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Performane Evaluation ofDistributed Algortihms over the InternetbyOmar BakrSubmitted to the Department of Eletrial Engineering and Computer Sieneon February 11, 2003, in Partial Ful�llment of the Requirements for the Degree ofMaster of Engineering in Eletrial Engineering and Computer SieneAbstratWe study the running time of distributed algorithms deployed in a widely distributed set-ting over the Internet using TCP. We onsider two simple primitives. Both primitivesorresponds to a ommuniation round whih is employed by many di�erent algorithmsand systems. In the �rst primitive, every host sends information to every other host. Theseond primitive propagates information from a quorum of hosts to a quorum of hosts. Bothprimitives our in numerous distributed algorithms. We experiment with four algorithmsthat typially implement the �rst primitive and two that implement the seond. We runour experiments on twenty-eight hosts at geographially disperse loations over the Internet.We observe that message-loss has a large impat on algorithm running times, whih ausesleader-based algorithms to usually outperform deentralized ones. We also observe thatalgorithms, in whih hosts need only to hear from a quorum, are more reliable, eÆient,and tolerant to bad links than algorithms where every host is required to hear from everyother host in the system.Thesis Supervisor: Idit Keidar, Ph.D.Title: Senior Leturer, The Tehnion { Israel Institute of Tehnology
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Chapter 1
Introdution and Bakground
1.1 IntrodutionIt is hallenging to predit the end-to-end running time of a distributed algorithm operatingover TCP/IP in a wide-area setting. It is often not obvious whih algorithm would work bestin a given setting. For instane, would a deentralized algorithm outperform a leader-basedone? Answering suh questions is diÆult for a number of reasons. Firstly, beause end-to-end Internet performane itself is extremely hard to analyze, predit, and simulate [8℄.Seondly, end-to-end performane observed on the Internet exhibits great diversity [22, 33℄,and thus di�erent algorithms an prove more e�etive for di�erent topologies, and also fordi�erent time periods on the same topology. Finally, di�erent algorithms an perform betterunder di�erent performane metris.In this thesis, we study the running time of distributed algorithms over the Internet. Ourexperiments span twenty-eight hosts, widely distributed over the Internet { in Korea, Tai-wan, Israel, Australia, New Zealand, and several hosts aross Europe and North Ameria.Some of the hosts reside at aademi institutions and others on ommerial ISP networks.We present data that was gathered over several months. The hosts ommuniate usingTCP/IP. TCP is a ommonly used protool on the Internet, and therefore evaluating sys-tems that use it is of interest. Moreover, it was feasible for us to deploy a TCP-basedsystem beause TCP does not generate exessive traÆ at times of ongestion, and beause�rewalls at some of our hosts blok UDP traÆ.We onsider a �xed set of hosts engaged in a distributed algorithm. We evaluate twosimple primitives that orrespond to a ommuniation round exeuted by a distributedalgorithm. Both primitives are employed by many di�erent algorithms and systems, e.g.,Byzantine agreement [18℄, atomi ommit [9, 13, 29℄, state-mahine repliation [17℄, groupmembership [15℄, and updates of routing tables. Thus, our study has broad appliability.First we look at gather-all, whih propagates a small amount of information from every13



host to all other hosts that are onneted to it. The primitive an be initiated by any oneof the hosts, alled the initiator, and it terminates one information from every host haspropagated to all of the hosts.We evaluate the following ommonly used algorithms implementing this primitive:Figure 1.1 The message ow of the four algorithms. Initiator shown in gray.
Stage 1 Stage 2(a) The all-to-all algorithm. Stage 1 Stage 2 Stage 3(b) The leader algorithm.

Stage 1 Stage 2 Stage 3 Stage 4() The seondary leader algorithm. Round 1
Round 2(d) The ring algorithm.� all-to-all , where the initiator sends a message to all other hosts, and eah host thatlearns that the algorithm has been initiated sends messages to all the other hosts.This algorithm is strutured similar to deentralized two-phase ommit, some groupmembership algorithms (e.g., [15℄), and the �rst phases in deentralized three-phaseommit algorithms, (e.g., [10, 29℄). The algorithm ow is depited in Figure 1.1(a).� leader , where the initiator ats as the leader. After the initiator sends a messageto all other hosts, the hosts respond by sending messages to the leader. The leaderaggregates the information from all the hosts, and sends a message summarizing allthe inputs to all the hosts. This algorithm is strutured like two-phase ommit [9℄, andlike the �rst two of three ommuniation phases in three-phase ommit algorithms,e.g., [13, 29℄. The algorithm ow is depited in Figure 1.1(b).� seondary leader , where a designated host (di�erent from the initiator) ats as theleader. The initiator sends a message to the leader, whih then initiates the leader-based algorithm. The algorithm ow is depited in Figure 1.1(). This algorithm14



struture is essentially a spanning tree of depth one, with the seondary leader beingthe root and all other hosts being leaves.� logial ring , where messages propagate along the edges of a logial ring. This algorithmstruture ours in several group ommuniation systems, e.g., [1℄. The algorithm owis depited in Figure 1.1(d).The seond primitive we evaluate is the gather-quorum primitive. This primitive involvesthe use of quorum systems. A quorum system for a universe of servers is a olletionof subsets (alled quorums) of servers, eah pair of whih have a nonempty intersetion.Quorum systems are typially used to inrease the availability and eÆieny of repliatedservies.The gather-quorum primitive propagates a small amount of information from aquorum to a quorum. Like the gather-all primitive, This primitive an also be initiatedby any one of the hosts, and it terminates one information from a quorum of hosts haspropagated to a quorum of hosts.We evaluate this primitive with two widely used quorum systems:� Majorities, where every set that inludes a majority of servers is a quorum.� Table, Suppose that the number of servers n = k2 for some integer k. Arrange theservers into a k x k table, as shown in Figure 1.2. A quorum is a union of a full rowand one element from eah row above the full row. In reality the number of servers isnot always a perfet square, in whih ase some rows might be larger than others. Inany ase, the quorums in the Table quorum system are of size O(pn).Figure 1.2 The Table quorum system of 6 x 6, with one quorum shaded.
Host1 Host2 Host3 Host4 Host5 Host6

Host7 Host8 Host9 Host10 Host11 Host12

Host13 Host14 Host15 Host16 Host17 Host18

Host19 Host20 Host21 Host22 Host23 Host24

Host25 Host26 Host27 Host28 Host29 Host30

Host31 Host32 Host33 Host34 Host35 Host36Initiators that invoke an algorithm that implements the gather-quorum primitive have adeision to make. One option is to probe every host and wait for a quorum to respond.15



A seond option is to probe exatly one quorum and wait for that partiular quorum torespond. These two ases are the extreme ases. Another option is to probe multiplequorums and wait for one of them to respond. We all the set of hosts probed by theinitiator the probe set. The probe set has a lot impliations on the running time of analgorithm. One the one hand, the initiator prefers to keep the probe set as small as possibleto redue the overall load on the system. One the other hand, the initiator also prefers toprobe more hosts in order to redue the probability of failure. We study the impat of thehoie of probe set on the algorithm running time and avilability.We evaluate the following ommonly used algorithms implementing this primitive:� quorum-to-quorum, where the initiator sends a message to every host in the probeset, and eah host that hears from the initiator sends messages to all hosts in theprobe set. The algorithm terminates as soon as quorum hears from a quorum andfails otherwise. This algorithm is similar to the all-to-all algorithm presented above.This algorithm is strutured like some atomi broadast algorithms (e.g.,Corel [12℄),some onsensus algorithms (e.g., [27℄), and the �nal phase in deentralized three-phaseommit algorithms, (e.g., [10℄).� quorum-leader , where the initiator ats as the leader. After the initiator sends amessage to every host in the probe set, the hosts respond by sending messages to theleader. One the leader hears from a quorum, it aggregates the information from hostsin that quorum, and sends a message summarizing all the inputs to all the hosts inthe probe set. This algorithm is similar to the leader algorithm presented above. Thealgorithm is strutured similar to Lamport's Paxos algorithm [16℄, the algorithm usedin the Frangipani distributed �le system [31℄, some onsensus algorithms (e.g., [6℄), andlike the �nal two of three ommuniation phases in three-phase ommit algorithms,e.g., [13, 29℄.We run a single proess at eah geographial loation. We do not address issues related tosaling the number of proesses, as we believe that suh issues are orthogonal to our study.Using a 2-level hierarhy, algorithms of the sort we onsider an be made to work e�etivelywith several hundreds of proesses. Suh a hierarhy is used, e.g., in [11, 15℄, where thetop level of the hierarhy onsists of 5{20 representatives (servers) at disperse geographialloations. Eah representative gathers information from and propagates information toproesses that are proximate to it. Algorithms like those onsidered here are typiallyrun among the representatives. Thus, our study is appliable to systems that implementsalability in this manner. Our study is also somewhat appliable to large sale lient-serversystems like Fleet [19℄ and SBQ-L [20℄ where lients ontat a quorum of the servers. Ourstudy is however not appliable to systems that implement massive salability, e.g., usinggossip-based or peer-to-peer algorithms. 16



