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Abstract

We study the running time of distributed algorithms deployed in a widely distributed set-
ting over the Internet using TCP. We consider two simple primitives. Both primitives
corresponds to a communication round which is employed by many different algorithms
and systems. In the first primitive, every host sends information to every other host. The
second primitive propagates information from a quorum of hosts to a quorum of hosts. Both
primitives occur in numerous distributed algorithms. We experiment with four algorithms
that typically implement the first primitive and two that implement the second. We run
our experiments on twenty-eight hosts at geographically disperse locations over the Internet.
We observe that message-loss has a large impact on algorithm running times, which causes
leader-based algorithms to usually outperform decentralized ones. We also observe that
algorithms, in which hosts need only to hear from a quorum, are more reliable, efficient,
and tolerant to bad links than algorithms where every host is required to hear from every
other host in the system.
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Chapter 1

Introduction and Background

1.1 Introduction

It is challenging to predict the end-to-end running time of a distributed algorithm operating
over TCP/IP in a wide-area setting. It is often not obvious which algorithm would work best
in a given setting. For instance, would a decentralized algorithm outperform a leader-based
one? Answering such questions is difficult for a number of reasons. Firstly, because end-
to-end Internet performance itself is extremely hard to analyze, predict, and simulate [8].
Secondly, end-to-end performance observed on the Internet exhibits great diversity [22, 33],
and thus different algorithms can prove more effective for different topologies, and also for
different time periods on the same topology. Finally, different algorithms can perform better

under different performance metrics.

In this thesis, we study the running time of distributed algorithms over the Internet. Our
experiments span twenty-eight hosts, widely distributed over the Internet — in Korea, Tai-
wan, Israel, Australia, New Zealand, and several hosts across Europe and North America.
Some of the hosts reside at academic institutions and others on commercial ISP networks.
We present data that was gathered over several months. The hosts communicate using
TCP/IP. TCP is a commonly used protocol on the Internet, and therefore evaluating sys-
tems that use it is of interest. Moreover, it was feasible for us to deploy a TCP-based
system because TCP does not generate excessive traffic at times of congestion, and because
firewalls at some of our hosts block UDP traffic.

We consider a fixed set of hosts engaged in a distributed algorithm. We evaluate two
simple primitives that correspond to a communication round executed by a distributed
algorithm. Both primitives are employed by many different algorithms and systems, e.g.,
Byzantine agreement [18], atomic commit [9, 13, 29], state-machine replication [17], group
membership [15], and updates of routing tables. Thus, our study has broad applicability.

First we look at gather-all, which propagates a small amount of information from every
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host to all other hosts that are connected to it. The primitive can be initiated by any one
of the hosts, called the initiator, and it terminates once information from every host has

propagated to all of the hosts.

We evaluate the following commonly used algorithms implementing this primitive:

Figure 1.1 The message flow of the four algorithms. Initiator shown in gray.

Stage 1 Stage 2 Stage 1 Stage 2 Stage 3
(a) The all-to-all algorithm. (b) The leader algorithm.

O O
N\ /O\ ZQ

Q
N 7 §
Round 1
Stage 1 Stage 2 Stage 3 Stage4 e Round 2
(c¢) The secondary leader algorithm. (d) The ring algorithm.

e all-to-all, where the initiator sends a message to all other hosts, and each host that
learns that the algorithm has been initiated sends messages to all the other hosts.
This algorithm is structured similar to decentralized two-phase commit, some group
membership algorithms (e.g., [15]), and the first phases in decentralized three-phase
commit algorithms, (e.g., [10,29]). The algorithm flow is depicted in Figure 1.1(a).

e [eader, where the initiator acts as the leader. After the initiator sends a message
to all other hosts, the hosts respond by sending messages to the leader. The leader
aggregates the information from all the hosts, and sends a message summarizing all
the inputs to all the hosts. This algorithm is structured like two-phase commit [9], and
like the first two of three communication phases in three-phase commit algorithms,
e.g., [13,29]. The algorithm flow is depicted in Figure 1.1(b).

e secondary leader, where a designated host (different from the initiator) acts as the
leader. The initiator sends a message to the leader, which then initiates the leader-

based algorithm. The algorithm flow is depicted in Figure 1.1(c). This algorithm
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structure is essentially a spanning tree of depth one, with the secondary leader being

the root and all other hosts being leaves.

e logical ing, where messages propagate along the edges of a logical ring. This algorithm
structure occurs in several group communication systems, e.g., [1]. The algorithm flow

is depicted in Figure 1.1(d).

The second primitive we evaluate is the gather-quorum primitive. This primitive involves
the use of quorum systems. A quorum system for a universe of servers is a collection
of subsets (called quorums) of servers, each pair of which have a nonempty intersection.
Quorum systems are typically used to increase the availability and efficiency of replicated
services. The gather-quorum primitive propagates a small amount of information from a
quorum to a quorum. Like the gather-all primitive, This primitive can also be initiated
by any one of the hosts, and it terminates once information from a quorum of hosts has

propagated to a quorum of hosts.

We evaluate this primitive with two widely used quorum systems:

e Majorities, where every set that includes a majority of servers is a quorum.

e Table, Suppose that the number of servers n = k? for some integer k. Arrange the
servers into a k x k table, as shown in Figure 1.2. A quorum is a union of a full row
and one element from each row above the full row. In reality the number of servers is
not always a perfect square, in which case some rows might be larger than others. In

any case, the quorums in the Table quorum system are of size O(y/n).

Figure 1.2 The Table quorum system of 6 x 6, with one quorum shaded.

Hostl | Host2 | Host3 | Host4 |Host5 | Hosté

Host7 | Host8 | Host9 |Host10 |Host1ll [Host12

Host13|Host14 | Host15 |Host16 |[Host17 [Host18

Host19 |Host20 | Host21 |Host22 [Host23 |Host24

Host25|Host26 | Host27 |[Host28 |[Host29 [Host30

Host31|Host32 | Host33 |[Host34 |[Host35 [Host36

Initiators that invoke an algorithm that implements the gather-quorum primitive have a

decision to make. One option is to probe every host and wait for a quorum to respond.
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A second option is to probe exactly one quorum and wait for that particular quorum to
respond. These two cases are the extreme cases. Another option is to probe multiple
quorums and wait for one of them to respond. We call the set of hosts probed by the
initiator the probe set. The probe set has a lot implications on the running time of an
algorithm. One the one hand, the initiator prefers to keep the probe set as small as possible
to reduce the overall load on the system. One the other hand, the initiator also prefers to
probe more hosts in order to reduce the probability of failure. We study the impact of the

choice of probe set on the algorithm running time and avilability.

We evaluate the following commonly used algorithms implementing this primitive:

e quorum-to-quorum, where the initiator sends a message to every host in the probe
set, and each host that hears from the initiator sends messages to all hosts in the
probe set. The algorithm terminates as soon as quorum hears from a quorum and
fails otherwise. This algorithm is similar to the all-to-all algorithm presented above.
This algorithm is structured like some atomic broadcast algorithms (e.g.,Corel [12]),
some consensus algorithms (e.g., [27]), and the final phase in decentralized three-phase

commit algorithms, (e.g., [10]).

e quorum-leader, where the initiator acts as the leader. After the initiator sends a
message to every host in the probe set, the hosts respond by sending messages to the
leader. Once the leader hears from a quorum, it aggregates the information from hosts
in that quorum, and sends a message summarizing all the inputs to all the hosts in
the probe set. This algorithm is similar to the leader algorithm presented above. The
algorithm is structured similar to Lamport’s Paxos algorithm [16], the algorithm used
in the Frangipani distributed file system [31], some consensus algorithms (e.g., [6]), and
like the final two of three communication phases in three-phase commit algorithms,
e.g., [13,29].

We run a single process at each geographical location. We do not address issues related to
scaling the number of processes, as we believe that such issues are orthogonal to our study.
Using a 2-level hierarchy, algorithms of the sort we consider can be made to work effectively
with several hundreds of processes. Such a hierarchy is used, e.g., in [11,15], where the
top level of the hierarchy consists of 5 20 representatives (servers) at disperse geographical
locations. Each representative gathers information from and propagates information to
processes that are proximate to it. Algorithms like those considered here are typically
run among the representatives. Thus, our study is applicable to systems that implement
scalability in this manner. Our study is also somewhat applicable to large scale client-server
systems like Fleet [19] and SBQ-L [20] where clients contact a quorum of the servers. Our
study is however not applicable to systems that implement massive scalability, e.g., using

gossip-based or peer-to-peer algorithms.
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We measure the overall running time of an algorithm from the time it starts at some host
until it terminates at all hosts (or until it terminates at a quorum of hosts in the cases
where we are considering the performance of quorum systems), as well as the local running

time at a given host.

The typical theoretical metric used to analyze the running time of distributed algorithms
is the number of message exchange rounds the algorithm performs, or the number of com-
munication steps in case of a non-synchronous system (e.g., [14, 15, 27]). According to this
metric, we get the following overall running times: 2 communication steps for the all-to-all
and quorum-to-quorum algorithms; 3 communication steps for the leader and quorum-leader
algorithms; 4 communication steps for secondary leader; and 2n — 1 steps for the ring al-
gorithm in a system with n hosts. In contrast to what this metric suggests, in Section 3.1
we observe that in certain settings the secondary leader algorithm achieves the best overall
running time, whereas all-to-all often performs the worst. The running time of ring was

usually less than double the running times of the other algorithms.

Why does the communication step metric fail to capture actual algorithm behavior over
the Internet? First, not all communication steps have the same cost, e.g., a message from
MIT to Cornell can arrive within 20 ms., while a message from MIT to Taiwan may take
125 ms. Second, the latency on TCP links depends not only on the underlying message
latency, but also on the loss rate. If a message sent over a TCP link is lost, the message
is retransmitted after a timeout which is larger than the average round-trip time (RTT)
on the link. Therefore, if one algorithm message is lost, the algorithm’s overall running
time can be more than doubled. Since algorithms that exchange less messages are less
susceptible to message loss, they are more likely to perform well when loss rates are high.
This explains why the overall running time of all-to-all is miserable in the presence of lossy
links. Additionally, message latencies and loss rates on different communication paths on
the Internet often do not preserve the triangle inequality [3,15,26] because the routing
policies of Internet routers often do not choose an optimal path between two hosts. This
explains why secondary leader can achieve better performance by refraining from sending

messages on very lossy or slow paths.

