any oneof the hosts, 
alled the initiator, and it terminates on
e information from every host haspropagated to all of the hosts.We evaluate the following 
ommonly used algorithms implementing this primitive:Figure 1.1 The message 
ow of the four algorithms. Initiator shown in gray.
Stage 1
 Stage 2
(a) The all-to-all algorithm. Stage 1
 Stage 2
 Stage 3
(b) The leader algorithm.

Stage 1
 Stage 2
 Stage 3
 Stage 4
(
) The se
ondary leader algorithm. Round 1

Round 2
(d) The ring algorithm.� all-to-all , where the initiator sends a message to all other hosts, and ea
h host thatlearns that the algorithm has been initiated sends messages to all the other hosts.This algorithm is stru
tured similar to de
entralized two-phase 
ommit, some groupmembership algorithms (e.g., [15℄), and the �rst phases in de
entralized three-phase
ommit algorithms, (e.g., [10, 29℄). The algorithm 
ow is depi
ted in Figure 1.1(a).� leader , where the initiator a
ts as the leader. After the initiator sends a messageto all other hosts, the hosts respond by sending messages to the leader. The leaderaggregates the information from all the hosts, and sends a message summarizing allthe inputs to all the hosts. This algorithm is stru
tured like two-phase 
ommit [9℄, andlike the �rst two of three 
ommuni
ation phases in three-phase 
ommit algorithms,e.g., [13, 29℄. The algorithm 
ow is depi
ted in Figure 1.1(b).� se
ondary leader , where a designated host (di�erent from the initiator) a
ts as theleader. The initiator sends a message to the leader, whi
h then initiates the leader-based algorithm. The algorithm 
ow is depi
ted in Figure 1.1(
). This algorithm14



stru
ture is essentially a spanning tree of depth one, with the se
ondary leader beingthe root and all other hosts being leaves.� logi
al ring , where messages propagate along the edges of a logi
al ring. This algorithmstru
ture o

urs in several group 
ommuni
ation systems, e.g., [1℄. The algorithm 
owis depi
ted in Figure 1.1(d).The se
ond primitive we evaluate is the gather-quorum primitive. This primitive involvesthe use of quorum systems. A quorum system for a universe of servers is a 
olle
tionof subsets (
alled quorums) of servers, ea
h pair of whi
h have a nonempty interse
tion.Quorum systems are typi
ally used to in
rease the availability and eÆ
ien
y of repli
atedservi
es.The gather-quorum primitive propagates a small amount of information from aquorum to a quorum. Like the gather-all primitive, This primitive 
an also be initiatedby any one of the hosts, and it terminates on
e information from a quorum of hosts haspropagated to a quorum of hosts.We evaluate this primitive with two widely used quorum systems:� Majorities, where every set that in
ludes a majority of servers is a quorum.� Table, Suppose that the number of servers n = k2 for some integer k. Arrange theservers into a k x k table, as shown in Figure 1.2. A quorum is a union of a full rowand one element from ea
h row above the full row. In reality the number of servers isnot always a perfe
t square, in whi
h 
ase some rows might be larger than others. Inany 
ase, the quorums in the Table quorum system are of size O(pn).Figure 1.2 The Table quorum system of 6 x 6, with one quorum shaded.
Host1
 Host2
 Host3
 Host4
 Host5
 Host6


Host7
 Host8
 Host9
 Host10
 Host11
 Host12


Host13
 Host14
 Host15
 Host16
 Host17
 Host18


Host19
 Host20
 Host21
 Host22
 Host23
 Host24


Host25
 Host26
 Host27
 Host28
 Host29
 Host30


Host31
 Host32
 Host33
 Host34
 Host35
 Host36
Initiators that invoke an algorithm that implements the gather-quorum primitive have ade
ision to make. One option is to probe every host and wait for a quorum to respond.15



A se
ond option is to probe exa
tly one quorum and wait for that parti
ular quorum torespond. These two 
ases are the extreme 
ases. Another option is to probe multiplequorums and wait for one of them to respond. We 
all the set of hosts probed by theinitiator the probe set. The probe set has a lot impli
ations on the running time of analgorithm. One the one hand, the initiator prefers to keep the probe set as small as possibleto redu
e the overall load on the system. One the other hand, the initiator also prefers toprobe more hosts in order to redu
e the probability of failure. We study the impa
t of the
hoi
e of probe set on the algorithm running time and avilability.We evaluate the following 
ommonly used algorithms implementing this primitive:� quorum-to-quorum, where the initiator sends a message to every host in the probeset, and ea
h host that hears from the initiator sends messages to all hosts in theprobe set. The algorithm terminates as soon as quorum hears from a quorum andfails otherwise. This algorithm is similar to the all-to-all algorithm presented above.This algorithm is stru
tured like some atomi
 broad
ast algorithms (e.g.,Corel [12℄),some 
onsensus algorithms (e.g., [27℄), and the �nal phase in de
entralized three-phase
ommit algorithms, (e.g., [10℄).� quorum-leader , where the initiator a
ts as the leader. After the initiator sends amessage to every host in the probe set, the hosts respond by sending messages to theleader. On
e the leader hears from a quorum, it aggregates the information from hostsin that quorum, and sends a message summarizing all the inputs to all the hosts inthe probe set. This algorithm is similar to the leader algorithm presented above. Thealgorithm is stru
tured similar to Lamport's Paxos algorithm [16℄, the algorithm usedin the Frangipani distributed �le system [31℄, some 
onsensus algorithms (e.g., [6℄), andlike the �nal two of three 
ommuni
ation phases in three-phase 
ommit algorithms,e.g., [13, 29℄.We run a single pro
ess at ea
h geographi
al lo
ation. We do not address issues related tos
aling the number of pro
esses, as we believe that su
h issues are orthogonal to our study.Using a 2-level hierar
hy, algorithms of the sort we 
onsider 
an be made to work e�e
tivelywith several hundreds of pro
esses. Su
h a hierar
hy is used, e.g., in [11, 15℄, where thetop level of the hierar
hy 
onsists of 5{20 representatives (servers) at disperse geographi
allo
ations. Ea
h representative gathers information from and propagates information topro
esses that are proximate to it. Algorithms like those 
onsidered here are typi
allyrun among the representatives. Thus, our study is appli
able to systems that implements
alability in this manner. Our study is also somewhat appli
able to large s
ale 
lient-serversystems like Fleet [19℄ and SBQ-L [20℄ where 
lients 
onta
t a quorum of the servers. Ourstudy is however not appli
able to systems that implement massive s
alability, e.g., usinggossip-based or peer-to-peer algorithms. 16



We measure the overall running time of an algorithm from the time it starts at some hostuntil it terminates at all hosts (or until it terminates at a quorum of hosts in the 
aseswhere we are 
onsidering the performan
e of quorum systems), as well as the lo
al runningtime at a given host.The typi
al theoreti
al metri
 used to analyze the running time of distributed algorithmsis the number of message ex
hange rounds the algorithm performs, or the number of 
om-muni
ation steps in 
ase of a non-syn
hronous system (e.g., [14, 15, 27℄). A

ording to thismetri
, we get the following overall running times: 2 
ommuni
ation steps for the all-to-alland quorum-to-quorum algorithms; 3 
ommuni
ation steps for the leader and quorum-leaderalgorithms; 4 
ommuni
ation steps for se
ondary leader; and 2n � 1 steps for the ring al-gorithm in a system with n hosts. In 
ontrast to what this metri
 suggests, in Se
tion 3.1we observe that in 
ertain settings the se
ondary leader algorithm a
hieves the best overallrunning time, whereas all-to-all often performs the worst. The running time of ring wasusually less than double the running times of the other algorithms.Why does the 
ommuni
ation step metri
 fail to 
apture a
tual algorithm behavior overthe Internet? First, not all 
ommuni
ation steps have the same 
ost, e.g., a message fromMIT to Cornell 
an arrive within 20 ms., while a message from MIT to Taiwan may take125 ms. Se
ond, the laten
y on TCP links depends not only on the underlying messagelaten
y, but also on the loss rate. If a message sent over a TCP link is lost, the messageis retransmitted after a timeout whi
h is larger than the average round-trip time (RTT)on the link. Therefore, if one algorithm message is lost, the algorithm's overall runningtime 
an be more than doubled. Sin
e algorithms that ex
hange less messages are lesssus
eptible to message loss, they are more likely to perform well when loss rates are high.This explains why the overall running time of all-to-all is miserable in the presen
e of lossylinks. Additionally, message laten
ies and loss rates on di�erent 
ommuni
ation paths onthe Internet often do not preserve the triangle inequality [3, 15, 26℄ be
ause the routingpoli
ies of Internet routers often do not 
hoose an optimal path between two hosts. Thisexplains why se
ondary leader 
an a
hieve better performan
e by refraining from sendingmessages on very lossy or slow paths.We analyze our experimental results, and explain the observed algorithm running times interms of the underlying network 
hara
teristi
s { laten
y and loss rates. Due to the greatvariability of running times, the average running time is not indi
ative of an algorithm'stypi
al behavior. We therefore fo
us on the distribution of running times.The 
ommuni
ation step metri
 is widely used due to its ease of use. Several other perfor-man
e models, e.g., [7, 24, 32℄, have been used to analyze distributed or parallel algorithms(
f. Se
tion 1.2). However, these do not realisti
ally model algorithm behavior over theInternet. At the end of this thesis, we suggest a re�nement to the standard metri
, whi
hgives a more realisti
 a

ount of an algorithm's eÆ
ien
y, and at the same time is easy to17



employ.The rest of this thesis is organized as follows: Se
tion 1.2 dis
usses related work. Chapter 2des
ribes the experiment setup and methodology. The following two 
hapters analyze exper-imental results: Chapter 3 dis
usses gather-all algorithms and how their running times arein
uen
ed by laten
y and message loss. Chapter 4 
ompares the two primitives and studiesthe relationship between the probe set and the running time of gather-quorum algorithms.Chapter 5 
on
ludes the thesis and suggests an alternative performan
e metri
.1.2 Related Work1.2.1 Internet MeasurmentsObtaining data on di�erent aspe
ts of Internet 
ommuni
ation is an emerging resear
h �eld.Some present resear
h in this area fo
uses on measuring and analyzing the 
onstan
y of In-ternet path 
hara
teristi
s su
h as routing, loss, and throughput [22, 33℄. Su
h resear
hfo
uses primarily on point-to-point 
ommuni
ation, and not on the performan
e of dis-tributed algorithms. A related proje
t, pursued by Chandra et al. [5℄, studies the natureof 
ommuni
ation failures, in
luding duration and lo
ation, and how they e�e
t the end-to-end availability of wide-area servi
es. Another study, by Amir and Wool [2℄, evaluatesthe availability of di�erent quorum systems over the Internet. These resear
h e�orts areorthogonal and 
omplementary to ours.Triangle Inequality and Overlay NetworksThe fa
t that Internet routing often does not sele
t optimal paths was previously observedby a number of proje
ts { Detour [25, 26℄, Moshe [15℄, and RON [3℄. These proje
ts 
onstru
toverlay networks and improve performan
e by routing messages over these overlays on betterpaths than would be 
hosen by Internet routing. In 
ontrast, we neither assume an overlayinfrastru
ture, nor route messages through hosts that are not parti
ipating in the 
urrentinstan
e of the algorithm. Moreover, the aforementioned proje
ts use overlays in order to�nd better paths for point-to-point 
ommuni
ation only. When an overlay is used at therouting level, as in these proje
ts, messages from the same sour
e that are routed throughthe same host to di�erent destinations are not merged into a single message. For example,let us 
onsider the all-to-all algorithm running over an overlay that routes messages fromTaiwan to the Netherlands via Cornell. Taiwan would send identi
al messages to Cornell andthe Netherlands, whi
h would be sent as two separate messages on the link from Taiwanto Cornell. Likewise, the overlay would not 
ombine the information sent from Taiwanand Cornell to the Netherlands into a single message. Su
h sending of multiple messages18



