
Optimal Clock Synchronization under Different Delay Assumptions

(Preliminary Version)

Hagit Attiya* Amir Herzbergt

Abstract: The problem of achieving optimal clock
synchronization in a communication network with arbi-
trary topology and perfect clocks (that do not drift) is
studied. A novel modular presentation of the problem is
described which allows to deal with different assumptions
for the delay of messages.

We present a definition of clock synchronization un-
der arbitrary delay assumptions, and present an optimal
clock synchronization algorithm for general systems. We
then show that in local systems (where delays on each
link are independent of the other links) the inputs for the
clock synchronization algorithm can be computed from
the maximum local shifts for each pair of processorsshar-
ing a link. The maximum local shift for two processors
depends only on their views. This allows our theory to
deal with systems where different links adhere to differ-
ent assumptions, or the same link satisfies several sets of
assumptions; such mixtures are quite likely in practice.
In particular, we show how to compute the maximum
local shifts from the views, and hence provide optimal
algorithms for systems where some links may have up-
per and/or lower bounds on the delay, some may have a
bound on the difference between the delay in both direc-
tions, some may have both kinds of bounds and some may

*Department of Computer Science, Technion. Partially sup-
ported by Technion V.P.R. funds from the ArgentineanRe-
searchFund, and by the fund for the promotion of researchin
the Technion. Email: hagit@cs. technion. ac. il.

tIBM T. J. Watson Resemch Center. Partly sup-

ported by DGAPA Projects, National Autonomous Univer-

sit y of Mexico (UNAM). Email: Snrir@yktvrzh. bit net or

amir@wats On. ibm. corn.

tInstituto de Matem6ticas, U. N. A.M., D.F. 04510,

Mexico. Partly supported by DGAPA Projects, Na-

tional Autonomous University of Mexico (UNAM). Email:

rajsbauz@redvaxl. dgsca. unazr.rzr.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice IS given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republlsh, requires a fee
and/or spemfic permission.

12th ACM Symposium on Pnnclples on Distributed Computing,

Ithaca NY

Q 1993 ACM 0-89791 -613 -1/93 /0008 /0109 . . ..$1 .50

Sergio Rajsbaum$

have no bounds. Previous results dealt only with the case
where upper and lower bounds were known for all links.

We introduce a new notion of optimality, that requires
an algorithm to achievethe best possible precision on each
instance; this notion is stronger than the previously used
notion of worst case optimality. In contrast to the worst
case approach, the new notion handles models where the
worst-case behavior of any clock synchronization algo-
rithm is inherently unbounded.

1 Introduction

In most large-scale distributed systems, processors
communicate by message transmission, and do not
have access to a central clock. Nonetheless, it is use-
ful, and sometimes even necessary, for the processors
to obtain some common notion of time. The tech-
nique used to attain this notion of time is known as
clock synchronization.

Synchronized clocks are useful for various appli-
cations such as control of real-time processes (e.g.
in factories and space vehicles), transaction process-
ing in database systems, and communication proto-
cols. Recently, several software protocols that sup-
port clock synchronization in communication net-
works have been proposed [1, 6, 12, 13]; designers
of practical systems have been advocating the use of
synchronized clocks [9].

We measure the quality of synchronization by its
precision, i.e., how close together it brings the clocks
at different processors. This does not ensure that
clocks are close to the real time, although it is easy
to adapt our results to obtain this goal if a perfect real
time clock is available. (Synchronization to real time
is often useful, and is achieved by practical protocols,
which usually deal also with multiple, imperfect real
time clocks.)

The precision can influence correctness and ef-
ficiency of applications that use the synchronized
clocks. It is known that the precision which can be

109



achieved depends on the timing uncertainty that is
inherent in the system. There are two main sources
of timing uncertainty in a distributed system. First,
local clocks at different processors are independent:
they do not start together and may run at different
speeds. Second, messages sent between processors in-
cur uncertain delays.

A relatively simple case is when local clocks are
accurate, i.e., run at the same speed, and there are
upper and lower bounds for the delay on each link.
Clock synchronization algorithms for this model,
whose precision is optimal in the worst case, are de-
scribed in [10,3]. Subsequent work (e.g. [2,6, 16,17],
see survey in [15]), concentrated on clocks that may
drift and on fault-tolerance. To achieve high preci-
sion, these works require the existence of fairly tight
lower and upper bounds on message delay.