We analyze our experimental results, and explain the observed algorithm running times in
terms of the underlying network characteristics — latency and loss rates. Due to the great
variability of running times, the average running time is not indicative of an algorithm’s

typical behavior. We therefore focus on the distribution of running times.

The communication step metric is widely used due to its ease of use. Several other perfor-
mance models, e.g., [7,24, 32], have been used to analyze distributed or parallel algorithms
(cf. Section 1.2). However, these do not realistically model algorithm behavior over the
Internet. At the end of this thesis, we suggest a refinement to the standard metric, which

gives a more realistic account of an algorithm’s efficiency, and at the same time is easy to

17



employ.

The rest of this thesis is organized as follows: Section 1.2 discusses related work. Chapter 2
describes the experiment setup and methodology. The following two chapters analyze exper-
imental results: Chapter 3 discusses gather-all algorithms and how their running times are
influenced by latency and message loss. Chapter 4 compares the two primitives and studies
the relationship between the probe set and the running time of gather-quorum algorithms.

Chapter 5 concludes the thesis and suggests an alternative performance metric.

1.2 Related Work

1.2.1 Internet Measurments

Obtaining data on different aspects of Internet communication is an emerging research field.
Some present research in this area focuses on measuring and analyzing the constancy of In-
ternet path characteristics such as routing, loss, and throughput [22,33]. Such research
focuses primarily on point-to-point communication, and not on the performance of dis-
tributed algorithms. A related project, pursued by Chandra et al. [5], studies the nature
of communication failures, including duration and location, and how they effect the end-
to-end availability of wide-area services. Another study, by Amir and Wool [2], evaluates
the availability of different quorum systems over the Internet. These research efforts are

orthogonal and complementary to ours.

Triangle Inequality and Overlay Networks

The fact that Internet routing often does not select optimal paths was previously observed
by a number of projects — Detour [25, 26], Moshe [15], and RON [3]. These projects construct
overlay networks and improve performance by routing messages over these overlays on better
paths than would be chosen by Internet routing. In contrast, we neither assume an overlay
infrastructure, nor route messages through hosts that are not participating in the current
instance of the algorithm. Moreover, the aforementioned projects use overlays in order to
find better paths for point-to-point communication only. When an overlay is used at the
routing level, as in these projects, messages from the same source that are routed through
the same host to different destinations are not merged into a single message. For example,
let us consider the all-to-all algorithm running over an overlay that routes messages from
Taiwan to the Netherlands via Cornell. Taiwan would send identical messages to Cornell and
the Netherlands, which would be sent as two separate messages on the link from Taiwan
to Cornell. Likewise, the overlay would not combine the information sent from Taiwan

and Cornell to the Netherlands into a single message. Such sending of multiple messages
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increases the probability of some message being lost, which increases the average running

time.

1.2.2 Metrics

Another line of research focuses on providing a theoretical framework for predicting and
evaluating the performance of parallel and distributed algorithms. A number of papers,
e.g. [7,24,28,32], focus on settings where message processing overhead is significant, and
show that this favors algorithms that send fewer messages. While our results also illustrate
the advantage of sending fewer messages, the reasons for this are different: in our setting, it
is due to high variability of message latency (due to loss) rather than processing overhead,
which is negligible in our setting. The conclusions from such studies do not, in general,
apply to our setting. For example., leader has a high processing overhead (at the leader),
but this does not hamper its performance in our setting. Moreover, these analyses assume
that the evaluated algorithm is the only source of overhead in the system. In contrast,
over the Internet, the evaluated algorithms have little impact on the total overhead of the

system.

1.2.3 Quorums

The primary foci for research on evaluation of quorum systems are availability and load. The
load typically is evaluated assuming a probe set consisting of a single quorum. A common
metric used to evaluate the availability of quorum systems is the probability of failure.
Quorum systems fail when no quorum exists. Different approaches have been used to study
this metric. One approach is using probabilistic models to obtain theoretical results on the
probability of failure [21, 23]. While this approach is most rigorous, it makes oversimplifying
assumptions about the underlying network. Assumptions such as independent failures and
full connectivity generally do not hold in the Internet. Another approach used by Amir and
Wool [2] involves running experiments consisting real hosts connected to the Internet and
using a group membership protocol to track failures and network partitions. The availability
of different quorum systems is then evaluated based on the traces the were collected from the
experiments. However, none of these studies provide an adequate framework for evaluating

the running times of distributed algorithms that use quorum systems.
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Chapter 2

Methodology

2.1 The Hosts

We use the following 28 hosts (the majority of which is part of the RON testbed [3]) in our

experiments:

e MIT, at the Massachusetts Institute of Technology, Cambridge, MA, USA;
e MAI1, at a commercial ISP in Cambirdge, MA, USA;

e MA2, at a second commercial ISP in Cambridge, MA, USA;

e MAS, at a commercial ISP in Martha’s Vineyard, MA, USA;

e NYU, at New York University, New York, NY, USA;

e CU, at Cornell University, Ithaca, NY, USA;

e NY, at a commercial ISP in New York, NY, USA;

e CMU, at Carnegie Mellon University, Pittsburgh, PA, USA;

e NC, at a commercial ISP in Dhuram, NC, USA;

e Emulab , at the University of Utah, Salt Lake City, UT, USA;

e UT1, at a commercial ISP in Salt Lake City, UT, USA;

e UT2, at a second commercial ISP in Salt Lake City, UT, USA;

e UCSD, at the University of California San Diego, San Diego, CA, USA;

e (A1, at a commercial ISP in Foster City, CA, USA;
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e (A2, at Intel Labs in Berkeley, CA, USA;

e (A3, at a commercial ISP in Palo Alto, CA, USA;

e (A4, at a commercial ISP in Sunnyvale, CA, USA;

e Canada (CND), at a commercial ISP in Nepean, ON, Canada;

e Sweden (SWD), at Lulea University of Technology, Lulea, Sweden;

e Netherlands (NL), at Vrije University, Amsterdam, the Netherlands;

e Greece (GR), at the National Technical University of Athens, Athens, Greece;

e Switzerland (Swiss), at the Swiss Federal Institute of Technology, Lausanne, Switzer-
land;

e Israel (ISR1), at the Israel Institute of Technology (Technion), Haifa, Israel;
e Israel (ISR2), at the Hebrew University of Jerusalem, Jerusalem, Israel;

e Korea (KR), at Korea Advanced Institute of Science and Technology, Daejon, South

Korea;
e Taiwan (TW), at National Taiwan University, Taipei, Taiwan;
e Australia (AUS), at the University of Sydney, Sydney, Australia; and

e New Zealand (NZ), at Victoria University of Wellington, Wellington, New Zealand.

All the hosts run either FreeBSD or Linux or Solaris operating systems.

2.2 Server Implementation

At every host we run a server, implemented in Java, optimized with the GCJ compiler.
Each server has knowledge of the IP addresses and ports of all the potential servers in the
system. Every server keeps an active TCP connection to every other server that it can
communicate with. We disable TCP’s default waiting before sending small packets (cf.
Nagle algorithm, [30, Ch. 19]). The system implements asynchronous I/O using threads.
Each server periodically attempts to set up connections with other servers to which it is
not currently connected. A crontab monitors the status of the server, and restarts it if
it is down. Thus, when either a server or communication failure is repaired, connection is
promptly reestablished. In case the communication is not transitive, different hosts can have
different views of the current set of participants. For gather-all, we present performance

results only for periods during which all the hosts had identical perceptions of the set of
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connected hosts. In case of host or communication failures, an instance of the algorithm
may fail to terminate. This situation can be detected by the failure of a TCP connection

or by a timeout.

Each server has code implementing the algorithms in Section 1.1. The server periodically
invokes each algorithm: it sleeps for a random period, and then invokes one of the algo-
rithms, in round-robin order. Each invocation of an algorithm is called a session. We use
randomness in order to reduce the probability of different sessions running at the same time
and delaying each other; this is easier than synchronizing the invocations, as the hosts do

not have synchronized clocks.

We constantly run ping (and traceroute in the last two experiments) from each host to
each of the other hosts, periodically sending ICMP packets, in order to track the routing
dynamics, the latency and loss rate between every pair of hosts in the underlying network.

The ping and traceroute processes are also monitored by a crontab.

2.3 Running Times and Clock Skews

We use two measures of running time:

e The local running time of a session at a particular host is the clock time elapsing from
when this host begins this session and until the same host terminates the session.
Where we present performance measurements, we give local running times at the

initiator only.

e The overall running time of a session is the time elapsing from when the initiator

begins this session until all the hosts terminate this session.

Each host writes to log its starting time and termination time for each session, according
to its local clock. Since we do not own the hosts used in our experiments, we were not able
to synchronize their clocks. Therefore, in order to deduce the overall running time from the

log files, we need to know the skews between different hosts’ clocks.