We measure the overall running time of an algorithm from the time it starts at some hostuntil it terminates at all hosts (or until it terminates at a quorum of hosts in the aseswhere we are onsidering the performane of quorum systems), as well as the loal runningtime at a given host.The typial theoretial metri used to analyze the running time of distributed algorithmsis the number of message exhange rounds the algorithm performs, or the number of om-muniation steps in ase of a non-synhronous system (e.g., [14, 15, 27℄). Aording to thismetri, we get the following overall running times: 2 ommuniation steps for the all-to-alland quorum-to-quorum algorithms; 3 ommuniation steps for the leader and quorum-leaderalgorithms; 4 ommuniation steps for seondary leader; and 2n � 1 steps for the ring al-gorithm in a system with n hosts. In ontrast to what this metri suggests, in Setion 3.1we observe that in ertain settings the seondary leader algorithm ahieves the best overallrunning time, whereas all-to-all often performs the worst. The running time of ring wasusually less than double the running times of the other algorithms.Why does the ommuniation step metri fail to apture atual algorithm behavior overthe Internet? First, not all ommuniation steps have the same ost, e.g., a message fromMIT to Cornell an arrive within 20 ms., while a message from MIT to Taiwan may take125 ms. Seond, the lateny on TCP links depends not only on the underlying messagelateny, but also on the loss rate. If a message sent over a TCP link is lost, the messageis retransmitted after a timeout whih is larger than the average round-trip time (RTT)on the link. Therefore, if one algorithm message is lost, the algorithm's overall runningtime an be more than doubled. Sine algorithms that exhange less messages are lesssuseptible to message loss, they are more likely to perform well when loss rates are high.This explains why the overall running time of all-to-all is miserable in the presene of lossylinks. Additionally, message latenies and loss rates on di�erent ommuniation paths onthe Internet often do not preserve the triangle inequality [3, 15, 26℄ beause the routingpoliies of Internet routers often do not hoose an optimal path between two hosts. Thisexplains why seondary leader an ahieve better performane by refraining from sendingmessages on very lossy or slow paths.We analyze our experimental results, and explain the observed algorithm running times interms of the underlying network harateristis { lateny and loss rates. Due to the greatvariability of running times, the average running time is not indiative of an algorithm'stypial behavior. We therefore fous on the distribution of running times.The ommuniation step metri is widely used due to its ease of use. Several other perfor-mane models, e.g., [7, 24, 32℄, have been used to analyze distributed or parallel algorithms(f. Setion 1.2). However, these do not realistially model algorithm behavior over theInternet. At the end of this thesis, we suggest a re�nement to the standard metri, whihgives a more realisti aount of an algorithm's eÆieny, and at the same time is easy to17



employ.The rest of this thesis is organized as follows: Setion 1.2 disusses related work. Chapter 2desribes the experiment setup and methodology. The following two hapters analyze exper-imental results: Chapter 3 disusses gather-all algorithms and how their running times areinuened by lateny and message loss. Chapter 4 ompares the two primitives and studiesthe relationship between the probe set and the running time of gather-quorum algorithms.Chapter 5 onludes the thesis and suggests an alternative performane metri.1.2 Related Work1.2.1 Internet MeasurmentsObtaining data on di�erent aspets of Internet ommuniation is an emerging researh �eld.Some present researh in this area fouses on measuring and analyzing the onstany of In-ternet path harateristis suh as routing, loss, and throughput [22, 33℄. Suh researhfouses primarily on point-to-point ommuniation, and not on the performane of dis-tributed algorithms. A related projet, pursued by Chandra et al. [5℄, studies the natureof ommuniation failures, inluding duration and loation, and how they e�et the end-to-end availability of wide-area servies. Another study, by Amir and Wool [2℄, evaluatesthe availability of di�erent quorum systems over the Internet. These researh e�orts areorthogonal and omplementary to ours.Triangle Inequality and Overlay NetworksThe fat that Internet routing often does not selet optimal paths was previously observedby a number of projets { Detour [25, 26℄, Moshe [15℄, and RON [3℄. These projets onstrutoverlay networks and improve performane by routing messages over these overlays on betterpaths than would be hosen by Internet routing. In ontrast, we neither assume an overlayinfrastruture, nor route messages through hosts that are not partiipating in the urrentinstane of the algorithm. Moreover, the aforementioned projets use overlays in order to�nd better paths for point-to-point ommuniation only. When an overlay is used at therouting level, as in these projets, messages from the same soure that are routed throughthe same host to di�erent destinations are not merged into a single message. For example,let us onsider the all-to-all algorithm running over an overlay that routes messages fromTaiwan to the Netherlands via Cornell. Taiwan would send idential messages to Cornell andthe Netherlands, whih would be sent as two separate messages on the link from Taiwanto Cornell. Likewise, the overlay would not ombine the information sent from Taiwanand Cornell to the Netherlands into a single message. Suh sending of multiple messages18



inreases the probability of some message being lost, whih inreases the average runningtime.1.2.2 MetrisAnother line of researh fouses on providing a theoretial framework for prediting andevaluating the performane of parallel and distributed algorithms. A number of papers,e.g. [7, 24, 28, 32℄, fous on settings where message proessing overhead is signi�ant, andshow that this favors algorithms that send fewer messages. While our results also illustratethe advantage of sending fewer messages, the reasons for this are di�erent: in our setting, itis due to high variability of message lateny (due to loss) rather than proessing overhead,whih is negligible in our setting. The onlusions from suh studies do not, in general,apply to our setting. For example., leader has a high proessing overhead (at the leader),but this does not hamper its performane in our setting. Moreover, these analyses assumethat the evaluated algorithm is the only soure of overhead in the system. In ontrast,over the Internet, the evaluated algorithms have little impat on the total overhead of thesystem.1.2.3 QuorumsThe primary foi for researh on evaluation of quorum systems are availability and load. Theload typially is evaluated assuming a probe set onsisting of a single quorum. A ommonmetri used to evaluate the availability of quorum systems is the probability of failure.Quorum systems fail when no quorum exists. Di�erent approahes have been used to studythis metri. One approah is using probabilisti models to obtain theoretial results on theprobability of failure [21, 23℄. While this approah is most rigorous, it makes oversimplifyingassumptions about the underlying network. Assumptions suh as independent failures andfull onnetivity generally do not hold in the Internet. Another approah used by Amir andWool [2℄ involves running experiments onsisting real hosts onneted to the Internet andusing a group membership protool to trak failures and network partitions. The availabilityof di�erent quorum systems is then evaluated based on the traes the were olleted from theexperiments. However, none of these studies provide an adequate framework for evaluatingthe running times of distributed algorithms that use quorum systems.
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Chapter 2
Methodology
2.1 The HostsWe use the following 28 hosts (the majority of whih is part of the RON testbed [3℄) in ourexperiments:� MIT, at the Massahusetts Institute of Tehnology, Cambridge, MA, USA;� MA1, at a ommerial ISP in Cambirdge, MA, USA;� MA2, at a seond ommerial ISP in Cambridge, MA, USA;� MA3, at a ommerial ISP in Martha's Vineyard, MA, USA;� NYU, at New York University, New York, NY, USA;� CU, at Cornell University, Ithaa, NY, USA;� NY, at a ommerial ISP in New York, NY, USA;� CMU, at Carnegie Mellon University, Pittsburgh, PA, USA;� NC, at a ommerial ISP in Dhuram, NC, USA;� Emulab , at the University of Utah, Salt Lake City, UT, USA;� UT1, at a ommerial ISP in Salt Lake City, UT, USA;� UT2, at a seond ommerial ISP in Salt Lake City, UT, USA;� UCSD, at the University of California San Diego, San Diego, CA, USA;� CA1, at a ommerial ISP in Foster City, CA, USA;21



� CA2, at Intel Labs in Berkeley, CA, USA;� CA3, at a ommerial ISP in Palo Alto, CA, USA;� CA4, at a ommerial ISP in Sunnyvale, CA, USA;� Canada (CND), at a ommerial ISP in Nepean, ON, Canada;� Sweden (SWD), at Lulea University of Tehnology, Lulea, Sweden;� Netherlands (NL), at Vrije University, Amsterdam, the Netherlands;� Greee (GR), at the National Tehnial University of Athens, Athens, Greee;� Switzerland (Swiss), at the Swiss Federal Institute of Tehnology, Lausanne, Switzer-land;� Israel (ISR1), at the Israel Institute of Tehnology (Tehnion), Haifa, Israel;� Israel (ISR2), at the Hebrew University of Jerusalem, Jerusalem, Israel;� Korea (KR), at Korea Advaned Institute of Siene and Tehnology, Daejon, SouthKorea;� Taiwan (TW), at National Taiwan University, Taipei, Taiwan;� Australia (AUS), at the University of Sydney, Sydney, Australia; and� New Zealand (NZ), at Vitoria University of Wellington, Wellington, New Zealand.All the hosts run either FreeBSD or Linux or Solaris operating systems.2.2 Server ImplementationAt every host we run a server, implemented in Java, optimized with the GCJ ompiler.Eah server has knowledge of the IP addresses and ports of all the potential servers in thesystem. Every server keeps an ative TCP onnetion to every other server that it anommuniate with. We disable TCP's default waiting before sending small pakets (f.Nagle algorithm, [30, Ch. 19℄). The system implements asynhronous I/O using threads.Eah server periodially attempts to set up onnetions with other servers to whih it isnot urrently onneted. A rontab monitors the status of the server, and restarts it ifit is down. Thus, when either a server or ommuniation failure is repaired, onnetion ispromptly reestablished. In ase the ommuniation is not transitive, di�erent hosts an havedi�erent views of the urrent set of partiipants. For gather-all, we present performaneresults only for periods during whih all the hosts had idential pereptions of the set of22



onneted hosts. In ase of host or ommuniation failures, an instane of the algorithmmay fail to terminate. This situation an be deteted by the failure of a TCP onnetionor by a timeout.Eah server has ode implementing the algorithms in Setion 1.1. The server periodiallyinvokes eah algorithm: it sleeps for a random period, and then invokes one of the algo-rithms, in round-robin order. Eah invoation of an algorithm is alled a session. We userandomness in order to redue the probability of di�erent sessions running at the same timeand delaying eah other; this is easier than synhronizing the invoations, as the hosts donot have synhronized loks.We onstantly run ping (and traeroute in the last two experiments) from eah host toeah of the other hosts, periodially sending ICMP pakets, in order to trak the routingdynamis, the lateny and loss rate between every pair of hosts in the underlying network.The ping and traeroute proesses are also monitored by a rontab.2.3 Running Times and Clok SkewsWe use two measures of running time:� The loal running time of a session at a partiular host is the lok time elapsing fromwhen this host begins this session and until the same host terminates the session.Where we present performane measurements, we give loal running times at theinitiator only.� The overall running time of a session is the time elapsing from when the initiatorbegins this session until all the hosts terminate this session.Eah host writes to log its starting time and termination time for eah session, aordingto its loal lok. Sine we do not own the hosts used in our experiments, we were not ableto synhronize their loks. Therefore, in order to dedue the overall running time from thelog �les, we need to know the skews between di�erent hosts' loks.We now explain how we estimate the lok di�erenes. Whenever a host A sends a messageto host B, it inludes in the message its loal lok time. When host B reeives the message,it omputes the di�erene between its loal lok time and the time in the message, andwrites this value to log. Denote this value by �AB. Assume that B's lok is dAB timeahead of A's, and assume that the average message lateny from A to B and from B to A islAB . Then on average, �AB = lAB+dAB and symmetrially, �BA = lAB�dAB. Therefore,�AB ��BA is, on average, 2dAB . We approximate the lok di�erene between A and B
23