In real systems, however, it is the uncertainty of
message delay, and not the clock drift, that causes
most of the difficulty in synchronizing clocks [12, 6].
Almost every processor in a distributed system has
access to a high-quality, very accurate hardware
clock; it is not far from reality to assume that local
clocks are accurate and have no drift .1 On the other
hand, it is very hard to come up with tight upper
and lower bounds on message delay. For example, in
some systems, only a bound on the difference between
delays in opposite directions is known.

In this paper, we assume that local clocks run at the
same speed and have no drift. Our main cent ribut ion
is a methodology for designing optimal clock synchro-
nization algorithms under a variety of assumptions on
message delay uncertainty. We partition the design
of a clock synchronization algorithm into four parts:

First, we show how to achieve optimal clock syn-
chronization given information about the execution
which captures the maximal possible “shifts” of one
processor with respect to another. (This reduction
holds for any kind of delay assumptions.) Second, we
show how to compute maximal shifts from maximal
“local shifts,” which can be derived from a local com-
putation. Third, we prove a decomposition theorem
which allows to combine algorithms for multiple de-
lay assumptions, even for the same link. (The second
and the third steps apply under the natural assump-
tion that delays on each link are independent of the
operation of other links. ) Fourth, we show how to
compute the maximal local shifts from the local views
for a number of specific delay models.

10f ~om~e, this is a simplification. However,Kopct%and
Ochsenreiter show that this simplifications reasonable in prac-

tice [6]. To deal with the small drift which does exist, the

clock synchronization mechanism is invoked periodically, as ex-

plained in [6].

Our methodology yields optimal clock synchroniza-
tion algorithms for a large variety of delay models. In
particular, we show how to compute maximal local
shifts for the following models:

1. upper and lower bounds on delays are known;

2. only lower bounds on the delays are known;

3. no bounds are known; and

4. only a bound on the difference of the round trip
delays is known.

Previous formal work on deterministic clock syn-
chronization addressed only the first model.2 How-
ever, many practical systems are better modeled by
the second and the fourth models. The second model
follows an observation of [1] that in many actual links,
there is some minimal delay (e.g., due to the actual
transmission rate and processing time). The fourth
model follows experiment al results (cf. [12]), show-
ing that usually the delay in two directions of a bi-
directional link is roughly the same.

Our decomposition theorem imply that our algo-
rithms apply to systems where the same link satisfies
several different delay assumptions. Such mixtures
are quite common in practical wide-area, heteroge-
neous systems.

Our work can be viewed as an extension of the work
by Halpern, Megiddo and Munshi [3], sharing many
ideas and techniques. Halpern et al. use linear pro-
gramming techniques which do not illuminate the in-
herent difficulties of synchronizing clocks. We believe
that our work gives a more precise understanding of
each of their techniques, explicitly showing what are
the requirements of each step and thereby facilitat-
ing adaptations to other delay assumptions. Given
the framework developed here, their results become
a special case where exactly one message is sent on
each link, and upper and lower bounds on delays are
known. In fact, the algorithm we obtain for this spe-
cific setting is essentially the one in [3]. Our additions
in order to deal with other and more general models
are simple and independent. It is our belief that this
will lead to the design of optimal clock synchroniza-
tion algorithms for other network models.

Previous definitions of optimal clock synchroniza-
tion were based on the worst (largest) difference be-
tween clocks of two processors in any execution. In
some of the models that we address in this paper,

2Someprevious works, e.g., [4, 14], also consider a model in

which each processor has a clock that runs at the rate of real

time. However, they assume that the network has a broadcast

primitive. We believe our results can be used to deal with this

model too.

110



e.g., when no upper bounds on the delays are known,
this worst case is inherently unbounded. Moreover,
as already stated in [3], we would like to award algo-
rithms that exploit favorable conditions, and achieve
precision that is as good as can be in each specific ap-
plication of the protocol. Although their algorithms
achieve this stronger notion of optimality (as our re-
sults show), Halpern, Meggiddo and Munshi do not
make explicit what is the precise definition of opti-
mality under favorable conditions. When trying to
crystallize these ideas, it turned out we had to sepa-
rate the decision of which messages to send, from the
method for adjusting the clocks, based on the local
message histories. Our framework shows how to opti-

mally adjust the clocks, given any set of local message
histories. The decision of which messages to send, to
whom, when, etc., can therefore take other considera-
tions into account; e.g., message traffic opt imization.

2 Formal Definitions

In this section we define the model and the problem;
our definitions follow [10, 3].