We now explain how we estimate the clock differences. Whenever a host A sends a message
to host B, it includes in the message its local clock time. When host B receives the message,
it computes the difference between its local clock time and the time in the message, and
writes this value to log. Denote this value by Ayp. Assume that B’s clock is dap time
ahead of A’s, and assume that the average message latency from A to B and from B to A is
lap. Then on average, Asp = lap + dap and symmetrically, Ag4 = lap — dap. Therefore,
Aap — Apya is, on average, 2dap. We approximate the clock difference between A and B
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as:

(average(Aap) — average(Apa))/2

This approximation method has some limitations: since messages are exchanged over TCP,
the latency can vary substantially in case of message loss. Therefore, if a pair of hosts
communicate over a lossy link, this method can give a bad approximation for the clock
difference. Furthermore, high variations in the (loss-free) latency between a pair of hosts
make it harder to distinguish between high TCP latencies that are due to message loss and
those that due to variations (routing delays). However, we can detect (and avoid) some
of the cases in which lost messages occur in bursts by setting a threshold. If the round-
trip time of a sample exceeds the given threshold, then we can discard that sample when
computing the clock difference. From our observation, for pairs of hosts with loss rates less
than 10%, most losses are clustered around short periods of time (bursts). This increases the
accuracy of the above method in detecting losses. The higher we set the threshold, the less
likely we are to discard samples that do not reflect a loss, but message losses are also more
likely to go undetected. For each pair of hosts, we set the threshold to be twice the average
round-trip time plus four times the standard deviation. Moreover, we discovered that when
the average clock skew is computed over a long interval, results can be inconsistent, because
some hosts experience clock drifts. So instead of taking the average over all samples, we
compute the average over samples obtained in shorter intervals (we used intervals that are

one hour long).

We fix a base host h, and compute the clock differences between h and every other host
per every 15 minute time interval. Then, all logged running times in this interval are
adjusted to h’s clock, and the overall running time is inferred from the adjusted initiation
and termination times. In order to minimize the effect of TCP retransmission delays, it is
preferable to choose a host that has reliable links to every other host. In order to check the
consistency of our results, we computed the overall running times using three different base
hosts: MIT, Emulab, and Cornell. We chose these hosts since the links to them from all

hosts were fairly reliable and exhibited a low variation of latency.

Having computed the running times three different ways, we found the results to be fairly
consistent. The distributions of overall running times as computed with each of the three
hosts were almost identical. Moreover, for over 90% of the sessions with overall running

times up to 2 seconds, the three computed running times were within 20 ms. of each other.
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2.4 Running Time Distribution over TCP /IP

We now explain the mathematical model that underlies the analysis of the experimental

results in this paper.

After TCP sends a message, it waits for an acknowledgement. If an acknowledgement does
not arrive for a designated retransmission time-out, TCP retransmits the message. TCP’s
initial retransmission time-out is the estimated average RTT on the link plus four times the
mean deviation of the RT'T, where both the average and the mean deviation are computed
over recent values. If the second copy is also lost, TCP waits twice the amount of time it
waited before retransmitting the first lost copy, and this continues to grow exponentially
with number of lost copies. [30, Ch. 21]

We estimate the distribution of the TCP latency based on the underlying link latency d and
loss probability p. Assume first that d is half the RTT, that losses are independent, and
that the latency does not vary, so the RT'T’s mean deviation is 0. Then the TCP latency
is d with probability 1 — p, 3d with probability p(1 — p), 7d with probability p?(1 — p),
and so on. This is a rough estimate, as it does not address variations in latency and loss.
Correlated loss causes the first peak (at latency d) to occur with higher probability, and
causes the tail of the distribution to be sparser; this will be most significant on links with

high loss rates. A high variation of latency will shift all the peaks except the first.

We use this estimate to analyze the distribution of the running time of a stage of an
algorithm. Let p; be the probability that the latency of a message sent on link 7 is at most
D (as computed above). Then the probability that an algorithm stage takes at most D
time is the product of the probabilities p; for all the links traversed in this stage. More
generally, the running time of a stage is a random variable representing the maximum value
of the random variables representing the TCP link latencies, with distributions defined by
the RT'T and loss rate as explained above. As the number of random variables over which
the maximum is computed grows, the expected maximum value increases. This explains
why all-to-all, which sends O(n?) messages in each stage performs much worse than leader,
which sends O(n).

2.5 Pseudo Code of the Algorithms
Each server runs the following threads:

e A thread for monitoring connections to other hosts (reconnects if necessary).

e One thread per live connection used to exchange messages with the server at the other

end of the connection.
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e A thread for accepting connections from other hosts.

e A thread for administrating the server.

We now present the server in pseudo code. In defining variables, we use the following data
types: connection is an IP address and port number identifying a server; sid is the type
for session identifiers; time is for real time values; alg-type is either leader, quorum-leader,

all-to-all, quorum-to-quorum, secondary leader, or ring.

Messages Exchanged between different servers have the following format:

<sid session-id, alg-type alg, connection initiator, connection sender, int stage>

where session-id is a globally unique session identifier; alg is the algorithm being run;
initiator is the server that initiates this session; sender is the server sending the message;
and stage denotes the communication step, which can be 1, 2, or 3 in case of a leader (or
quorum-leader) session, 0, 1, 2, or 3 in case of a secondary leader session, and 1 or 2 in case

of an all-to-all or a quorum-to-quorum or a ring session (see Figure 1.1).

Figure 2.1 Variables used by the algorithms.

connection my-id

connection my-neighbor

hashtable neighbor: connection — connection

set of connections live-connections

hashtable sent-to: sid — set of connections
hashtable received-from: sid — set of connections
hashtable start-time: sid — time

We list the variables used by the server in Figure 2.1. The server holds its own IP address
and port in a variable my-id. Each server is assigned a neighbor that specifies the flow of
messages in a ring session. The server holds its neighbor’s IP address and port in a variable
my-neighbor. Each server tracks every other server’s neighbor as well as its own in the hash
table neighbor mapping connections to their neighboring connections. The server keeps
track of the set of connections that are up and running in the variable 1ive-connections.
This variable is maintained by the thread that tracks connections; we do not give the pseudo
code for this thread. Thus, in the pseudo code we give below, 1ive-connections is a read-
only variable. A server s associates each session z with a start time, a set of remote servers
that received a session z message from s, and a set of remote servers that sent a message to s
in session . These are held in the hash tables start-time, sent-to, and received-from,

resp.
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2.5.1 The Gather-All Primitive

In the subsections below we give the pseudo code for the four algorithms that implement

the gather-all primitive.

All-to-All
The following procedure is used to initiate an all-to-all session:

procedure run-all-to-all
if (live-connections = (})
abort
endif
message m — <session-id, all-to-all, my-id, my-id, 1>
start-time[session-id] ¢ clock
sent-to[session-id] « 0
received-from[session-id] <« )
V ¢ € live-connections do
send m to c
sent-to[session-id] < sent-tol[session-id] U {c}

od

All-to-all sends two types of messages: stage 1 messages from the initiator to non-initiators;
and stage 2 messages from non-initiators to all servers. Both messages are handled using

the following event handler:

Upon recv m with m.alg-type = all-to-all
if (start-time[m.session-id] = null)
start-time[session-id] < clock
sent-to[session-id] « (
received-from[session-id] <+ {m.sender}
V ¢ € live-connections do
send <m.session-id, m.alg-type, m.initiator, my-id, 2> to c
sent-to[session-id] < sent-to[session-id] U {c}
od
else
received-from[session-id] < received-from[m.session-id] U {m.sender}
endif
if ((sent-to[m.session-id] N live-connections) C received-from[m.session-id])
end-time < clock
write start-time[m.session-id], end-time to log file

endif
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Leader
The following procedure is used to initiate a leader session:

procedure run-leader
if (live-connections = (})
abort

endif

message m — <session-id, leader, my-id, my-id, 1>
start-time[session-id] ¢ clock
sent-to[session-id] « 0
received-from[session-id] < 0
V ¢ € live-connections do

send m to c

sent-to[session-id] <« sent-tol[session-id] U {c}
od

Leader sends three types of messages: stage 1 and stage 3 messages are sent by the initia-
tor and received by non-initiators, and stage 2 messages are sent by non-initiators to the

initiator. The following are event handlers for these messages:

Upon recv m with m.alg-type = leader and stage = 1
start-time[m.session-id] = clock

send <m.session-id, m.alg-type, m.initiator, my-id, 2> to m.initiator

Upon recv m with m.alg-type = leader and stage = 2

received-from[m.session-id] ¢ received-from[m.session-id] U {m.sender}

if (sent-to[m.session-id] N live-connections C received-from[m.session-id])
V ¢ € received-from[session-id] N live-connections do

send <m.session-id, m.alg-type, m.initiator, my-id, 3> to c

od
end-time < clock
write start-time[m.session-id], end-time to log file

endif

Upon recv m with m.alg-type = leader and stage = 3
end-time < clock

write start-time[m.session-id], end-time to log file

Secondary Leader
The following procedure is used to initiate a secondary leader session:

procedure run-secondary-leader
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if (live-connections = (})

abort
endif
pick a host h from live-connections to be the secondary leader
message m = <session-id, secondary-leader, my-id, my-id, 0>
start-time[session-id] ¢ clock

send m to h

In this algorithm, stage 0 messages are sent from the initiator to the secondary leader; the
secondary leader sends a stage 1 message to non-initiators; servers send stage 2 messages
to the secondary leader; and the secondary leader sends stage 3 messages to non-initiators.
Messages of type 1,2, and 3 are handled exactly the same way as in the leader algorithm.