as: (average(�AB)� average(�BA))=2This approximation method has some limitations: sine messages are exhanged over TCP,the lateny an vary substantially in ase of message loss. Therefore, if a pair of hostsommuniate over a lossy link, this method an give a bad approximation for the lokdi�erene. Furthermore, high variations in the (loss-free) lateny between a pair of hostsmake it harder to distinguish between high TCP latenies that are due to message loss andthose that due to variations (routing delays). However, we an detet (and avoid) someof the ases in whih lost messages our in bursts by setting a threshold. If the round-trip time of a sample exeeds the given threshold, then we an disard that sample whenomputing the lok di�erene. From our observation, for pairs of hosts with loss rates lessthan 10%, most losses are lustered around short periods of time (bursts). This inreases theauray of the above method in deteting losses. The higher we set the threshold, the lesslikely we are to disard samples that do not reet a loss, but message losses are also morelikely to go undeteted. For eah pair of hosts, we set the threshold to be twie the averageround-trip time plus four times the standard deviation. Moreover, we disovered that whenthe average lok skew is omputed over a long interval, results an be inonsistent, beausesome hosts experiene lok drifts. So instead of taking the average over all samples, weompute the average over samples obtained in shorter intervals (we used intervals that areone hour long).We �x a base host h, and ompute the lok di�erenes between h and every other hostper every 15 minute time interval. Then, all logged running times in this interval areadjusted to h's lok, and the overall running time is inferred from the adjusted initiationand termination times. In order to minimize the e�et of TCP retransmission delays, it ispreferable to hoose a host that has reliable links to every other host. In order to hek theonsisteny of our results, we omputed the overall running times using three di�erent basehosts: MIT, Emulab, and Cornell. We hose these hosts sine the links to them from allhosts were fairly reliable and exhibited a low variation of lateny.Having omputed the running times three di�erent ways, we found the results to be fairlyonsistent. The distributions of overall running times as omputed with eah of the threehosts were almost idential. Moreover, for over 90% of the sessions with overall runningtimes up to 2 seonds, the three omputed running times were within 20 ms. of eah other.
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2.4 Running Time Distribution over TCP/IPWe now explain the mathematial model that underlies the analysis of the experimentalresults in this paper.After TCP sends a message, it waits for an aknowledgement. If an aknowledgement doesnot arrive for a designated retransmission time-out, TCP retransmits the message. TCP'sinitial retransmission time-out is the estimated average RTT on the link plus four times themean deviation of the RTT, where both the average and the mean deviation are omputedover reent values. If the seond opy is also lost, TCP waits twie the amount of time itwaited before retransmitting the �rst lost opy, and this ontinues to grow exponentiallywith number of lost opies. [30, Ch. 21℄We estimate the distribution of the TCP lateny based on the underlying link lateny d andloss probability p. Assume �rst that d is half the RTT, that losses are independent, andthat the lateny does not vary, so the RTT's mean deviation is 0. Then the TCP latenyis d with probability 1 � p, 3d with probability p(1 � p), 7d with probability p2(1 � p),and so on. This is a rough estimate, as it does not address variations in lateny and loss.Correlated loss auses the �rst peak (at lateny d) to our with higher probability, andauses the tail of the distribution to be sparser; this will be most signi�ant on links withhigh loss rates. A high variation of lateny will shift all the peaks exept the �rst.We use this estimate to analyze the distribution of the running time of a stage of analgorithm. Let pi be the probability that the lateny of a message sent on link i is at mostD (as omputed above). Then the probability that an algorithm stage takes at most Dtime is the produt of the probabilities pi for all the links traversed in this stage. Moregenerally, the running time of a stage is a random variable representing the maximum valueof the random variables representing the TCP link latenies, with distributions de�ned bythe RTT and loss rate as explained above. As the number of random variables over whihthe maximum is omputed grows, the expeted maximum value inreases. This explainswhy all-to-all, whih sends O(n2) messages in eah stage performs muh worse than leader,whih sends O(n).2.5 Pseudo Code of the AlgorithmsEah server runs the following threads:� A thread for monitoring onnetions to other hosts (reonnets if neessary).� One thread per live onnetion used to exhange messages with the server at the otherend of the onnetion. 25



� A thread for aepting onnetions from other hosts.� A thread for administrating the server.We now present the server in pseudo ode. In de�ning variables, we use the following datatypes: onnetion is an IP address and port number identifying a server; sid is the typefor session identi�ers; time is for real time values; alg-type is either leader, quorum-leader,all-to-all, quorum-to-quorum, seondary leader, or ring.Messages Exhanged between di�erent servers have the following format:<sid session-id, alg-type alg, onnetion initiator, onnetion sender, int stage>where session-id is a globally unique session identi�er; alg is the algorithm being run;initiator is the server that initiates this session; sender is the server sending the message;and stage denotes the ommuniation step, whih an be 1, 2, or 3 in ase of a leader (orquorum-leader) session, 0, 1, 2, or 3 in ase of a seondary leader session, and 1 or 2 in aseof an all-to-all or a quorum-to-quorum or a ring session (see Figure 1.1).Figure 2.1 Variables used by the algorithms.onnetion my-idonnetion my-neighborhashtable neighbor: onnetion ! onnetionset of onnetions live-onnetionshashtable sent-to: sid ! set of onnetionshashtable reeived-from: sid ! set of onnetionshashtable start-time: sid ! timeWe list the variables used by the server in Figure 2.1. The server holds its own IP addressand port in a variable my-id. Eah server is assigned a neighbor that spei�es the ow ofmessages in a ring session. The server holds its neighbor's IP address and port in a variablemy-neighbor. Eah server traks every other server's neighbor as well as its own in the hashtable neighbor mapping onnetions to their neighboring onnetions. The server keepstrak of the set of onnetions that are up and running in the variable live-onnetions.This variable is maintained by the thread that traks onnetions; we do not give the pseudoode for this thread. Thus, in the pseudo ode we give below, live-onnetions is a read-only variable. A server s assoiates eah session x with a start time, a set of remote serversthat reeived a session x message from s, and a set of remote servers that sent a message to sin session x. These are held in the hash tables start-time, sent-to, and reeived-from,resp. 26



2.5.1 The Gather-All PrimitiveIn the subsetions below we give the pseudo ode for the four algorithms that implementthe gather-all primitive.All-to-AllThe following proedure is used to initiate an all-to-all session:proedure run-all-to-allif (live-onnetions = ;)abortendifmessage m = <session-id, all-to-all, my-id, my-id, 1>start-time[session-id℄  loksent-to[session-id℄  ;reeived-from[session-id℄  ;8  2 live-onnetions dosend m to sent-to[session-id℄  sent-to[session-id℄ [ {}odAll-to-all sends two types of messages: stage 1 messages from the initiator to non-initiators;and stage 2 messages from non-initiators to all servers. Both messages are handled usingthe following event handler:Upon rev m with m.alg-type = all-to-allif (start-time[m.session-id℄ = null)start-time[session-id℄  loksent-to[session-id℄  ;reeived-from[session-id℄  {m.sender}8  2 live-onnetions dosend <m.session-id, m.alg-type, m.initiator, my-id, 2> to sent-to[session-id℄  sent-to[session-id℄ [ {}odelsereeived-from[session-id℄  reeived-from[m.session-id℄ [ {m.sender}endifif ((sent-to[m.session-id℄ \ live-onnetions) � reeived-from[m.session-id℄)end-time  lokwrite start-time[m.session-id℄, end-time to log fileendif
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LeaderThe following proedure is used to initiate a leader session:proedure run-leaderif (live-onnetions = ;)abortendifmessage m = <session-id, leader, my-id, my-id, 1>start-time[session-id℄  loksent-to[session-id℄  ;reeived-from[session-id℄  ;8  2 live-onnetions dosend m to sent-to[session-id℄  sent-to[session-id℄ [ {}odLeader sends three types of messages: stage 1 and stage 3 messages are sent by the initia-tor and reeived by non-initiators, and stage 2 messages are sent by non-initiators to theinitiator. The following are event handlers for these messages:Upon rev m with m.alg-type = leader and stage = 1start-time[m.session-id℄ = loksend <m.session-id, m.alg-type, m.initiator, my-id, 2> to m.initiatorUpon rev m with m.alg-type = leader and stage = 2reeived-from[m.session-id℄  reeived-from[m.session-id℄ [ {m.sender}if (sent-to[m.session-id℄ \ live-onnetions � reeived-from[m.session-id℄)8  2 reeived-from[session-id℄ \ live-onnetions dosend <m.session-id, m.alg-type, m.initiator, my-id, 3> to odend-time  lokwrite start-time[m.session-id℄, end-time to log fileendifUpon rev m with m.alg-type = leader and stage = 3end-time  lokwrite start-time[m.session-id℄, end-time to log fileSeondary LeaderThe following proedure is used to initiate a seondary leader session:proedure run-seondary-leader 28



if (live-onnetions = ;)abortendifpik a host h from live-onnetions to be the seondary leadermessage m = <session-id, seondary-leader, my-id, my-id, 0>start-time[session-id℄  loksend m to hIn this algorithm, stage 0 messages are sent from the initiator to the seondary leader; theseondary leader sends a stage 1 message to non-initiators; servers send stage 2 messagesto the seondary leader; and the seondary leader sends stage 3 messages to non-initiators.Messages of type 1,2, and 3 are handled exatly the same way as in the leader algorithm.The following is the event handler for messages of type 0:Upon rev m with m.alg-type = seondary-leader and stage = 0start-time[m.session-id℄  loksent-to[m.session-id℄  ;reeived-from[m.session-id℄  ;8  2 live-onnetions - {m.initiator} dosend <m.session-id, m.alg-type, m.initiator, my-id, 1> to sent-to[session-id℄ = sent-to[session-id℄ [ {}odif (sent-to[m.session-id℄ = ;)send <m.session-id, m.alg-type, m.initiator, my-id, 3> to m.initiatorend-time  lokwrite start-time[m.session-id℄, end-time to log fileendifRingThe following proedure is used to initiate a ring session:proedure run-ringif (live-onnetions = ;)abortendifmessage m = <session-id, ring, my-id, my-id, 1>n  my-neighborwhile (n =2 live-onnetions) don  neighbor[n℄odstart-time[session-id℄  loksend m to n 29