2.1 Model of Computation

We consider a finite directed graph G = (V, E) where
the nodes V = {pl, . . . . pn} represent p?’ocessom and
the edges E represent directed communication links.
With each processor p E V we associate a [local)
clock. The clock cannot be modified by the proces-
sor. Processors do not have access to the real time;
each processor obtains its only information about
time from its clock and from messages sent by other
processors. The clock is represented by a local time
component, which is a real number, In the sequel, the
term clock time refers to the local time component of
the processor, while the term real time refers to the
absolute time as measured by an outside observer. In
this work we assume that clocks have no drift, i.e.,
that they run at the same rate as real time, but they
are not necessarily synchronized with each other.

Roughly, the following events which can occur at
processor p Message receive events- processor p re-
ceives message m from processor q; Message send

events—processor p sends message m to processor q;
Timer set events---processor p sets a timer to go off
when its clock reads T; Timer events—a timer that
was set for time T on p’s clock goes oR, and Start

events—p starts executing the algorithm, with the
initial value of its clock being O. The message receive,
timer and start events are interrupt events.

Each processor is modeled as an automaton with
a (possibly infinite) set of states, including an initial

state, and a transition function. Each interrupt event
causes an application of the transition function. The
transition function is a function from states, clock
times, and interrupt events to states, sets of message-
send events, and sets of timer-set events (for subse-
quent clock times). That is, the transition function
takes as input the current state, clock time, and in-
terrupt event (which is the receipt of a message from
another processor or a timer going off), and produces
a new state, a set of messages to be sent, and a set of
timers to be set for the future.

A step of p is a tuple (s, T, i, s’, M, TS), where s
and s’ are states, T is a clock time, i is an interrupt
event, M is a set of message-send events, TS is a set

of timer-set events, and s’, M, and TS are the result
of p’s transition function acting on s, T, and i. A
history T of a processor p is a mapping associating to
each number from 3? (real time) a finite sequence of
steps such that:

1.

2.

3.

4.

5.

6.

For each real time t,there is only a finite num-
ber of times t’< t such that the corresponding
sequence of steps is nonempty (thus the concate-
nation of all the sequences in real-time order is
a sequence);

The interrupt event in the first step of the history
is a start event, and the old state in the first step
is p’s initial state; let S= be the real time of the
start event;

There are no other start events and the old state
of each subsequent step is the new state of the
previous step;

For each real time t, the clock time component
T of each step in the corresponding sequence is
equal to t – SW;hence, the clock time of the start
event of p is O;

For each real time t, in the corresponding se-
quence there is at most one timer event and it is
ordered after all other events; and

A timer is received by p at clock time T if and
only if p has previously set a timer for T.

An ezecution is a set of histories and clocks, one
for each processor pin V, such that there is a one-to-
one and onto correspondence between the messages
received by q from p and the messages sent by p to q,

for any processors p and q. (To simplify our discus-
sion, we assume that messages are unique, so this cor-
respondence is uniquely defined. ) We use the message
correspondence to define the delay, denoted d(m), of
any message m received in an execution to be the real
time of receipt minus the real time of sending. Let

111



S~,P = S= where x is p’s history in a; that is, Sci,Pis
the real time of the start event of processor p in a.

Note that the message delivery system is not ex-
plicitly modeled. The requirements from an execu-
tion state that messages are delivered without dupli-
cation, and that the system does not generate or lose
messages; the system can reorder messages. A system
(G, A) is a graph G = (V, E) and a set of executions
A, called admissible executions.

The cornerstone of our definitions and proofs is the
notion of equivalent executions. Informally, two exe-
cutions are equivalent if they are indistinguishable to
the processors; only an outside observer who has ac-
cess to the real time can tell them apart. To formalize
this notion, define the view of processor p in history
T to be the concatenation of the sequences of steps
in m, in real-time order. (Note that the view includes
the clock times.) The real times of occurrence are not
represented in the view. Two histories of processor
p are equivalent, if the view of p is the same in both
histories. Two executions CYand a’ are equivalent, de-
noted cz= a’, if for each processor p, the component
histories for p in a and cd are equivalent.