in
reases the probability of some message being lost, whi
h in
reases the average runningtime.1.2.2 Metri
sAnother line of resear
h fo
uses on providing a theoreti
al framework for predi
ting andevaluating the performan
e of parallel and distributed algorithms. A number of papers,e.g. [7, 24, 28, 32℄, fo
us on settings where message pro
essing overhead is signi�
ant, andshow that this favors algorithms that send fewer messages. While our results also illustratethe advantage of sending fewer messages, the reasons for this are di�erent: in our setting, itis due to high variability of message laten
y (due to loss) rather than pro
essing overhead,whi
h is negligible in our setting. The 
on
lusions from su
h studies do not, in general,apply to our setting. For example., leader has a high pro
essing overhead (at the leader),but this does not hamper its performan
e in our setting. Moreover, these analyses assumethat the evaluated algorithm is the only sour
e of overhead in the system. In 
ontrast,over the Internet, the evaluated algorithms have little impa
t on the total overhead of thesystem.1.2.3 QuorumsThe primary fo
i for resear
h on evaluation of quorum systems are availability and load. Theload typi
ally is evaluated assuming a probe set 
onsisting of a single quorum. A 
ommonmetri
 used to evaluate the availability of quorum systems is the probability of failure.Quorum systems fail when no quorum exists. Di�erent approa
hes have been used to studythis metri
. One approa
h is using probabilisti
 models to obtain theoreti
al results on theprobability of failure [21, 23℄. While this approa
h is most rigorous, it makes oversimplifyingassumptions about the underlying network. Assumptions su
h as independent failures andfull 
onne
tivity generally do not hold in the Internet. Another approa
h used by Amir andWool [2℄ involves running experiments 
onsisting real hosts 
onne
ted to the Internet andusing a group membership proto
ol to tra
k failures and network partitions. The availabilityof di�erent quorum systems is then evaluated based on the tra
es the were 
olle
ted from theexperiments. However, none of these studies provide an adequate framework for evaluatingthe running times of distributed algorithms that use quorum systems.
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Chapter 2
Methodology
2.1 The HostsWe use the following 28 hosts (the majority of whi
h is part of the RON testbed [3℄) in ourexperiments:� MIT, at the Massa
husetts Institute of Te
hnology, Cambridge, MA, USA;� MA1, at a 
ommer
ial ISP in Cambirdge, MA, USA;� MA2, at a se
ond 
ommer
ial ISP in Cambridge, MA, USA;� MA3, at a 
ommer
ial ISP in Martha's Vineyard, MA, USA;� NYU, at New York University, New York, NY, USA;� CU, at Cornell University, Itha
a, NY, USA;� NY, at a 
ommer
ial ISP in New York, NY, USA;� CMU, at Carnegie Mellon University, Pittsburgh, PA, USA;� NC, at a 
ommer
ial ISP in Dhuram, NC, USA;� Emulab , at the University of Utah, Salt Lake City, UT, USA;� UT1, at a 
ommer
ial ISP in Salt Lake City, UT, USA;� UT2, at a se
ond 
ommer
ial ISP in Salt Lake City, UT, USA;� UCSD, at the University of California San Diego, San Diego, CA, USA;� CA1, at a 
ommer
ial ISP in Foster City, CA, USA;21



� CA2, at Intel Labs in Berkeley, CA, USA;� CA3, at a 
ommer
ial ISP in Palo Alto, CA, USA;� CA4, at a 
ommer
ial ISP in Sunnyvale, CA, USA;� Canada (CND), at a 
ommer
ial ISP in Nepean, ON, Canada;� Sweden (SWD), at Lulea University of Te
hnology, Lulea, Sweden;� Netherlands (NL), at Vrije University, Amsterdam, the Netherlands;� Gree
e (GR), at the National Te
hni
al University of Athens, Athens, Gree
e;� Switzerland (Swiss), at the Swiss Federal Institute of Te
hnology, Lausanne, Switzer-land;� Israel (ISR1), at the Israel Institute of Te
hnology (Te
hnion), Haifa, Israel;� Israel (ISR2), at the Hebrew University of Jerusalem, Jerusalem, Israel;� Korea (KR), at Korea Advan
ed Institute of S
ien
e and Te
hnology, Daejon, SouthKorea;� Taiwan (TW), at National Taiwan University, Taipei, Taiwan;� Australia (AUS), at the University of Sydney, Sydney, Australia; and� New Zealand (NZ), at Vi
toria University of Wellington, Wellington, New Zealand.All the hosts run either FreeBSD or Linux or Solaris operating systems.2.2 Server ImplementationAt every host we run a server, implemented in Java, optimized with the GCJ 
ompiler.Ea
h server has knowledge of the IP addresses and ports of all the potential servers in thesystem. Every server keeps an a
tive TCP 
onne
tion to every other server that it 
an
ommuni
ate with. We disable TCP's default waiting before sending small pa
kets (
f.Nagle algorithm, [30, Ch. 19℄). The system implements asyn
hronous I/O using threads.Ea
h server periodi
ally attempts to set up 
onne
tions with other servers to whi
h it isnot 
urrently 
onne
ted. A 
rontab monitors the status of the server, and restarts it ifit is down. Thus, when either a server or 
ommuni
ation failure is repaired, 
onne
tion ispromptly reestablished. In 
ase the 
ommuni
ation is not transitive, di�erent hosts 
an havedi�erent views of the 
urrent set of parti
ipants. For gather-all, we present performan
eresults only for periods during whi
h all the hosts had identi
al per
eptions of the set of22




onne
ted hosts. In 
ase of host or 
ommuni
ation failures, an instan
e of the algorithmmay fail to terminate. This situation 
an be dete
ted by the failure of a TCP 
onne
tionor by a timeout.Ea
h server has 
ode implementing the algorithms in Se
tion 1.1. The server periodi
allyinvokes ea
h algorithm: it sleeps for a random period, and then invokes one of the algo-rithms, in round-robin order. Ea
h invo
ation of an algorithm is 
alled a session. We userandomness in order to redu
e the probability of di�erent sessions running at the same timeand delaying ea
h other; this is easier than syn
hronizing the invo
ations, as the hosts donot have syn
hronized 
lo
ks.We 
onstantly run ping (and tra
eroute in the last two experiments) from ea
h host toea
h of the other hosts, periodi
ally sending ICMP pa
kets, in order to tra
k the routingdynami
s, the laten
y and loss rate between every pair of hosts in the underlying network.The ping and tra
eroute pro
esses are also monitored by a 
rontab.2.3 Running Times and Clo
k SkewsWe use two measures of running time:� The lo
al running time of a session at a parti
ular host is the 
lo
k time elapsing fromwhen this host begins this session and until the same host terminates the session.Where we present performan
e measurements, we give lo
al running times at theinitiator only.� The overall running time of a session is the time elapsing from when the initiatorbegins this session until all the hosts terminate this session.Ea
h host writes to log its starting time and termination time for ea
h session, a

ordingto its lo
al 
lo
k. Sin
e we do not own the hosts used in our experiments, we were not ableto syn
hronize their 
lo
ks. Therefore, in order to dedu
e the overall running time from thelog �les, we need to know the skews between di�erent hosts' 
lo
ks.We now explain how we estimate the 
lo
k di�eren
es. Whenever a host A sends a messageto host B, it in
ludes in the message its lo
al 
lo
k time. When host B re
eives the message,it 
omputes the di�eren
e between its lo
al 
lo
k time and the time in the message, andwrites this value to log. Denote this value by �AB. Assume that B's 
lo
k is dAB timeahead of A's, and assume that the average message laten
y from A to B and from B to A islAB . Then on average, �AB = lAB+dAB and symmetri
ally, �BA = lAB�dAB. Therefore,�AB ��BA is, on average, 2dAB . We approximate the 
lo
k di�eren
e between A and B
23



as: (average(�AB)� average(�BA))=2This approximation method has some limitations: sin
e messages are ex
hanged over TCP,the laten
y 
an vary substantially in 
ase of message loss. Therefore, if a pair of hosts
ommuni
ate over a lossy link, this method 
an give a bad approximation for the 
lo
kdi�eren
e. Furthermore, high variations in the (loss-free) laten
y between a pair of hostsmake it harder to distinguish between high TCP laten
ies that are due to message loss andthose that due to variations (routing delays). However, we 
an dete
t (and avoid) someof the 
ases in whi
h lost messages o

ur in bursts by setting a threshold. If the round-trip time of a sample ex
eeds the given threshold, then we 
an dis
ard that sample when
omputing the 
lo
k di�eren
e. From our observation, for pairs of hosts with loss rates lessthan 10%, most losses are 
lustered around short periods of time (bursts). This in
reases thea