In this algorithm, all servers reeive stage 1 messages from their neighbors, and all serversexept the initiator reeive stage 2 messages from their neighbors. The following are eventhandlers for these messages:Upon rev m with m.alg-type = ring and stage = 1if (m.initiator = my-id)n  my-neighborwhile (n =2 live-onnetions) don  neighbor[n℄odif (n.id = my-id)end-time  lokwrite start-time[m.session-id℄, end-time to log fileelsem.stage  2m.sender  my-idsend m to nend-time  lokwrite start-time[m.session-id℄, end-time to log fileendifelsestart-time[session-id℄  lokn  my-neighborwhile (n =2 live-onnetions) don  neighbor[n℄odm.sender  my-idsend m to nendifUpon rev m with m.alg-type = ring and stage = 2n  my-neighborwhile (n =2 live-onnetions) don  neighbor[n℄odif (n.session-id != initiator)m.sender  my-idsend m to nendifend-time  lokwrite start-time[m.session-id℄, end-time to log file
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2.5.2 The Gather-Quorum PrimitiveIn the subsetions below we give the pseudo ode for the two algorithms that implement thegather-quorum primitive�. The two algorithms presented in this setion, quorum-to-quorumand quorum-leader, behave very losely to the all-to-all and leader algorithms presented inSetion 2.5.1. There are a some notable di�erenes however. First, both algorithms in thissetion take an additional parameter, probe-set, whih is the set of onnetions that willbe probed in this session. Seond, both algorithms in this session terminate as soon as aquorum of hosts hear from a quorum of hosts. Finally, unlike the all-to-all algorithm, in thequorum-to-quorum algorithm, hosts do not begin to send message to other hosts until theyhave been probed by the initiator. The following ode assumes a generi quorum system.Quorum-to-QuorumThe following proedure is used to initiate a quorum-to-quorum session:proedure run-quorum-to-quorum (probe-set)if (live-onnetions \ probe-set does not ontain a quorum)abortendifmessage m = <session-id, all-to-all, my-id, my-id, 1>start-time[session-id℄  lokreeived-from[session-id℄  {my-id}8  2 live-onnetions \ probe-set dosend m to odQuorum-to-quorum sends two types of messages: stage 1 messages from the initiator tonon-initiators; and stage 2 messages from non-initiators to all servers. The following is theevent handlers for these messages:Upon rev m with m.alg-type = quorum-to-quorumif (start-time[m.session-id℄ = null)start-time[session-id℄  lokreeived-from[session-id℄  {my-id}endifreeived-from[session-id℄  reeived-from[session-id℄ [ {m.sender}if stage = 1�In order to avoid running too many algorithms, we did not atually run any of the algorithms in this setion.Instead, we an extrapolate the running times of these algorithms from the data obtained by running theirounter-parts presented in Setion 2.5.1. In eah of these instanes we are only interested in the times whena quorum hears from a quorum and we disregard data that is irrelevant.31



8  2 live-onnetions \ probe-set dosend <m.session-id, m.alg-type, m.initiator, my-id, 2> to odif (reeived-from[m.session-id℄ \ probe-set ontains a quorum)end-time  lokwrite start-time[m.session-id℄, end-time to log fileendifendifQuorum-LeaderThe following proedure is used to initiate a quorum-leader session:proedure run-quorum-leader (probe-set)if (live-onnetions \ probe-set does not ontain a quorum)abortendifmessage m = <session-id, quorum-leader, my-id, my-id, 1>start-time[session-id℄  lokreeived-from[session-id℄  {my-id}8  2 live-onnetions \ probe-set dosend m to odQuorum-leader sends three types of messages: stage 1 and stage 3 messages are sent by theinitiator and reeived by non-initiators, and stage 2 messages are sent by non-initiators tothe initiator. The following are event handlers for these messages:Upon rev m with m.alg-type = quorum-leader and stage = 1start-time[m.session-id℄ = loksend <m.session-id, m.alg-type, m.initiator, my-id, 2> to m.initiatorUpon rev m with m.alg-type = quorum-leader and stage = 2reeived-from[m.session-id℄  reeived-from[m.session-id℄ [ {m.sender}if (probe-set \ reeived-from[m.session-id℄ ontains a quorum)8  2 reeived-from[session-id℄ \ live-onnetions \ probe-set dosend <m.session-id, m.alg-type, m.initiator, my-id, 3> to odend-time  lokwrite start-time[m.session-id℄, end-time to log fileendifUpon rev m with m.alg-type = quorum-leader and stage = 3end-time  lok 32



write start-time[m.session-id℄, end-time to log file
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Chapter 3
The Gather-All Primitive
This hapter presents three experiments, in whih we ran the four algorithms that implementthe total-gather primitive. A total of ten hosts partiipated in these experiments. For eahexperiment, we only present the periods in whih every host that partiipated in thatexperiment was up and running. While the experiments were running, eah host sent aping probe to every other host one per minute. the results in this hapter were publishedin [4℄.3.1 The E�et of Message LossThis setion presents Experiments I, II, eah of whih lasted three and a half days. Ringwas not tested in these experiments. Eah of the other three algorithms was initiated byeah of the hosts every 7.5 minutes on average, and in total, roughly 650 times. Setion 3.2,presents Experiment I, in whih the TW host had two links with very high loss rates. Wethen exluded the TW host, and ran Experiment II, whih we present in Setion 3.3.3.2 Experiment IThe following hosts partiipated in this experiment: MIT, CU, NYU, Emulab, UT2, CA1,UCSD, KR and TW. Table 3.1 presents the average RTT and loss rate from every host toevery other host during the experiment, as observed by ping. The loss rates from TW toUT2 and CA1 are very high (37% and 42%, respetively), and all the other loss rates areup to 8%. Losses sometimes our in bursts, where for a period of several minutes all themessages sent on a partiular link are lost. The latenies generally vary less, but oasionallywe observe periods during whih the lateny is signi�antly higher than average.In this experiment MIT serves as the seondary leader for TW, KR, CU, UT2, NYU, and35



Table 3.1 Network harateristis during Experiment I.From To KR TW MIT UCSD CU NYU CA1 UT2 EmulabKR Avg. RTT 387 291 272 265 267 168 479 258Loss Rate | 6% 7% 2% 0% 0% 1% 1% 2%TW Avg. RTT 388 243 177 211 220 221 267 186Loss Rate 5% | 8% 3% 3% 4% 41% 37% 4%MIT Avg. RTT 300 253 115 40 34 112 99 80Loss Rate 6% 8% | 5% 6% 6% 6% 5% 5%UCSD Avg. RTT 289 195 125 91 102 42 105 61Loss Rate 2% 4% 5% | 0% 0% 0% 0% 0%CU Avg. RTT 266 211 47 73 9 88 101 47Loss Rate 0% 4% 5% 0% | 0% 1% 0% 0%NYU Avg. RTT 267 220 39 83 9 70 78 56Loss Rate 0% 4% 5% 0% 0% | 0% 0% 0%CA1 Avg. RTT 168 223 121 32 88 75 54 78Loss Rate 1% 42% 5% 0% 1% 0% | 0% 0%UT2 Avg. RTT 479 266 97 88 100 78 50 13Loss Rate 1% 37% 5% 0% 0% 0% 0% | 3%Emulab Avg. RTT 258 186 76 48 47 57 74 14Loss Rate 2% 4% 5% 0% 0% 0% 0% 3% |Emulab. Emulab is the seondary leader for the rest. We hose seondary leaders that hadrelatively reliable links to all hosts. We used seondary leaders for all hosts in order to havea meaningful omparison. In pratie, seondary leaders would only be used for hosts thathave poor links.Due to oasional loss bursts and TCP's exponential bako�, some running times are veryhigh (several minutes long). Thus, the average running time is not representative. InTable 3.2, we present statistial data about the running times, both overall and loal, of thethree algorithms. We present the average running time (in milliseonds) taken over runsthat omplete within 2 seonds. Most runs that experiene no more than 2 onseutivelosses are inluded in this average. In Figure 3.1, we present histograms of the distributionof overall running times under 1.3 seonds observed at three of the hosts { MIT whihhas no lossy links, UT2 whih has one lossy link, and TW whih has two. The �rst peakin eah histogram represents the overall running time of loss-free runs. The size of thepeak illustrates the perentage of the runs of that partiular algorithm that were loss-free.The running times over 1 seond were sparsely distributed. To illustrate this, we give theperentage of runs that exeed 2, 4, and 6 seonds in Table 3.2.The overall running time of all-to-all is poor: less than half the runs are under 2 seonds.This is beause every instane of all-to-all sends two messages over eah lossy link, regardlessof the initiator. Thus, most instanes experiene multiple onseutive losses. Leader has abetter overall running time exept in TW. This is beause eah instane of leader initiatedat TW traverses eah lossy link three times. Instanes of leader running from other hoststraverse either one or no lossy links. At the three hosts that have lossy links (TW, UT2,36