2.2 The Clock Synchronization Prob-

lem

The goal of a clock synchronization algorithm is to
bring the clocks of processors to be as close together
as possible, while keeping the clocks’ values with the
progress of real time. Intuitively, the processors main-
tain a logical clock, which “corrects” the value of the
local clock. Since the logical clock is required not to
drift from the progress of real time, it is straightfor-
ward to see that the logical clock must be the local
clock plus some correction factor. Thus, the goal of
a clock synchronization algorithm is to compute, for
each processor, a correction such that, for any two
processors, the values of the local clocks (at the same
real time) plus the respective_corrections, are not far
away. More precisely, we define:

Definition 2.1 Let c be a function from A to R. An

algorithm solves the clock synchronization problem
on a system (G, A) with co precision if for eve~y
admissible ezecution a c A, it computes corrections
OffSeta,p for eveTy p?’ocessor p, such that fo?’ every paiT

of pTo&essors p and q,

l(Sa,p - offseta,P) - (Sa,q - offseta,,)l s c(a).

To understand the intuition behind this definition,
recall that at any real time t, the clock value of p
is t — Sa,p. Given corrections offset~,P, the corrected
local time of p is t–Sa,P+offset ~,P. Therefore, l(Sa,P–

offset a,p)-(sa,, -offset~,,)l is the difference between
the corrected local times of p and q.

Our definition differs from the ones in [3, 10] since
we do not require a fixed bound on the precision in
all executions. Rather, we allow the precision to be
a function of the execution. This is motivated by our
definition of optimality, to which we dedicate the next
section.

3 Defining Optimal Precision

Clearly, we would like a clock synchronization algo-
rithm to obtain the best possible precision, that is, to
bring the logical clocks to be as close together as pos-
sible. However, it is not obvious how to compare the
precision achieved by different algorithms, and how
to define optimality.

An elegant solution is to evaluate a clock syn-
chronization algorithm by the worst (largest) pre-
cision achieved in any of its admissible executions.
This worst case interpretation follows the tradition
of worst case complexity analysis of algorithms.

This definition suffers from two drawbacks. First,
like any definition that concentrates on the worst
case, it does not award algorithms that behave well
in other cases. An algorithm that is optimal under
this definition can be very inefficient in executions
where the delays are favorable. Second, worst case
analysis is meaningful only if the worst case preci-
sion is bounded. However, in many important cases,
the worst case precision can be easily shown to be
unbounded, e.g. , when there are no upper bounds
on message delay. This is probably the reason that
no clock synchronization algorithm was suggested for
this very important class of systems.3

We believe a more refined notion of optimality is
called for. Intuitively, an optimal algorithm is one
whose precision, in every admissible execution, is not
bigger than the precision of any other algorithm in
an execution where the message delivery system “acts
the same.”

Formalizing this concept, however, is not simple.
The major difficulty is finding a satisfying definition
for executions where the message delivery system acts
the same. The problem is that some properties of

the execution are determined by the message deliv-

3 Two previous works [14, 4] assume there is no upper bound

on the delays. However, they assume the existence of a time-

bounded broadcast primitive. In fact, they claim that clock

synchronization is impossible in this model without some mu.l-

ticast primitive since there is no apriori bound on the precision

achieved [4, page 589]. While this claim is true, we show it can

be sidesteped by providing a bound on the precision achieved

in each execution rather than an overall bound.

112



ery system and some by the algorithm. The algo-

rithm controls the execution, e.g., by deciding when

to send messages. 4 It is difficult to isolate the effect

on the execution determined by the message delivery

system. Such isolation is necessary in order to com-

pare executions of a given algorithm to executions of

other algorithms where the message delivery system

is equally adversarial. A definition is too strong if

it compares executions of one algorithm with execu-

tions of another algorithm which are unfairly lucky,

where message delays are favorable for the latter algo-

rithm; a definition is too weak if executions with the

same message delivery policy are not compared. We

avoid this problem, by noticing that the construction

of a clock synchronization algorithm has two aspects.

First, the design of the interactive part, where the

processors send messages. Second, calculating cor-

rections using the views of the processors that were

obtained during the interactive part. In this paper,

we do not address the first aspect. We assume that

we have a set of views, one for each processor, and we

ask how to compute optimal corrections for this set

of views.

Define a correction function to be a function from

a set of n views to a vector of n real numbers, called

corrections. Given a correction function f and an

execution a, we abuse notation and denote by f(a)
the vector obtained by applying f to the n views in

a; we denote by f(cs,p) the component of f(a) that

corresponds to p.

To capture the precision achieved by some set

of corrections 5 = (ZI, . . . . Zn) denote p(a, 3) =

ma%,~ l(s~,p– Zp)– (IL,q– Zq)l.That is, what is

the largest discrepancy between two clocks of differ-

ent processors, after the corrections are applied to

them and offset ~,P takes the value ZP.

Since a correction function depends only on the

views, we have:

Claim 3.1 If a E a’ then f (a) = f(d).

