
Technion - Israel Institute of Technology
Computer Science Department

Sequential Consistency versus
Linearizability

by

•
H. Attiya and J.1'. Welch

Technical Report #674
October 1991

•

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

•

Sequential Consistency versus Linearizability*

Hagit Attiyat Jennifer L. WeIcht
Department of Computer Science Department of Computer Science

The Technion University of North Carolina
Haifa 32000, Israel Chapel Hill, NC 27599-3175

& October 14, 1991

•

-This paper combines and unifies results that appear in preliminary form in (6] and (5].
tEmail: hagitec•• t.clmion.ac.il. Part of this work wu performed while the author Wall Mung DEC

Cambridge Research Laboratory and the Laboratory for Computer Science, MIT, supported by ONR contract
NOOOl4-85-K-0168, by NSF grants CCR-8611442 and CCR-8915206, and by DARPA contracts NOOOl4-89-J­
1988 and NOOOI4-87-K-0825.

•Email: ••lchec•.unc ••du.TheworkofthisauthorwaIlsupportedinpa.rtbyNSFgrantCCR-9010730.an
IBM Faculty Development Award, and an NSF Presidential Young Investigator Award.

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

- - -------------------~~-------

•

..

..

Abstract

The power of two well-known consistency conditions for shared memory multiprocessors,
sequential consistency and linearizability, is compared. The cost measure studied is the worst­
~a.se response time in distributed implementations of virtual shared memory supporting one of
the two conditions. Three ty~s of shared memory objects are considered: read/write objects,
FIFO queues, and stacks. In all cases, the worst-case response time is very sensitive to the
assumptions that are made about the timing information available to the system. Under the
strong assumption that processes have perfectly synchronized clocks, it is shown that sequential
consistency and linearizability are equally costly: we present upper bounds for linearizability
and matching lower bounds for sequential consistency. If clocks are only approximately syn­
chronized, then for all three object types it is shown that linearizability is more expensive than
sequential consistency: we present upper bounds for sequential consistency and larger lower
bounds for linearizability. The upper bounds are shown by presenting algorithms that use
atomic broadcast in a modula.r fashion. The lower bound proofs for the approximate case use
the technique of "shifting" , first introduced for studying the clock synchronization problem.

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

-----------~~------------

1 Introduction

A fundamental problem in concurrent computing is how to provide programmers with a useful
model of logically shared data, without sacrificing performance. The model must specify how
the data can be accessed and what guarantees are provided about the results. Shared memory
is an attractive paradigm for communication among computing entities because it is familiar
from the uniprocessor case, it can be considered more high level than message passing, and
many of th~ classical solutions for synchronization problems were developed for shared memory
(e.g., mutual exclusion [15]).

This problem arises in many situations at different levels of abstraction. These situations
include implementing a single shared variable out of weaker shared variables, cache coherence,
building multiprocessors (with both physical and distributed shared memory), and high-level
applications for loosely-coupled distributed systems such as distributed file systems and trans­
action systems.

To enhance performance (e.g., response time, availability, or fault-tolerance), many imple­
mentations employ multiple copies of the same logical piece of shared data (caching). Also,
multiple user programs must be able to execute "concurrently," either with interleaved steps,
or truly in parallel. More complications arise because at some level, each access to shared data
has duration in time, from its start to its end; it is not instantaneous.

Thus, the illusion of atomic operations on single copies of objects must be supported by a
t consistency mechanism. The consistency mechanism guarantees that although operations may

be executed concurrently on various copies and have some duration, they will appear to have
executed atomically, in some sequential order that is consistent with the order seen at individual
processes.1 When this order must preserve the global (external) ordering of non-overlapping
operations, this consistency guarantee is called linearizability ([22]);2 otherwise, the guarantee
is called sequential consistency ([24J). Obviously, linearizability implies sequential consistency.

Sequential consistency and linearizability are two well-known consistency conditions. As the
definitions ofthese two conditions are similar, it is important to study the relationships between
them. In this paper we present a quantitative comparison of the costs to implement sequential
consistency and linearizability in a. non-bused distributed system. Distributed implementations
are of great interest because of their ability to scale up in size. The comparison is based on
time complexity - the inherent response time of the best possible distributed implementation
supporting each consistency condition. That is, we present upper and lower bounds on the
worst-case response time for performing an operation on an object.

We consider several types of shared objects in this paper. Most previous research concen­
trated on read/write objects. However, since read/write objects do not provide an expressive
and convenient abstraction for concurrent programming (d. [21)), many multiprocessors now

IThia condition is similar in flavor to the notion of leriali.Jobilil, from database theory ([8, 32]); however,
lerializability applies to tronlactiom which aggregate many operations.

~Also called otomicitll ([21, 25, 31]) in the case of read/write objecb.

1

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

v

-----------~-~--~-------

.. node

Call send message

~pp. proc mcs proc. network

receive message
Response

Figure 1: System Architecture

support more powerful concurrent objects, e.g., FIFO queues, stacks, test&set, fetch&add
([11D. Thus we also study FIFO queues and stacks.

We consider a collection of application programs running concurrently and communicat­
ing via virtual shared memory. The shared memory consists of a collection of objects. The
application programs are running in a distributed system consisting of a collection of nodes
and a complete communication network.3 The shared memory abstraction is implemented by
a memory consistency system (mes), which uses local memory at the various nodes and some
protocol executed by the mcs processes (one at each node). (Nodes that are dedicated storage
can be modeled by nullifying the application process.) Fig. 1 illustrates a node, on which an

... application process and an mcs process are running. The application process sends calls to
access shared data to the mes process; the mcs process returns the responses to the application
process, possibly based on messages exchanged with mcs processes on other nodes.

The correctness conditions are defined at the interface between the application processes
(written by the user) and the mcs processes (supplied by the system). Thus, the mes must pr~

vide the proper semantics when the values of the responses to calls are considered, throughout
the network.

It turns out that the timing information available in the model has a crucial impact on the
time complexity of implementing sequential consistency and linearizability. We assume that
on each node there is a real-time clock readable by the mes process at that node, that runs
at the same rate as real-time. We assume that every message incurs a delay in the interval
[d - u, d], for some known constants u and d, 0 ~ u ~ d (u stands for uncertainty). H u = 0,
then the message delays are constant.

First we consider the case when processes' clocks are perfectly synchronized. In this case,
sequential consistency and linearizability are equaJIy costly to implement, for the types of

3The UBumption of a complete communication network can be omitted and is made here only for cla.rity of
presentation.

2

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

~---------~---_._---

objects we consider and for our cost measure. (Thus, separating sequential consistency from
linearizability is not as obvious as it may seem.)

For read/write objects, we formalize and strengthen a result of Lipton and Sandberg [27J,
that in any seqllentially consistent implementation, the sum of the worst-case response times
for a read operation and a write operation is at least d. Obviously, this lower bound also holds
for linearizable implementations. We then show that this tradeoff is tight-it is possible to have
the response time of only one of the operations depend on the network's latency. Specifically,
we present an algorithm in which a read operation is perfohned instantaneously (locally), while
a write operation returns within time dj we also present an algorithm in which the roles are
reversed. These algorithms achieve linearizability, and hence, sequential consistency.

For FIFO queues, we show that the worst-case response time for a dequeue operation is at
least d. The result is proved for sequential consistency, and thus, holds also for linearizability.
We show that this bound is tight by presenting an algorithm in which an enqueue operation
returns instantaneously, while a dequeue operation returns within time d. The algorithm
achieves linearizability, and hence, sequential consistency.

The situation for stacks is analogous to that for FIFO queues, with "pop" playing the role
of "dequeue" and "push" the role of "enqueue".

We then turn to the more realistic case of approximately synchronized clocks. Under this
assumption, for all three object types, there are gaps between the upper bounds for sequentially
consistent implementations and the lower bounds for linearizable implementations. Operations
that could be done instantaneously in the previous model can still be done instantaneously in
sequentially consistent implementations, but they require fi(u) time in linearizable implemen­
tations (note that u can be as large as d). Thus, under these timing assumptionslinearizability
is more expensive to implement than sequential consistency, when there are significantly more
operations of one type.

For read/write objects, the lower bounds for linearizability are a worst-c~ time of u/4 for
a read and a worst-case time of u/2 for a write. One sequentially consistent implementation
guarantees time 0 for a read and time 2d for a writej another guarantees the reverse.

For FIFO queues, the lower bound for linearizability is a worst-case time of u/2 for an
enqueue. Our sequentially consistent implementation guarantees time 0 for an enqueue and
time 2d for a dequeue

As in the case of perfect clocks, the results for stacks are analogous to those for FIFO
queues.

Our proofs make use of techniques from the theory of distributed systems. The lower bounds
for implementqtions of linearizable objects are proved using shifting arguments, originally used
in [28] for clock synchronization problems. Our efficient implementations of sequential consis­
tency use as a subroutine a fast atomic broadcast algori.thm ([10]) we have.devisedj however
since our implementations are modular, any atomic broadcast algorithm will work.

