
Information Processing Letters 20 (1985) 147-150 8 April 1985
North-Holland

A NEW DISTRIBUTED DEPTH-FIRST-SEARCH ALGORITHM

Baruch AWERBUCH *

IBM-- Israel Scientific Center, Haifa 32000, lsrael

Communicated by H.R. Wiehle
Received 20 January 1984
Revised 22 June 1984

This paper presents a new distributed Depth-First-Search (DFS) algorithm for an asynchronous communication network,
whose communication and time complexities are O(IEI) and O(IVI), respectively. The output of the algorithm is the DFS tree,
kept in a distributed fashion. The existing algorithm, due to Cheung (1983), requires O(IEI) both in communication and time
complexities.

Keywords: Distributed system, communication graph

1. The model

An asynchronous network is a point-to-point
(or store-and-forward) communication network,
described by an undirected communication graph
(V, E) where the set of nodes V represents
processors of the network and the set of edges E
represents bidirectional non-interfering communi-
cation channels operating between them (see also
[1,2]). No common memory is shared by the node's
processors. Each node processes messages received
from its neighbors, performs local computations,
and sends messages to its neighbors. All these
actions are assumed to be performed in zero time.
The only assumption about the communication
subsystem is that each message sent by a node to
its neighbor arrives to it within some finite unde-
termined time. Unlike most works dealing with the
same model, we do not require that the messages
sent over the same link obey the FIFO rule.

The following complexity measures are used to
evaluate performances of distributed algorithms
operating in the above network. The communica-
tion complexity, C, is the total amount of messages

* Present affiliation: Computer Science Laboratory, MIT,
Cambridge, MA 02139, U.S.A.

sent during the algorithm. The time complexity, T,
is the time passed from its starting time to its
termination, assuming that delay of an edge is (at
most) one time unit. This is under the provision
that the algorithm operates correctly without this
assumption.

2. The problem and the existing solutions

In this paper we present a new distributed
Depth-First-Search (DFS) algorithm for the net-
work described above. The output of such an
algorithm is a DFS tree [5] of the communication
graph (V, E), kept in a distributed fashion, i.e.,
each node must know its father in the tree. Our
algorithm can be easily extended to detect the
biconnected components or the strongly-connected
components (in the directed case).

These two tasks have important applications in
computer networks. Strongly-connected compo-
nents can be used in order to detect directed cycles
in communication paths, which may lead to
deadlocks. Biconnected components may be used
to check whether failure of one node may or may
not disconnect the network.

The best existing DFS algorithm in the sense as

00200190/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 147

Volume 20, Number 3 INFORMATION PROCESSING LETTERS 8 April 1985

described above was given in [1]. The algorithm of
[2] only finds the biconnected components, without
constructing the DFS tree. In [3,4] a different
computation model was considered, where all the
processors share a common memory; thus these
results cannot be applied in our case.

In the implementation of [1], movement of the
center of activity of the search [5] (referred to in
future as the 'center') over a tree edge or scanning
of a back edge is represented by passage of a
certain message over the corresponding network
edge. Suppose that such a message arrives at node
j from node i. If node j was not yet visited [(i - j)
is a tree edge], then the center moves to node j,
and j marks node i as its father. Otherwise (j was
visited and thus (i - j) is a back edge), the above
message is returned to i, and i learns that j was
visited. Whenever the message was returned from
each of the neighbors of the center (all neighbors
are known as visited) the message is returned back
to the father. Since each edge of the graph is
traversed exactly once in each direction, the com-
munication complexity of this algorithm is C =
O(IEI) messages. Since these traversals are serial,
i.e., performed one-by-one, the time complexity is
T = O(]EI) time units.

3. Our solution

The major reason for the high time cost of the
above algorithm is the fact that all the edges are
traversed serially. The idea of our algorithm is to
perform traversals along back edges in paralllel, so
that only tree edges will be traversed serially. This
will reduce the time complexity from O(IEI) to
O(IVI), without changing the communication com-
plexity.

The algorithm operates as follows. Whenever a
node receives a DISCO VER message, it means
that this node is visited for the first time, and the
sender of the message is its father in the tree. At
that time, the node sends (simultaneously) a spe-
cial message VISITED to all the neighbors, except

for the father. Now, the search process is tempor-
arily suspended. Upon receipt of the VISITED
message, a node learns that the sender of the
message was visited, and then sends back an
acknowledgement A CK. Whenever the A CK mes-
sages have been collected from all the neighbours,
the center delivers a R E T U R N message to itself.
Whenever a node receives the R E T U R N message,
it means that the search is resumed from that
node. Namely, if there exists an unvisited neigh-
bor, the DISCOVER message is forwarded to it,
and it is marked as visited; otherwise, the RE-
TURN message is sent back to the father. The
formal presentation of this algorithm is given in
Appendix A.