Table 3.2 Measured running times, milliseonds, Experiment I.Algorithm All-to-all Leader SeondaryInitiator Overall Loal Overall Loal Overall LoalKR Avg. (runs under 2 se) 922 550 873 592 695 613% runs over 2 se 55% 6% 15% 8% 12% 6%% runs over 4 se 42% 3% 9% 4% 7% 3%% runs over 6 se 37% 3% 7% 3% 5% 3%TW Avg. (runs under 2 se) 866 645 1120 844 679 607% runs over 2 se 54% 24% 64% 43% 13% 7%% runs over 4 se 40% 19% 43% 30% 7% 4%% runs over 6 se 36% 18% 37% 25% 6% 3%MIT Avg. (runs under 2 se) 811 295 541 335 585 408% runs over 2 se 55% 3% 13% 6% 9% 3%% runs over 4 se 42% 3% 8% 4% 5% 2%% runs over 6 se 37% 3% 6% 3% 4% 2%UCSD Avg. (runs under 2 se) 860 328 473 332 602 420% runs over 2 se 51% 2% 6% 2% 8% 3%% runs over 4 se 41% 2% 5% 2% 5% 1%% runs over 6 se 35% 2% 4% 2% 4% 1%CU Avg. (runs under 2 se) 831 320 577 357 578 392% runs over 2 se 53% 1% 6% 1% 12% 5%% runs over 4 se 40% 2% 4% 1% 8% 4%% runs over 6 se 35% 2% 4% 1% 6% 3%NYU Avg. (runs under 2 se) 860 319 562 348 598 408% runs over 2 se 54% 2% 8% 3% 12% 6%% runs over 4 se 41% 3% 6% 2% 8% 3%% runs over 6 se 35% 2% 5% 2% 6% 3%CA1 Avg. (runs under 2 se) 850 450 777 553 618 450% runs over 2 se 51% 17% 30% 24% 9% 3%% runs over 4 se 40% 13% 21% 16% 6% 2%% runs over 6 se 35% 11% 19% 15% 5% 2%UT2 Avg. (runs under 2 se) 872 513 1031 689 636 452% runs over 2 se 52% 25% 45% 36% 13% 6%% runs over 4 se 42% 21% 34% 28% 8% 4%% runs over 6 se 36% 17% 29% 23% 6% 3%Emulab Avg. (runs under 2 se) 844 320 544 356 633 448% runs over 2 se 52% 2% 8% 3% 10% 5%% runs over 4 se 41% 2% 5% 2% 6% 3%% runs over 6 se 37% 2% 4% 2% 5% 2%and CA1), seondary leader ahieves the best overall performane by bypassing the lossylinks.All-to-all has the best loal running time at hosts that do not have lossy links. It has abetter loal running time than leader due to ases in whih the triangle inequality does nothold. For example, when UT2 initiates all-to-all, CA1 reeives the �rst message, on average,after 25 ms., and sends a response to all hosts. KR reeives this response, on average, after84 ms., that is, 109 ms. after UT2 sent the �rst message. This is shorter than the averagetime it takes UT2's message to get to KR (240 ms.). Therefore, KR engages in all-to-allfrom UT2 earlier than in leader from UT2. Similarly, when the �rst stage message to some37



host is lost, all-to-all in essene sends it also by a number of alternate paths, one whih anprove more e�etive. This is why the loal running time of all-to-all at TW is dramatiallybetter than that of leader.In the absene of paket loss, the overall running time of leader should be roughly threetimes the one-way lateny on the longest link from the leader, or 1.5 times the RTT. FromMIT, the longest link, to KR, has an average RTT of 300 ms. Indeed, the �rst peak isentered around 400{450 ms. Sine all links to MIT other than from TW and KR havesigni�antly shorter latenies (up to 115 ms.), this running time should be experienedwhenever there are no losses on the TW and KR links, and at most one or two on eahof the other links. Sine three messages are sent on eah link, and the loss rates of thelongest links are 6% and 8%, the probability of no loss ourring on either of the long linksis: :943 � :923 � :65. Indeed, running times up to 450 ms. our in 429 out of 659 runs, i.e.,65%.The longest link from TW is to KR, and its average RTT is 388 ms. Therefore, as expeted,the �rst peak of leader from TW is entered around roughly 1.5 times this RTT, at the550{600 ms. range. This peak inludes only 65 of 643 runs (10%). We now explain why.First, observe that if any of the three messages sent on the link to KR or to UT2 is lost, therunning time exeeds the peak. The probability of no loss on the KR link is :953 � :86 andthe probability of no loss on the UT2 link is :633 � :25. Next, onsider the link to CA1.In the absene of losses, the response from CA1 to TW in the seond stage arrives afterabout 221 ms. (the RTT), and the response from KR to TW arrives after about 388 ms.One TW sends the �nal stage message to all hosts, the algorithm terminates at all hostswithin half the RTT on the longest link, or roughly 194 ms. If either the �rst message fromTW to CA1 or CA1's response is lost one, then the response arrives roughly after 450 ms.,assuming low mean deviation of RTTs. This is suÆiently lose to the 388 ms. TW has towait for KR's message, so it falls in the �rst peak. However, if the �nal stage message fromTW to CA1 is lost, then CA1 terminates 332 ms. after TW sends the last message, whihadds 138 ms. to the overall running time, and pushes it out of the �rst peak. Two losses onthe link to CA1 always push this session away from the peak. The last message to CA1 isnot lost with probability 58%. The probability that at most one of the previous messagesis lost, and if it is lost, the retransmission is not lost, is: :582 + 2 � :42 � :582 � :62. So theprobability of the �rst peak should be :86 � :25 � :58 � :62 � :08. This is slightly lower thanthe observed 10%; we hypothesize that this is due to orrelated loss, whih is signi�anthere due to the high loss rates involved.The longest link from UT2 is to KR, with an average RTT of 479 ms. Therefore, the peakis around 700{850. We now try to explain why 36% of the runs (230 of 640) are in thisrange. The probability of having no losses on the KR link is 97%. The link from UT2 toTW is quite errati. Although the average RTT is 266 ms., the RTT oasionally jumps as38



high as 800 ms., and standard deviation of RTTs for the entire experiment period is 139ms. In periods with low RTT variations, when the mean deviation omputed by TCP islow, a run with a single loss to TW in one of the �rst two stages of the algorithm will fallin the �rst peak. A loss during a period with a high mean deviation or a loss in the laststage of the algorithm pushes the running time out of the peak. The probability that thelast message on this link is not lost is 63%. We hypothesize that the mean deviation is lowenough to keep us in the peak approximately half the time. With this assumption, we getthat the probability of a loss in one of the �rst two stages not pushing us out of the peak is54%, and the probability of the peak should be: :97 � :63 � :54 � :33, whih is lose to theobserved 36%.Sine TW uses MIT as a seondary leader, we expet seondary leader from TW to behavethe same as leader initiated at MIT, with an additional delay of 120 ms. (half the RTTbetween TW and MIT). Indeed, the �rst peak is entered around 500{550, and inludesroughly the same perentage of the runs as leader at MIT (440/643 = 68%). All-to-all'speak exhibits the lowest overall running time, but the perentage of runs in the �rst peakis very low, and is the same for all initiators.Figure 3.2 shows the loal running times at the same hosts. The loal running time forall-to-all initiated by MIT has a higher peak, as it does not involve any lossy links.3.3 Experiment II: Exluding the Lossiest HostTable 3.3 Network harateristis during Experiment II.From To KR MIT Cornell NYU CA1 UT2 Emulab UT1KR Avg. RTT 294 261 257 165 452 275 500Loss Rate | 3% 1% 3% 0% 1% 3% 1%MIT Avg. RTT 298 43 38 117 117 82 86Loss Rate 2% | 1% 1% 1% 2% 3% 2%Cornell Avg. RTT 269 46 16 89 101 47 87Loss Rate 1% 1% | 0% 1% 1% 3% 1%NYU Avg. RTT 257 38 16 69 76 60 60Loss Rate 3% 1% 0% | 0% 0% 2% 1%CA1 Avg. RTT 165 115 92 75 47 79 85Loss Rate 0% 2% 1% 0% | 1% 2% 1%UT2 Avg. RTT 454 109 101 77 47 14 31Loss Rate 1% 2% 1% 0% 0% | 6% 1%Emulab Avg. RTT 275 83 47 60 74 15 50Loss Rate 4% 4% 2% 2% 2% 6% | 4%UT1 Avg. RTT 503 82 82 60 86 30 52Loss Rate 1% 1% 1% 1% 1% 1% 5% |We repeated the experiment above without the TW host, whih was an end-point on both39



lossy links. We also exluded UCSD beause it was overloaded at the time of the experiment,and we added UT1. The network harateristis are presented in Table 3.3.Table 3.4 Measured overall and loal running times, Experiment II.Algorithm: All-to-all Leader SeondaryInitiator Overall Loal Overall Loal Overall LoalKR Avg. (runs under 2 se) 588 509 758 551 407 388% runs over 2 se 12% 7% 11% 6% 9% 4%MIT Avg. (runs under 2 se) 524 278 465 296 442 311% runs over 2 se 11% 4% 10% 5% 10% 6%CU Avg. (runs under 2 se) 532 277 440 277 471 315% over 2 se 11% 4% 9% 5% 10% 5%NYU Avg. (runs under 2 se) 519 291 449 291 446 296% over 2 se 12% 5% 10% 5% 10% 5%CA1 Avg. (runs under 2 se) 535 222 378 219 486 367% over 2 se 11% 5% 10% 5% 9% 6%UT2 Avg. (runs under 2 se) 500 265 866 498 494 383% over 2 se 10% 5% 11% 6% 9% 5%Emulab Avg. (runs under 2 se) 526 287 506 316 480 338% over 2 se 12% 5% 9% 6% 8% 4%UT1 Avg. (runs under 2 se) 495 295 982 571 481 367% runs over 2 se 11% 4% 11% 5% 10% 6%The running times observed in this experiment are summarized in Table 3.4. In this ex-periment at least 88% of the runs are under 2 seonds, for all algorithms and all initiators.Even in this setting, all-to-all does not have the best overall running time for any initiator,beause even the relatively low loss rates get ampli�ed by the fat that so many messagesare sent. Seondary leader works best for most hosts, exept for those that are themselvesoptimal leaders.When one onsiders the metri of loal running time, we observe that the loal running timeof all-to-all is always superior to that of leader, regardless of the quality of links. Althoughthey both traverse the same links the same number of times, all-to-all has the advantage thatits ommuniation stages may overlap. For example, when the message from the initiatorto one of the hosts is delayed due to loss, that host an hear from another host that thealgorithm has initiated before reeiving the initiator's late message. In the presene of verylossy links, seondary leader outperforms the other two algorithms both loally and globallysine it is the only one that avoids the lossy links altogether.3.4 The Impat of LatenyWe now present results from Experiment III. In addition to the hosts that partiipated inExperiment I, the NL host was also inluded. In this experiment, we evaluated the all-to-all,40