Several papers have proposed sequentially consistent implementations of read/write objects,
which were claimed to achieve a higher degree of concurrency (e.g., [2, 3, 7, 11, 16, 30, 34]).

3

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

In particular, Afek, Brown, and Merritt ([3}) present a sequentially consistent implementation
of read/write objects, for systems where processes communicate via a bus. A bus enforces
global ordering on all messages delivered to the processes; such a property is not provided in
a communication network. None of these papers provides an analysis of the response time of
the implementations suggested (or any other complexity measure). Furthermore, none of these
papers proves that similar improvements cannot be achieved for linea.rizability. To the best
of our knowledge, this is the first time such a result is shown and the first time other object
types are c. 'lnsidered.

This paper addresses a simplification of the problem of memory coherence in loosely-coupled
multiprocessors ([7, 11, 9, 16, 26, 30, 33, 34}). Our formal model ignores several important
practical issues, e.g., limitations on the size of local memory storage, network topology, clock
drift and "hot-spots". Since our lower bounds are proved in a very strong model, they clearly
hold for more practical systems. We believe our algorithms can be adapted to work in more
realistic systems.

Section 2 presents our definitions and reviews the shifting technique. Section 3 considers the
case of perfect clocks. There is one subsection for each of the three object types; each subsection
consists of the lower bound(s) for sequential consistency followed by the upper bound(s) for
linearizability. Section 4 covers the imperfect clock case. Again there is a subsection for each
object type; now each subsection consists of the lower bound(s) for linearizability followed by
the upper bound(s) for sequential consistency. We conclude in Section 5.

2 Preliminaries
..

2.1 Objects

Every shared object is assumed to have a serial specification (cf. [22}) defining a set of oper­
ations, which are ordered pairs of call and response events, and a set of operation sequences,
which are the allowable sequences of operations on that object. A sequence T of operations
for a collection of objects is legal if, for each object 0, the restriction of T to operations of 0,
denoted TIO, is in the serial specification of 0.

In the case of a read/write object X, the ordered pair of events [Readp(X), Retp(X,v)]
forms a Read operation for any process p and value v, and [Writep(X, v), Ack,,(X)] forms
a Write operation. The set of operation sequences consists of a.ll sequences in which every
read operation returns the value of the latest preceding write operation (the usual read/write
semantics)."

In the case of a FIFO queue Q, the ordered pair of events [Deq,,(Q), Retp(Q,v)] forms
a Deq operation for any process p and value v, and [Enq,,(Q, v), Ackp(Q)] forms an Enq

4 The .pecifica~iODBused in ~hia paper are oper..~ional. I~ is poesi.ble to ISive algebraic (axiom..~ic) 8pecifica~ioD8
(d. [22]); operauonal8pecifica~ion8 are 118ed here for simplici~y.

4

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

---- ---------------~-~~------

't	 operation. The set of operation sequences consists of all sequences that obey the usual FIFO
queue semantics. That is, with a sequence of operations we associate a sequence of queue states,
starting with an initial empty state and continuing with a state for each operation (representing
the state of the queue after the operation. We require that each enqueue operation add an
item to the end of the queue, and each dequeue operation remove an item from the head of
the queue, or return .L if the queue is empty.

The specification of a stack S is similar to the specification of a queue: [PoppeS), Retp(S, v)]
forms a Pop operation for any process p and value v, and [Pushp(S, v), Ackp(S)] forms a Push
operation. The set of operation sequences consists of all sequences that obey the usual (last­
in-first-out) stack semantics.

2.2 System Model

We assume a system consisting of a collection of nodes connected via a communication network.
On each node there is an application program, a memory-consistency system (mcs) process, and
a real-time clock readable by the mcs process at that node. Formally, a clock is a monotonically
increasing function from R (real time) to R (clock time).5 The clock cannot be modified by the
process. Processes do not have access to the real time; each process obtains its only information
about time from its clock.

Below we list and informally explain the events that can occur at the mcs process on node
p. (The name p is also used for the mcs process on node p).

1.	 Call events: the application program on node p wants to access a shared object.

2.	 Response events: the mcs process on node p is providing a response from a shared object
to the application program on node p.

3.	 Message receive events: receive(p, m, q) for all messages m and nodes q: the mcs process
on node p receives message m from the mes process on node q.

4.	 Message send events: send(p, m, q) for all messages m and mcs processes q: the mcs
process on node p sends message m to the mcs process on node q.

5.	 Timer set events: timerset(p, T) for all clock times T: p sets a timer to go off when its
clock reads T.

6.	 Timer events: timer(p, T) for all clock times T: a timer that was set for time T on p's
clock goes off.

The call, message-receive, and timer events are intemJpt events.

!>R denotes the real Dumben.

5

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

.. An mcs process (or simply process) is an automaton with a (possibly infinite) set of states,
including an initial state, and a transition function. Each interrupt event causes an application
of the transition function. The transition function is a function from states, clock times, and
interrupt events to states, sets of response events, sets of message-send events, and sets of
timer-set events (for subsequent clock times). That is, the transition function takes as input
the current state, clock time, and interrupt event (which is the receipt of a call from the
application process, or the receipt of a message from another node, or a timer going off), and
produces a new state, a set of response events for the application process, a set of messages to
be sent, and a set of timers to be set for the future.

A step of p is a tuple (s,T,i,s',R,M,S), where s and s' are states, T is a clock time, i is
an interrupt event, R is a set of response events, M is a set of message-send events, S is a set
of timer-set events, and s', R, M, and S are the result of p's transition function acting on s,
T, and i.

A history of a process p with clock C is a mapping from R (real time) to finite sequences
of steps such that

1.	 for each real time t, there is only a finite number of times t' < t such that the corre­
sponding sequence of steps is nonempty (thus the concatenation of all the sequences in
real-time order is a sequence);

2.	 the old state in the first step is p's initial state;

3. the old state of each subsequent step is the new state of the previous step;

4. for each real time t, the clock time component of every step in the corresponding sequence
is equal to G(t); and

5.	 for each real time t, in the corresponding sequence all non-timer events are ordered before
any timer event and there is at most one timer event.

A memory-consistency system (mcs) is a set of processes P together with a set of clocks
C, one for each pin P. An execution of an mes is a set of histories, one for each process p
in P with clock C, in C, satisfying the following two conditions: (1) There is a one-to-one
correspondence between the messages sent by p to q and the messages received by q from p, for
any processes p and q. We use the message correspondence to define the delay of any message
in an execution to be the real time of receipt minus the real time of sending. (2) A timer is
received by p at clock time T if and only if p has previously set a timer for T. (The network is
not explicitly modeled, although the constraints on executions imply that the network reliably
delivers all messages sent.)

Execution tr is admissible if the following conditions hold:

1.	 For every p and q, every message in tr from p to q has its delay in the range [d - u, d),
for fixed nonnegative integers d and u, u :S d. (This is a restriction on the network.)

6

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

2.	 For every p, at most one call at p is pending at a time. (This is a restriction on the
application program.)

Note that the last condition allows each application program to have at most one call
outstanding at any time. This outlaws pipelining or prefetching.

2.3 Correctness Conditions

Given an execution u, let ops(u) be the sequence of call and response events appearing in u in
real- time order, breaking ties for each real time t as follows. First order all response events for
time t whose matching call events occur before time t, using process ids to break any remaining
ties. Then order all operations whose call and response both occur at time t. Preserve the
relative ordering of operations for each process and break any remaining ties with process ids.
Finally, order all call events for time t whose matching response events occur after time t, using
process ids to break any remaining ties.

Our formal definitions of sequential consistency and linearizability follow. These definitions
imply that every call gets an eventual response and that calls and responses alternate at each
process. Given a sequence s of operations and a process p, we denote by sip the restriction of
s to operations of p.

Definition 2.1 (Sequential consistency) An execution u i8 sequentially consistent if there
exists a legal sequence T of operations such that T i8 a permutation of ops(u) and, for each
process p, ops(u)lp is equal to Tip .

..
Definition 2.2 (Linearizability) An execution q i8 linearizable if there exists a legal se­
quence T of operations such that T is a permutation of Op8(U), for each process p, ops(q)jp is
equal to TIp, and furthermore, whenever the response for operation 01'J. precedes the call for
operation 0P2 in ops(q), then 01'1 precedes 0P2 in T.

An mes is a sequentially consistent implementation of a set of objects if any admissible
execution of the mcs is sequentially consistent; similarly, an mcs is a linearizable implementation
of a set of objects if any admissible execution of the mes is linearizable.

We measure the efficiency of an implementation by the worst-case response time for any
operation on any object in the set. Given a particular mes, an object 0 implemented by it,
and an operation P on 0, we denote by IP(O)I the maximum time taken by a P operation on
o in any admissible execution. We denote by !PI the maximum of IP(O)I over all objects 0
implemented by the mcs.