ura
y of the above method in dete
ting losses. The higher we set the threshold, the lesslikely we are to dis
ard samples that do not re
e
t a loss, but message losses are also morelikely to go undete
ted. For ea
h pair of hosts, we set the threshold to be twi
e the averageround-trip time plus four times the standard deviation. Moreover, we dis
overed that whenthe average 
lo
k skew is 
omputed over a long interval, results 
an be in
onsistent, be
ausesome hosts experien
e 
lo
k drifts. So instead of taking the average over all samples, we
ompute the average over samples obtained in shorter intervals (we used intervals that areone hour long).We �x a base host h, and 
ompute the 
lo
k di�eren
es between h and every other hostper every 15 minute time interval. Then, all logged running times in this interval areadjusted to h's 
lo
k, and the overall running time is inferred from the adjusted initiationand termination times. In order to minimize the e�e
t of TCP retransmission delays, it ispreferable to 
hoose a host that has reliable links to every other host. In order to 
he
k the
onsisten
y of our results, we 
omputed the overall running times using three di�erent basehosts: MIT, Emulab, and Cornell. We 
hose these hosts sin
e the links to them from allhosts were fairly reliable and exhibited a low variation of laten
y.Having 
omputed the running times three di�erent ways, we found the results to be fairly
onsistent. The distributions of overall running times as 
omputed with ea
h of the threehosts were almost identi
al. Moreover, for over 90% of the sessions with overall runningtimes up to 2 se
onds, the three 
omputed running times were within 20 ms. of ea
h other.
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2.4 Running Time Distribution over TCP/IPWe now explain the mathemati
al model that underlies the analysis of the experimentalresults in this paper.After TCP sends a message, it waits for an a
knowledgement. If an a
knowledgement doesnot arrive for a designated retransmission time-out, TCP retransmits the message. TCP'sinitial retransmission time-out is the estimated average RTT on the link plus four times themean deviation of the RTT, where both the average and the mean deviation are 
omputedover re
ent values. If the se
ond 
opy is also lost, TCP waits twi
e the amount of time itwaited before retransmitting the �rst lost 
opy, and this 
ontinues to grow exponentiallywith number of lost 
opies. [30, Ch. 21℄We estimate the distribution of the TCP laten
y based on the underlying link laten
y d andloss probability p. Assume �rst that d is half the RTT, that losses are independent, andthat the laten
y does not vary, so the RTT's mean deviation is 0. Then the TCP laten
yis d with probability 1 � p, 3d with probability p(1 � p), 7d with probability p2(1 � p),and so on. This is a rough estimate, as it does not address variations in laten
y and loss.Correlated loss 
auses the �rst peak (at laten
y d) to o

ur with higher probability, and
auses the tail of the distribution to be sparser; this will be most signi�
ant on links withhigh loss rates. A high variation of laten
y will shift all the peaks ex
ept the �rst.We use this estimate to analyze the distribution of the running time of a stage of analgorithm. Let pi be the probability that the laten
y of a message sent on link i is at mostD (as 
omputed above). Then the probability that an algorithm stage takes at most Dtime is the produ
t of the probabilities pi for all the links traversed in this stage. Moregenerally, the running time of a stage is a random variable representing the maximum valueof the random variables representing the TCP link laten
ies, with distributions de�ned bythe RTT and loss rate as explained above. As the number of random variables over whi
hthe maximum is 
omputed grows, the expe
ted maximum value in
reases. This explainswhy all-to-all, whi
h sends O(n2) messages in ea
h stage performs mu
h worse than leader,whi
h sends O(n).2.5 Pseudo Code of the AlgorithmsEa
h server runs the following threads:� A thread for monitoring 
onne
tions to other hosts (re
onne
ts if ne
essary).� One thread per live 
onne
tion used to ex
hange messages with the server at the otherend of the 
onne
tion. 25



� A thread for a

epting 
onne
tions from other hosts.� A thread for administrating the server.We now present the server in pseudo 
ode. In de�ning variables, we use the following datatypes: 
onne
tion is an IP address and port number identifying a server; sid is the typefor session identi�ers; time is for real time values; alg-type is either leader, quorum-leader,all-to-all, quorum-to-quorum, se
ondary leader, or ring.Messages Ex
hanged between di�erent servers have the following format:<sid session-id, alg-type alg, 
onne
tion initiator, 
onne
tion sender, int stage>where session-id is a globally unique session identi�er; alg is the algorithm being run;initiator is the server that initiates this session; sender is the server sending the message;and stage denotes the 
ommuni
ation step, whi
h 
an be 1, 2, or 3 in 
ase of a leader (orquorum-leader) session, 0, 1, 2, or 3 in 
ase of a se
ondary leader session, and 1 or 2 in 
aseof an all-to-all or a quorum-to-quorum or a ring session (see Figure 1.1).Figure 2.1 Variables used by the algorithms.
onne
tion my-id
onne
tion my-neighborhashtable neighbor: 
onne
tion ! 
onne
tionset of 
onne
tions live-
onne
tionshashtable sent-to: sid ! set of 
onne
tionshashtable re
eived-from: sid ! set of 
onne
tionshashtable start-time: sid ! timeWe list the variables used by the server in Figure 2.1. The server holds its own IP addressand port in a variable my-id. Ea
h server is assigned a neighbor that spe
i�es the 
ow ofmessages in a ring session. The server holds its neighbor's IP address and port in a variablemy-neighbor. Ea
h server tra
ks every other server's neighbor as well as its own in the hashtable neighbor mapping 
onne
tions to their neighboring 
onne
tions. The server keepstra
k of the set of 
onne
tions that are up and running in the variable live-
onne
tions.This variable is maintained by the thread that tra
ks 
onne
tions; we do not give the pseudo
ode for this thread. Thus, in the pseudo 
ode we give below, live-
onne
tions is a read-only variable. A server s asso
iates ea
h session x with a start time, a set of remote serversthat re
eived a session x message from s, and a set of remote servers that sent a message to sin session x. These are held in the hash tables start-time, sent-to, and re
eived-from,resp. 26



2.5.1 The Gather-All PrimitiveIn the subse
tions below we give the pseudo 
ode for the four algorithms that implementthe gather-all primitive.All-to-AllThe following pro
edure is used to initiate an all-to-all session:pro
edure run-all-to-allif (live-
onne
tions = ;)abortendifmessage m = <session-id, all-to-all, my-id, my-id, 1>start-time[session-id℄  
lo
ksent-to[session-id℄  ;re
eived-from[session-id℄  ;8 
 2 live-
onne
tions dosend m to 
sent-to[session-id℄  sent-to[session-id℄ [ {
}odAll-to-all sends two types of messages: stage 1 messages from the initiator to non-initiators;and stage 2 messages from non-initiators to all servers. Both messages are handled usingthe following event handler:Upon re
v m with m.alg-type = all-to-allif (start-time[m.session-id℄ = null)start-time[session-id℄  
lo
ksent-to[session-id℄  ;re
eived-from[session-id℄  {m.sender}8 
 2 live-
onne
tions dosend <m.session-id, m.alg-type, m.initiator, my-id, 2> to 
sent-to[session-id℄  sent-to[session-id℄ [ {
}odelsere
eived-from[session-id℄  re
eived-from[m.session-id℄ [ {m.sender}endifif ((sent-to[m.session-id℄ \ live-
onne
tions) � re
eived-from[m.session-id℄)end-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileendif
27



LeaderThe following pro
edure is used to initiate a leader session:pro
edure run-leaderif (live-
onne
tions = ;)abortendifmessage m = <session-id, leader, my-id, my-id, 1>start-time[session-id℄  
lo
ksent-to[session-id℄  ;re
eived-from[session-id℄  ;8 
 2 live-
onne
tions dosend m to 
sent-to[session-id℄  sent-to[session-id℄ [ {
}odLeader sends three types of messages: stage 1 and stage 3 messages are sent by the initia-tor and re
eived by non-initiators, and stage 2 messages are sent by non-initiators to theinitiator. The following are event handlers for these messages:Upon re
v m with m.alg-type = leader and stage = 1start-time[m.session-id℄ = 
lo
ksend <m.session-id, m.alg-type, m.initiator, my-id, 2> to m.initiatorUpon re
v m with m.alg-type = leader and stage = 2re
eived-from[m.session-id℄  re
eived-from[m.session-id℄ [ {m.sender}if (sent-to[m.session-id℄ \ live-
onne
tions � re
eived-from[m.session-id℄)8 
 2 re
eived-from[session-id℄ \ live-
onne
tions dosend <m.session-id, m.alg-type, m.initiator, my-id, 3> to 
odend-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileendifUpon re
v m with m.alg-type = leader and stage = 3end-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileSe
ondary LeaderThe following pro
edure is used to initiate a se
ondary leader session:pro
edure run-se
ondary-leader 28



if (live-
onne
tions = ;)abortendifpi
k a host h from live-
onne
tions to be the se
ondary leadermessage m = <session-id, se
ondary-leader, my-id, my-id, 0>start-time[session-id℄  
lo
ksend m to hIn this algorithm, stage 0 messages are sent from the initiator to the se
ondary leader; these
ondary leader sends a stage 1 message to non-initiators; servers send stage 2 messagesto the se
ondary leader; and the se
ondary leader sends stage 3 messages to non-initiators.Messages of type 1,2, and 3 are handled exa
tly the same way as in the leader algorithm.The following is the event handler for messages of type 0:Upon re
v m with m.alg-type = se
ondary-leader and stage = 0start-time[m.session-id℄  
lo
ksent-to[m.session-id℄  ;re
eived-from[m.session-id℄  ;8 
 2 live-
onne
tions - {m.initiator} dosend <m.session-id, m.alg-type, m.initiator, my-id, 1> to 
sent-to[session-id℄ = sent-to[session-id℄ [ {
}odif (sent-to[m.session-id℄ = ;)send <m.session-id, m.alg-type, m.initiator, my-id, 3> to m.initiatorend-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileendifRingThe following pro
edure is used to initiate a ring session:pro
edure run-ringif (live-
onne
tions = ;)abortendifmessage m = <session-id, ring, my-id, my-id, 1>n  my-neighborwhile (n =2 live-
onne
tions) don  neighbor[n℄odstart-time[session-id℄  
lo
ksend m to n 29