The following is the event handler for messages of type 0:

Upon recv m with m.alg-type = secondary-leader and stage = 0

start-time[m.session-id] <« clock

sent-to[m.session-id] < 0

received-from[m.session-id] <+ 0

V ¢ € live-connections - {m.initiator} do
send <m.session-id, m.alg-type, m.initiator, my-id, 1> to c
sent-to[session-id] = sent-to[session-id] U {c}

od

if (sent-to[m.session-id] = ()
send <m.session-id, m.alg-type, m.initiator, my-id, 3> to m.initiator
end-time < clock
write start-time[m.session-id], end-time to log file

endif

Ring
The following procedure is used to initiate a ring session:

procedure run-ring
if (live-connections = (})
abort
endif
message m — <session-id, ring, my-id, my-id, 1>
n < my-neighbor
while (n ¢ live-connections) do
n < neighbor[n]
od
start-time[session-id] ¢ clock

send m to n
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In this algorithm, all servers receive stage 1 messages from their neighbors, and all servers
except the initiator receive stage 2 messages from their neighbors. The following are event

handlers for these messages:

Upon recv m with m.alg-type = ring and stage = 1
if (m.initiator = my-id)
n < my-neighbor
while (n ¢ live—-connections) do
n < neighbor[n]
od
if (n.id = my-id)
end-time < clock
write start-time[m.session-id], end-time to log file
else
m.stage < 2
m.sender < my-id
send m to n
end-time < clock
write start-time[m.session-id], end-time to log file
endif
else
start-time[session-id] < clock
n < my-neighbor
while (n ¢ live-connections) do
n < neighbor[n]
od
m.sender < my-id
send m to n

endif

Upon recv m with m.alg-type = ring and stage = 2
n < my-neighbor
while (n ¢ live—-connections) do
n ¢ neighbor[n]
od
if (n.session-id !'= initiator)
m.sender < my-id
send m to n
endif
end-time < clock

write start-time[m.session-id], end-time to log file
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2.5.2 The Gather-Quorum Primitive

In the subsections below we give the pseudo code for the two algorithms that implement the
gather-quorum primitive*. The two algorithms presented in this section, quorum-to-quorum
and quorum-leader, behave very closely to the all-to-all and leader algorithms presented in
Section 2.5.1. There are a some notable differences however. First, both algorithms in this
section take an additional parameter, probe-set, which is the set of connections that will
be probed in this session. Second, both algorithms in this session terminate as soon as a
quorum of hosts hear from a quorum of hosts. Finally, unlike the all-to-all algorithm, in the
quorum-to-quorum algorithm, hosts do not begin to send message to other hosts until they

have been probed by the initiator. The following code assumes a generic quorum system.

Quorum-to-Quorum
The following procedure is used to initiate a quorum-to-quorum session:

procedure run-quorum-to-quorum (probe-set)

if (live-connections N probe-set does not contain a quorum)
abort

endif

message m — <session-id, all-to-all, my-id, my-id, 1>

start-time[session-id] ¢ clock

received-from[session-id] <+ {my-id}

V ¢ € live-connections N probe-set do
send m to ¢

od

Quorum-to-quorum sends two types of messages: stage 1 messages from the initiator to
non-initiators; and stage 2 messages from non-initiators to all servers. The following is the

event handlers for these messages:

Upon recv m with m.alg-type = quorum-to-quorum
if (start-time[m.session-id] = null)
start-time[session-id] < clock
received-from[session-id] <« {my-id}
endif
received-from[session-id] ¢ received-from[session-id] U {m.sender}

if stage = 1

*In order to avoid running too many algorithms, we did not actually run any of the algorithms in this section.
Instead, we can extrapolate the running times of these algorithms from the data obtained by running their
counter-parts presented in Section 2.5.1. In each of these instances we are only interested in the times when
a quorum hears from a quorum and we disregard data that is irrelevant.
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V ¢ € live-connections N probe-set do
send <m.session-id, m.alg-type, m.initiator, my-id, 2> to c
od
if (received-from[m.session-id] N probe-set contains a quorum)
end-time < clock
write start-time[m.session-id], end-time to log file
endif

endif

Quorum-Leader
The following procedure is used to initiate a quorum-leader session:

procedure run-quorum-leader (probe-set)
if (live-connections N probe-set does not contain a quorum)
abort

endif

message m — <session-id, quorum-leader, my-id, my-id, 1>
start-time[session-id] ¢ clock
received-from[session-id] ¢ {my-id}
V ¢ € live-connections N probe-set do

send m to ¢
od

Quorum-leader sends three types of messages: stage 1 and stage 3 messages are sent by the
initiator and received by non-initiators, and stage 2 messages are sent by non-initiators to

the initiator. The following are event handlers for these messages:

Upon recv m with m.alg-type = quorum-leader and stage = 1
start-time[m.session-id] = clock

send <m.session-id, m.alg-type, m.initiator, my-id, 2> to m.initiator

Upon recv m with m.alg-type = quorum-leader and stage = 2
received-from[m.session-id] ¢ received-from[m.session-id] U {m.sender}
if (probe-set N received-from[m.session-id] contains a quorum)

V ¢ € received-from[session-id] N live-connections N probe-set do
send <m.session-id, m.alg-type, m.initiator, my-id, 3> to c

od

end-time < clock

write start-time[m.session-id], end-time to log file

endif

Upon recv m with m.alg-type = quorum-leader and stage = 3

end-time < clock
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write start-time[m.session-id], end-time to log file
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Chapter 3

The Gather-All Primitive

This chapter presents three experiments, in which we ran the four algorithms that implement
the total-gather primitive. A total of ten hosts participated in these experiments. For each
experiment, we only present the periods in which every host that participated in that
experiment was up and running. While the experiments were running, each host sent a
ping probe to every other host once per minute. the results in this chapter were published
in [4].

3.1 The Effect of Message Loss

This section presents Experiments I, II, each of which lasted three and a half days. Ring
was not tested in these experiments. Each of the other three algorithms was initiated by
each of the hosts every 7.5 minutes on average, and in total, roughly 650 times. Section 3.2,
presents Experiment I, in which the TW host had two links with very high loss rates. We
then excluded the TW host, and ran Experiment II, which we present in Section 3.3.

3.2 Experiment I

The following hosts participated in this experiment: MIT, CU, NYU, Emulab, UT2, CA1,
UCSD, KR and TW. Table 3.1 presents the average RTT and loss rate from every host to
every other host during the experiment, as observed by ping. The loss rates from TW to
UT2 and CA1 are very high (37% and 42%, respectively), and all the other loss rates are
up to 8%. Losses sometimes occur in bursts, where for a period of several minutes all the
messages sent on a particular link are lost. The latencies generally vary less, but occasionally

we observe periods during which the latency is significantly higher than average.

In this experiment MIT serves as the secondary leader for TW, KR, CU, UT2, NYU, and
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Table 3.1 Network characteristics during Experiment I.

From To | KR | TW | MIT | UCSD | CU | NYU | CA1 | UT2 | Emulab
KR Avg. RTT 387 291 272 265 267 168 479 2568
Loss Rate — 6% 7% 2% 0% 0% 1% 1% 2%
TW Avg. RTT | 388 243 177 211 220 221 267 186
Loss Rate 5% — 8% 3% 3% 4% 1% | 37% 4%
MIT Avg. RTT | 300 253 115 40 34 112 99 80
Loss Rate 6% 8% — 5% 6% 6% 6% 5% 5%
UCSD Avg. RTT | 289 195 125 91 102 42 105 61
Loss Rate 2% | 4% 5% — 0% 0% 0% 0% 0%
CU Avg. RTT | 266 211 47 73 9 88 101 47
Loss Rate 0% | 4% 5% 0% — 0% 1% 0% 0%
NYU Avg. RTT | 267 220 39 83 9 70 78 56
Loss Rate 0% | 4% 5% 0% 0% — 0% 0% 0%
CA1l Avg. RTT | 168 223 121 32 88 75 54 78
Loss Rate 1% | 42% 5% 0% 1% 0% — 0% 0%
uT2 Avg. RTT | 479 266 97 88 100 78 50 13
Loss Rate 1% | 37% 5% 0% 0% 0% 0% — 3%
Emulab Avg. RTT | 258 186 76 48 47 57 74 14
Loss Rate 2% | 4% 5% 0% 0% 0% 0% 3% —

Emulab. Emulab is the secondary leader for the rest. We chose secondary leaders that had
relatively reliable links to all hosts. We used secondary leaders for all hosts in order to have
a meaningful comparison. In practice, secondary leaders would only be used for hosts that

have poor links.

Due to occasional loss bursts and TCP’s exponential backoff, some running times are very
high (several minutes long). Thus, the average running time is not representative. In
Table 3.2, we present statistical data about the running times, both overall and local, of the
three algorithms. We present the average running time (in milliseconds) taken over runs
that complete within 2 seconds. Most runs that experience no more than 2 consecutive
losses are included in this average. In Figure 3.1, we present histograms of the distribution
of overall running times under 1.3 seconds observed at three of the hosts — MIT which
has no lossy links, UT2 which has one lossy link, and TW which has two. The first peak
in each histogram represents the overall running time of loss-free runs. The size of the
peak illustrates the percentage of the runs of that particular algorithm that were loss-free.
The running times over 1 second were sparsely distributed. To illustrate this, we give the

percentage of runs that exceed 2, 4, and 6 seconds in Table 3.2.

The overall running time of all-to-all is poor: less than half the runs are under 2 seconds.
This is because every instance of all-to-all sends two messages over each lossy link, regardless
of the initiator. Thus, most instances experience multiple consecutive losses. Leader has a
better overall running time except in TW. This is because each instance of leader initiated
at TW traverses each lossy link three times. Instances of leader running from other hosts
traverse either one or no lossy links. At the three hosts that have lossy links (TW, UT2,
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Table 3.2 Measured running times, milliseconds, Experiment I.