7

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

2.4 Shifting

A basic technique we use in our lower bound proofs (in Sections 4.1.1 and 4.2.1) is shifting,
originally introduced in [28] to prove lower bounds on the precision achieved by clock synchro­
nization algorithms. Shifting is used to change the timing and the ordering of events in the
system while preserving the local views of the processes.

Informally, given an execution with a certain set of clocks, if process p's history is changed
so that the real times at which the events occur are shifted by some amount 8 and if p's clock
is shifted by the same amount, then the result is another execution in which every process still
"sees" the same events happening at the same real time. The intuition is that the changes
in the real times at which events happen at p cannot be detected by p because its clock has
changed by a corresponding amount.

More precisely, the view of process p in history", of p with clock C is the concatenation of
the sequences of steps in "', in real-time order. The real times of occurrence are not represented
in the view. Two histories, one of process p with clock C and the other of process p with clock
C', are equivalent if the view of p is the same in both histories. Two executions, execution (J
of system (P,C) and execution (J' of (P,C'), are equivalent if for each process p, the component
histories for p in (J and (J' are equivalent. Thus, the executions are indistinguishable to the
processes. Only an outside observer who has access to the real time can tell them apart.

Given history", of process p with clock C, and real number ", a new history",' = shift("" 8)
is defined by 'lr'(t) == 'lr(t +8) for all t. That is, all tuples are shifted earlier in 'lr' by s if sis
positive, and later by -8 if 8 is negative. Given a clock C and real number s, a new clock C' =
shift(C,s) is defined by C'(t) = C(t) + s for all t. That is, the clock is shifted forward by s if
s is positive, and backward by -8 if s is negative.

The following lemma observes that shifting a history of process p and p's clock by the same
amount produces another history. .

Lemma 2.1 Let'" be a history of p~ss p with clock C, and let s be a real number. Then
shift('lr ,8) is a history of p with clock shift(C, ").

Given execution (J ofsystem (P,C), and real number 8, a new execution q' =shift((J,p,s) is
defined by replacing r, p's history in 0', by shift("', s), and by retaining the same correspondence
between sends and receives of messages. (Technically, the correspondence is redefined so that
a pairing in (J that involves the event for p at time t, in q' involves the event for p at time
t - 8.) All tuples for process p are shifted by 8, but no others are altered. Given a set of clocks
C = {Cq}qep, and real number 8, a new set of clocks C' = shijt(C,p,s), is defined by replacing
clock Cp by clock shift(CpI 8). Process p's clock is shifted forward by s, but no other clocks are
altered.

The following lemma observes that shifting one process' history and clock by the same
amount in an execution results in another execution that is equivalent to the original.

8

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

Lemma 2.2 (Lundeliu8 and Lynch) Let q be an execution of system (P, C), P a process,
and s a real number. Let C' = shift(C,p,s) and q' = shift(q,p,s). Then q' is an execution of
(P,C'), and q' is equivalent to q.

The following lemma quantifies how message delays change when an execution is shifted.
Notice that the result of shifting an admissible execution is not necessarily admissible.

Lemma 2.3 (Lundeliu8 and Lynch) Let q be an execution of system (P,C), p a process,
and s a real number. Let C' = shift(C, p, s) and q' = shift(q, p, s). Malee the obvious correspon­
dence between messages in q and in q'. Suppose x is the delay of message m from process q
to process r in q. Then the delay of m in q' is x if q 1= p and r 1= p, x - 8 if r = p, and x + s
ifq = p.

3 Perfect Clocks

We start by considering the case in which processes have perfectly synchronized (perfect) clocks
and message delay is constant and known.6 Perfect clocks are modeled by letting Cp(t) = t
for all p and t. The constant message delay is modeled by letting u = 0; d is known and can
be used by the mcs.

For each of the three object types, we first prove lower bounds on the worst-case response
time for sequentially consistent implementations. Since sequential consistency is a weaker
condition than linearizability, these bounds also hold for linearizable implementations. Then
we present algorithms that achieve linearizability, and hence sequential consistency, with worst­
case response times matching the lower bounds. Section 3.1 considers read/write objects,
Section 3.2 considers FIFO queues, and Section 3.3 considers stacks.

S.l Read/Write Objects

We show in Section 3.1.1 that for sequential consistency the sum of the worst-case response
times of read and write operations is at least d, even in this strong model. This is a formalization
of a result of Lipton and Sandberg ([27, Theorem 1]), making precise the timing assumptions
made on the system. We then show in Section 3.1.2 that the lower bound is tight for this
model by describing two linea.rizable algorithms that match the lower bound exactly: In the
first algorithm, reads are performed instantaneously, while the worst-case response time for a

6The UBumptions that proceMe8 have perfect clocb and that meuage delayl are coutant (and known) are
equivalent. If one U8umes that clocks are not nece8Mrily synchronized perfectly (but run at the rate of real
time) and that the meuage delay is coutant and known, then a simple algorithm luffices ~ Iynchronize the
clocks perfectly. If one &88umes that clocb are perfectly synchronized and that there is a known upper bound
d on measase delays, then constant message delays can be easily simulated by timestamping each measage with
the clock time of the Bender and having each recipient delay any mea&a3e that arrives with delay smaller than
d until the delay is exactly d.

9

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

... write is d. In the second algorithm, writes are performed instantaneously, while the worst-case
response time for a read is d.

3.1.1 Lower Bounds for Sequential Consistency

Theorem 3.1 (Lipton and Sandberg) For any memory-consistency system that is a se­
quentially consistent implementation of two read/write objects X and Y, IWritel + IReadl ~ d.

Proof: Let p and q be two processes that access X and Y. Assume by way of contradic­
tion that there exists a sequentially consistent implementation of X and Y for which both
IWrite(X)1 + IRead(Y)1 < d and IWrite(Y)1 + IRead(X)1 < d. Without loss of generality,
assume that °is the initial value of both X and Y.

By the specification of Y, there is some admissible execution o} such that ops(o}) is

Writep(X, 1) Ackp(X) Readp(Y) Retp(Y,O)

and Writep(X, 1) occurs at real time °and Readp(Y) occurs immediately after Ackp(X). By
assumption, the real time at the end of o} is less than d. Thus no message is received at any
node during o}.

By the specification of X, there is some admissible execution 02 such that ops((2) is

Writeq(Y, 1) Ackq(Y) Readq(X) Retq(X,O)

and Writeq(Y,1) occurs at real time °and Readq(X) occurs immediately after Ackq(Y). By
assumption, the real time at the end of 02 is less than d. Thus no message is received at any
node during 02.

Since no message is ever received in o} and 02, the execution 0 obtained from 01 by
replacing q's history with q's history in 02 is admissible. Then ops(o) consists of the opera-­
tions [Writep(X, 1), Ackp(X)J followed by [Readp(Y), Retp(Y,O)J, and [Writeq(Y, 1), Ackq(Y)J
followed by [Readq(X), Retq(X, 0)].

By assumption, 0 is sequentially consistent. Thus there is a legal operation sequence T

consisting of the operations [Writep(X, 1), Ackp(X)] followed by [Readp(Y), Retp(Y, 0)], and
[Writeq(Y, 1), Ackq(Y)J followed by [Readq(X), Retq(X,O)]. Since T is a sequence of operations,
either the read of X follows the write of X, or the read of Y follows the write ofY. But each
possibility violates the serial specification of either X or Y, contradicting T being legal. •

10

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

3.1.2 Upper Bounds for Linearizability

In this section we show that the tradeoff indicated by Theorem 3.1 is inherent, and that
a sequentially consistent implementation may choose which operation to slow down. More
precisely, we present an algorithm in which a read operation is instantaneous (local) while a
write operation returns within time dj we also present an algorithm in which the roles are
reversed. These algorithms actually ensure the stronger condition of linearizability.

The algorithm for fast reads and slow writes works as follows. Each process keeps a copy
of all objects in its local memory. When a Readp(X) occurs, p reads the value v of X in
its local memory and immediately does a Retp(X,v). When a Writep(X, v) occurs, p sends
"write(X, v)" messages to all other processes. Then p waits d time, after which it changes
the value of X to v in its local memory and does an Ackp(X). Whenever a process receives
a "write(X,v)" message, it changes the value of X to v in its local memory. (If it receives
several at the same time, it "breaks ties" using sender ids; that is, it writes the value in the
n:essage from the process with the largest id and ignores the rest of the messages.)

Theorem 3.2 There exists a linearizable implementation of read/write objects with IReadl =0
and IWriteI =d.

Proof: Consider the algorithm just described. Clearly the time for every read is 0 and the
time for every write is d.

Let (7 be an admissible execution of this algorithm. For each operation in (7, say that it
occurs at the real time when its response happens. Let T be the sequence of operations in (7

ordered by time of occurrence, breaking ties with process ids. Clearly (7lp is equal to TIp for
all p, and the order of non-overlapping operations is preserved.