Table 3.5 Network harateristis during Experiment III.From To KR TW MIT UCSD CU NYU CA1 UT2 Emulab NLKR Avg. RTT 643 547 526 587 588 152 446 521 701Loss Rate | 9% 6% 6% 4% 4% 1% 3% 7% 8%TW Avg. RTT 639 235 178 212 222 219 258 187 322Loss Rate 10% | 4% 3% 4% 3% 43% 49% 4% 4%MIT Avg. RTT 549 236 97 32 28 98 78 71 150Loss Rate 8% 3% | 0% 0% 0% 1% 2% 1% 0%UCSD Avg. RTT 526 179 96 73 84 49 91 48 172Loss Rate 6% 3% 0% | 0% 0% 0% 2% 1% 0%CU Avg. RTT 588 211 32 73 9 85 88 47 138Loss Rate 4% 4% 0% 0% | 0% 49% 31% 1% 0%NYU Avg. RTT 587 222 28 83 9 70 70 57 138Loss Rate 4% 4% 0% 0% 0% | 0% 2% 1% 0%CA1 Avg. RTT 152 219 102 31 94 78 54 81 161Loss Rate 0% 42% 1% 0% 31% 0% | 2% 4% 1%UT2 Avg. RTT 446 262 77 91 88 71 50 13 154Loss Rate 3% 48% 2% 2% 31% 2% 2% | 6% 2%Emulab Avg. RTT 522 187 70 48 47 57 75 14 145Loss Rate 8% 5% 1% 1% 1% 1% 4% 6% | 1%NL Avg. RTT 697 324 155 175 141 143 165 157 49Loss Rate 7% 3% 0% 0% 1% 0% 1% 2% 1% |leader, and ring algorithms. All the hosts exept UT1 partiipated in this experiment. Eahhost ran about 510 sessions of eah algorithm. Table 3.5 shows the network harateristisduring the experiment. Table 3.6 summarizes the overall and loal running times of thethree algorithms. Table 3.6 gives the average running time for runs under 3 seonds, andthe perentage of runs under 3 seonds. We use a threshold of 3 seonds beause linklatenies in this experiment are higher than in the previous two. In analyzing the results,we highlight the impat of lateny on algorithm performane. In Setion 3.5, we disuss therunning time of the ring algorithm. In Setion 3.6, we show how the highest lateny link inthe system a�ets the running time of all-to-all. In Setion 3.7, we disuss the impat of alink's lateny on the signi�ane of loss on that link. Setion 3.8 disusses the fat that thetriangle inequality does not hold and the impat this has.3.5 The Running Time of RingThe message ow in the ring-based algorithm follows the following sequene where eahhost preedes its neighbor and the �rst host is the neighbor of the last: NL, Emulab, UT2,CU, NYU, KR, MIT, TW, UCSD, CA1. This above ring was hosen based on lateny andloss rate measurements from a previous experiment. The hosen ring is nearly optimal andthe loss rates on all the ring links are low.Ring has the highest average running time in the absene of message loss. However, ring41



Table 3.6 Measured running times, milliseonds, Experiment III.Algorithm All-to-all Leader RingInitiator Overall Loal Overall Loal Overall LoalKR Avg. (runs under 3 se) 1197 692 1340 954 1853 1158% runs over 3 se 66% 9% 25% 13% 18% 5%TW Avg. (runs under 3 se) 1139 809 1644 1227 2014 1137% runs over 3 se 64% 28% 84% 69% 22% 4%MIT Avg. (runs under 3 se) 1168 515 896 589 1912 1117% runs over 3 se 67% 3% 13% 6% 18% 6%UCSD Avg. (runs under 3 se) 1172 497 833 558 2040 1115% runs over 3 se 61% 2% 14% 7% 24% 6%CU Avg. (runs under 3 se) 1133 494 1179 703 2076 1120% over 3 se 58% 3% 9% 2% 21% 4%NYU Avg. (runs under 3 se) 1156 516 1183 715 2092 1134% over 3 se 62% 3% 8% 3% 27% 5%CA1 Avg. (runs under 3 se) 1127 563 992 670 2073 1141% over 3 se 66% 33% 44% 37% 27% 5%UT2 Avg. (runs under 3 se) 1120 558 1190 637 2121 1165% over 3 se 64% 51% 60% 53% 30% 8%Emulab Avg. (runs under 3 se) 1108 474 884 594 2066 1133% over 3 se 67% 5% 15% 8% 24% 5%NL Avg. (runs under 3 se) 1161 585 1146 772 2035 1143% over 3 se 65% 3% 16% 7% 25% 5%has some nie properties: First, the ring algorithm is least a�eted by message loss. Fromthe network harateristis depited in Table 3.5, we observe that in the absene of messageloss, the total time it takes a message to irulate around the ring twie is about 1900ms. Unlike leader and all-to-all, the average overall running time for ring appraohes thisexpetation. The reason for this is that ring sends the fewest messages and uses the mostreliable links. Seond, the hoie of initiator does not have a big impat on the performaneof ring, sine messages travel over the same links. The only di�erene between initiatingring from di�erent hosts is that the initiator only reeives a message one. This explainswhy ring sessions initiated at KR have a slightly better overall running time sine KR hasthe longest link. Finally, notie that ring's overall running time is not exatly twie theloal running time sine the seond round is shorter than the �rst.3.6 Lateny Changes over TimeThe longest links in the system were between KR and TW and KR and the NL. The latenyof these two links varied dramatially in the ourse of the experiment. We now divide thedata gathered in this experiment into two periods. In the �rst period, the link from KRto the NL had an average RTT of 754 ms., and the link from KR to TW had an averageRTT of 683 ms. In the seond period, the average RTTs from KR to the NL and to TWdropped to 355 ms. and 385 ms., respetively. So the average one-way message lateny on42



the longest link dropped by 185 ms. This was the only notable di�erene between the twoperiods.In Figure 3.3, we show histograms of the measured overall running times of all-to-all fromall initiators during eah of the two periods. The histograms show runs up to 2 seonds; thisinludes 23% of the runs during the longer lateny period, and 60% of the runs during theshorter lateny period. We observe that in the period with high latenies, the best runningtimes are around 500 ms. In the period of low latenies, the �rst peak ours at 300 ms., orroughly 200 ms. earlier, whih is lose to the derease in the one-way lateny on the longestlink. As we see, the all-to-all algorithm from all initiators is a�eted by the inrease inlateny. In ontrast, the only instanes of the leader algorithm that were a�eted by thislateny hange were those initiated at TW, KR, or the NL. Other instanes of the leaderalgorithm were una�eted. For example, the �rst peak of the leader algorithm initiated atEmulab ours at 300{350 ms. for both periods.3.7 Lateny and LossThe loss rates from TW to CA1 and UT2 are 43% and 49% respetively. This auses therunning times of leader from these hosts to be very high (at least 44% of the runs exeed3 seonds). The loss rates from CU to CA1 and UT2 are also fairly high (49% and 31%respetively). In spite of this, only 8% of the runs of leader from CU last over 3 seonds.We see that the lossy links from CU do not impat the overall running time as do the lossylinks from TW. This is beause the latenies of the lossy links from CU are only about onesixth the longest link lateny. Therefore, even two onseutive losses on these links do notimpat the overall running time.3.8 The Triangle InequalityThe average RTT from UCSD to KR is 526 ms. and the average RTT from UCSD to CA1is 49 ms., while the average RTT from CA1 to KR is 152 ms. Although UCSD and CA1 aregeographially lose, the average RTT from UCSD to KR is more than 3 times the averageRTT from CA1 to KR. The lateny from UCSD to KR an be redued to less than a halfby routing messages indiretly through CA1.
43



Figure 3.1 Histograms of overall running times, Experiment I, runs up to 1.3 seonds.
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Figure 3.2 Histograms of loal running times, Experiment I, runs up to 1.3 seonds.
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Figure 3.3 Histograms of overall running times, runs up to 2 seonds, Experiment III.
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Chapter 4
The Gather-Quorum Primitive
This hapter presents results gathered from two experiments. Experiment IV lasted approx-imately nine and a half days and inluded all hosts exept CA4 (a total of 27 hosts). Of thehosts that partiipated only MIT, UT2, CA1, NL, ISR1, AUS, KR and TW were initiators.Eah initiator ran leader one every two minutes on average, and in total, roughly 6700times. Experiment V lasted approximately �ve and a half days and inluded only hostsloated in North Ameria (a total of 18 hosts), out of whih only MIT, CA1, Emulab, CUwere initiators. Eah initiator ran all-to-all one every two minutes on average, and in to-tal, we aumulated roughly 3700 samples per initiator. The all-to-all algorithm we ran inthe latter experiment is a slightly modi�ed version of one that appears in the pseudo odesetion and used in the previous experiment. Unlike in the previous experiments, hosts donot start sending messages to other hosts in a partiular session until they have reeived amessage from the initiator of that session. In both experiments, hosts sent ping probes toeah other one every two minutes.Even though we did not expliitly run algorithms that implement the gather-quorum prim-itive, we extrapolated the running of these algorithms from the data we aumulated byonly looking at the response times for quorums for di�erent probe sets and disregardingirrelevant data. In our analysis analysis of experiment IV, sine we only ran the leaderalgorithm, it was enough to onsider the loal running times to get a fair omparison. Inboth experiments, host rashes and network partitions ourred. Table 4.1 shows the tablequorum system we used in our evaluation of the results in Experiment IV. We used Table 4.2as a quorum system in our evaluation of the results in Experiment V.4.1 Comparing the Two PrimitivesSine the performane of gather-quorum algorithms depend on the probe set, any ompar-ison with gather all algorithms depends on this parameter. In this setion, we onsider the47