Algorithm All-to-all Leader Secondary
Initiator Overall Local | Overall Local | Overall Local
KR Avg. (runs under 2 sec) 922 550 873 592 695 613
% runs over 2 sec 55% 6% 15% 8% 12% 6%
% runs over 4 sec 42% 3% 9% 4% 7% 3%
% runs over 6 sec 37% 3% 7% 3% 5% 3%
™ Avg. (runs under 2 sec) 866 645 1120 844 679 607
% runs over 2 sec 54% 24% 64% 43% 13% 7%
% runs over 4 sec 40% 19% 43% 30% 7% 4%
% runs over 6 sec 36% 18% 37% 25% 6% 3%
MIT Avg. (runs under 2 sec) 811 295 541 335 585 408
% runs over 2 sec 55% 3% 13% 6% 9% 3%
% runs over 4 sec 42% 3% 8% 4% 5% 2%
% runs over 6 sec 37% 3% 6% 3% 4% 2%
UCSD Avg. (runs under 2 sec) 860 328 473 332 602 420
% runs over 2 sec 51% 2% 6% 2% 8% 3%
% runs over 4 sec 41% 2% 5% 2% 5% 1%
% runs over 6 sec 35% 2% 4% 2% 4% 1%
6]0) Avg. (runs under 2 sec) 831 320 577 357 578 392
% runs over 2 sec 53% 1% 6% 1% 12% 5%
% runs over 4 sec 40% 2% 4% 1% 8% 4%
% runs over 6 sec 35% 2% 4% 1% 6% 3%
NYU Avg. (runs under 2 sec) 860 319 562 348 598 408
% runs over 2 sec 54% 2% 8% 3% 12% 6%
% runs over 4 sec 41% 3% 6% 2% 8% 3%
% runs over 6 sec 35% 2% 5% 2% 6% 3%
CA1 Avg. (runs under 2 sec) 850 450 77 553 618 450
% runs over 2 sec 51% 17% 30% 24% 9% 3%
% runs over 4 sec 40% 13% 21% 16% 6% 2%
% runs over 6 sec 35% 11% 19% 15% 5% 2%
UT2 Avg. (runs under 2 sec) 872 513 1031 689 636 452
% runs over 2 sec 52% 25% 45% 36% 13% 6%
% runs over 4 sec 42% 21% 34% 28% 8% 4%
% runs over 6 sec 36% 17% 29% 23% 6% 3%
Emulab  Avg. (runs under 2 sec) 844 320 544 356 633 448
% runs over 2 sec 52% 2% 8% 3% 10% 5%
% runs over 4 sec 41% 2% 5% 2% 6% 3%
% runs over 6 sec 37% 2% 4% 2% 5% 2%

and CA1), secondary leader achieves the best overall performance by bypassing the lossy

links.

All-to-all has the best local running time at hosts that do not have lossy links. It has a
better local running time than leader due to cases in which the triangle inequality does not
hold. For example, when UT?2 initiates all-to-all, CA1 receives the first message, on average,
after 25 ms., and sends a response to all hosts. KR receives this response, on average, after
84 ms., that is, 109 ms. after UT2 sent the first message. This is shorter than the average
time it takes UT2’s message to get to KR (240 ms.). Therefore, KR engages in all-to-all

from UT2 earlier than in leader from UT2. Similarly, when the first stage message to some
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host is lost, all-to-all in essence sends it also by a number of alternate paths, one which can
prove more effective. This is why the local running time of all-to-all at TW is dramatically
better than that of leader.

In the absence of packet loss, the overall running time of leader should be roughly three
times the one-way latency on the longest link from the leader, or 1.5 times the RTT. From
MIT, the longest link, to KR, has an average RTT of 300 ms. Indeed, the first peak is
centered around 400 450 ms. Since all links to MIT other than from TW and KR have
significantly shorter latencies (up to 115 ms.), this running time should be experienced
whenever there are no losses on the TW and KR links, and at most one or two on each
of the other links. Since three messages are sent on each link, and the loss rates of the
longest links are 6% and 8%, the probability of no loss occurring on either of the long links
is: .94 % .92% ~ .65. Indeed, running times up to 450 ms. occur in 429 out of 659 runs, i.e.,
65%.

The longest link from TW is to KR, and its average RTT is 388 ms. Therefore, as expected,
the first peak of leader from TW is centered around roughly 1.5 times this RTT, at the
550-600 ms. range. This peak includes only 65 of 643 runs (10%). We now explain why.
First, observe that if any of the three messages sent on the link to KR or to UT2 is lost, the
running time exceeds the peak. The probability of no loss on the KR link is .95% ~ .86 and
the probability of no loss on the UT?2 link is .63% ~ .25. Next, consider the link to CA1.
In the absence of losses, the response from CA1l to TW in the second stage arrives after
about 221 ms. (the RTT), and the response from KR to TW arrives after about 388 ms.
Once TW sends the final stage message to all hosts, the algorithm terminates at all hosts
within half the RTT on the longest link, or roughly 194 ms. If either the first message from
TW to CA1 or CA1’s response is lost once, then the response arrives roughly after 450 ms.,
assuming low mean deviation of RT'Ts. This is sufficiently close to the 388 ms. TW has to
wait for KR’s message, so it falls in the first peak. However, if the final stage message from
TW to CA1 is lost, then CA1 terminates 332 ms. after TW sends the last message, which
adds 138 ms. to the overall running time, and pushes it out of the first peak. Two losses on
the link to CA1 always push this session away from the peak. The last message to CAl is
not lost with probability 58%. The probability that at most one of the previous messages
is lost, and if it is lost, the retransmission is not lost, is: .58% + 2 % .42 % .58% ~ .62. So the
probability of the first peak should be .86 * .25 % .58 % .62 = .08. This is slightly lower than
the observed 10%; we hypothesize that this is due to correlated loss, which is significant

here due to the high loss rates involved.

The longest link from UT2 is to KR, with an average RTT of 479 ms. Therefore, the peak
is around 700-850. We now try to explain why 36% of the runs (230 of 640) are in this
range. The probability of having no losses on the KR link is 97%. The link from UT2 to
TW is quite erratic. Although the average RTT is 266 ms., the RTT occasionally jumps as
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high as 800 ms., and standard deviation of RTTs for the entire experiment period is 139
ms. In periods with low RTT variations, when the mean deviation computed by TCP is
low, a run with a single loss to TW in one of the first two stages of the algorithm will fall
in the first peak. A loss during a period with a high mean deviation or a loss in the last
stage of the algorithm pushes the running time out of the peak. The probability that the
last message on this link is not lost is 63%. We hypothesize that the mean deviation is low
enough to keep us in the peak approximately half the time. With this assumption, we get
that the probability of a loss in one of the first two stages not pushing us out of the peak is
54%, and the probability of the peak should be: .97 x .63 x .54 ~ .33, which is close to the
observed 36%.

Since TW uses MIT as a secondary leader, we expect secondary leader from TW to behave
the same as leader initiated at MIT, with an additional delay of 120 ms. (half the RTT
between TW and MIT). Indeed, the first peak is centered around 500 550, and includes
roughly the same percentage of the runs as leader at MIT (440/643 = 68%). All-to-all’s
peak exhibits the lowest overall running time, but the percentage of runs in the first peak

is very low, and is the same for all initiators.

Figure 3.2 shows the local running times at the same hosts. The local running time for

all-to-all initiated by MIT has a higher peak, as it does not involve any lossy links.

3.3 Experiment II: Excluding the Lossiest Host

Table 3.3 Network characteristics during Experiment II.

From To | KR | MIT | Cornell | NYU | CA1 | UT2 | Emulab | UT1
KR Avg. RTT 294 261 257 165 452 275 500
Loss Rate — 3% 1% 3% 0% 1% 3% 1%
MIT Avg. RTT | 298 43 38 117 117 82 86
Loss Rate 2% — 1% 1% 1% 2% 3% 2%
Cornell Avg. RTT | 269 46 16 89 101 47 87
Loss Rate 1% 1% — 0% 1% 1% 3% 1%
NYU Avg. RTT | 257 38 16 69 76 60 60
Loss Rate | 3% 1% 0% 0% 0% 2% 1%
CA1l Avg. RTT | 165 115 92 75 47 79 85
Loss Rate | 0% 2% 1% 0% 1% 2% 1%
UT2 Avg. RTT | 454 109 101 77 47 14 31
Loss Rate | 1% 2% 1% 0% 0% 6% 1%
Emulab Avg. RTT | 275 83 47 60 74 15 50
Loss Rate | 4% 4% 2% 2% 2% 6% 4%
UT1 Avg. RTT | 503 82 82 60 86 30 52
Loss Rate | 1% 1% 1% 1% 1% 1% 5%

We repeated the experiment above without the TW host, which was an end-point on both
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lossy links. We also excluded UCSD because it was overloaded at the time of the experiment,

and we added UT1. The network characteristics are presented in Table 3.3.

Table 3.4 Measured overall and local running times, Experiment II.

Algorithm: All-to-all Leader Secondary
Initiator Overall Local | Overall Local | Overall Local
KR Avg. (runs under 2 sec) 588 509 758 551 407 388
% runs over 2 sec 12% % 11% 6% 9% 4%
MIT Avg. (runs under 2 sec) 524 278 465 296 442 311
% runs over 2 sec 11% 4% 10% 5% 10% 6%
Cu Avg. (runs under 2 sec) 532 277 440 277 471 315
% over 2 sec 11% 4% 9% 5% 10% 5%
NYU Avg. (runs under 2 sec) 519 291 449 201 446 296
% over 2 sec 12% 5% 10% 5% 10% 5%
CA1l Avg. (runs under 2 sec) 535 222 378 219 486 367
% over 2 sec 11% 5% 10% 5% 9% 6%
UT2 Avg. (runs under 2 sec) 500 265 866 498 494 383
% over 2 sec 10% 5% 11% 6% 9% 5%
Emulab  Avg. (runs under 2 sec) 526 287 506 316 480 338
% over 2 sec 12% 5% 9% 6% 8% 4%
UT1 Avg. (runs under 2 sec) 495 295 982 571 481 367
% runs over 2 sec 11% 4% 11% 5% 10% 6%

The running times observed in this experiment are summarized in Table 3.4. In this ex-
periment at least 88% of the runs are under 2 seconds, for all algorithms and all initiators.
Even in this setting, all-to-all does not have the best overall running time for any initiator,
because even the relatively low loss rates get amplified by the fact that so many messages
are sent. Secondary leader works best for most hosts, except for those that are themselves

optimal leaders.

When one considers the metric of local running time, we observe that the local running time
of all-to-all is always superior to that of leader, regardless of the quality of links. Although
they both traverse the same links the same number of times, all-to-all has the advantage that
its communication stages may overlap. For example, when the message from the initiator
to one of the hosts is delayed due to loss, that host can hear from another host that the
algorithm has initiated before receiving the initiator’s late message. In the presence of very
lossy links, secondary leader outperforms the other two algorithms both locally and globally

since it is the only one that avoids the lossy links altogether.

3.4 The Impact of Latency

We now present results from Experiment III. In addition to the hosts that participated in

Experiment I, the NL host was also included. In this experiment, we evaluated the all-to-all,
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Table 3.5 Network characteristics during Experiment III.