It remains to show that T is legal, Le., that for every object X, TIX is in the serial specifi­
cation of X. Since X is a read/write object, we must show that every Read Returns the value
written by the latest preceding Write (and if there is no such Write, then it returns the initial
value).

Pick any X and consider TIX = OPlOf";J ••• o Suppose OPi is [Readp(X), Retp(X, v)] and 0Pi

occurs at time t in (f 0

Case 1: No Write precedes 0Pi in T. By the definition of T, no Write is Acked before 0Pi starts.
Since the Ack for a Write happens at the same time that every process updates its local copy
of X, the Read reads the initial value for X and Returns that value.

Case 2: Some Writep(X, v) is the latest Write preceding OPi in T. By the definition of T, this
Write is Acked before opi starts, but no other Write is Acked before 0JIi starts. Since the Ack
for a Write happens at the same time that every process updates its local copy of X, the Read
reads l' for the value of X and Returns that value. •

11

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

----- ----------------~~~~--

The algorithm for slow rea.ds and fast writes is similar to the previous one. Each process
keeps a copy of all objects in its local memory. When a Rea.dp(X) occurs, p waits d time,
after which it rea.ds the value v of X in its local memory and immediately does a Retp(X, v).
When a Writep(X,v) occurs, p sends "write(X,v)" messages to all other processes (including
a dummy message to itself which is delayed d time) and does an Ack immediately. Whenever
a process receives a "write(X,v)" message, it changes the value of X to v in its local memory.
Ties are resolved as in the previous algorithm.

Theorem 3.3 There exists a linearizable implementation 0/ read/write objects with IReadl =d
and IWritel = o.

Prool: Consider the algorithm just described. Clearly the time for every read is d and the
time for every write is o.

Let (T be an a.dmissible execution of this algorithm. For each operation in (T, say that it
occurs at the real time when its call happens. Let r be the sequence of operations in (T ordered
by time of occurrence, breaking ties with process ids. Clearly (TIp is equal to rip for all p, and
the order of non-overlapping operations is preserved.

It remains to show that r is legal, Le., that for every object X, rlX is in the serial specifi­
cation of X. Since X is a rea.d-write object, we must show that every Read Returns the value
written by the latest preceding Write (and if there is no such Write, then it returns the initial
value).

Pick any X and consider rlX =OPIOP2 Suppose CJPj is [Readp(X), Retp(X, v)] and 0Pi

occurs at time t in (T.

Case 1: No Write precedes CJPj in t. By the definition of r, no Write starts before CJPj starts.
Since the local changes occur d time after the Write starts and the Read reads the local memory
d time after the Read starts, it reads the local memory before any change is made to it. Thus
the Read returns the initial value.

Case 2: Some Writep(X, v) is the latest Write preceding 0Pj in r. Essentially the same argument
as in Case 1 works. •

3.2 FIFO Queues

We show in Section 3.2.1 that for sequential consistency the worst-case response time of a
dequeue operation is at least d, even when clocks are perfectly synchronized and message
delays are constant. We then show in Section 3.2.2 that this lower bound is tight for this
model by describing a linearizable algorithm that matches the lower bound exactly: enqueues
are performed instantaneously, while dequeues take time d.

12

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

3.2.1 Lower Bound for Sequential Consistency

Theorem 3.4 For any sequentially consistent implementation ofa FIFO queue QI /Deq(Q)I ~

d.

Proof: Let p and q be two processes that access Q. Assume by way of con tradiction that
there exists a sequentially consistent implementation of Q for which IDeq(Q)I < d. Let T =
jDeq(Q)/. By definition, the queue Q is initially empty.T By the specification of Q, there is
some admissible execution a~ such that ops(aD is

Enqq(Q, 1) occurs at real time 0 and Ackp(Q) occurs at time t; the first Deqp(Q) occurs at
time i, while the jth Deqp(Q) occurs at time t +(j -1)T (see Figure 2(a)8). Consider now the
:nfinite sequence VI, ••• , Vi, It is possible that many of them are 1.j however, since only a
finite number of Deq operations can be serialized before the Enq operation, we have:

Lemma 3.6 There exists some i such that Vi I- 1..

Fix this particular i, and note that Vi = 1 and, for all i, 1 :S i < i, Vj = 1.. Let al be a~

truncated after the ith Deq operation by p. More precisely, ops(ad is

Enqq(Q,1) Ackp(Q) Deqp(Q) Retp(Q,1.) ... Deq,,(Q) Retp(Q, 1.) Deq,,(Q) Retp(Q,1)

Enqq(Q, 1) occurs at real time 0 and Ackp(Q) occurs at time tj the first Deq,,(Q) occurs at time
t, while the ith Deqp(Q) occurs at time t +(i - 1)T (see Figure 2(b». It is clear -that the vj's
are exactly as in ~. By assumption, the real time at the end of a is less than t +(i - 1)T +d.
Thus, no message sent after t +(i - 1)T is received during al.

We now consider the execution where the ith (and last) dequeue by p is replaced with a
dequeue by q. More precisely, by the specification of Q, there is some admissible execution 02

such that ops(a2) is

Enqq(Q,1) Ackp(Q) Deqp(Q) Retp(Q,1.) ... Deqp(Q) Retp(Q,1.) Deqq(Q) Ret,(Q,u)

Enqq(Q, 1) occurs at real time 0 and Ackp(Q) occurs at time t; the first Deqp(Q) occurs at time
t, while the (i - 1)st Deqp(Q) occurs at time t + (i - 2)T, and Deqq occurs at time t + (i - 1)T
(see Figure 2(c». Since 02 is sequentially consistent, it follows that u =1. By assumption, the

71f we allow queues ~ be initially non-empty, the proof of the lower bound becomes much simpler; we leave
the details ~ the interested reader.

81D the figures, time runs from left to right, and each line representB events at one process. Important time
poin tB are marked at the bottom.

13

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

real time at the end of a2 is less than t +(i - 1)T +d. Thus, no message sent after t +(i - I)T
is received during a2'

Since no message sent after time t + (i - 1)T is ever received in al and a2, and since al
and a2 are identical until time t +(i - 1)T, the execution a obtained from al by replacing q's
history with q's history in a2 is admissible. Then op8(a) is

Enqq(Q, 1) Ackp(Q) Deqp(Q) Retp(Q,1.) ... Deqp(Q) Retp(Q, 1) Deqq(Q) Retq (Q, 1)

(see Figure 2(d)). By assumption, a is sequentially consistent. Thus, there is a legal sequence
T, which is a permutation of the above operations. However, in T the element "1" is enqueued
once but dequeued twice, a contradiction. •

3.2.2 Upper Bound for Linearizability

In this section we show that the lower bound given in Theorem 3.4 is tight for the model with
perfect clocks. Specifically, we present an algorithm in which an enqueue operation returns
instantaneously, while a dequeue operation returns within time d. The algorithm ensures the
stronger condition of linearizability.

The algorithm works as follows. Each process keeps a copy of all queues in its local
memory. When an Enqp(Q, v) occurs, p sends "enqueue(Q, v)" messages to a.ll other processes
(including a message to itself which is delayed d time) and does an Ack immediately. When
a Deqp(Q) occurs, p sends "dequeue(Q)" messages to all other processes (including a message
to itself which is delayed d time). Mter waiting d time, p handles its own message and does
a Retp(Q,tI). Whenever a process receives an "enqueue(Q,v)" or "dequeue(Q)" message, it
makes the appropriate update to the copy of Q in its local memory. (If it Teceives several
messages at the same time, it "breaks ties" using sender ids, that is, it handles them by
increasing order of process ids.)

Theorem 3.6 There ezi8ts a linearizable implementation 0/ FIFO queues with IEnql = 0 and
IDeql = d.

In the proof, we serialize each operation to occur d time after it is called. Since all processes
update their local copies at these serialization times, the claim follows.

Proof: Consider the algorithm just described. Clearly IEnql =0 and IDeql = d.

Let (I be an admissible execution of this algorithm. For each operation in (I, say that it
occurs at time d after the real time when its call happens. Let T be the sequence of operations
in (I ordered by time of occurrence, breaking ties with process ids. Clearly (lIp is equal to Tip
for all p, and the order of non-overlapping operations is preserved.

14

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

- ~------ -----

Deq(Q,Vl) Deq(Q,v2) Deq(Q,Vi_l) Deq(Q,v,)
process p� I�I I I I� I I I

Enq(Q,I)
process q I I�

Time� I I I I I�
0 t t+T t + (i - 2)T t + (i - l)T�

(a) The execution ai.

Deq(Q,1.) Deq(Q, 1.) Deq(Q, 1.) Deq(Q,I)
process p I I I I I I I I�

Enq(Q,I)
process q I I�

Time� I I I I I�
0 t t+T t + (i - 2)T t + (i - l)T�

(b) The execution 0'1.