In this algorithm, all servers re
eive stage 1 messages from their neighbors, and all serversex
ept the initiator re
eive stage 2 messages from their neighbors. The following are eventhandlers for these messages:Upon re
v m with m.alg-type = ring and stage = 1if (m.initiator = my-id)n  my-neighborwhile (n =2 live-
onne
tions) don  neighbor[n℄odif (n.id = my-id)end-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileelsem.stage  2m.sender  my-idsend m to nend-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileendifelsestart-time[session-id℄  
lo
kn  my-neighborwhile (n =2 live-
onne
tions) don  neighbor[n℄odm.sender  my-idsend m to nendifUpon re
v m with m.alg-type = ring and stage = 2n  my-neighborwhile (n =2 live-
onne
tions) don  neighbor[n℄odif (n.session-id != initiator)m.sender  my-idsend m to nendifend-time  
lo
kwrite start-time[m.session-id℄, end-time to log file
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2.5.2 The Gather-Quorum PrimitiveIn the subse
tions below we give the pseudo 
ode for the two algorithms that implement thegather-quorum primitive�. The two algorithms presented in this se
tion, quorum-to-quorumand quorum-leader, behave very 
losely to the all-to-all and leader algorithms presented inSe
tion 2.5.1. There are a some notable di�eren
es however. First, both algorithms in thisse
tion take an additional parameter, probe-set, whi
h is the set of 
onne
tions that willbe probed in this session. Se
ond, both algorithms in this session terminate as soon as aquorum of hosts hear from a quorum of hosts. Finally, unlike the all-to-all algorithm, in thequorum-to-quorum algorithm, hosts do not begin to send message to other hosts until theyhave been probed by the initiator. The following 
ode assumes a generi
 quorum system.Quorum-to-QuorumThe following pro
edure is used to initiate a quorum-to-quorum session:pro
edure run-quorum-to-quorum (probe-set)if (live-
onne
tions \ probe-set does not 
ontain a quorum)abortendifmessage m = <session-id, all-to-all, my-id, my-id, 1>start-time[session-id℄  
lo
kre
eived-from[session-id℄  {my-id}8 
 2 live-
onne
tions \ probe-set dosend m to 
odQuorum-to-quorum sends two types of messages: stage 1 messages from the initiator tonon-initiators; and stage 2 messages from non-initiators to all servers. The following is theevent handlers for these messages:Upon re
v m with m.alg-type = quorum-to-quorumif (start-time[m.session-id℄ = null)start-time[session-id℄  
lo
kre
eived-from[session-id℄  {my-id}endifre
eived-from[session-id℄  re
eived-from[session-id℄ [ {m.sender}if stage = 1�In order to avoid running too many algorithms, we did not a
tually run any of the algorithms in this se
tion.Instead, we 
an extrapolate the running times of these algorithms from the data obtained by running their
ounter-parts presented in Se
tion 2.5.1. In ea
h of these instan
es we are only interested in the times whena quorum hears from a quorum and we disregard data that is irrelevant.31



8 
 2 live-
onne
tions \ probe-set dosend <m.session-id, m.alg-type, m.initiator, my-id, 2> to 
odif (re
eived-from[m.session-id℄ \ probe-set 
ontains a quorum)end-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileendifendifQuorum-LeaderThe following pro
edure is used to initiate a quorum-leader session:pro
edure run-quorum-leader (probe-set)if (live-
onne
tions \ probe-set does not 
ontain a quorum)abortendifmessage m = <session-id, quorum-leader, my-id, my-id, 1>start-time[session-id℄  
lo
kre
eived-from[session-id℄  {my-id}8 
 2 live-
onne
tions \ probe-set dosend m to 
odQuorum-leader sends three types of messages: stage 1 and stage 3 messages are sent by theinitiator and re
eived by non-initiators, and stage 2 messages are sent by non-initiators tothe initiator. The following are event handlers for these messages:Upon re
v m with m.alg-type = quorum-leader and stage = 1start-time[m.session-id℄ = 
lo
ksend <m.session-id, m.alg-type, m.initiator, my-id, 2> to m.initiatorUpon re
v m with m.alg-type = quorum-leader and stage = 2re
eived-from[m.session-id℄  re
eived-from[m.session-id℄ [ {m.sender}if (probe-set \ re
eived-from[m.session-id℄ 
ontains a quorum)8 
 2 re
eived-from[session-id℄ \ live-
onne
tions \ probe-set dosend <m.session-id, m.alg-type, m.initiator, my-id, 3> to 
odend-time  
lo
kwrite start-time[m.session-id℄, end-time to log fileendifUpon re
v m with m.alg-type = quorum-leader and stage = 3end-time  
lo
k 32



write start-time[m.session-id℄, end-time to log file
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Chapter 3
The Gather-All Primitive
This 
hapter presents three experiments, in whi
h we ran the four algorithms that implementthe total-gather primitive. A total of ten hosts parti
ipated in these experiments. For ea
hexperiment, we only present the periods in whi
h every host that parti
ipated in thatexperiment was up and running. While the experiments were running, ea
h host sent aping probe to every other host on
e per minute. the results in this 
hapter were publishedin [4℄.3.1 The E�e
t of Message LossThis se
tion presents Experiments I, II, ea
h of whi
h lasted three and a half days. Ringwas not tested in these experiments. Ea
h of the other three algorithms was initiated byea
h of the hosts every 7.5 minutes on average, and in total, roughly 650 times. Se
tion 3.2,presents Experiment I, in whi
h the TW host had two links with very high loss rates. Wethen ex
luded the TW host, and ran Experiment II, whi
h we present in Se
tion 3.3.3.2 Experiment IThe following hosts parti
ipated in this experiment: MIT, CU, NYU, Emulab, UT2, CA1,UCSD, KR and TW. Table 3.1 presents the average RTT and loss rate from every host toevery other host during the experiment, as observed by ping. The loss rates from TW toUT2 and CA1 are very high (37% and 42%, respe
tively), and all the other loss rates areup to 8%. Losses sometimes o

ur in bursts, where for a period of several minutes all themessages sent on a parti
ular link are lost. The laten
ies generally vary less, but o

asionallywe observe periods during whi
h the laten
y is signi�
antly higher than average.In this experiment MIT serves as the se
ondary leader for TW, KR, CU, UT2, NYU, and35



Table 3.1 Network 
hara
teristi
s during Experiment I.From To KR TW MIT UCSD CU NYU CA1 UT2 EmulabKR Avg. RTT 387 291 272 265 267 168 479 258Loss Rate | 6% 7% 2% 0% 0% 1% 1% 2%TW Avg. RTT 388 243 177 211 220 221 267 186Loss Rate 5% | 8% 3% 3% 4% 41% 37% 4%MIT Avg. RTT 300 253 115 40 34 112 99 80Loss Rate 6% 8% | 5% 6% 6% 6% 5% 5%UCSD Avg. RTT 289 195 125 91 102 42 105 61Loss Rate 2% 4% 5% | 0% 0% 0% 0% 0%CU Avg. RTT 266 211 47 73 9 88 101 47Loss Rate 0% 4% 5% 0% | 0% 1% 0% 0%NYU Avg. RTT 267 220 39 83 9 70 78 56Loss Rate 0% 4% 5% 0% 0% | 0% 0% 0%CA1 Avg. RTT 168 223 121 32 88 75 54 78Loss Rate 1% 42% 5% 0% 1% 0% | 0% 0%UT2 Avg. RTT 479 266 97 88 100 78 50 13Loss Rate 1% 37% 5% 0% 0% 0% 0% | 3%Emulab Avg. RTT 258 186 76 48 47 57 74 14Loss Rate 2% 4% 5% 0% 0% 0% 0% 3% |Emulab. Emulab is the se
ondary leader for the rest. We 
hose se
ondary leaders that hadrelatively reliable links to all hosts. We used se
ondary leaders for all hosts in order to havea meaningful 
omparison. In pra
ti
e, se
ondary leaders would only be used for hosts thathave poor links.Due to o

asional loss bursts and TCP's exponential ba
ko�, some running times are veryhigh (several minutes long). Thus, the average running time is not representative. InTable 3.2, we present statisti
al data about the running times, both overall and lo
al, of thethree algorithms. We present the average running time (in millise
onds) taken over runsthat 
omplete within 2 se
onds. Most runs that experien
e no more than 2 
onse
utivelosses are in
luded in this average. In Figure 3.1, we present histograms of the distributionof overall running times under 1.3 se
onds observed at three of the hosts { MIT whi
hhas no lossy links, UT2 whi
h has one lossy link, and TW whi
h has two. The �rst peakin ea
h histogram represents the overall running time of loss-free runs. The size of thepeak illustrates the per
entage of the runs of that parti
ular algorithm that were loss-free.The running times over 1 se
ond were sparsely distributed. To illustrate this, we give theper
entage of runs that ex
eed 2, 4, and 6 se
onds in Table 3.2.The overall running time of all-to-all is poor: less than half the runs are under 2 se
onds.This is be
ause every instan
e of all-to-all sends two messages over ea
h lossy link, regardlessof the initiator. Thus, most instan
es experien
e multiple 
onse
utive losses. Leader has abetter overall running time ex
ept in TW. This is be
ause ea
h instan
e of leader initiatedat TW traverses ea
h lossy link three times. Instan
es of leader running from other hoststraverse either one or no lossy links. At the three hosts that have lossy links (TW, UT2,36



Table 3.2 Measured running times, millise
onds, Experiment I.Algorithm All-to-all Leader Se
ondaryInitiator Overall Lo
al Overall Lo
al Overall Lo
alKR Avg. (runs under 2 se
) 922 550 873 592 695 613% runs over 2 se
 55% 6% 15% 8% 12% 6%% runs over 4 se
 42% 3% 9% 4% 7% 3%% runs over 6 se
 37% 3% 7% 3% 5% 3%TW Avg. (runs under 2 se
) 866 645 1120 844 679 607% runs over 2 se
 54% 24% 64% 43% 13% 7%% runs over 4 se
 40% 19% 43% 30% 7% 4%% runs over 6 se
 36% 18% 37% 25% 6% 3%MIT Avg. (runs under 2 se
) 811 295 541 335 585 408% runs over 2 se
 55% 3% 13% 6% 9% 3%% runs over 4 se
 42% 3% 8% 4% 5% 2%% runs over 6 se
 37% 3% 6% 3% 4% 2%UCSD Avg. (runs under 2 se
) 860 328 473 332 602 420% runs over 2 se
 51% 2% 6% 2% 8% 3%% runs over 4 se
 41% 2% 5% 2% 5% 1%% runs over 6 se
 35% 2% 4% 2% 4% 1%CU Avg. (runs under 2 se
) 831 320 577 357 578 392% runs over 2 se
 53% 1% 6% 1% 12% 5%% runs over 4 se
 40% 2% 4% 1% 8% 4%% runs over 6 se
 35% 2% 4% 1% 6% 3%NYU Avg. (runs under 2 se
) 860 319 562 348 598 408% runs over 2 se
 54% 2% 8% 3% 12% 6%% runs over 4 se
 41% 3% 6% 2% 8% 3%% runs over 6 se
 35% 2% 5% 2% 6% 3%CA1 Avg. (runs under 2 se
) 850 450 777 553 618 450% runs over 2 se
 51% 17% 30% 24% 9% 3%% runs over 4 se
 40% 13% 21% 16% 6% 2%% runs over 6 se
 35% 11% 19% 15% 5% 2%UT2 Avg. (runs under 2 se
) 872 513 1031 689 636 452% runs over 2 se
 52% 25% 45% 36% 13% 6%% runs over 4 se
 42% 21% 34% 28% 8% 4%% runs over 6 se
 36% 17% 29% 23% 6% 3%Emulab Avg. (runs under 2 se
) 844 320 544 356 633 448% runs over 2 se
 52% 2% 8% 3% 10% 5%% runs over 4 se
 41% 2% 5% 2% 6% 3%% runs over 6 se
 37% 2% 4% 2% 5% 2%and CA1), se
ondary leader a
hieves the best overall performan
e by bypassing the lossylinks.All-to-all has the best lo
al running time at hosts that do not have lossy links. It has abetter lo
al running time than leader due to 
ases in whi
h the triangle inequality does nothold. For example, when UT2 initiates all-to-all, CA1 re
eives the �rst message, on average,after 25 ms., and sends a response to all hosts. KR re
eives this response, on average, after84 ms., that is, 109 ms. after UT2 sent the �rst message. This is shorter than the averagetime it takes UT2's message to get to KR (240 ms.). Therefore, KR engages in all-to-allfrom UT2 earlier than in leader from UT2. Similarly, when the �rst stage message to some37