From To KR TW | MIT | UCSD CU NYU | CA1 | UT2 | Emulab | NL
KR Avg. RTT 643 547 526 587 588 152 446 521 701
Loss Rate — 9% 6% 6% 4% 4% 1% 3% 7% 8%
TW Avg. RTT 639 235 178 212 222 219 2568 187 322
Loss Rate | 10% — 4% 3% 4% 3% 43% | 49% 4% 4%
MIT Avg. RTT 549 236 97 32 28 98 78 71 150
Loss Rate 8% 3% — 0% 0% 0% 1% 2% 1% 0%
UCSD Avg. RTT 526 179 96 73 84 49 91 48 172
Loss Rate 6% 3% 0% — 0% 0% 0% 2% 1% 0%
CU Avg. RTT 588 211 32 73 9 85 88 47 138
Loss Rate 4% 4% 0% 0% — 0% 49% | 31% 1% 0%
NYU Avg. RTT 587 222 28 83 9 70 70 57 138
Loss Rate 4% 4% 0% 0% 0% — 0% 2% 1% 0%
CA1l Avg. RTT 152 219 102 31 94 78 54 81 161
Loss Rate 0% | 42% 1% 0% 31% 0% — 2% 4% 1%
UT2 Avg. RTT 446 262 7 91 88 71 50 13 154
Loss Rate 3% | 48% 2% 2% 31% 2% 2% — 6% 2%
Emulab Avg. RTT 522 187 70 48 47 57 75 14 145
Loss Rate 8% 5% 1% 1% 1% 1% 4% 6% — 1%
NL Avg. RTT 697 324 155 175 141 143 165 157 49
Loss Rate 7% 3% 0% 0% 1% 0% 1% 2% 1% —

leader, and ring algorithms. All the hosts except UT1 participated in this experiment. Each
host ran about 510 sessions of each algorithm. Table 3.5 shows the network characteristics
during the experiment. Table 3.6 summarizes the overall and local running times of the
three algorithms. Table 3.6 gives the average running time for runs under 3 seconds, and
the percentage of runs under 3 seconds. We use a threshold of 3 seconds because link
latencies in this experiment are higher than in the previous two. In analyzing the results,
we highlight the impact of latency on algorithm performance. In Section 3.5, we discuss the
running time of the ring algorithm. In Section 3.6, we show how the highest latency link in
the system affects the running time of all-to-all. In Section 3.7, we discuss the impact of a
link’s latency on the significance of loss on that link. Section 3.8 discusses the fact that the

triangle inequality does not hold and the impact this has.

3.5 The Running Time of Ring

The message flow in the ring-based algorithm follows the following sequence where each
host precedes its neighbor and the first host is the neighbor of the last: NL, Emulab, UT2,
CU, NYU, KR, MIT, TW, UCSD, CA1l. This above ring was chosen based on latency and
loss rate measurements from a previous experiment. The chosen ring is nearly optimal and

the loss rates on all the ring links are low.

Ring has the highest average running time in the absence of message loss. However, ring
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Table 3.6 Measured running times, milliseconds, Experiment III.

Algorithm All-to-all Leader Ring
Initiator Overall Local | Overall Local | Overall Local
KR Avg. (runs under 3 sec) 1197 692 1340 954 1853 1158
% runs over 3 sec 66% 9% 25% 13% 18% 5%
™ Avg. (runs under 3 sec) 1139 809 1644 1227 2014 1137
% runs over 3 sec 64% 28% 84% 69% 22% 4%
MIT Avg. (runs under 3 sec) 1168 515 896 589 1912 1117
% runs over 3 sec 67% 3% 13% 6% 18% 6%
UCSD Avg. (runs under 3 sec) 1172 497 833 558 2040 1115
% runs over 3 sec 61% 2% 14% % 24% 6%
Cu Avg. (runs under 3 sec) 1133 494 1179 703 2076 1120
% over 3 sec 58% 3% 9% 2% 21% 4%
NYU Avg. (runs under 3 sec) 1156 516 1183 715 2092 1134
% over 3 sec 62% 3% 8% 3% 27% 5%
CA1l Avg. (runs under 3 sec) 1127 563 992 670 2073 1141
% over 3 sec 66% 33% 44% 37% 27% 5%
UT2 Avg. (runs under 3 sec) 1120 558 1190 637 2121 1165
% over 3 sec 64% 51% 60% 53% 30% 8%
Emulab  Avg. (runs under 3 sec) 1108 474 884 594 2066 1133
% over 3 sec 67% 5% 15% 8% 24% 5%
NL Avg. (runs under 3 sec) 1161 585 1146 772 2035 1143
% over 3 sec 65% 3% 16% 7% 25% 5%

has some nice properties: First, the ring algorithm is least affected by message loss. From
the network characteristics depicted in Table 3.5, we observe that in the absence of message
loss, the total time it takes a message to circulate around the ring twice is about 1900
ms. Unlike leader and all-to-all, the average overall running time for ring appraoches this
expectation. The reason for this is that ring sends the fewest messages and uses the most
reliable links. Second, the choice of initiator does not have a big impact on the performance
of ring, since messages travel over the same links. The only difference between initiating
ring from different hosts is that the initiator only receives a message once. This explains
why ring sessions initiated at KR have a slightly better overall running time since KR has
the longest link. Finally, notice that ring’s overall running time is not exactly twice the

local running time since the second round is shorter than the first.

3.6 Latency Changes over Time

The longest links in the system were between KR and TW and KR and the NL. The latency
of these two links varied dramatically in the course of the experiment. We now divide the
data gathered in this experiment into two periods. In the first period, the link from KR
to the NL had an average RTT of 754 ms., and the link from KR to TW had an average
RTT of 683 ms. In the second period, the average RTTs from KR to the NL and to TW

dropped to 355 ms. and 385 ms., respectively. So the average one-way message latency on
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the longest link dropped by 185 ms. This was the only notable difference between the two

periods.

In Figure 3.3, we show histograms of the measured overall running times of all-to-all from
all initiators during each of the two periods. The histograms show runs up to 2 seconds; this
includes 23% of the runs during the longer latency period, and 60% of the runs during the
shorter latency period. We observe that in the period with high latencies, the best running
times are around 500 ms. In the period of low latencies, the first peak occurs at 300 ms., or
roughly 200 ms. earlier, which is close to the decrease in the one-way latency on the longest
link. As we see, the all-to-all algorithm from all initiators is affected by the increase in
latency. In contrast, the only instances of the leader algorithm that were affected by this
latency change were those initiated at TW, KR, or the NL. Other instances of the leader
algorithm were unaffected. For example, the first peak of the leader algorithm initiated at
Emulab occurs at 300 350 ms. for both periods.

3.7 Latency and Loss

The loss rates from TW to CA1 and UT2 are 43% and 49% respectively. This causes the
running times of leader from these hosts to be very high (at least 44% of the runs exceed
3 seconds). The loss rates from CU to CAl and UT2 are also fairly high (49% and 31%
respectively). In spite of this, only 8% of the runs of leader from CU last over 3 seconds.
We see that the lossy links from CU do not impact the overall running time as do the lossy
links from TW. This is because the latencies of the lossy links from CU are only about one
sixth the longest link latency. Therefore, even two consecutive losses on these links do not

impact the overall running time.

3.8 The Triangle Inequality

The average RTT from UCSD to KR is 526 ms. and the average RTT from UCSD to CAl
is 49 ms., while the average RTT from CA1 to KR is 152 ms. Although UCSD and CA1 are
geographically close, the average RTT from UCSD to KR is more than 3 times the average
RTT from CA1 to KR. The latency from UCSD to KR can be reduced to less than a half
by routing messages indirectly through CAL.
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Figure 3.1 Histograms of overall running times, Experiment I, runs up to 1.3 seconds.
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Figure 3.2 Histograms of local running times, Experiment I, runs up to 1.3 seconds.
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Figure 3.3 Histograms of overall running times, runs up to 2 seconds, Experiment III.
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Chapter 4
The Gather-Quorum Primitive

This chapter presents results gathered from two experiments. Experiment IV lasted approx-
imately nine and a half days and included all hosts except CA4 (a total of 27 hosts). Of the
hosts that participated only MIT, UT2, CA1, NL, ISR1, AUS, KR and TW were initiators.
Each initiator ran leader once every two minutes on average, and in total, roughly 6700
times. Experiment V lasted approximately five and a half days and included only hosts
located in North America (a total of 18 hosts), out of which only MIT, CA1, Emulab, CU
were initiators. Each initiator ran all-to-all once every two minutes on average, and in to-
tal, we accumulated roughly 3700 samples per initiator. The all-to-all algorithm we ran in
the latter experiment is a slightly modified version of one that appears in the pseudo code
section and used in the previous experiment. Unlike in the previous experiments, hosts do
not start sending messages to other hosts in a particular session until they have received a
message from the initiator of that session. In both experiments, hosts sent ping probes to

each other once every two minutes.

Even though we did not explicitly run algorithms that implement the gather-quorum prim-
itive, we extrapolated the running of these algorithms from the data we accumulated by
only looking at the response times for quorums for different probe sets and disregarding
irrelevant data. In our analysis analysis of experiment IV, since we only ran the leader
algorithm, it was enough to consider the local running times to get a fair comparison. In
both experiments, host crashes and network partitions occurred. Table 4.1 shows the table
quorum system we used in our evaluation of the results in Experiment I'V. We used Table 4.2

as a quorum system in our evaluation of the results in Experiment V.

4.1 Comparing the Two Primitives

Since the performance of gather-quorum algorithms depend on the probe set, any compar-

ison with gather all algorithms depends on this parameter. In this section, we consider the
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Table 4.1 Table quorum system in experiment IV.

MIT | CMU | NYU | Emulab UCSD
NL SWD GR ISR1 ISR2

MA1 | MA3 NY UT1 CND

MA2 | AUS CU CAl UT2 | NC
NZ ™ KR Swiss CA2 | CA3

Table 4.2 Table quorum system in experiment V.