Table 4.1 Table quorum system in experiment IV.MIT CMU NYU Emulab UCSDNL SWD GR ISR1 ISR2MA1 MA3 NY UT1 CNDMA2 AUS CU CA1 UT2 NCNZ TW KR Swiss CA2 CA3Table 4.2 Table quorum system in experiment V.MIT CU NYU CMUEmulab UCSD UT1 UT2MA1 MA2 MA3 NY NCCND CA1 CA2 CA3 CA4two extreme ases: minimal probe sets, inluding exatly one quorum, and omplete probesets, inluding all hosts. However, independent of the size of the probe set, we an make thefollowing general observations. Gather-quorum algorithms have the advantage that hostsonly need to hear from a quorum, (whih is usually muh smaller than the entire universeof hosts). Therefore, in ases where availability is not an issue, gather-quorum algorithmsstritly dominate gather-all algorithms in running time. However, Gather-all algorithmsdo not fail by de�nition, sine hosts only need to hear from hosts that are urrently aliveregardless of how many there are. Therefore, in ases of high failure rates (where no quorumexists), gather-all algorithms sueed while gather-quorum algorithms fail.4.1.1 Complete Probe SetsEven though we had several host failures and network partitions during both experiments,they were not frequent enough to bring down the entire quorum system being used; Ta-bles 4.3 and 4.4 show the perentage of runs that failed for di�erent probe sets. Therefore,for the duration of both experiments, the probability of a host not �nding a live quorumwas negligible regardless of the quorum system being used (table or majority). Thus, in agather-quorum algorithm, eah host must wait to hear from a set of hosts that is a stritsubset of the set of hosts it has to wait to hear from in a gather-all algorithm. This explainsthe results shown in Figures 4.1 and 4.2, whih show a signi�ant gap in the running timefor both leader and all-to-all. Figure 4.1 shows the results at six di�erent initiators fromExperiment IV. Figure 4.2 shows the results of samples initiated at MIT during ExperimentV. The �gures show the umulative distributions of the running time of eah primitive.However, if we try to determine whih quorum system is better, the answer is not as lear.If we look at it from a theoretial view point, we �nd that eah system has its advantages48



Figure 4.1 Comparing the gather-all and gather-quorum primitives using the leader basedalgorithm and omplete probe sets (results from experiment IV).
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Figure 4.2 Comparing the gather-all and gather-quorum primitives using the all-to-allalgorithm and omplete probe sets (results from experiment V).
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AllTable 4.3 Failure perentages for quorum-leader algorithms using the majority quorumsystem at di�erent initiators for all possible probe set sizes (size is measured in terms thenumber of hosts). Results ompounded during Experiment IV.Initiator MIT AUS UT2 ISR1 TW KRSize of Probe Set14 8% 32% 24% 15% 13% 18%15 2% 3% 0% 4% 7% 4%16 0% 1% 0% 3% 7% 2%17 0% 0% 0% 3% 4% 2%18 0% 0% 0% 3% 4% 2%19 0% 0% 0% 3% 4% 2%20 0% 0% 0% 3% 4% 2%21 0% 0% 0% 3% 4% 2%22 0% 0% 0% 3% 4% 2%23 0% 0% 0% 3% 4% 1%24 0% 0% 0% 3% 4% 1%25 0% 0% 0% 3% 4% 1%26 0% 0% 0% 3% 4% 1%27 0% 0% 0% 3% 4% 1%and disadvantages. For example, the quorum size in the table-based quorum system (inExperiment IV it ranges from 5-10 hosts) is usually smaller than the majority (14 hostsin this experiment). However, the number of subsets that are quorums is greater in themajority-based quorum system than the in table-based system. With 27 hosts and Table 4.1,we have the following:number of majorities = �2714� = 6; 104; 700
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Table 4.4 Failure perentages for quorum-leader algorithms using the table quorum systemat di�erent initiators for all possible probe set sizes (size is measured in terms table rows).Results were ompounded during Experiment IV.Initiator MIT AUS UT2 ISR1 TW KRSize of Probe Set1 1% 1% 1% 4% 1% 4%2 0% 0% 0% 3% 0% 2%3 0% 0% 0% 3% 0% 2%4 0% 0% 0% 3% 0% 2%5 0% 0% 0% 3% 0% 2%number of table-quorums = 1 + 5 + 52 + 53 + (6)(5)3 = 906Even though we piked a table that improves the performane, with 27 hosts, there isa signi�ant hane that no table exists whih is optimal for every host in the system.Our results from this experiment indiate that for most initiators, table-based quorumsoutperform majority. For eah of these initiators, there exists a subset of the optimal 14-host majority for that initiator that forms a quorum based on Table 4.1. However, for AUS,no suh subset exists, whih explains why majority provides superior performane in thisase.4.1.2 Minimal Probe SetsWith minimal probe sets we have a di�erent story. In this ase, every host deals with apartiular quorum instead of any quorum. In the majority quorum system, the probe setis omposed of the losest majority to the initiator; in the table quorum system, the probeset is omposed of the �rst row of the table (hoosing probe sets and quorum systems isdisussed in more detail in Setion 4.2). Even though this partiular quorum is usuallyhosen beause it usually has the best availability, its failure probability is higher than thatof the entire quorum system. A quorum fails if any of its hosts fail. Sine every host has anonzero probability of failure, the probability of a quorum failing grows exponentially withthe size of that quorum. This means that the probability that a partiular quorum fails inthe majority quorum system is higher than in the table quorum system. If we look at thegraphs in Figures 4.3 and 4.4, it is lear that the running time of algorithms that use thetable-based quorum system is by far superior to algorithms using majority and gather-allalgorithms. This is the ase for two reasons. First, sine the minimal probe set in the tablequorum system is the �rst row of the table, the number of hosts involved in the algorithmis very small relative to majority and gather-all algorithms. Seond, in a well hosen table,hosts in the �rst row usually have the highest availability.If we look at the urves for majority and gather-all algorithms, we �nd that majority51



Figure 4.3 Comparing the gather-all and gather-quorum primitives using the leader basedalgorithm and minimal probe sets (results from experiment IV).
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Figure 4.4 Comparing the gather-all and gather-quorum primitives using the all-to-allalgorithm and minimal probe sets (results from experiment V).
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dominates in the low lateny region and performs worse in the high lateny region�. Thishappens for two reasons. First, sine the number of hosts in the minimal probe set in themajority quorum system is approximately half of the total number of hosts, the runningtime will be lower than with the gather-all algorithm when every host in the probe setis available. Seond, sine the quorum fails whenever any of its elements fail, a majoritybeomes unavailable for a signi�ant amount of time during whih gather-all algorithmsontinue to sueed (at higher latenies of ourse).4.2 The Size of the Probe SetWe now analyze the relationship between the size of the probe set and the running of thequorum-leader and quorum-to-quorum algorithms (using both majority and table quorumsystems). In partiular, we look at how this relationship is inuened by network dynamis(lost messages, lateny variation and failures) and the type of algorithm. The results in pre-sented Setion 4.2.1 are from Experiment IV. Setion 4.2.2 presents results from ExperimentV.4.2.1 Quorum-LeaderMajoritySine we have a total of 27 hosts, a majority onsists of at least 14 hosts (inluding theinitiator). In this setion we look at improvements in the running time as the size of the�TW is an exeption. We will disuss this host in more detail in Setion 4.253



Figure 4.5 The umulative distribution of loal running times of quorum-leader algorithms(using the majority quorum system) initiated at di�erent hosts during Experiment IV, runsup to 4 seonds (n denotes the number of hosts in the probe set).
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Table 4.5 Link harateristis from TW to other hosts during experiment IV.Host Loss Rate Avg. RTT STD Min. RTT TCP Connetivity % under 1 seTW 0% 0 0 0 100% 100%UCSD 3% 232 25 198 100% 97%Emulab 3% 238 26 216 100% 97%NYU 3% 273 22 251 100% 97%MIT 4% 303 398 256 100% 96%CMU 4% 289 41 254 100% 96%CU 3% 339 127 247 100% 97%AUS | | | | 99% 96%NL 3% 361 23 339 100% 96%CA1 31% 482 626 174 95% 58%NY 32% 445 853 234 96% 63%SWD 3% 399 59 371 100% 96%UT2 30% 743 1523 171 96% 58%MA2 28% 742 1517 230 94% 59%NC 32% 465 616 255 90% 63%ISR2 3% 424 70 400 100% 97%UT1 27% 979 1847 189 96% 55%MA1 29% 645 712 238 96% 57%ISR1 4% 551 2682 400 100% 94%CA2 30% 606 1094 179 69% 45%GR 3% 447 29 419 96% 93%CND 35% 686 834 212 93% 51%MA3 32% 774 1473 241 96% 54%NZ 35% 636 830 271 91% 43%KR 11% 357 163 200 42% 40%CA3 32% 1047 2091 178 15% 10%Swiss 3% 384 22 362 15% 15%probe set inreases from 14 to 27. For a given initiator, For eah instant of leader it initiated,we sort the hosts in asending order based on the response time for that instant, and assigneah host a rank that orresponds to its position in the sorted list.Then average thoseranks over all instanes. based on those average ranks we sort the hosts in asending order.Based on that order we rank hosts from 2 to 27 (of ourse the initiator being 1). This rankrepresents the order in whih we add hosts to the probe set of eah initiator. In generalthere are several arguments to be made for probe sets that are larger than the minimum.First, beause of dynami nature of the Internet (hanging routes, lost messages), the 14hosts losest to the initiator do not stay the same for the whole duration of the experiment.Message loss, in partiular, plays a signi�ant role: any lost message from any of the 14 hostsin the minimal probe set, with high probability, inreases the running time of the algorithmbeyond the RTT of the 15th host. And no matter how reliable links between the initiatorand its losest 14 hosts, they still have nonzero probabilities of dropping messages. Seond,some hosts also fail during the experiment. However, sine failures during the experimentwere not very frequent and network partitions were very short, the �rst fator plays a biggerrole in our analysis espeially sine most failures and network partitions e�et all initiators55