Deq(Q,1.) Deq(Q, 1.) Deq(Q,1.)
process p I I I I I I�

Enq(Q,I)� Deq(Q,u)
process q I I� I I�

Time� I I I I I�
0 t t+T t + (i - 2)T t + (i - l)T�

(c) The execution 0'2'

Deq(Q,1.) Deq(Q,1.) Deq(Q,1.) Deq(Q,I)
process p� I�I I I I� I I I�

Enq(Q,I)� Deq(Q,I)
process q I I� I I�

Time� I I I I I�
0 t t+T t + (i - 2)T t + (i - I)T�

(d) The execution a.

Figure 2: Executions used in the proof of Theorem 3.5.

15

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

It remains to show that r is legal, Le., that for every object Q, rlQ is in the serial specifi­
cation of Q. Pick any Q and consider rlQ = OPloP2 . ••• Suppose OPi is [Deq,,(Q), Retp(Q,v)].
Because message delay is fixed, updates at p to the local copy of Q occur in the same order as
in r, and the claim follows. •

3.3 Stacks

The results for stacks are analogous to those for FIFO queues, with Pop playing the role of
Deq and Push the role of Enq.

Theorem 3.7 For any sequentially consistent implementation of a stack 5, IPop(5)/ ~ d.

Theorem 3.8 There exists a linearizable implementation of stacks with IPushl = 0 and
lPopl-= d.

4 Imperfect Clocks

Obviously, the assumptions of the previous section are unrealistically strong. In this section
we rela.x: them, and assume a system in which clocks run at the same rate as real time but
are not initially synchronized, and in which message delays are in the range [d - u, d) for some
u > O.

Under these assumptions, the lower bounds of Section 3 still hold, but the algorithms of
Section 3 do not work. We show that in this model there is a gap between the upper bounds for
sequential consistency and the lower bounds for linearizability, for all three object types. The
new lower bounds for linearizability show that operations that could be done instantaneously
in the previous model now require at least n(u) time. Recall that u is the uncertainty in the
message delay and can be as large as d. The new upper bounds are algorithms that match,
within constant factors, the lower bounds for sequentiaJ. consistency in the previous model.

Inspecting the algorithms from Section 3 reveals that in all cases correctness hinges on the
fact that updates are handled by all processes in the same order and at the same time. In
order to guarantee sequentiaJ consistency, it suffices for processes to update their locaJ copies
in the same order (not necessarily at the same time). A simple way to achieve this property
is for a centralized controller to collect update messages and broadcast them. Using atomic
broadcast it is possible to translate this idea into algorithms that are fully distributed and do
not rely on a centralized controller. The algorithms are completely asynchronous, and do not
rely on timing information.

Atomic broadcast ([10]) is a communication primitive which guarantees that every message
sent using the primitive is received at every process, that aJl messages are delivered in the
same order at all processes, and that two messages sent by the same process are delivered in

16

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

the same order they were sent. Our implementations are described in a modular way so that
they will work with any atomic broadcast algorithm (e.g., [10, 13, 19]). The interface to the
primitive consists of two operations, ABC-send(m) to send a message m (possibly consisting of
several fields) and ABC-receive(m) to receive a message m. In analyzing our implementations,
we assume there is a known bound, h, on the time that the atomic broadcast primitive takes to
deliver a message to all processes. Each of our implementations has one fast operation, which
takes time 0, and one slow operation, which takes time h. In Appendix A we describe and
prove corred a fast atomic broadcast algorithm with h =2d. By using this algorithm in our
impelmentations, we obtain implementations in which slow operations take time 2d = O(d).

4.1 Read/Write Objects

We show in Section 4.1.1 that in any linearizable implementation of a read/write object,
the worst-case response time of both read and write operations must depend on u. We then
Fresent in Section 4.1.2 two algorithms for read/write objects, one in which reads are performed
instantaneously while the worst-case response time for a write is O(d), and another in which
the roles are reversed.

4.1.1 Lower Bounds for Linearizability

We now show that, under reasonable assumptions about the pattern of sharing, in any lineariz­
able implementation of an object, the worst-case time for a read is u/4 and the worst-case time
for a write is u/2. The proofs of these lower bounds use the technique of shifting, described in
Section 2.4.

Theorem 4.1 Assume X is a read/write object with at least two readers. Then any lineariz­
able implementation of X must have IRead(X)I2: l'

Proof: Let p and q be two processes that read X and r be a process that writes X. Assume in
contradiction that there is an implementation with IRead(X)1 < 1- Without loss of generality,
assume that the initial value of X is 0. The idea of the proof is to consider an execution in
which p reads 0 from X, then q and p alternate reading X while r writes 1 to X, and then
q reads 1 from X. Thus there exists a read R), say by p, that returns °and is immediately
followed by a read R2 by q that returns 1. If q is shifted earlier by u/2, then R2 precedes Rl
in the resulting execution. Since R2 returns the new value 1 and R1 returns the old value 0,
this contradicts linearizability.

Let k =rIWri~(X)ll. By the specification of X, there is an admissible execution a, in which
all message delays are d - !, consisting of the following operations (see Fig. 3(a»:

• At time l' r does a Write,.(X, 1).

17

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

• Between times i and (4k +1). i, r does an Ackr(X). (By definition of k, (4k +1)'1 ~
1+ IWrite(X)I, and thus r's write operation is guaranteed to finish in this interval.)

•� At time 2i '1' p does a Read,,(X), 0 ~ i ~ 2k.

•� Between times 2i . ~ and (2; + 1) . ~, p does a R.et,,(X, V2i), 0 ~ i ~ 2k.

•� At time (2i + 1) '1' q does a Readq(X), 0 ~ i ~ 2k.

•� Between times (2i + 1) '1 and (2i + 2) . i, q does a Retq(X, V2i+I), 0 ~ i ~ 2k.

Thus in ops(a), p's read of Vo precedes r's write, q's read of V4A:+l follows r's write, no two
read operations overlap, and the order of the values read from X is vo, Vt. "'2, "', v4A:+!. By
linearizability, Vo = 0 and v4A:+l = 1. Thus there exists j, 0 ~ j ~ 4k, such that Vj = 0 and
Vj+l = 1. Without loss of generality, assume that j is even, so that Vj is the result of a read
by p.

Define (3 = shift(a, q, i); Le., we shift q earlier by i. (See Fig, 3(b).) The result is
admissible, since by Lemma 2.3 the message delays to q become d - u, the message delays from
q become d, and the remaining message delays are unchanged.

As a result of the shifting, we have reordered read operations with respect to each other at
p and q. Specifically, in ops«(3), the order of the values rejUi from X is VI, VO, VJ, V2, .•., Vj+h

Vj, Thus in (3 we now have Vj+l = 1 being read before Vj =0, which violateslinearizability.

•
Theorem 4.2 If X is a read/write object with at least two writers, then any linearizable im­
plementation of X must have IWrite(X)1 2: }.

The proof uses techniques similar to the proof of Theorem 4.1. It constructs an execution
in which, if write operations are too short, linearizability can be violated by appropriately
shifting histories.

Proof: Let p and q be two processes that write X and r be a process that reads X. Assume
in contradiction that there is an implementation with IWrite(X)1 < l' Without loss of
generality, assume that the initial value of X is O. By the specification of X, there is an
admissible execution a such that

• ops(a) is Write,,(X, 1) Ack,,(X) Writeq(X,2) Ackq(X) Readr(X) Retr(X, 2);

• Write,,(X, 1) occurs at time 0, Writeq(X,2) occurs at time ~, and Readr(X) occurs at
time U; and

•� the message delays in 0' are d from p to q, d - u from q to p, and d - ~ for all other
ordered pairs of processes.

18

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

-- - ------~----------

Read(X, v.) Read(X, v4,Hd
process q I I I I

Read(X, vo) Read(X, V2) Read(X, V4i)
process p I I I I I I

Write(X,l)
process r

I I I I
u u (4i11)UTime 0 l' 1"

(a) The execution a.

Read(X, Vl) Read(X ,va)
process q I I I I

Read(X, vo) Read(X, V2) Read(X I V4i)
process p I I I I I I

Write(X,l)
process r I

I I I I
u u u {4,Hl)uTime -4' 0 4' I 4

(b) The execution fl.

Figure 3: Executions used in the proof of Theorem 4.1.

Let {3 = shijt(shijt(a,p,-i),q,i); i.e., we shift p later by ~ and q earlier by~. The result
is still an admissible execution, since by Lemma 2.3 the delay of a message from p or to q
becomes d - u, the delay of a message from q or to p becomes d, and all other delays are
unchanged.

But ops({3) is

Writeq(X,2) Ackq(X) Writep(X,1) Ack,(X) Readr(X) Retr (X,2)

which violates linearizability, because r's read should return 1, not 2. •
The assumptions about the number of readers and writers made in Theorems 4.1 and 4.2

are crucial to the results, since it can be shown that the algorithms from Theorems 3.2 and 3.3
are correct if there is only one reader and one writer.