MIT CU NYU CMU
Emulab | UCSD | UT1 UT2

MA1 MA2 MA3 | NY NC

CND CA1 CA2 | CA3 | CA4

two extreme cases: minimal probe sets, including exactly one quorum, and complete probe
sets, including all hosts. However, independent of the size of the probe set, we can make the
following general observations. Gather-quorum algorithms have the advantage that hosts
only need to hear from a quorum, (which is usually much smaller than the entire universe
of hosts). Therefore, in cases where availability is not an issue, gather-quorum algorithms
strictly dominate gather-all algorithms in running time. However, Gather-all algorithms
do not fail by definition, since hosts only need to hear from hosts that are currently alive
regardless of how many there are. Therefore, in cases of high failure rates (where no quorum

exists), gather-all algorithms succeed while gather-quorum algorithms fail.

4.1.1 Complete Probe Sets

Even though we had several host failures and network partitions during both experiments,
they were not frequent enough to bring down the entire quorum system being used; Ta-
bles 4.3 and 4.4 show the percentage of runs that failed for different probe sets. Therefore,
for the duration of both experiments, the probability of a host not finding a live quorum
was negligible regardless of the quorum system being used (table or majority). Thus, in a
gather-quorum algorithm, each host must wait to hear from a set of hosts that is a strict
subset of the set of hosts it has to wait to hear from in a gather-all algorithm. This explains
the results shown in Figures 4.1 and 4.2, which show a significant gap in the running time
for both leader and all-to-all. Figure 4.1 shows the results at six different initiators from
Experiment I'V. Figure 4.2 shows the results of samples initiated at MIT during Experiment

V. The figures show the cumulative distributions of the running time of each primitive.

However, if we try to determine which quorum system is better, the answer is not as clear.

If we look at it from a theoretical view point, we find that each system has its advantages
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Figure 4.1 Comparing the gather-all and gather-quorum primitives using the leader based

algorithm and complete probe sets (results from experiment IV).
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Figure 4.2 Comparing the gather-all and gather-quorum primitives using the all-to-all
algorithm and complete probe sets (results from experiment V).
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Table 4.3 Failure percentages for quorum-leader algorithms using the majority quorum
system at different initiators for all possible probe set sizes (size is measured in terms the
number of hosts). Results compounded during Experiment IV.

Initiator | MIT | AUS | UT2 | ISR1 | TW KR
Size of Probe Set
14 8% 32% 24% 15% 13% | 18%
15 2% 3% 0% 4% 7% 4%
16 0% 1% 0% 3% 7% 2%
17 0% 0% 0% 3% 4% 2%
18 0% 0% 0% 3% 4% 2%
19 0% 0% 0% 3% 4% 2%
20 0% 0% 0% 3% 4% 2%
21 0% 0% 0% 3% 4% 2%
22 0% 0% 0% 3% 4% 2%
23 0% 0% 0% 3% 4% 1%
24 0% 0% 0% 3% 4% 1%
25 0% 0% 0% 3% 4% 1%
26 0% 0% 0% 3% 4% 1%
27 0% 0% 0% 3% 4% 1%

and disadvantages. For example, the quorum size in the table-based quorum system (in
Experiment IV it ranges from 5-10 hosts) is usually smaller than the majority (14 hosts
in this experiment). However, the number of subsets that are quorums is greater in the
majority-based quorum system than the in table-based system. With 27 hosts and Table 4.1,

we have the following:

2
number of majorities = (J) = 6,104, 700
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Table 4.4 Failure percentages for quorum-leader algorithms using the table quorum system
at different initiators for all possible probe set sizes (size is measured in terms table rows).
Results were compounded during Experiment IV.

Initiator | MIT | AUS | UT2 | ISR1 | TW | KR
Size of Probe Set

1% 1% 1% 4% 1% | 4%
0% 0% 0% 3% 0% | 2%
0% 0% 0% 3% 0% | 2%
0% 0% 0% 3% 0% | 2%
0% 0% 0% 3% 0% | 2%

QY [ W N =

number of table-quorums =1+ 5 + 52 4+ 5% 4+ (6)(5)3 =906

Even though we picked a table that improves the performance, with 27 hosts, there is
a significant chance that no table exists which is optimal for every host in the system.
Our results from this experiment indicate that for most initiators, table-based quorums
outperform majority. For each of these initiators, there exists a subset of the optimal 14-
host majority for that initiator that forms a quorum based on Table 4.1. However, for AUS,
no such subset exists, which explains why majority provides superior performance in this

case.

4.1.2 Minimal Probe Sets

With minimal probe sets we have a different story. In this case, every host deals with a
particular quorum instead of any quorum. In the majority quorum system, the probe set
is composed of the closest majority to the initiator; in the table quorum system, the probe
set is composed of the first row of the table (choosing probe sets and quorum systems is
discussed in more detail in Section 4.2). Even though this particular quorum is usually
chosen because it usually has the best availability, its failure probability is higher than that
of the entire quorum system. A quorum fails if any of its hosts fail. Since every host has a
nonzero probability of failure, the probability of a quorum failing grows exponentially with
the size of that quorum. This means that the probability that a particular quorum fails in
the majority quorum system is higher than in the table quorum system. If we look at the
graphs in Figures 4.3 and 4.4, it is clear that the running time of algorithms that use the
table-based quorum system is by far superior to algorithms using majority and gather-all
algorithms. This is the case for two reasons. First, since the minimal probe set in the table
quorum system is the first row of the table, the number of hosts involved in the algorithm
is very small relative to majority and gather-all algorithms. Second, in a well chosen table,

hosts in the first row usually have the highest availability.

If we look at the curves for majority and gather-all algorithms, we find that majority
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Figure 4.3 Comparing the gather-all and gather-quorum primitives using the leader based

algorithm and minimal probe sets (results from experiment IV).
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Figure 4.4 Comparing the gather-all and gather-quorum primitives using the all-to-all
algorithm and minimal probe sets (results from experiment V).
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dominates in the low latency region and performs worse in the high latency region*. This
happens for two reasons. First, since the number of hosts in the minimal probe set in the
majority quorum system is approximately half of the total number of hosts, the running
time will be lower than with the gather-all algorithm when every host in the probe set
is available. Second, since the quorum fails whenever any of its elements fail, a majority
becomes unavailable for a significant amount of time during which gather-all algorithms

continue to succeed (at higher latencies of course).

4.2 The Size of the Probe Set

We now analyze the relationship between the size of the probe set and the running of the
quorum-leader and quorum-to-quorum algorithms (using both majority and table quorum
systems). In particular, we look at how this relationship is influenced by network dynamics
(lost messages, latency variation and failures) and the type of algorithm. The results in pre-
sented Section 4.2.1 are from Experiment IV. Section 4.2.2 presents results from Experiment
V.

4.2.1 Quorum-Leader
Majority

Since we have a total of 27 hosts, a majority consists of at least 14 hosts (including the

initiator). In this section we look at improvements in the running time as the size of the

*TW is an exception. We will discuss this host in more detail in Section 4.2
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Figure 4.5 The cumulative distribution of local running times of quorum-leader algorithms
(using the majority quorum system) initiated at different hosts during Experiment IV, runs
up to 4 seconds (n denotes the number of hosts in the probe set).
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Table 4.5 Link characteristics from TW to other hosts during experiment IV.

Host Loss Rate | Avg. RTT | STD | Min. RTT | TCP Connectivity | % under 1 sec
™W 0% 0 0 0 100% 100%
UCSD 3% 232 25 198 100% 97%
Emulab 3% 238 26 216 100% 97%
NYU 3% 273 22 251 100% 97%
MIT 4% 303 398 256 100% 96%
CMU 4% 289 41 254 100% 96%
CU 3% 339 127 247 100% 97%
AUS — — — — 99% 96%
NL 3% 361 23 339 100% 96%
CAl 31% 482 626 174 95% 58%
NY 32% 445 853 234 96% 63%
SWD 3% 399 59 371 100% 96%
UT2 30% 743 1523 171 96% 58%
MA2 28% 742 1517 230 94% 59%
NC 32% 465 616 255 90% 63%
ISR2 3% 424 70 400 100% 97%
UT1 27% 979 1847 189 96% 55%
MA1 29% 645 712 238 96% 57%
ISR1 4% 551 2682 400 100% 94%
CA2 30% 606 1094 179 69% 45%
GR 3% 447 29 419 96% 93%
CND 35% 686 834 212 93% 51%
MA3 32% 774 1473 241 96% 54%
NZ 35% 636 830 271 91% 43%
KR 11% 357 163 200 42% 40%
CA3 32% 1047 2091 178 15% 10%
Swiss 3% 384 22 362 15% 15%

probe set increases from 14 to 27. For a given initiator, For each instant of leader it initiated,
we sort the hosts in ascending order based on the response time for that instant, and assign
each host a rank that corresponds to its position in the sorted list. Then average those
ranks over all instances. based on those average ranks we sort the hosts in ascending order.
Based on that order we rank hosts from 2 to 27 (of course the initiator being 1). This rank
represents the order in which we add hosts to the probe set of each initiator. In general
there are several arguments to be made for probe sets that are larger than the minimum.
First, because of dynamic nature of the Internet (changing routes, lost messages), the 14
hosts closest to the initiator do not stay the same for the whole duration of the experiment.
Message loss, in particular, plays a significant role: any lost message from any of the 14 hosts
in the minimal probe set, with high probability, increases the running time of the algorithm
beyond the RTT of the 15th host. And no matter how reliable links between the initiator
and its closest 14 hosts, they still have nonzero probabilities of dropping messages. Second,
some hosts also fail during the experiment. However, since failures during the experiment
were not very frequent and network partitions were very short, the first factor plays a bigger

role in our analysis especially since most failures and network partitions effect all initiators
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equally while variations in TCP latencies are different for different hosts.

