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This paper presents a new distributed Depth-First-Search (DFS) algorithm for an asynchronous communication network, 
whose communication and time complexities are O(IEI) and O(IVI), respectively. The output of the algorithm is the DFS tree, 
kept in a distributed fashion. The existing algorithm, due to Cheung (1983), requires O(IEI) both in communication and time 
complexities. 
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1. The model 

An asynchronous network is a point-to-point 
(or store-and-forward) communication network, 
described by an undirected communication graph 
(V, E) where the set of nodes V represents 
processors of the network and the set of edges E 
represents bidirectional non-interfering communi- 
cation channels operating between them (see also 
[1,2]). No common memory is shared by the node's 
processors. Each node processes messages received 
from its neighbors, performs local computations, 
and sends messages to its neighbors. All these 
actions are assumed to be performed in zero time. 
The only assumption about the communication 
subsystem is that each message sent by a node to 
its neighbor arrives to it within some finite unde- 
termined time. Unlike most works dealing with the 
same model, we do not require that the messages 
sent over the same link obey the FIFO rule. 

The following complexity measures are used to 
evaluate performances of distributed algorithms 
operating in the above network. The communica- 
tion complexity, C, is the total amount of messages 
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sent during the algorithm. The time complexity, T, 
is the time passed from its starting time to its 
termination, assuming that delay of an edge is (at 
most) one time unit. This is under the provision 
that the algorithm operates correctly without this 
assumption. 

2. The problem and the existing solutions 

In this paper we present a new distributed 
Depth-First-Search (DFS) algorithm for the net- 
work described above. The output of such an 
algorithm is a DFS tree [5] of the communication 
graph (V, E), kept in a distributed fashion, i.e., 
each node must know its father in the tree. Our 
algorithm can be easily extended to detect the 
biconnected components or the strongly-connected 
components (in the directed case). 

These two tasks have important applications in 
computer networks. Strongly-connected compo- 
nents can be used in order to detect directed cycles 
in communication paths, which may lead to 
deadlocks. Biconnected components may be used 
to check whether failure of one node may or may 
not disconnect the network. 

The best existing DFS algorithm in the sense as 
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described above was given in [1]. The algorithm of 
[2] only finds the biconnected components, without 
constructing the DFS tree. In [3,4] a different 
computation model was considered, where all the 
processors share a common memory; thus these 
results cannot be applied in our case. 

In the implementation of [1], movement of the 
center of activity of the search [5] (referred to in 
future as the 'center') over a tree edge or scanning 
of a back edge is represented by passage of a 
certain message over the corresponding network 
edge. Suppose that such a message arrives at node 
j from node i. If node j was not yet visited [ ( i -  j) 
is a tree edge], then the center moves to node j, 
and j marks node i as its father. Otherwise (j was 
visited and thus ( i - j )  is a back edge), the above 
message is returned to i, and i learns that j was 
visited. Whenever the message was returned from 
each of the neighbors of the center (all neighbors 
are known as visited) the message is returned back 
to the father. Since each edge of the graph is 
traversed exactly once in each direction, the com- 
munication complexity of this algorithm is C = 
O(IEI) messages. Since these traversals are serial, 
i.e., performed one-by-one, the time complexity is 
T = O(]EI) time units. 

3. Our solution 

The major reason for the high time cost of the 
above algorithm is the fact that all the edges are 
traversed serially. The idea of our algorithm is to 
perform traversals along back edges in paralllel, so 
that only tree edges will be traversed serially. This 
will reduce the time complexity from O(IEI) to 
O(IVI), without changing the communication com- 
plexity. 