host is lost, all-to-all in essen
e sends it also by a number of alternate paths, one whi
h 
anprove more e�e
tive. This is why the lo
al running time of all-to-all at TW is dramati
allybetter than that of leader.In the absen
e of pa
ket loss, the overall running time of leader should be roughly threetimes the one-way laten
y on the longest link from the leader, or 1.5 times the RTT. FromMIT, the longest link, to KR, has an average RTT of 300 ms. Indeed, the �rst peak is
entered around 400{450 ms. Sin
e all links to MIT other than from TW and KR havesigni�
antly shorter laten
ies (up to 115 ms.), this running time should be experien
edwhenever there are no losses on the TW and KR links, and at most one or two on ea
hof the other links. Sin
e three messages are sent on ea
h link, and the loss rates of thelongest links are 6% and 8%, the probability of no loss o

urring on either of the long linksis: :943 � :923 � :65. Indeed, running times up to 450 ms. o

ur in 429 out of 659 runs, i.e.,65%.The longest link from TW is to KR, and its average RTT is 388 ms. Therefore, as expe
ted,the �rst peak of leader from TW is 
entered around roughly 1.5 times this RTT, at the550{600 ms. range. This peak in
ludes only 65 of 643 runs (10%). We now explain why.First, observe that if any of the three messages sent on the link to KR or to UT2 is lost, therunning time ex
eeds the peak. The probability of no loss on the KR link is :953 � :86 andthe probability of no loss on the UT2 link is :633 � :25. Next, 
onsider the link to CA1.In the absen
e of losses, the response from CA1 to TW in the se
ond stage arrives afterabout 221 ms. (the RTT), and the response from KR to TW arrives after about 388 ms.On
e TW sends the �nal stage message to all hosts, the algorithm terminates at all hostswithin half the RTT on the longest link, or roughly 194 ms. If either the �rst message fromTW to CA1 or CA1's response is lost on
e, then the response arrives roughly after 450 ms.,assuming low mean deviation of RTTs. This is suÆ
iently 
lose to the 388 ms. TW has towait for KR's message, so it falls in the �rst peak. However, if the �nal stage message fromTW to CA1 is lost, then CA1 terminates 332 ms. after TW sends the last message, whi
hadds 138 ms. to the overall running time, and pushes it out of the �rst peak. Two losses onthe link to CA1 always push this session away from the peak. The last message to CA1 isnot lost with probability 58%. The probability that at most one of the previous messagesis lost, and if it is lost, the retransmission is not lost, is: :582 + 2 � :42 � :582 � :62. So theprobability of the �rst peak should be :86 � :25 � :58 � :62 � :08. This is slightly lower thanthe observed 10%; we hypothesize that this is due to 
orrelated loss, whi
h is signi�
anthere due to the high loss rates involved.The longest link from UT2 is to KR, with an average RTT of 479 ms. Therefore, the peakis around 700{850. We now try to explain why 36% of the runs (230 of 640) are in thisrange. The probability of having no losses on the KR link is 97%. The link from UT2 toTW is quite errati
. Although the average RTT is 266 ms., the RTT o

asionally jumps as38



high as 800 ms., and standard deviation of RTTs for the entire experiment period is 139ms. In periods with low RTT variations, when the mean deviation 
omputed by TCP islow, a run with a single loss to TW in one of the �rst two stages of the algorithm will fallin the �rst peak. A loss during a period with a high mean deviation or a loss in the laststage of the algorithm pushes the running time out of the peak. The probability that thelast message on this link is not lost is 63%. We hypothesize that the mean deviation is lowenough to keep us in the peak approximately half the time. With this assumption, we getthat the probability of a loss in one of the �rst two stages not pushing us out of the peak is54%, and the probability of the peak should be: :97 � :63 � :54 � :33, whi
h is 
lose to theobserved 36%.Sin
e TW uses MIT as a se
ondary leader, we expe
t se
ondary leader from TW to behavethe same as leader initiated at MIT, with an additional delay of 120 ms. (half the RTTbetween TW and MIT). Indeed, the �rst peak is 
entered around 500{550, and in
ludesroughly the same per
entage of the runs as leader at MIT (440/643 = 68%). All-to-all'speak exhibits the lowest overall running time, but the per
entage of runs in the �rst peakis very low, and is the same for all initiators.Figure 3.2 shows the lo
al running times at the same hosts. The lo
al running time forall-to-all initiated by MIT has a higher peak, as it does not involve any lossy links.3.3 Experiment II: Ex
luding the Lossiest HostTable 3.3 Network 
hara
teristi
s during Experiment II.From To KR MIT Cornell NYU CA1 UT2 Emulab UT1KR Avg. RTT 294 261 257 165 452 275 500Loss Rate | 3% 1% 3% 0% 1% 3% 1%MIT Avg. RTT 298 43 38 117 117 82 86Loss Rate 2% | 1% 1% 1% 2% 3% 2%Cornell Avg. RTT 269 46 16 89 101 47 87Loss Rate 1% 1% | 0% 1% 1% 3% 1%NYU Avg. RTT 257 38 16 69 76 60 60Loss Rate 3% 1% 0% | 0% 0% 2% 1%CA1 Avg. RTT 165 115 92 75 47 79 85Loss Rate 0% 2% 1% 0% | 1% 2% 1%UT2 Avg. RTT 454 109 101 77 47 14 31Loss Rate 1% 2% 1% 0% 0% | 6% 1%Emulab Avg. RTT 275 83 47 60 74 15 50Loss Rate 4% 4% 2% 2% 2% 6% | 4%UT1 Avg. RTT 503 82 82 60 86 30 52Loss Rate 1% 1% 1% 1% 1% 1% 5% |We repeated the experiment above without the TW host, whi
h was an end-point on both39



lossy links. We also ex
luded UCSD be
ause it was overloaded at the time of the experiment,and we added UT1. The network 
hara
teristi
s are presented in Table 3.3.Table 3.4 Measured overall and lo
al running times, Experiment II.Algorithm: All-to-all Leader Se
ondaryInitiator Overall Lo
al Overall Lo
al Overall Lo
alKR Avg. (runs under 2 se
) 588 509 758 551 407 388% runs over 2 se
 12% 7% 11% 6% 9% 4%MIT Avg. (runs under 2 se
) 524 278 465 296 442 311% runs over 2 se
 11% 4% 10% 5% 10% 6%CU Avg. (runs under 2 se
) 532 277 440 277 471 315% over 2 se
 11% 4% 9% 5% 10% 5%NYU Avg. (runs under 2 se
) 519 291 449 291 446 296% over 2 se
 12% 5% 10% 5% 10% 5%CA1 Avg. (runs under 2 se
) 535 222 378 219 486 367% over 2 se
 11% 5% 10% 5% 9% 6%UT2 Avg. (runs under 2 se
) 500 265 866 498 494 383% over 2 se
 10% 5% 11% 6% 9% 5%Emulab Avg. (runs under 2 se
) 526 287 506 316 480 338% over 2 se
 12% 5% 9% 6% 8% 4%UT1 Avg. (runs under 2 se
) 495 295 982 571 481 367% runs over 2 se
 11% 4% 11% 5% 10% 6%The running times observed in this experiment are summarized in Table 3.4. In this ex-periment at least 88% of the runs are under 2 se
onds, for all algorithms and all initiators.Even in this setting, all-to-all does not have the best overall running time for any initiator,be
ause even the relatively low loss rates get ampli�ed by the fa
t that so many messagesare sent. Se
ondary leader works best for most hosts, ex
ept for those that are themselvesoptimal leaders.When one 
onsiders the metri
 of lo
al running time, we observe that the lo
al running timeof all-to-all is always superior to that of leader, regardless of the quality of links. Althoughthey both traverse the same links the same number of times, all-to-all has the advantage thatits 
ommuni
ation stages may overlap. For example, when the message from the initiatorto one of the hosts is delayed due to loss, that host 
an hear from another host that thealgorithm has initiated before re
eiving the initiator's late message. In the presen
e of verylossy links, se
ondary leader outperforms the other two algorithms both lo
ally and globallysin
e it is the only one that avoids the lossy links altogether.3.4 The Impa
t of Laten
yWe now present results from Experiment III. In addition to the hosts that parti
ipated inExperiment I, the NL host was also in
luded. In this experiment, we evaluated the all-to-all,40



Table 3.5 Network 
hara
teristi
s during Experiment III.From To KR TW MIT UCSD CU NYU CA1 UT2 Emulab NLKR Avg. RTT 643 547 526 587 588 152 446 521 701Loss Rate | 9% 6% 6% 4% 4% 1% 3% 7% 8%TW Avg. RTT 639 235 178 212 222 219 258 187 322Loss Rate 10% | 4% 3% 4% 3% 43% 49% 4% 4%MIT Avg. RTT 549 236 97 32 28 98 78 71 150Loss Rate 8% 3% | 0% 0% 0% 1% 2% 1% 0%UCSD Avg. RTT 526 179 96 73 84 49 91 48 172Loss Rate 6% 3% 0% | 0% 0% 0% 2% 1% 0%CU Avg. RTT 588 211 32 73 9 85 88 47 138Loss Rate 4% 4% 0% 0% | 0% 49% 31% 1% 0%NYU Avg. RTT 587 222 28 83 9 70 70 57 138Loss Rate 4% 4% 0% 0% 0% | 0% 2% 1% 0%CA1 Avg. RTT 152 219 102 31 94 78 54 81 161Loss Rate 0% 42% 1% 0% 31% 0% | 2% 4% 1%UT2 Avg. RTT 446 262 77 91 88 71 50 13 154Loss Rate 3% 48% 2% 2% 31% 2% 2% | 6% 2%Emulab Avg. RTT 522 187 70 48 47 57 75 14 145Loss Rate 8% 5% 1% 1% 1% 1% 4% 6% | 1%NL Avg. RTT 697 324 155 175 141 143 165 157 49Loss Rate 7% 3% 0% 0% 1% 0% 1% 2% 1% |leader, and ring algorithms. All the hosts ex
ept UT1 parti
ipated in this experiment. Ea
hhost ran about 510 sessions of ea
h algorithm. Table 3.5 shows the network 
hara
teristi
sduring the experiment. Table 3.6 summarizes the overall and lo
al running times of thethree algorithms. Table 3.6 gives the average running time for runs under 3 se
onds, andthe per
entage of runs under 3 se
onds. We use a threshold of 3 se
onds be
ause linklaten
ies in this experiment are higher than in the previous two. In analyzing the results,we highlight the impa
t of laten
y on algorithm performan
e. In Se
tion 3.5, we dis
uss therunning time of the ring algorithm. In Se
tion 3.6, we show how the highest laten
y link inthe system a�e
ts the running time of all-to-all. In Se
tion 3.7, we dis
uss the impa
t of alink's laten
y on the signi�
an
e of loss on that link. Se
tion 3.8 dis
usses the fa
t that thetriangle inequality does not hold and the impa
t this has.3.5 The Running Time of RingThe message 
ow in the ring-based algorithm follows the following sequen
e where ea
hhost pre
edes its neighbor and the �rst host is the neighbor of the last: NL, Emulab, UT2,CU, NYU, KR, MIT, TW, UCSD, CA1. This above ring was 
hosen based on laten
y andloss rate measurements from a previous experiment. The 
hosen ring is nearly optimal andthe loss rates on all the ring links are low.Ring has the highest average running time in the absen
e of message loss. However, ring41