In general every initiator except TW had low varying and highly reliable links (loss rates
of 10% or less) to most hosts. TW on the other hand, had many links with highly variable
latencies and loss rates of 25% or more (most of the hosts with bad connections to TW were
ISPs in North America). For initiators other than TW, our results indicate that optimal
performance is achieved with a probe set that contains 19 hosts. The improvements in
performance gained by increasing the size of the probe set beyond 19 hosts are negligible.
The highest improvements occur when the size of the probe set is increased to 15 and then 16.
The marginal rate of return continues to decrease with the number of hosts and diminishes
when this number is increased beyond 19. Figure 4.5 illustrates this observation by showing
the cumulative distribution of the running time of runs initiated at AUS and ISR1 for probe
sets with different sizes. However, this is not the case with TW. The performance continues
to improve significantly as we increase the number of hosts probed by TW to 27. The
TW graphs shown in the same figure, show the cumulative distribution of runs initiated
at TW for different numbers of hosts. In order to get a better understanding to what is
going on with TW, we refer to Table 4.5 which shows the link characteristics as measured
by “ping” from TW to other hosts in the system (the column labeled “TCP connectivity”
refers to the percentage of time the TCP connection was up). We can see that hosts that
have loss rates of 25% or more to TW also have the highest average latencies. At first
glance, it would appear that the problems of high message loss are compounded by the high
latency. However, we see that these hosts have the smallest minimum RTTs (highlighted
in the table), which means that the best case involves these hosts. We also notice that the
standard deviation is highest for those links, which means that the low latency runs are
more probable. The probability of getting good running times increases as we send to more
of these hosts.

Now the question remains how well can we estimate the optimal size of the probe set given
our knowledge of the network characteristics. For a given to probe set, how accurately can
we predict the percentage of runs below a certain threshold based on what we know about
the TCP latency distributions? As an example, we will use TW and see how well we can
approximate the percentage of runs below 1 second for probe sets the contain 14, 15, 16,
and 17 hosts. The last column in Table 4.5 shows the percentage of TCP round trips under
1 second for each link. For simplicity, we will assume that different messages travel through
the network independently (not entirely true). We will also restrict our attention to links
in which the percentage of TCP RTTs under 1 second is less than 90%.

The probe set of size 14, which contains the first 14 hosts listed in Table 4.5, includes CA1,
NY, UT2, MA2. the percentages of TCP RTTs under 1 second from TW to these four are

58%, 63%, 58%, and 59% respectively. Based on the assumptions we have made, we can

tAUS is inside a firewall that filters ICMP traffic.
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estimate the probability that TW hears from a majority (Pri4) as follows:

Priy = .63 % .58 x .58 * .59
13

%

Indeed the value we measured was .16, which is close to the estimated value. Now how
much improvement in the running time can we expect from adding the 15th host (NC) to
the probe set? This is the same as the probability of exactly one out of the four lossy hosts
failing to make the 1 second threshold and NC succeeding.

Pris — Priyy = .63(.37 % .58 % .58 x .59
+2 % .63 * .42 % .58 x .59
+.63 % .58 x .58 x .41)
21

Q

The value that we measured was .20. Similarly the improvement we can expect from
increasing the size of the probe set from 15 to 16 is the probability of exactly two out of

the five lossy hosts failing to make the 1 second threshold and ISR2 succeeding.

Prig — Pris = .97(2 % .41 % .37 % .63 * .58 * .58
42 % .41 % .63 * .63 % .58 x .42
+.59 % .37 % .37 % .58 * .58
+.59 % .63 x .63 x .42 x .42

+4 % .59 * .37 * .63 * .42 * .58)
33

%

The measured value was .26. The improvement we expect we expect from increasing the size
of the probe set from 16 to 17 is the probability of exactly three out of the five lossy hosts

failing (or exactly two succeeding) to make the 1 second threshold and UT1 succeeding.

Pri7z — Prig = .55(2 % .59 % .37 * .63 * .42 x .42
42 % .59 % .37 % .37 % .58 x .42
+.41 % .37 % .37 % .58 * .58

+.41 % .63 * .63 * .42 x .42

+.41 % .37 % .63 * .42 x .58)

A2

Q

The value we measures was .9. The results above suggest that we can predict with a certain
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degree of accuracy the probability distribution of the running time for a given probe set.

Table

In this section, we analyze the performance based on Table 4.1 which contains 5 rows, with
each row containing 5-6 hosts. In this section we look at improvements in the running time
of table as the number of table-rows in the probe set increases from 1 to 5. In order to

improve performance, we picked the table rows as follows:

e In the first row, we put hosts located at North American universities which were up

for the duration of the experiment.

e Our ping traces indicate that hosts located in Europe and Israel are connected to
each other by low latency and low loss rate links. Therefore, in order to improve the
performance for these hosts, we placed them in the second row (except Swiss which

was under firewall restriction for a portion of the experiment).

e In the third row, we put five other hosts in North America that did not crash during

the experiment.

e We filled out the last two rows with the remaining hosts.

Every quorum in this setting must include at least one host in the first row. Therefore,
while sending to more rows may improve availability in the case of some first row hosts
failing, the performance is eventually constrained by the first row. The graphs in Figure 4.6
shows the performance for different initiators. Depending on where the initiators are lo-
cated, they see different gains at different row numbers. Note especially that difference
in performance between probing one table row and probing all rows is smaller than the
difference in performance between probing 14 hosts and probing all hosts (in the majority
system). This is usually the case since the first row is filled with hosts that were up for

most of the experiment and had reliable connections to other hosts.

4.2.2 Quorum-to-Quorum

In this section, in order to get meaningful results, we need to look at the overall running
times because of the asymmetry of the two phases of the quorum-to-quorum algorithm. For
a given probe set, messages travel on the same links regardless of the initiator. Therefore,

we only present results from samples initiated by MIT without loss of generality.
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Figure 4.6 The cumulative distribution of local running times of quorum-leader algorithms
(using the table quorum system) initiated at different hosts during Experiment IV, runs up
to 4 seconds (n denotes the number of table rows in the probe set).
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Figure 4.7 The cumulative distribution of overall running times of majority for all-to-all
initiated by MIT during Experiment V, runs up to 2 seconds (n denotes the number of
hosts the probe set).
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Figure 4.8 The cumulative distribution of local running times of majority for all-to-all
initiated by MIT during Experiment V, runs up to 2 seconds (n denotes the number of
hosts in the probe set).
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Majority

Since we have a total of 18 hosts, a majority consists of at least 10 hosts (including the
initiator). In this section we perform the same analysis as Section 4.2.1. We only look at the
samples that were initiated by MIT, and rank the hosts (as in Section 4.2.1) with respect to
MIT. All the hosts in this experiment are close geographically, and communicate with each
other over low-latency and low loss-rate links. In addition, throughout the experiment, only
two hosts failed (CA1, UT1) and neither were ranked in the top 10. So we would expect
minimal improvements in the overall running time gained by increasing the size of the probe

set. However, there is another factor to consider in the quorum-to-quorum algorithm. Since
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the algorithm only terminates when a majority of hosts hear from a majority of hosts, the
10-host majority that is optimal for MIT might not be optimal for other hosts, and probing
more than 10 hosts increases the probability of other hosts finding their optimal majority. So
how much of a role does this play? In order to find out we compare effects of increasing the
number of hosts on the overall and local running times. Figure 4.7 shows the cumulative
distributions of the overall running time for different majorities. Figure 4.8 shows the
cumulative distributions of the local running time for different majorities. From the figures,
we observe the following: first, the improvement in performance gained by increasing the
size of the probe set from 10 to 11 is “somewhat” greater in the overall running time.
Second, sending to 11 hosts is near optimal in the local running time (this is not the case
in the overall running time). Since the local running time in this experiment is same as
the local running time of the quorum-leader algorithm, the results suggest that optimal
running time can be reached with a smaller probe set in the case of quorum-leader than

quorum-to-quoruin.

Table

In this section, we analyzed the performance based on Table 4.2 which contains 4 rows,
with each row containing 4-5 hosts. We placed hosts located at universities in the east cost
in the first row of the table. In the second row, we put two west cost university hosts and
two west coast hosts located at ISPs. We filled the third with the rest of the east cost
hosts and put the remaining hosts in the last row. In this particular case, since the hosts
in the first row are geographically close to each other and were up for the entire duration
of the experiment, the first row was the optimal quorum for every host in the first row. As
a result we did not see a significant performance improvement gained by sending to more

table rows. Figure 4.9 illustrates these results.
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Figure 4.9 The cumulative distribution of overall running times of table for all-to-all
initiated by MIT during Experiment V, runs up to 2 seconds (n denotes the number of
table rows the in the probe set).
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Chapter 5

Conclusions

We measured and analyzed the performance of two primitives and four common information
propagation algorithms over the Internet. We explained the distribution of the algorithms’

running times in terms of underlying link latencies and loss rates.

One important lesson one can learn from our observations is that loss rates over the Internet
are not negligible. Consequently, algorithms that send many messages often have a high
running time, even if the messages are sent in parallel in one communication step. More
generally, we learn that some communication steps are more costly than others. E.g., it is
evident that propagating information from only one host to all other hosts is faster than

propagating information from ewvery host to each of the other hosts.

We suggest to refine the communication step metric as to encompass different kinds of
steps. One cost parameter, Ay, can be associated with the overall running time of a step
that propagates information from all hosts to all hosts*. This step can be implemented using
any of the algorithms analyzed in Chapter 3. A different (assumed smaller) cost parameter,
Ag, can be associated with a step that propagates information from one host to all other
hosts. Another cost parameter, Az can be associated with propagating information from a

quorum of the hosts to all the hosts, as measure in Chapter 4.

This more refined metric can then be used to revisit known lower and upper bound results.
For example, [14] presents a tight lower bound of two communication steps for failure-free
executions of consensus in practical models. Under the more refined metric, the lower bound

is 2A1, whereas known algorithms (e.g., [6, 16]) achieve running times of Ag + Aj.

*Local running times cannot be composed in this manner.
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