The algorithm operates as follows. Whenever a 
node receives a DISCO VER message, it means 
that this node is visited for the first time, and the 
sender of the message is its father in the tree. At 
that time, the node sends (simultaneously) a spe- 
cial message VISITED to all the neighbors, except 

for the father. Now, the search process is tempor- 
arily suspended. Upon receipt of the VISITED 
message, a node learns that the sender of the 
message was visited, and then sends back an 
acknowledgement A CK. Whenever the A CK mes- 
sages have been collected from all the neighbours, 
the center delivers a R E T U R N  message to itself. 
Whenever a node receives the R E T U R N  message, 
it means that the search is resumed from that 
node. Namely, if there exists an unvisited neigh- 
bor, the DISCOVER message is forwarded to it, 
and it is marked as visited; otherwise, the RE- 
TURN message is sent back to the father. The 
formal presentation of this algorithm is given in 
Appendix A. 

It can be easily shown that at the time when the 
center arrives at a certain node, it knows exactly 
which of its neighbors were visited until now. 
Thus, DISCOVER is never sent over back edges, 
unlike the algorithm of [1]. This is the reason for 
the saving in time. Observe that exactly two mes- 
sages, DISCOVER and RETURN,  are sent over 
each tree edge in opposite directions. Also, one 
VISITED message is sent by each node over all 
incident edges, except for the one leading to the 
father, and each such message is acknowledged by 
the A CK message. Thus, the total communication 
complexity of the algorithm is C = 41E I = O(IEI). 
Observe that only the tree edges axe traversed 
serially, and the additional delay of (at most) two 
time units is introduced at each node with degree 
greater than one at the time when it is discovered 
(this is the time needed to send the VISITED 
messages to all neighbors and to receive the A CK 
messages back). Thus, the total time complexity of 
the algorithm is T ~< 41Vl - 2 = O(IWl). 
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Appendix A. The formal presentation of the algorithm 

Here, we give a formal algorithm performed by each node i of the network. The algorithm specifies the 
actions taken by node i in response to messages arriving to it from its neighbors or from itself. Say, "for 
DISCO VER from q d o . . . "  means: "After  receipt of DISCO VER message from neighbor q, p e r f o r m . . . "  

Messages of the algorithm 

DISCOVER = message arriving at a node when it is visited for the first time, 
RETURN = message returning the center to a node which was already visited in the past, 
VISITED = sent by a node whenever it is visited for the first time, 
A CK = acknowledgement,  sent in response to the VISITED message. 

Variables kept at node i 

Neighbors(i) = the set of  neighbors of node i ( input to the algorithm), 
Father(i) = the father of i in the DFS tree (output  of the algorithm). At the start-point s of 

the search, Father(i)= i, 
Unvisited(i) = the subset of Neighbors(i) including the neighbors from which the VISITED 

message was not  yet received. Initially, Unvisited(i) = Neighbors(i), 
flag(i, j) = a binary flag, kept for each j ~ Neigbors(i), which is equal to 1 in the interval 

after VISITED was sent from i to j and before A CK was received back. Initially, 

flag(i, j)  = 0. 

Initialization of the algorithm: 
A node s is chosen as a start-point of the search. To trigger the algorithm, it derivers a DISCOVER 

message to itself. 

The algorithm for node i 
for DISCOVER message from j do.  / *  i is visited for the first t ime * /  
Father(i) ~ j 
for all q ~ Neighbors(i) except for node j do 

send VISITED message to q 

flag(i, q ) ~  1 
end 
if Neighbors(i)= j then send RETURN to j / *  j is the only neighbor of i * /  

end 

for RETURN message from q do 
/ *  the search is resumed from node i which was already visited in the past  * /  

if there exists k ~ Unvisited(i) then do 
send DISCOVER to k 
remove k from Unvisited(i) 

end 
else / *  all the neighbors were visited • /  

if Father(i) q: i then send RETURN to Father(i) / *  backtracking • / 
else STOP, the algorithm has terminated 

end 
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for  VISITED message from k do 
Drop  k f rom Unvisited(i) 
send A CK message to k 

end 

for  A CK message f rom j do 

flag(i, j)  ~ 0 
if flag(i, q) = 0 for  all q ~ Neighbors(i) then deliver RETURN to itself 
/ .  cont inue the search, having collected all the acknowledgements  * /  

end 
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