Table 3.6 Measured running times, millise
onds, Experiment III.Algorithm All-to-all Leader RingInitiator Overall Lo
al Overall Lo
al Overall Lo
alKR Avg. (runs under 3 se
) 1197 692 1340 954 1853 1158% runs over 3 se
 66% 9% 25% 13% 18% 5%TW Avg. (runs under 3 se
) 1139 809 1644 1227 2014 1137% runs over 3 se
 64% 28% 84% 69% 22% 4%MIT Avg. (runs under 3 se
) 1168 515 896 589 1912 1117% runs over 3 se
 67% 3% 13% 6% 18% 6%UCSD Avg. (runs under 3 se
) 1172 497 833 558 2040 1115% runs over 3 se
 61% 2% 14% 7% 24% 6%CU Avg. (runs under 3 se
) 1133 494 1179 703 2076 1120% over 3 se
 58% 3% 9% 2% 21% 4%NYU Avg. (runs under 3 se
) 1156 516 1183 715 2092 1134% over 3 se
 62% 3% 8% 3% 27% 5%CA1 Avg. (runs under 3 se
) 1127 563 992 670 2073 1141% over 3 se
 66% 33% 44% 37% 27% 5%UT2 Avg. (runs under 3 se
) 1120 558 1190 637 2121 1165% over 3 se
 64% 51% 60% 53% 30% 8%Emulab Avg. (runs under 3 se
) 1108 474 884 594 2066 1133% over 3 se
 67% 5% 15% 8% 24% 5%NL Avg. (runs under 3 se
) 1161 585 1146 772 2035 1143% over 3 se
 65% 3% 16% 7% 25% 5%has some ni
e properties: First, the ring algorithm is least a�e
ted by message loss. Fromthe network 
hara
teristi
s depi
ted in Table 3.5, we observe that in the absen
e of messageloss, the total time it takes a message to 
ir
ulate around the ring twi
e is about 1900ms. Unlike leader and all-to-all, the average overall running time for ring apprao
hes thisexpe
tation. The reason for this is that ring sends the fewest messages and uses the mostreliable links. Se
ond, the 
hoi
e of initiator does not have a big impa
t on the performan
eof ring, sin
e messages travel over the same links. The only di�eren
e between initiatingring from di�erent hosts is that the initiator only re
eives a message on
e. This explainswhy ring sessions initiated at KR have a slightly better overall running time sin
e KR hasthe longest link. Finally, noti
e that ring's overall running time is not exa
tly twi
e thelo
al running time sin
e the se
ond round is shorter than the �rst.3.6 Laten
y Changes over TimeThe longest links in the system were between KR and TW and KR and the NL. The laten
yof these two links varied dramati
ally in the 
ourse of the experiment. We now divide thedata gathered in this experiment into two periods. In the �rst period, the link from KRto the NL had an average RTT of 754 ms., and the link from KR to TW had an averageRTT of 683 ms. In the se
ond period, the average RTTs from KR to the NL and to TWdropped to 355 ms. and 385 ms., respe
tively. So the average one-way message laten
y on42



the longest link dropped by 185 ms. This was the only notable di�eren
e between the twoperiods.In Figure 3.3, we show histograms of the measured overall running times of all-to-all fromall initiators during ea
h of the two periods. The histograms show runs up to 2 se
onds; thisin
ludes 23% of the runs during the longer laten
y period, and 60% of the runs during theshorter laten
y period. We observe that in the period with high laten
ies, the best runningtimes are around 500 ms. In the period of low laten
ies, the �rst peak o

urs at 300 ms., orroughly 200 ms. earlier, whi
h is 
lose to the de
rease in the one-way laten
y on the longestlink. As we see, the all-to-all algorithm from all initiators is a�e
ted by the in
rease inlaten
y. In 
ontrast, the only instan
es of the leader algorithm that were a�e
ted by thislaten
y 
hange were those initiated at TW, KR, or the NL. Other instan
es of the leaderalgorithm were una�e
ted. For example, the �rst peak of the leader algorithm initiated atEmulab o

urs at 300{350 ms. for both periods.3.7 Laten
y and LossThe loss rates from TW to CA1 and UT2 are 43% and 49% respe
tively. This 
auses therunning times of leader from these hosts to be very high (at least 44% of the runs ex
eed3 se
onds). The loss rates from CU to CA1 and UT2 are also fairly high (49% and 31%respe
tively). In spite of this, only 8% of the runs of leader from CU last over 3 se
onds.We see that the lossy links from CU do not impa
t the overall running time as do the lossylinks from TW. This is be
ause the laten
ies of the lossy links from CU are only about onesixth the longest link laten
y. Therefore, even two 
onse
utive losses on these links do notimpa
t the overall running time.3.8 The Triangle InequalityThe average RTT from UCSD to KR is 526 ms. and the average RTT from UCSD to CA1is 49 ms., while the average RTT from CA1 to KR is 152 ms. Although UCSD and CA1 aregeographi
ally 
lose, the average RTT from UCSD to KR is more than 3 times the averageRTT from CA1 to KR. The laten
y from UCSD to KR 
an be redu
ed to less than a halfby routing messages indire
tly through CA1.
43



Figure 3.1 Histograms of overall running times, Experiment I, runs up to 1.3 se
onds.
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Figure 3.2 Histograms of lo
al running times, Experiment I, runs up to 1.3 se
onds.
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Figure 3.3 Histograms of overall running times, runs up to 2 se
onds, Experiment III.
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Chapter 4
The Gather-Quorum Primitive
This 
hapter presents results gathered from two experiments. Experiment IV lasted approx-imately nine and a half days and in
luded all hosts ex
ept CA4 (a total of 27 hosts). Of thehosts that parti
ipated only MIT, UT2, CA1, NL, ISR1, AUS, KR and TW were initiators.Ea
h initiator ran leader on
e every two minutes on average, and in total, roughly 6700times. Experiment V lasted approximately �ve and a half days and in
luded only hostslo
ated in North Ameri
a (a total of 18 hosts), out of whi
h only MIT, CA1, Emulab, CUwere initiators. Ea
h initiator ran all-to-all on
e every two minutes on average, and in to-tal, we a

umulated roughly 3700 samples per initiator. The all-to-all algorithm we ran inthe latter experiment is a slightly modi�ed version of one that appears in the pseudo 
odese
tion and used in the previous experiment. Unlike in the previous experiments, hosts donot start sending messages to other hosts in a parti
ular session until they have re
eived amessage from the initiator of that session. In both experiments, hosts sent ping probes toea
h other on
e every two minutes.Even though we did not expli
itly run algorithms that implement the gather-quorum prim-itive, we extrapolated the running of these algorithms from the data we a

umulated byonly looking at the response times for quorums for di�erent probe sets and disregardingirrelevant data. In our analysis analysis of experiment IV, sin
e we only ran the leaderalgorithm, it was enough to 
onsider the lo
al running times to get a fair 
omparison. Inboth experiments, host 
rashes and network partitions o

urred. Table 4.1 shows the tablequorum system we used in our evaluation of the results in Experiment IV. We used Table 4.2as a quorum system in our evaluation of the results in Experiment V.4.1 Comparing the Two PrimitivesSin
e the performan
e of gather-quorum algorithms depend on the probe set, any 
ompar-ison with gather all algorithms depends on this parameter. In this se
tion, we 
onsider the47



Table 4.1 Table quorum system in experiment IV.MIT CMU NYU Emulab UCSDNL SWD GR ISR1 ISR2MA1 MA3 NY UT1 CNDMA2 AUS CU CA1 UT2 NCNZ TW KR Swiss CA2 CA3Table 4.2 Table quorum system in experiment V.MIT CU NYU CMUEmulab UCSD UT1 UT2MA1 MA2 MA3 NY NCCND CA1 CA2 CA3 CA4two extreme 
ases: minimal probe sets, in
luding exa
tly one quorum, and 
omplete probesets, in
luding all hosts. However, independent of the size of the probe set, we 
an make thefollowing general observations. Gather-quorum algorithms have the advantage that hostsonly need to hear from a quorum, (whi
h is usually mu
h smaller than the entire universeof hosts). Therefore, in 
ases where availability is not an issue, gather-quorum algorithmsstri
tly dominate gather-all algorithms in running time. However, Gather-all algorithmsdo not fail by de�nition, sin
e hosts only need to hear from hosts that are 
urrently aliveregardless of how many there are. Therefore, in 
ases of high failure rates (where no quorumexists), gather-all algorithms su

eed while gather-quorum algorithms fail.4.1.1 Complete Probe SetsEven though we had several host failures and network partitions during both experiments,they were not frequent enough to bring down the entire quorum system being used; Ta-bles 4.3 and 4.4 show the per
entage of runs that failed for di�erent probe sets. Therefore,for the duration of both experiments, the probability of a host not �nding a live quorumwas negligible regardless of the quorum system being used (table or majority). Thus, in agather-quorum algorithm, ea
h host must wait to hear from a set of hosts that is a stri
tsubset of the set of hosts it has to wait to hear from in a gather-all algorithm. This explainsthe results shown in Figures 4.1 and 4.2, whi
h show a signi�
ant gap in the running timefor both leader and all-to-all. Figure 4.1 shows the results at six di�erent initiators fromExperiment IV. Figure 4.2 shows the results of samples initiated at MIT during ExperimentV. The �gures show the 
umulative distributions of the running time of ea
h primitive.However, if we try to determine whi
h quorum system is better, the answer is not as 
lear.If we look at it from a theoreti
al view point, we �nd that ea
h system has its advantages48