19

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

Readp(X):
generate Retp(X, v), where v is the value of p's copy of X

Writep(X, v):
ABC-send(X, v)

ABC-receive(X, v) from q:
set local copy of X to v
if q = p then generate Ackp(X) endif

Figure 4: Sequentially consistent fast read algorithm.

4.1.2 Upper Bounds for Sequential Consistency

Fast Reads

We start with the algorithm for fast reads (time 0) and slow writes (times at most h).

In the algorithm, each process keeps a local copy of every object. A read returns the value
of the local copy immediately. When a write comes in to p, p sends an atomic broadcast
containing the name of the object to be updated and the value to be written; but it does not
yet generate an Ack for the write operation. When an update message is delivered to a process
q, q writes the new value to its local copy of the object. H the update message was originated
by q, then q generates an Ack and the (unique pending) write operation returns.

More precisely, the state of each process' consists of a copy of every object, initially equal
to its initial value. The transition function of process p appears in Fig. 4.

To prove the correctness of the algorithm, we first show:

Lemma 4.3 For every admissible ezecution and every process p, p's local copies take on all
the values contained in write opemtions, all updates occur in the same order at each process,
and this order preserves the order of write opemtioll8 on a per-process basis.

Proof: By the code, an ABC-send is done exactly once for each write operation. By the
guarantees of the atomic broadcast, each process receives exactly one message for each write
operation, these messages are received in the same order at each process, and this order respects
the order of sending on a per-process basis. •

Call the total order of Lemma 4.3 the "Abcast order" .

Lemma 4.4 For every admissible ezecution, every proce88 p, and all objects X and Y, if retId
R of object Y follows write W to object X in ops(0')Ip, then R's read of p's local copy of Y
follows W's write of p's local copy of X.

20

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

Proof: The lemma is true because W does not end until its update is performed at its
initiator. •

Theorem 4.5 There exists a sequentially consistent implementation of read/write objects with
IReadl =0 and IWritel =h.

Proof: Consider the algorithm just presented. Clearly the time for any read is O. The time
for any write is the time for the initiator's ABC-send to be received by the initiator, which is
at most h.

The remainder of the proof is devoted to showing sequential consistency. Fix admissible
execution (1.

Define the sequence of operations T as follows. Order the writes in (1 in Abcast order. Now
we explain where to insert the reads. We proceed in order from the beginning of (1. [R.eadp(X),
R.etp(X, v)] goes immediately after the latest of(l) the previous operation for p (either read or
write, on any object), and (2) the write that spawned the latest update of p's local copy of X
preceding the generation ofthe R.etp(X, v). (Break ties using process ids; e.g., if every process
reads some object before any process writes any object, then T begins with Pt'S read, followed
by P2'S read, etc.)

We must show ops(O')lp = Tip for all processes p. Fix some process p.

The relative ordering of two reads in ops(O')lp is the same in Tip by definition of T.

The relative ordering of two writes in ops«(1)lp is the same in Tip by Lemma 4.3.

Suppose in ops(0')Ip that read R follows write W. By definition of T, R comes after W in
T.

Suppose in ops(O')lp that read R precedes write W. Suppose in contradictiQn that R comes
after Win T. Then in 0' there is some read R' = [Readp(X), Retp(X, v)] and some write W' =
[Writeq(X,v), Ackq(X)] such that (1) R' equals R or occurs before R in (1, (2) W' equals W
or follows W in the Abcast order, and (3) W' spawns the latest update to p's copy of X that
precedes R"s read. But in 0', R' finishes before W starts. Since updates are performed in (1 in
Abcast order (Lemma 4.3), R' cannot see W"s update, a contradiction.

We must show T is legal. Consider read R = [Readp(X), Retp(X,v)] in T. Let W be the
write in 0' that spawns the latest update to p's copy of X preceding R's read of p's copy of
X. Clearly W = [Writeq(X, v), Ac~(X)] for some q. (If there is no such W, then consider
an imaginary write at the beginning of 0'.) By the definition of T, R follows W in T. We
must show that no other write to X falls in between W and R in T. Suppose in contradiction
that W' =[Writer(X, w), Ack,.(X)] does. Then by Lemma 4.3, the update for W' follows the
update for W at every process in 0'.

Case 1: r = p. Since T preserves the order of operations at p, W' precedes R in 0'. Since
the update for W' follows the update for W in 0', R sees W"s update, not W's, contradicting
the choice of W.

21

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

Case 2: r ::f. p. By definition of T, there is some operation in ops(O')lp that, in T, precedes
R and follows W' (otherwise R would not follow W'). Let 0 be the first such operation.

Suppose 0 is a write to some object Y. By Lemma 4.4, O's update to p's copy of Y
precedes R's read of p's copy of X. Since updates are done in Abcast order, the update for W'
occurs at p before the update for 0, and thus before R's read, contradicting the choice of W.

Suppose 0 is a read. By the definition of T, 0 is a read of X, and W"s update to p's copy
of X is the latest one preceding O's read (otherwise 0 would not follow W'). Since updates
are done in Abcast order, the value from W' supersedes the value from W, contradicting the
choice of W. ..

Theorem 4.1 implies that this algorithm does not guarantee linearizability. We can also
explicitly construct an admissible execution that violates linearizability as follows. The initial
value of X is O. Process p writes 1 to X. The ABC-send for the write occurs at time t. It
ll,rrives at process r at time t and at process q at time t +h. Meanwhile, r performs a read
at time t and gets the new value 1, while q performs a read at time t +h/2 and gets the old
value o. No permutation of these operations can both conform to the read/write specification
and preserve the relative real-time orderings of all non-overlapping operations.

Fast Writes

We now discuss the algorithm that ensures sequential consistency with fast writes (time 0)
and slow reads (time at most h). When a Read(X) comes in to p, if p has no pending updates
(to any object, not just X) that it initiated, then it Returns the current value of its copy of
X. Otherwise, it waits for all pending writes to complete and then returns. This is done by
maintaining a count of the pending writes and waiting for it to be zero. When a Write(X) comes
in to p, it is handled very similarly to the other algorithm; however, it is Acked immediately.
Effectively, the algorithm pipelines write updates generated at the same process.

Specifically, the state of each process consists of the following variables:�
num : integer, initially 0 (number of pending updates initiated by this process),�
copy of every object, initially equal to its initial value.�

The transition function of process p appears in Fig. 5.

Theorem 4.6 There ezists a sequentially consistent implementation of read/write objects with
IReadl =h and IWritel =o.

Proof: Consider the algorithm just presented. Clearly every write takes 0 time. The worst­
case time for a read occurs if the return must wait for the initiator to receive its own ABC-send
for a pending write. This takes a.t most h time.

22

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

Readp(X):�
if num = 0 then�

generate Retp(X, 'V), where v is the value of p's copy of X�
endif�

Write,,(X, v):�
num:= num + 1�
ABC-send(X, v)�
generate Ackp(X)�

ABC-receive(X, v, i) from q:�
set local copy of X to v�
if p =q then�

num:= num-1
if num = 0 then

generate Retp(X, 'V), where 'V is the value of p's copy of X
endif

endif

Figure 5: Sequentially consistent fast write algorithm.

The structure of the proof of sequential consistency is identical to that in the proof of
Theorem 4.5. We just need a new proof for Lemma 4.4.

Lemma 4.4 is still true for this algorithm because when a Read occurs at p, if any up­
date initiated by p is still waiting, then the Return is delayed until the latest. such update is
performed. •

Theorem 4.2 implies that this algorithm does not guarantee linearizability. We can also
construct an explicit scenario.

4.2 FIFO Queues

We show in Section 4.2.1 that in any linearizable implementation of a FIFO queue, the worst­
case response time of an enqueue operation must depend on u. We then present in Section 4.2.2
a sequentially consistent implementation in which enqueue operations return instantaneously
while the worst-case response time for a dequeue operation is h.

..

23

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

4.2.1 Lower Bound for Linearizability

We show that in any linearizable implementation of a FIFO queue the worst-case time for an
enqueue is u/2 (assuming that at least two processes can enqueue to the same FIFO queue).
The proof uses the technique of shifting, described in Section 2.4.

Theorem 4.7 If Q is a FIFO queue with at least two enqueuers, then any linearizable imple­
mentation of Q must have IEnq(Q)1 ~ l'

Proof: Let p and q be two processes that can enqueue to Q and r be a process that dequeues
from Q. Assume in contradiction that there is an implementation with IEnq(Q)! < ~. Initially,
Q is empty. By the specification of Q, there is an admissible execution a such that

•� Enqp(Q,l) occurs at time 0, Enqq(Q,2) occurs at time l' and Deqr(Q) occurs at time
Uj and

• the message delays in a are d from p to q, d - u from q to p, and d - j for all other
ordered pairs of processes.