equally while variations in TCP latenies are di�erent for di�erent hosts.In general every initiator exept TW had low varying and highly reliable links (loss ratesof 10% or less) to most hosts. TW on the other hand, had many links with highly variablelatenies and loss rates of 25% or more (most of the hosts with bad onnetions to TW wereISPs in North Ameria). For initiators other than TW, our results indiate that optimalperformane is ahieved with a probe set that ontains 19 hosts. The improvements inperformane gained by inreasing the size of the probe set beyond 19 hosts are negligible.The highest improvements our when the size of the probe set is inreased to 15 and then 16.The marginal rate of return ontinues to derease with the number of hosts and diminisheswhen this number is inreased beyond 19. Figure 4.5 illustrates this observation by showingthe umulative distribution of the running time of runs initiated at AUS and ISR1 for probesets with di�erent sizes. However, this is not the ase with TW. The performane ontinuesto improve signi�antly as we inrease the number of hosts probed by TW to 27. TheTW graphs shown in the same �gure, show the umulative distribution of runs initiatedat TW for di�erent numbers of hosts. In order to get a better understanding to what isgoing on with TW, we refer to Table 4.5y whih shows the link harateristis as measuredby \ping" from TW to other hosts in the system (the olumn labeled \TCP onnetivity"refers to the perentage of time the TCP onnetion was up). We an see that hosts thathave loss rates of 25% or more to TW also have the highest average latenies. At �rstglane, it would appear that the problems of high message loss are ompounded by the highlateny. However, we see that these hosts have the smallest minimum RTTs (highlightedin the table), whih means that the best ase involves these hosts. We also notie that thestandard deviation is highest for those links, whih means that the low lateny runs aremore probable. The probability of getting good running times inreases as we send to moreof these hosts.Now the question remains how well an we estimate the optimal size of the probe set givenour knowledge of the network harateristis. For a given to probe set, how aurately anwe predit the perentage of runs below a ertain threshold based on what we know aboutthe TCP lateny distributions? As an example, we will use TW and see how well we anapproximate the perentage of runs below 1 seond for probe sets the ontain 14, 15, 16,and 17 hosts. The last olumn in Table 4.5 shows the perentage of TCP round trips under1 seond for eah link. For simpliity, we will assume that di�erent messages travel throughthe network independently (not entirely true). We will also restrit our attention to linksin whih the perentage of TCP RTTs under 1 seond is less than 90%.The probe set of size 14, whih ontains the �rst 14 hosts listed in Table 4.5, inludes CA1,NY, UT2, MA2. the perentages of TCP RTTs under 1 seond from TW to these four are58%, 63%, 58%, and 59% respetively. Based on the assumptions we have made, we anyAUS is inside a �rewall that �lters ICMP traÆ. 56



estimate the probability that TW hears from a majority (Pr14) as follows:Pr14 = :63 � :58 � :58 � :59� :13Indeed the value we measured was .16, whih is lose to the estimated value. Now howmuh improvement in the running time an we expet from adding the 15th host (NC) tothe probe set? This is the same as the probability of exatly one out of the four lossy hostsfailing to make the 1 seond threshold and NC sueeding.Pr15 � Pr14 = :63(:37 � :58 � :58 � :59+2 � :63 � :42 � :58 � :59+:63 � :58 � :58 � :41)� :21The value that we measured was .20. Similarly the improvement we an expet frominreasing the size of the probe set from 15 to 16 is the probability of exatly two out ofthe �ve lossy hosts failing to make the 1 seond threshold and ISR2 sueeding.Pr16 � Pr15 = :97(2 � :41 � :37 � :63 � :58 � :58+2 � :41 � :63 � :63 � :58 � :42+:59 � :37 � :37 � :58 � :58+:59 � :63 � :63 � :42 � :42+4 � :59 � :37 � :63 � :42 � :58)� :33The measured value was .26. The improvement we expet we expet from inreasing the sizeof the probe set from 16 to 17 is the probability of exatly three out of the �ve lossy hostsfailing (or exatly two sueeding) to make the 1 seond threshold and UT1 sueeding.Pr17 � Pr16 = :55(2 � :59 � :37 � :63 � :42 � :42+2 � :59 � :37 � :37 � :58 � :42+:41 � :37 � :37 � :58 � :58+:41 � :63 � :63 � :42 � :42+:41 � :37 � :63 � :42 � :58)� :12The value we measures was .9. The results above suggest that we an predit with a ertain57



degree of auray the probability distribution of the running time for a given probe set.TableIn this setion, we analyze the performane based on Table 4.1 whih ontains 5 rows, witheah row ontaining 5-6 hosts. In this setion we look at improvements in the running timeof table as the number of table-rows in the probe set inreases from 1 to 5. In order toimprove performane, we piked the table rows as follows:� In the �rst row, we put hosts loated at North Amerian universities whih were upfor the duration of the experiment.� Our ping traes indiate that hosts loated in Europe and Israel are onneted toeah other by low lateny and low loss rate links. Therefore, in order to improve theperformane for these hosts, we plaed them in the seond row (exept Swiss whihwas under �rewall restrition for a portion of the experiment).� In the third row, we put �ve other hosts in North Ameria that did not rash duringthe experiment.� We �lled out the last two rows with the remaining hosts.Every quorum in this setting must inlude at least one host in the �rst row. Therefore,while sending to more rows may improve availability in the ase of some �rst row hostsfailing, the performane is eventually onstrained by the �rst row. The graphs in Figure 4.6shows the performane for di�erent initiators. Depending on where the initiators are lo-ated, they see di�erent gains at di�erent row numbers. Note espeially that di�erenein performane between probing one table row and probing all rows is smaller than thedi�erene in performane between probing 14 hosts and probing all hosts (in the majoritysystem). This is usually the ase sine the �rst row is �lled with hosts that were up formost of the experiment and had reliable onnetions to other hosts.4.2.2 Quorum-to-QuorumIn this setion, in order to get meaningful results, we need to look at the overall runningtimes beause of the asymmetry of the two phases of the quorum-to-quorum algorithm. Fora given probe set, messages travel on the same links regardless of the initiator. Therefore,we only present results from samples initiated by MIT without loss of generality.
58



Figure 4.6 The umulative distribution of loal running times of quorum-leader algorithms(using the table quorum system) initiated at di�erent hosts during Experiment IV, runs upto 4 seonds (n denotes the number of table rows in the probe set).
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Figure 4.7 The umulative distribution of overall running times of majority for all-to-allinitiated by MIT during Experiment V, runs up to 2 seonds (n denotes the number ofhosts the probe set).
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n=18Figure 4.8 The umulative distribution of loal running times of majority for all-to-allinitiated by MIT during Experiment V, runs up to 2 seonds (n denotes the number ofhosts in the probe set).
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MajoritySine we have a total of 18 hosts, a majority onsists of at least 10 hosts (inluding theinitiator). In this setion we perform the same analysis as Setion 4.2.1. We only look at thesamples that were initiated by MIT, and rank the hosts (as in Setion 4.2.1) with respet toMIT. All the hosts in this experiment are lose geographially, and ommuniate with eahother over low-lateny and low loss-rate links. In addition, throughout the experiment, onlytwo hosts failed (CA1, UT1) and neither were ranked in the top 10. So we would expetminimal improvements in the overall running time gained by inreasing the size of the probeset. However, there is another fator to onsider in the quorum-to-quorum algorithm. Sine60



the algorithm only terminates when a majority of hosts hear from a majority of hosts, the10-host majority that is optimal for MIT might not be optimal for other hosts, and probingmore than 10 hosts inreases the probability of other hosts �nding their optimal majority. Sohow muh of a role does this play? In order to �nd out we ompare e�ets of inreasing thenumber of hosts on the overall and loal running times. Figure 4.7 shows the umulativedistributions of the overall running time for di�erent majorities. Figure 4.8 shows theumulative distributions of the loal running time for di�erent majorities. From the �gures,we observe the following: �rst, the improvement in performane gained by inreasing thesize of the probe set from 10 to 11 is \somewhat" greater in the overall running time.Seond, sending to 11 hosts is near optimal in the loal running time (this is not the asein the overall running time). Sine the loal running time in this experiment is same asthe loal running time of the quorum-leader algorithm, the results suggest that optimalrunning time an be reahed with a smaller probe set in the ase of quorum-leader thanquorum-to-quorum.TableIn this setion, we analyzed the performane based on Table 4.2 whih ontains 4 rows,with eah row ontaining 4-5 hosts. We plaed hosts loated at universities in the east ostin the �rst row of the table. In the seond row, we put two west ost university hosts andtwo west oast hosts loated at ISPs. We �lled the third with the rest of the east osthosts and put the remaining hosts in the last row. In this partiular ase, sine the hostsin the �rst row are geographially lose to eah other and were up for the entire durationof the experiment, the �rst row was the optimal quorum for every host in the �rst row. Asa result we did not see a signi�ant performane improvement gained by sending to moretable rows. Figure 4.9 illustrates these results.
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Figure 4.9 The umulative distribution of overall running times of table for all-to-allinitiated by MIT during Experiment V, runs up to 2 seonds (n denotes the number oftable rows the in the probe set).
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Chapter 5
Conlusions
We measured and analyzed the performane of two primitives and four ommon informationpropagation algorithms over the Internet. We explained the distribution of the algorithms'running times in terms of underlying link latenies and loss rates.One important lesson one an learn from our observations is that loss rates over the Internetare not negligible. Consequently, algorithms that send many messages often have a highrunning time, even if the messages are sent in parallel in one ommuniation step. Moregenerally, we learn that some ommuniation steps are more ostly than others. E.g., it isevident that propagating information from only one host to all other hosts is faster thanpropagating information from every host to eah of the other hosts.We suggest to re�ne the ommuniation step metri as to enompass di�erent kinds ofsteps. One ost parameter, �1, an be assoiated with the overall running time of a stepthat propagates information from all hosts to all hosts�. This step an be implemented usingany of the algorithms analyzed in Chapter 3. A di�erent (assumed smaller) ost parameter,�2, an be assoiated with a step that propagates information from one host to all otherhosts. Another ost parameter, �3 an be assoiated with propagating information from aquorum of the hosts to all the hosts, as measure in Chapter 4.This more re�ned metri an then be used to revisit known lower and upper bound results.For example, [14℄ presents a tight lower bound of two ommuniation steps for failure-freeexeutions of onsensus in pratial models. Under the more re�ned metri, the lower boundis 2�1, whereas known algorithms (e.g., [6, 16℄) ahieve running times of �2 +�3.

�Loal running times annot be omposed in this manner.63
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