Figure 4.1 Comparing the gather-all and gather-quorum primitives using the leader basedalgorithm and 
omplete probe sets (results from experiment IV).
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Figure 4.2 Comparing the gather-all and gather-quorum primitives using the all-to-allalgorithm and 
omplete probe sets (results from experiment V).
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AllTable 4.3 Failure per
entages for quorum-leader algorithms using the majority quorumsystem at di�erent initiators for all possible probe set sizes (size is measured in terms thenumber of hosts). Results 
ompounded during Experiment IV.Initiator MIT AUS UT2 ISR1 TW KRSize of Probe Set14 8% 32% 24% 15% 13% 18%15 2% 3% 0% 4% 7% 4%16 0% 1% 0% 3% 7% 2%17 0% 0% 0% 3% 4% 2%18 0% 0% 0% 3% 4% 2%19 0% 0% 0% 3% 4% 2%20 0% 0% 0% 3% 4% 2%21 0% 0% 0% 3% 4% 2%22 0% 0% 0% 3% 4% 2%23 0% 0% 0% 3% 4% 1%24 0% 0% 0% 3% 4% 1%25 0% 0% 0% 3% 4% 1%26 0% 0% 0% 3% 4% 1%27 0% 0% 0% 3% 4% 1%and disadvantages. For example, the quorum size in the table-based quorum system (inExperiment IV it ranges from 5-10 hosts) is usually smaller than the majority (14 hostsin this experiment). However, the number of subsets that are quorums is greater in themajority-based quorum system than the in table-based system. With 27 hosts and Table 4.1,we have the following:number of majorities = �2714� = 6; 104; 700
50



Table 4.4 Failure per
entages for quorum-leader algorithms using the table quorum systemat di�erent initiators for all possible probe set sizes (size is measured in terms table rows).Results were 
ompounded during Experiment IV.Initiator MIT AUS UT2 ISR1 TW KRSize of Probe Set1 1% 1% 1% 4% 1% 4%2 0% 0% 0% 3% 0% 2%3 0% 0% 0% 3% 0% 2%4 0% 0% 0% 3% 0% 2%5 0% 0% 0% 3% 0% 2%number of table-quorums = 1 + 5 + 52 + 53 + (6)(5)3 = 906Even though we pi
ked a table that improves the performan
e, with 27 hosts, there isa signi�
ant 
han
e that no table exists whi
h is optimal for every host in the system.Our results from this experiment indi
ate that for most initiators, table-based quorumsoutperform majority. For ea
h of these initiators, there exists a subset of the optimal 14-host majority for that initiator that forms a quorum based on Table 4.1. However, for AUS,no su
h subset exists, whi
h explains why majority provides superior performan
e in this
ase.4.1.2 Minimal Probe SetsWith minimal probe sets we have a di�erent story. In this 
ase, every host deals with aparti
ular quorum instead of any quorum. In the majority quorum system, the probe setis 
omposed of the 
losest majority to the initiator; in the table quorum system, the probeset is 
omposed of the �rst row of the table (
hoosing probe sets and quorum systems isdis
ussed in more detail in Se
tion 4.2). Even though this parti
ular quorum is usually
hosen be
ause it usually has the best availability, its failure probability is higher than thatof the entire quorum system. A quorum fails if any of its hosts fail. Sin
e every host has anonzero probability of failure, the probability of a quorum failing grows exponentially withthe size of that quorum. This means that the probability that a parti
ular quorum fails inthe majority quorum system is higher than in the table quorum system. If we look at thegraphs in Figures 4.3 and 4.4, it is 
lear that the running time of algorithms that use thetable-based quorum system is by far superior to algorithms using majority and gather-allalgorithms. This is the 
ase for two reasons. First, sin
e the minimal probe set in the tablequorum system is the �rst row of the table, the number of hosts involved in the algorithmis very small relative to majority and gather-all algorithms. Se
ond, in a well 
hosen table,hosts in the �rst row usually have the highest availability.If we look at the 
urves for majority and gather-all algorithms, we �nd that majority51



Figure 4.3 Comparing the gather-all and gather-quorum primitives using the leader basedalgorithm and minimal probe sets (results from experiment IV).
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Figure 4.4 Comparing the gather-all and gather-quorum primitives using the all-to-allalgorithm and minimal probe sets (results from experiment V).
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dominates in the low laten
y region and performs worse in the high laten
y region�. Thishappens for two reasons. First, sin
e the number of hosts in the minimal probe set in themajority quorum system is approximately half of the total number of hosts, the runningtime will be lower than with the gather-all algorithm when every host in the probe setis available. Se
ond, sin
e the quorum fails whenever any of its elements fail, a majoritybe
omes unavailable for a signi�
ant amount of time during whi
h gather-all algorithms
ontinue to su

eed (at higher laten
ies of 
ourse).4.2 The Size of the Probe SetWe now analyze the relationship between the size of the probe set and the running of thequorum-leader and quorum-to-quorum algorithms (using both majority and table quorumsystems). In parti
ular, we look at how this relationship is in
uen
ed by network dynami
s(lost messages, laten
y variation and failures) and the type of algorithm. The results in pre-sented Se
tion 4.2.1 are from Experiment IV. Se
tion 4.2.2 presents results from ExperimentV.4.2.1 Quorum-LeaderMajoritySin
e we have a total of 27 hosts, a majority 
onsists of at least 14 hosts (in
luding theinitiator). In this se
tion we look at improvements in the running time as the size of the�TW is an ex
eption. We will dis
uss this host in more detail in Se
tion 4.253



Figure 4.5 The 
umulative distribution of lo
al running times of quorum-leader algorithms(using the majority quorum system) initiated at di�erent hosts during Experiment IV, runsup to 4 se
onds (n denotes the number of hosts in the probe set).
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Table 4.5 Link 
hara
teristi
s from TW to other hosts during experiment IV.Host Loss Rate Avg. RTT STD Min. RTT TCP Conne
tivity % under 1 se
TW 0% 0 0 0 100% 100%UCSD 3% 232 25 198 100% 97%Emulab 3% 238 26 216 100% 97%NYU 3% 273 22 251 100% 97%MIT 4% 303 398 256 100% 96%CMU 4% 289 41 254 100% 96%CU 3% 339 127 247 100% 97%AUS | | | | 99% 96%NL 3% 361 23 339 100% 96%CA1 31% 482 626 174 95% 58%NY 32% 445 853 234 96% 63%SWD 3% 399 59 371 100% 96%UT2 30% 743 1523 171 96% 58%MA2 28% 742 1517 230 94% 59%NC 32% 465 616 255 90% 63%ISR2 3% 424 70 400 100% 97%UT1 27% 979 1847 189 96% 55%MA1 29% 645 712 238 96% 57%ISR1 4% 551 2682 400 100% 94%CA2 30% 606 1094 179 69% 45%GR 3% 447 29 419 96% 93%CND 35% 686 834 212 93% 51%MA3 32% 774 1473 241 96% 54%NZ 35% 636 830 271 91% 43%KR 11% 357 163 200 42% 40%CA3 32% 1047 2091 178 15% 10%Swiss 3% 384 22 362 15% 15%probe set in
reases from 14 to 27. For a given initiator, For ea
h instant of leader it initiated,we sort the hosts in as
ending order based on the response time for that instant, and assignea
h host a rank that 
orresponds to its position in the sorted list.Then average thoseranks over all instan
es. based on those average ranks we sort the hosts in as
ending order.Based on that order we rank hosts from 2 to 27 (of 
ourse the initiator being 1). This rankrepresents the order in whi
h we add hosts to the probe set of ea
h initiator. In generalthere are several arguments to be made for probe sets that are larger than the minimum.First, be
ause of dynami
 nature of the Internet (
hanging routes, lost messages), the 14hosts 
losest to the initiator do not stay the same for the whole duration of the experiment.Message loss, in parti
ular, plays a signi�
ant role: any lost message from any of the 14 hostsin the minimal probe set, with high probability, in
reases the running time of the algorithmbeyond the RTT of the 15th host. And no matter how reliable links between the initiatorand its 
losest 14 hosts, they still have nonzero probabilities of dropping messages. Se
ond,some hosts also fail during the experiment. However, sin
e failures during the experimentwere not very frequent and network partitions were very short, the �rst fa
tor plays a biggerrole in our analysis espe
ially sin
e most failures and network partitions e�e
t all initiators55



equally while variations in TCP laten
ies are di�erent for di�erent hosts.In general every initiator ex
ept TW had low varying and highly reliable links (loss ratesof 10% or less) to most hosts. TW on the other hand, had many links with highly variablelaten
ies and loss rates of 25% or more (most of the hosts with bad 
onne
tions to TW wereISPs in North Ameri
a). For initiators other than TW, our results indi
ate that optimalperforman
e is a
hieved with a probe set that 
ontains 19 hosts. The improvements inperforman
e gained by in
reasing the size of the probe set beyond 19 hosts are negligible.The highest improvements o

ur when the size of the probe set is in
reased to 15 and then 16.The marginal rate of return 
ontinues to de
rease with the number of hosts and diminisheswhen this number is in
reased beyond 19. Figure 4.5 illustrates this observation by showingthe 
umulative distribution of the running time of runs initiated at AUS and ISR1 for probesets with di�erent sizes. However, this is not the 
ase with TW. The performan
e 
ontinuesto improve signi�
antly as we in
rease the number of hosts probed by TW to 27. TheTW graphs shown in the same �gure, show the 
umulative distribution of runs initiatedat TW for di�erent numbers of hosts. In order to get a better understanding to what isgoing on with TW, we refer to Table 4.5y whi
h shows the link 
hara
teristi
s as measuredby \ping" from TW to other hosts in the system (the 
olumn labeled \TCP 
onne
tivity"refers to the per
entage of time the TCP 
onne
tion was up). We 
an see that hosts thathave loss rates of 25% or more to TW also have the highest average laten
ies. At �rstglan
e, it would appear that the problems of high message loss are 
ompounded by the highlaten
y. However, we see that these hosts have the smallest minimum RTTs (highlightedin the table), whi
h means that the best 
ase involves these hosts. We also noti
e that thestandard deviation is highest for those links, whi
h means that the low laten
y runs aremore probable. The probability of getting good running times in
reases as we send to moreof these hosts.Now the question remains how well 
an we estimate the optimal size of the probe set givenour knowledge of the network 
hara
teristi
s. For a given to probe set, how a