Let {3 =shijt(shijt(a,p,-i),q,i)j Le., we shift p later by I and q earlier by}. The result
is still an admissible execution, since by Lemma 2.3 the delay of a message from p or to q
becomes d - u, the delay of a message from q or to p becomes d, and all other delays are
unchanged. But ops({3) is

which violates linearizability, because r's dequeue should return 2, not 1 (by the FIFO prop­
erty). •

The assumption about the number of enqueuers made in Theorem 4.7 is crucial to the
results, since it can be shown that the algorithm of Theorem 3.6 is correct if there is only one
enqueuer.

4.2.2 Upper Bound for Sequential Consistency

Informally, the algorithm works as follow. Each process keeps a local copy of every object,
When a request to enqueue 11 to Q comes in to p, p broadcasts an update message with the
object name, the operation name, and the value to be enqueued to a.ll processes. The operation
returns immediately. When a request to dequeue from Q comes in to p, p broadcasts an update
message with the object name and the operation name. It does not generate a response.

24

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

Enqp(Q, v):
ABC-send(Q, v, "enq")
generate Ackp(Q)

Deqp(Q):
ABC-send(Q, "deq")

ABC-receive(Q,v,"enq") from q:
enqueue v on local copy of Q

ABC-receive(Q,"deq") from q:
val := dequeue local copy of Q
if P = q then generate Retp(Q,val) endif

Figure 6: Sequentially consistent fast enqueue algorithm.

When an update message (either "dequeue" or "enqueue") is delivered to a process it
handles it by performing the appropriate change (enqueue or dequeue) to the local copy of
the object. If the update is a dequeue by the same process, the dequeue operation that is
currently waiting returns the value that was dequeued from the local copy. (Note that by
well-formedness, there is only one pending dequeue operation for a given process.)

In more detail, the state of each process consists of the following variables:�
copy of every object, initially equal to its initial value�
val ; value (of a queue element)�

The transition function of process p appears in Fig. 6.

To prove correctness of the algorithm we show:

Lemma 4.8 In every admissible execution, all updates are done exactly once at each local copy,
updates are done in the same order at each process, and this order presenJes the per-process
order.

Theorem 4.9 There existB a sequentially consistent implementation 0/ FIFO queues with
IEnql =0 and IDeql =h.

Prool: Consider the algorithm just presented. Clearly, the time for an enqueue is 0 and the
time for a dequeue is at most h.

25

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

-- ----~------

The remainder of the proof is devoted to showing sequential consistency. Fix some admis­
sible execution (1.

Define the sequence of operations r as follows: Order the operations in (1 by Abcast order.
From Lemma 4.8 it follows that operations by p are ordered in r as they were ordered in (1,

and thus ops«(1)lp = rip, for all processes p.

It remains to show that r is legal, Le., that for every FIFO queue Q, rlQ is in the serial
specification of Q. Pick any Q and consider rlQ = Opt01'2.... Suppose 0Pi is (Deqp(Q),
Retp(Q,v)]. Since the local updates at p occur in Abcast order (Lemma 4.8), updates at p to
the local copy of Q occur in the same order as in r, and the claim follows. •

Theorem 4.7 implies that this algorithm does not guarantee linearizability. It is also possible
to construct an explicit scenario which violates linearizability.

4.3 Stacks

These results are analogous to those for FIFO queues with Pop in place of Deq and Push in
place of Enq.

Theorem 4.10 If 5 is a stack with at least two pushers, then for any linearizable implemen­
tation of 5, IPush(5)1 ~ 1­

Theorem 4.11 There ezists a sequentially consistent implementation of stacks with IPushl =
o and IPopl = h.

5 Conclusions and Further Research

The impact of the correctness guarantee on the efficiency of supporting it was studied under
various timing assumptions. Although we still do not have a complete picture of this problem,
our results indicate that supporting sequential consistency can be more cost-effective than
supporting linearizability, for certain object types and under certain timing assumptions. Two
other conclusions can be drawn from our results. First, perfect clocks admit more efficient
implementations, and thus it may be worthwhile to provide such clocks. Second, knowing in
advance the sharing patterns of the objects (Le., how many processes access each one with a
particular operation) results in faster implementations. Thus, the mcs can benefit from having
the application program (the user) supply "hints" about the sharing patterns of the object.

Our work leaves open many interesting questions. Obviously, it is desirable to narrow the
gaps between our upper and lower bounds. (Some recent results in this direction a.ppear in
(29].) It will be interesting to understand how practical issues such as local memory size and
clock drift influence the bounds. It will be very interesting to obtain bounds on the response

26

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

time of implementing other objects, e.g., Test&Set registers, under sequential consistency and
linearizability. The cost measure we have chosen to analyze is response time, but there are
other relevant measures, including throughput and network congestion.

The modular usage of atomic broadcast in our implementations of sequential consistency
admits several extensions. For example, a bus provides an easy mechanism for atomic broad­
cast, and it might be possible to improve and simplify the correctness proof of the algorithm in
[3] using this observation. Also, atomic broadcast algorithms can be made fault-tolerant. This
can help in the design of memory consistency systems that can sustain failures of some of the
processes. In general, the issue of fault-tolerance is rarely addressed in the current research on
memory consistency. As multiprocessors scale up and the probability of failure increase, this
will become an important concern.

The problem that we have studied is closely related to the problem of designing cache
consistency schemes in which some sort of global ordering must be imposed on the operations
([11, 12, 14, 18, 24]). Our results show that making the definitions of these orderings more
precise is important since seemingly minor differences in the definitions result in significant
differences in the inherent efficiency of implementing them. Recently, several non-global con­
ditions that are weaker than sequential consistency have been suggested, e.g., weak ordering
([17, 9, 1]), release consistency ([20]), pipelined memory ([27]), slow memory ([23]), causal
memory ([4]), loosely coherent memory ([7]), and the definitions in [14] and [33]. It would be
interesting to investigate the inherent efficiency of supporting these consistency guarantees. In
order to do so, crisp and precise definitions of these conditions are needed.

It is clear that efficiency, in general, and response time, in particular, are not the only
criteria for evaluating consistency guarantees. In particular, the ease of designing, verifying,
programming, and debugging algorithms using such shared memories is very important.

As multiprocessor systems become larger, distributed implementations of shared virtual
memory are becoming more common. (Truly shared memories, or even buses, cannot be used
in systems with a large number of processors.) Such implementations and their evaluation
relate issues concerning multiprocessor architecture, programming language design, software
engineering, and the theory of concurrent systems. We hope our work contributes toward a
more solid ground for this interaction.

Acknowledgements: The authors thank Sarita Adve, Roy Friedman, Mark Hill, and Rick
Zucker for helpful comments on an earlier version of this paper. We especially thank Martha
Kosa for a careful reading.

27�

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

References

[1]� S. Adve and M. Hill, "Weak Ordering-A New Definition," Proc. 17th Int. Symp. on
Computer Architecture, 1990, pp. 2-14.

[2]� S. Adve and M. Hill, "Implementing Sequential Consistency in Cache-Based Systems,"
Proc. Int. Con/. on Parallel Processing, 1990, pp. 1-47-50.

[3]� Y. Afek, G. Brown, and M. Merritt. "A Lazy Cache Algorithm," Proc. 1st ACM Symp.
on Parallel Algorithms and Architectures, 1989, pp. 209-222.

[41� M. Ahamad, P. Hutto, and R. John, Implementing and Programming Causal Distributed
Shared Memory, TR GIT-CC-90-49, Georgia Inst. of Tech., December 1990.

[5]� H. Attiya, "Implementing FWO Queues and Stacks," to appear in Proc. Int. Workshop
on Distributed Algorithms, October 1991.

[6]� H. Attiya and J. L. Welch, "Sequential Consistency versus Linearizability," Proc. 3rd
ACM Symp. on Parallel Algorithms and Architectures, 1991, pp. 304-315.

[7]� J. Bennett, J. Carter, and W. Zwaenepoel, "Munin: Distributed Shared Memory Based
on Type-Specific Memory Coherence," Proc. 2nd ACM Symp. on Principles and Practice
of Parallel Processing, 1990, pp. 168-176.

[8]� P. Bernstein, V. Hadzilacos, and H. Goodman, Concummcy Control and Recovery in
Database Systems, Addison-Wesley, Reading, MA, 1987.

[9]� R. Bisiani, A. Nowatzyk, and M. Ravishankar, "Coherent Shared Memory on a Distributed
Memory Machine," Proc. Int. Con/. on Parallel Processing, 1989, pp. 1-133-141.

[10]� K. Birman and T. Joseph, "Reliable Communication in the Presence of Failures," ACM
Trans. on Computer Systems, vol. 5, no. 1, pp. 47-76.

[11]� W. Brantley, K. McAuliffe, and J. Weiss, "RP3 Processor-Memory Element," Proc. Int.
Con/. on Parallel Processing, 1985, pp. 782-789.

[12]� L. M. Censier and P. Feautrier, "A New Solution to Coherence Problems in Multicache
Systems," IEEE Trans. on Computers, vol. C-27, no. 12, pp. 1112-1118.