It can be easily shown that at the time when the
center arrives at a certain node, it knows exactly
which of its neighbors were visited until now.
Thus, DISCOVER is never sent over back edges,
unlike the algorithm of [1]. This is the reason for
the saving in time. Observe that exactly two mes-
sages, DISCOVER and RETURN, are sent over
each tree edge in opposite directions. Also, one
VISITED message is sent by each node over all
incident edges, except for the one leading to the
father, and each such message is acknowledged by
the A CK message. Thus, the total communication
complexity of the algorithm is C = 41E I = O(IEI).
Observe that only the tree edges axe traversed
serially, and the additional delay of (at most) two
time units is introduced at each node with degree
greater than one at the time when it is discovered
(this is the time needed to send the VISITED
messages to all neighbors and to receive the A CK
messages back). Thus, the total time complexity of
the algorithm is T ~< 41Vl - 2 = O(IWl).

Acknowledgment

The author wishes to thank Dr. Shmuel Katz
who suggested the author the final form of the
algorithm and who made a number of helpful
comments.

148

Volume 20, Number 3 INFORMATION PROCESSING LETTERS 8 April 1985

Appendix A. The formal presentation of the algorithm

Here, we give a formal algorithm performed by each node i of the network. The algorithm specifies the
actions taken by node i in response to messages arriving to it from its neighbors or from itself. Say, "for
DISCO VER from q d o . . . " means: "After receipt of DISCO VER message from neighbor q, p e r f o r m . . . "

Messages of the algorithm

DISCOVER = message arriving at a node when it is visited for the first time,
RETURN = message returning the center to a node which was already visited in the past,
VISITED = sent by a node whenever it is visited for the first time,
A CK = acknowledgement, sent in response to the VISITED message.

Variables kept at node i

Neighbors(i) = the set of neighbors of node i (input to the algorithm),
Father(i) = the father of i in the DFS tree (output of the algorithm). At the start-point s of

the search, Father(i)= i,
Unvisited(i) = the subset of Neighbors(i) including the neighbors from which the VISITED

message was not yet received. Initially, Unvisited(i) = Neighbors(i),
flag(i, j) = a binary flag, kept for each j ~ Neigbors(i), which is equal to 1 in the interval

after VISITED was sent from i to j and before A CK was received back. Initially,

flag(i, j) = 0.

Initialization of the algorithm:
A node s is chosen as a start-point of the search. To trigger the algorithm, it derivers a DISCOVER

message to itself.

The algorithm for node i
for DISCOVER message from j do. / * i is visited for the first t ime * /
Father(i) ~ j
for all q ~ Neighbors(i) except for node j do

send VISITED message to q

flag(i, q) ~ 1
end
if Neighbors(i)= j then send RETURN to j / * j is the only neighbor of i * /

end

for RETURN message from q do
/ * the search is resumed from node i which was already visited in the past * /

if there exists k ~ Unvisited(i) then do
send DISCOVER to k
remove k from Unvisited(i)

end
else / * all the neighbors were visited • /

if Father(i) q: i then send RETURN to Father(i) / * backtracking • /
else STOP, the algorithm has terminated

end

149

Volume 20, Number 3 INFORMATION PROCESSING LETTERS 8 April 1985

for VISITED message from k do
Drop k f rom Unvisited(i)
send A CK message to k

end

for A CK message f rom j do

flag(i, j) ~ 0
if flag(i, q) = 0 for all q ~ Neighbors(i) then deliver RETURN to itself
/ . cont inue the search, having collected all the acknowledgements * /

end

References

[1] T. Cheung, Graph traversal techniques and the maximum
flow problem in distributed computation, IEEE Trans.
Software Engineering SE-9 (4) (1983) 504-512.

[2] E.J.H. Chang, Echo algorithms: Depth parallel operations
on general graphs, IEEE Trans. Software Engineering SE-8
(4) (1982) 391-401.

[3] E.R. Arjomandi and D. Corneil, Parallel computations in
graph theory, SIAM J. Comput. 7 (1978).

[4] D. Eckshtein and D. Alton, Parallel graph processing using
depth-first search, Proc. Conf. on Theoretical Computer
Science, Univ. Waterloo, Canada, 1977.

[5] S. Even, Graph Algorithms (Computer Science Press,
Potomac, MD, 1979).

150