urately 
anwe predi
t the per
entage of runs below a 
ertain threshold based on what we know aboutthe TCP laten
y distributions? As an example, we will use TW and see how well we 
anapproximate the per
entage of runs below 1 se
ond for probe sets the 
ontain 14, 15, 16,and 17 hosts. The last 
olumn in Table 4.5 shows the per
entage of TCP round trips under1 se
ond for ea
h link. For simpli
ity, we will assume that di�erent messages travel throughthe network independently (not entirely true). We will also restri
t our attention to linksin whi
h the per
entage of TCP RTTs under 1 se
ond is less than 90%.The probe set of size 14, whi
h 
ontains the �rst 14 hosts listed in Table 4.5, in
ludes CA1,NY, UT2, MA2. the per
entages of TCP RTTs under 1 se
ond from TW to these four are58%, 63%, 58%, and 59% respe
tively. Based on the assumptions we have made, we 
anyAUS is inside a �rewall that �lters ICMP traÆ
. 56



estimate the probability that TW hears from a majority (Pr14) as follows:Pr14 = :63 � :58 � :58 � :59� :13Indeed the value we measured was .16, whi
h is 
lose to the estimated value. Now howmu
h improvement in the running time 
an we expe
t from adding the 15th host (NC) tothe probe set? This is the same as the probability of exa
tly one out of the four lossy hostsfailing to make the 1 se
ond threshold and NC su

eeding.Pr15 � Pr14 = :63(:37 � :58 � :58 � :59+2 � :63 � :42 � :58 � :59+:63 � :58 � :58 � :41)� :21The value that we measured was .20. Similarly the improvement we 
an expe
t fromin
reasing the size of the probe set from 15 to 16 is the probability of exa
tly two out ofthe �ve lossy hosts failing to make the 1 se
ond threshold and ISR2 su

eeding.Pr16 � Pr15 = :97(2 � :41 � :37 � :63 � :58 � :58+2 � :41 � :63 � :63 � :58 � :42+:59 � :37 � :37 � :58 � :58+:59 � :63 � :63 � :42 � :42+4 � :59 � :37 � :63 � :42 � :58)� :33The measured value was .26. The improvement we expe
t we expe
t from in
reasing the sizeof the probe set from 16 to 17 is the probability of exa
tly three out of the �ve lossy hostsfailing (or exa
tly two su

eeding) to make the 1 se
ond threshold and UT1 su

eeding.Pr17 � Pr16 = :55(2 � :59 � :37 � :63 � :42 � :42+2 � :59 � :37 � :37 � :58 � :42+:41 � :37 � :37 � :58 � :58+:41 � :63 � :63 � :42 � :42+:41 � :37 � :63 � :42 � :58)� :12The value we measures was .9. The results above suggest that we 
an predi
t with a 
ertain57



degree of a

ura
y the probability distribution of the running time for a given probe set.TableIn this se
tion, we analyze the performan
e based on Table 4.1 whi
h 
ontains 5 rows, withea
h row 
ontaining 5-6 hosts. In this se
tion we look at improvements in the running timeof table as the number of table-rows in the probe set in
reases from 1 to 5. In order toimprove performan
e, we pi
ked the table rows as follows:� In the �rst row, we put hosts lo
ated at North Ameri
an universities whi
h were upfor the duration of the experiment.� Our ping tra
es indi
ate that hosts lo
ated in Europe and Israel are 
onne
ted toea
h other by low laten
y and low loss rate links. Therefore, in order to improve theperforman
e for these hosts, we pla
ed them in the se
ond row (ex
ept Swiss whi
hwas under �rewall restri
tion for a portion of the experiment).� In the third row, we put �ve other hosts in North Ameri
a that did not 
rash duringthe experiment.� We �lled out the last two rows with the remaining hosts.Every quorum in this setting must in
lude at least one host in the �rst row. Therefore,while sending to more rows may improve availability in the 
ase of some �rst row hostsfailing, the performan
e is eventually 
onstrained by the �rst row. The graphs in Figure 4.6shows the performan
e for di�erent initiators. Depending on where the initiators are lo-
ated, they see di�erent gains at di�erent row numbers. Note espe
ially that di�eren
ein performan
e between probing one table row and probing all rows is smaller than thedi�eren
e in performan
e between probing 14 hosts and probing all hosts (in the majoritysystem). This is usually the 
ase sin
e the �rst row is �lled with hosts that were up formost of the experiment and had reliable 
onne
tions to other hosts.4.2.2 Quorum-to-QuorumIn this se
tion, in order to get meaningful results, we need to look at the overall runningtimes be
ause of the asymmetry of the two phases of the quorum-to-quorum algorithm. Fora given probe set, messages travel on the same links regardless of the initiator. Therefore,we only present results from samples initiated by MIT without loss of generality.
58



Figure 4.6 The 
umulative distribution of lo
al running times of quorum-leader algorithms(using the table quorum system) initiated at di�erent hosts during Experiment IV, runs upto 4 se
onds (n denotes the number of table rows in the probe set).

0

20

40

60

80

100

500 1000 1500 2000 2500 3000 3500 4000

pe
rc

en
ta

ge
 o

f r
un

s

latency (ms)

MIT Table

n=1
n=3
n=5

0

20

40

60

80

100

500 1000 1500 2000 2500 3000 3500 4000

pe
rc

en
ta

ge
 o

f r
un

s

latency (ms)

AUS Table

n=1
n=2
n=3
n=5

0

20

40

60

80

100

500 1000 1500 2000 2500 3000 3500 4000

pe
rc

en
ta

ge
 o

f r
un

s

latency (ms)

UT2 Table

n=1
n=3
n=5

0

20

40

60

80

100

500 1000 1500 2000 2500 3000 3500 4000

pe
rc

en
ta

ge
 o

f r
un

s

latency (ms)

ISR1 Table

n=1
n=3
n=5

0

20

40

60

80

100

500 1000 1500 2000 2500 3000 3500 4000

pe
rc

en
ta

ge
 o

f r
un

s

latency (ms)

TW Table

n=1
n=3
n=5

0

20

40

60

80

100

500 1000 1500 2000 2500 3000 3500 4000

pe
rc

en
ta

ge
 o

f r
un

s

latency (ms)

KR Table

n=1
n=3
n=5

59



Figure 4.7 The 
umulative distribution of overall running times of majority for all-to-allinitiated by MIT during Experiment V, runs up to 2 se
onds (n denotes the number ofhosts the probe set).
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n=18Figure 4.8 The 
umulative distribution of lo
al running times of majority for all-to-allinitiated by MIT during Experiment V, runs up to 2 se
onds (n denotes the number ofhosts in the probe set).
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MajoritySin
e we have a total of 18 hosts, a majority 
onsists of at least 10 hosts (in
luding theinitiator). In this se
tion we perform the same analysis as Se
tion 4.2.1. We only look at thesamples that were initiated by MIT, and rank the hosts (as in Se
tion 4.2.1) with respe
t toMIT. All the hosts in this experiment are 
lose geographi
ally, and 
ommuni
ate with ea
hother over low-laten
y and low loss-rate links. In addition, throughout the experiment, onlytwo hosts failed (CA1, UT1) and neither were ranked in the top 10. So we would expe
tminimal improvements in the overall running time gained by in
reasing the size of the probeset. However, there is another fa
tor to 
onsider in the quorum-to-quorum algorithm. Sin
e60



the algorithm only terminates when a majority of hosts hear from a majority of hosts, the10-host majority that is optimal for MIT might not be optimal for other hosts, and probingmore than 10 hosts in
reases the probability of other hosts �nding their optimal majority. Sohow mu
h of a role does this play? In order to �nd out we 
ompare e�e
ts of in
reasing thenumber of hosts on the overall and lo
al running times. Figure 4.7 shows the 
umulativedistributions of the overall running time for di�erent majorities. Figure 4.8 shows the
umulative distributions of the lo
al running time for di�erent majorities. From the �gures,we observe the following: �rst, the improvement in performan
e gained by in
reasing thesize of the probe set from 10 to 11 is \somewhat" greater in the overall running time.Se
ond, sending to 11 hosts is near optimal in the lo
al running time (this is not the 
asein the overall running time). Sin
e the lo
al running time in this experiment is same asthe lo
al running time of the quorum-leader algorithm, the results suggest that optimalrunning time 
an be rea
hed with a smaller probe set in the 
ase of quorum-leader thanquorum-to-quorum.TableIn this se
tion, we analyzed the performan
e based on Table 4.2 whi
h 
ontains 4 rows,with ea
h row 
ontaining 4-5 hosts. We pla
ed hosts lo
ated at universities in the east 
ostin the �rst row of the table. In the se
ond row, we put two west 
ost university hosts andtwo west 
oast hosts lo
ated at ISPs. We �lled the third with the rest of the east 
osthosts and put the remaining hosts in the last row. In this parti
ular 
ase, sin
e the hostsin the �rst row are geographi
ally 
lose to ea
h other and were up for the entire durationof the experiment, the �rst row was the optimal quorum for every host in the �rst row. Asa result we did not see a signi�
ant performan
e improvement gained by sending to moretable rows. Figure 4.9 illustrates these results.
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Figure 4.9 The 
umulative distribution of overall running times of table for all-to-allinitiated by MIT during Experiment V, runs up to 2 se
onds (n denotes the number oftable rows the in the probe set).
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Chapter 5
Con
lusions
We measured and analyzed the performan
e of two primitives and four 
ommon informationpropagation algorithms over the Internet. We explained the distribution of the algorithms'running times in terms of underlying link laten
ies and loss rates.One important lesson one 
an learn from our observations is that loss rates over the Internetare not negligible. Consequently, algorithms that send many messages often have a highrunning time, even if the messages are sent in parallel in one 
ommuni
ation step. Moregenerally, we learn that some 
ommuni
ation steps are more 
ostly than others. E.g., it isevident that propagating information from only one host to all other hosts is faster thanpropagating information from every host to ea
h of the other hosts.We suggest to re�ne the 
ommuni
ation step metri
 as to en
ompass di�erent kinds ofsteps. One 
ost parameter, �1, 
an be asso
iated with the overall running time of a stepthat propagates information from all hosts to all hosts�. This step 
an be implemented usingany of the algorithms analyzed in Chapter 3. A di�erent (assumed smaller) 
ost parameter,�2, 
an be asso
iated with a step that propagates information from one host to all otherhosts. Another 
ost parameter, �3 
an be asso
iated with propagating information from aquorum of the hosts to all the hosts, as measure in Chapter 4.This more re�ned metri
 
an then be used to revisit known lower and upper bound results.For example, [14℄ presents a tight lower bound of two 
ommuni
ation steps for failure-freeexe
utions of 
onsensus in pra
ti
al models. Under the more re�ned metri
, the lower boundis 2�1, whereas known algorithms (e.g., [6, 16℄) a
hieve running times of �2 +�3.

�Lo
al running times 
annot be 
omposed in this manner.63
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