[13]� J. Chang and N. F. Maxemchuk, "Reliable Broadcast Protocols," ACM Trans. on Com­
puter Systems, vol. 2, no. 3, pp. 251-273.

[14]� W. W. Collier, "Architectures for Systems of Parallel Processes," IBM TR 00.3253, Pough­
keepsie, NY, January 1984.

[15}� E. W. Dijkstra, "Hierarchical Ordering Of Sequential Processes," Acta Informatica, 1971,
pp. 115-138.

28

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

[16]� M. Dubois and C. Scheurich, "Memory Access Dependencies in Shared-Memory Multipro­
cessors", IEEE Trans. on Software Engineering, vol. 16, no. 6 (June 1990), pp. 660-673.

[17]� M. Dubois, C. Scheurich, and F. A. Briggs, "Memory Access Buffering in Multiprocessors,"
Proc. 13th Int. Symp. on Computer Architecture, June 1986, pp. 434-442.

[18]� M. Dubois, C. Scheurich, and F. A. Briggs, "Synchronization, Coherence and Event Or­
dering in Multiprocessors," IEEE Computer, vol. 21, no. 2, pp. 9-21.

[19]� H. Garcia-Molina and A. Spauster, "Message Ordering in a Multicast Environment," Proc.
Int. Con/. on Distributed Computing Systems, 1989, pp. 354-361.

[20]� K. Gharachorloo, D. Len08ki, J. Laudon, P. Gibbons, A. Gupta and J. Hennessey, "Mem­
ory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors," Proc.
17th Int. Symp. on Computer Architecture, 1990, pp. 15-26.

[21]� M. Herlihy, "Wait-Free Implementations of Concurrent Objects," Proc. ACM Symp. on
Principles of Distributed Computing, 1988, pp. 276-290.

[22]� M. Herlihy and J. Wing, "Linearizability: A Correctness Condition for Concurrent Ob­
jects," ACM Trans. on Programming Languages and Systems, vol. 12, no. 3, pp. 463-492.

[23]� P. Hutto and M. Ahamad, Slow Memory: Weakening Consistency to Enhance Concur­
rency in Distributed Shared Memories, TR GIT-ICS-89/39, Georgialnst. of Tech., October
1989.

[24]� L. Lamport, "How to Make a Multiprocessor Computer that Correctly Executes Multi­
process Programs," IEEE Trans. on Computers, vol. C-28, no. 9, pp. 690-691.

[25]� L. Lamport, "On Interprocess Communication. Parts I and II," Distributed Computing,
vol. 1, no. 2 (1986), pp. 77-101.

[26]� K. Li and P. Hudak, "Memory Coherence in Shared Virtual Memory Systems," ACM
Trans. on Computer Systems, vol. 7, no. 4, pp. 321-359.

[27]� R. Lipton and J. Sandberg, PRAM: A Scalable Shared Memory, TR CS-TR-180-88,
Princeton University, September 1988.

[28]� J. Lundelius and N. Lynch, "An Upper and Lower Bound for Clock Synchronization,"
Information and Control, vol. 62, nos. 2/3, pp. 190-204.

[29]� M. Mavronicolas and D. Roth, "On the Costs of Sequential Consistency and Linearizabil­
ity," in preparation.

[30]� S. Min and J. Baer, "A Timestamp-Based Cache Coherence Scheme," Prot:. Int. Con/. on
Parallel Processing, 1989, pp. 1-23-32.

29

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

[31)� J. Misra, "Axioms for Memory Access in Asynchronous Hardware Systems," ACM 1'rons.
on Progmmming Languages and Systems, vol. 8, no. 1, pp. 142-153.

[32)� C. Papadimitriou, The Theory of Concurrency Control, Computer Science Press,
Rockville, MD, 1986.

[33)� U. Ramachandran, M. Ahamad, and M. Y. Khalidi, "Coherence of Distributed Shared
Memory: Unifying Synchronization and Data Transfer," Proc. Int. Conf. on Pamllel
Processing, 1989, pp. 11-160-169.

[34)� C. Scheurich and M. Dubois, "Correct Memory Operation of Cache-Based Multiproces­
sors," Proc. 1-4th Int. Symp. on Computer Architecture, 1987, pp. 234-243.

30

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

I

A Atomic Broadcast

The atomic broadcast algorithm employed by our algorithms is based on assigning timestamps
to messages. Each process maintains a local timestamp (counter) and a vector with (conserva­
tive) estimates of the timestamps of all other processes. A process keeps a timestamp bigger
than or equal to the timestamps of all the other processes (according to its estimates). Upon a
request to broadcast a message, the message is tagged with the requester's current timestamp.
Each process maintains a set of messages that are waiting to be delivered. A message with
timestamp x is delivered only when the process is certain that all other messages with times­
tamp ~ x have arrived at it. This is done by waiting to learn that all processes have increased
their timestamp to be at least x +1.9 Once it learns that all processes have increased their
timestamps beyond x, the process handles all pending messages with timestamps less than or
equal to x, in order, breaking ties using process ids.

More precisely, to broadcast a message m, p sends a message (tp,m) to all processes (in­
duding itself), where tp is p's current timestamp. It then increases its own timestamp by one,
and returns. When a process q receives a message with timestamp tp from p, it saves it in a
list of pending messages, sorted by timestamp and process id. It then increases its timestamp
to be at least as large as tp +1 and sends a timestamp increase message "timestamp(tq,q)".

When a process receives a timestamp increase message, it updates the timestamp entry for
the sender, and checks to see if there are any pending messages whose timestamp is strictly
less than all processes' timestamps (saved in its local vector). These messages are delivered in
increasing timestamp order, breaking ties using process ids.

The algorithm uses the following data types:�
timestamp = integer�
message = record with fields�

mess : string (message to be delivered)
ts : timestamp (assigned by initiator)
id : process id (id of initiator)

Each process knows n, the total number of processes.�
The state of each process consists of the following components:�

ts: arraY[l..n] of integer, all initially 0�
(estimate (from below) timestamps of all processes)�

pending : set of message, initially empty�
(set of message waiting to be delivered)�

The transition function of process p appears in Fig. 7.

To show that this algorithm implements atomic broadcast, we must show, for any admissible
execution, that messages are delivered at the same order to a.ll processes. The ordering of

PFor simplicity, the algorithm preeented here U8umee FIFO channels. Thia u8umption can be removed if
sequence numben are employed.

31
t

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

ABC-sendp (m):�
send (ts[p] ,m) to all processes�
ts[p] := ts[p] + 1�

receive (t,m) from q:�
add (m,t,q) to pending�
if t + 1 > ts[p] then�

ts[P) := t + 1�
send timestamp(ts[p]) to all processes�

endif�

receive timestamp(t) from q:�

ts[q] := t�
repeat�

let E be element with smallest (ts,id) pair in pending
if for some q, ts[q) $ E.ts then exit
deliver E.m { this is the ABC-receive}
remove E from pending

endrepeat

Figure 7: Atomic broadcast algorithm.

messages is done by timestamps (breaking ties with process ids). The resulting sequence
respects the order at each process by construction and because of the way timestamps are
assigned.

More formally, fix some admissible execution (T of the algorithm. The next lemma follows
immedia.tely from the code.

Lemma A.l Let p be any proress. Then every message broadcast by p in (T is given a unique
timestamp in increasing order.

This immediately implies:

Lemma A.2 The timestamps assigned to messages in (T, together with process ids, form a

total order.

This total order is called timestamp order.

Lemma A.3 Let p be any process. Then all messages are delivered to p in (T in timestamp
, order.

32

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

Proof: Let (t}, qI) be the timestamp of the message m}, and let (t2' q2) be the timestamp of
the message m2. Suppose, by way of contradiction, that (t}, qI) < (t2"q2) but m2 was delivered
to p before mI.

When m2 is delivered to p, it cannot yet have the message ml in pending, because otherwise
it would deliver it before m2' By the code, in order to deliver m2, it must be that tsp[ql] > t2.
But then p must have received a timestamp message from ql with a timestamp t ~ t2 + 1.
Since (t},ql) < (t2,q2) it must be that tl ::; t2, and hence t > tl' By the code, the message ml
was sent before the timestamp message. But then the FIFO property of the communication
system implies that p has already received mI' A contradiction. •

The next lemma guarantees that each message is delivered within time 2d from the initiation
of the operation.

Lemma A.4 If process p broadcasts a message m, then m is delivered at each process within
time at most 2d in (f.

Proof: Assume p broadcasts m at time T, with timestamp x. By time T+d all processes will
get the message (x, m), and will set their timestamps to be at least x + 1, sending a timestamp
increase message to all other processes, if necessary. Thus, by time T + 2d, all processes will
have in their timestamp vectors values that are strictly larger than x, and will deliver m. •

Lemmas A.3 and A.4 prove the following theorem.

Theorem A.S The algorithm in Fig. 7 is an atomic broadcast algorithm with h = 2d.

33�

Technion - Computer Science Department - Technical Report CS0694.revised - 1991