Because the computation of the corrections does

not distinguish between equivalent executions, we

measure its performance on a specific execution a,

by considering the worst precision it achieved on

all the executions equivalent to a. Formally, define

for any execution a E d, ~a(;) = sup{p(a’, 3) :

a’ E CYand a’ c A]. A vector of corrections Z is opti-

mal for an execution a if for any vector of corrections

~1 #ZY(@ < J&(;’).

4This is not merely a formal issue: from a practical point
-of view, if an algoritlun sends too many messages in a short

period of time, the network becomes congested and delays are
long and highly variant.

A correction function f computes Optimai co?’?’ec-

tions if, for every admissible execution a, f(a) is an

optimal vector of corrections for a. Namely, a func-

tion f computes optimal corrections if for every ad-

missible execution a and every vector of corrections

Z Pa (f (~)) S Pa(~). we sometimes write pa(f) in-

stead of pa(f(a)).

4 A General Clock Synchro-

nization Algorithm

The basic difficulty of computing corrections is the

fact that there may be two admissible executions a

and a’ that are indistinguishable, i.e. in which all pro-

cessors have the same views. Clearly, the tightness of

the achievable synchronization depends on how “far

away” in real time can a’ be from a. We start this

section by formally quantifying this idea, by defining

the maximal admissible shift between processors in a

given execution. We show that if some information on

the maximal admissible shifts is available, then there

exists a function that computes optimal corrections,

This is done by showing a lower bound for the preci-

sion, which depends only on the maximal admissible

shifts. We show that this bound is tight, by present-

ing a method for computing corrections, that achieves

this value as its precision. In subsequent sections we

show how to obtain the information on the maximal

admissible shifts needed by the algorithm for several

specific systems.

4.1 Shifting

Consider two equivalent executions a and a’. It fol-

lows that for any p c V, the sequence of steps in a’

is equal to the sequence of steps in a, only that p

executes the steps at different real times. Since the

clocks have no drift, it follows that the difference in

the real time of occurrence between a step in a and

the corresponding step in a’ is jized, independently

of the step. This implies that a’ can be obtained by

“shifting” the steps of the processors in a. In the rest

of this section, we formalize this notion of shifting and

study its properties. This technique was originally in-

troduced by Lundelius and Lynch [10] to prove lower

bounds on the precision achieved by clock synchro-

nization algorithms in complete graphs.

Formally, given a history r of processor p and a real

number s, a new history # = shift(~, s) is defined by

#(t) = @ +s) for all t.That is, all tuples are shifted

earlier in K) by s if s is positive, and later by —a if s

is negative. Clearly:

113



Lemma 4.1 (Lundelius and Lynch) Let m be a

history of processor p and ~eis be a real number. Then

shift(r,s) is a history of p and S~I,P = S~,p — S.

Let CY and a’ be two equivalent executions such

that each processor p E V is shifted in CY’ w.r.t. a

by Sp; the vector of shifts of a’ w.r.t. a is the vec-

tor S = (s I,..., s~). That is, execution a’ was ob-

tained by replacing p’s history in a, denoted r, with

shift(~, Sp), for each p c V, and by retaining the same

correspondence between sends and receives of mes-

sages. (Technically, the correspondence is redefined

so that a pairing in a that involves the event for p at

time t, in a’ involves the event for p at time t – Sp.)

Namely, all tuples for processor p are shifted by SP.

We denote cd by shzft(cx, S). It is fairly simple to see

that if a s a’ then there exists a vector of shifts S

such that a’ =shift(a, S).

4.2 Maximal Admissible Shifts

We now formalize the notion of “how far away” can

a processor be shifted w.r.t. another processor. Fix a

system (G, A), and let a c A. We say that s is an

admissible shift of q w.r.t. p in CY uncle?’ A, if there

exists a vector of shifts S = (sl, . . . . s~) with s~ —SP =

s, such that a’ =shift(a, S) is in A. Define

msa (p, q) =

sup{s : s is an admissible shift of q w.r.t. p in a}.

Intuitively, msa(p, q) represents the maximal admis-

sible shift of q w.r.t. p in a; that is, how far away can

q be shifted from p. Since O is obviously an admissible

shift of q w.r.t. p in a, it follows that ms~(p, q) >0.

Clearly, we have:

Claim 4.2 Let S = (sl, . . . . Sn) be a vecto~ of shifts

and CJ =shift(cx, S) where a E A. Ifcd c A then sg –

Sp 5 rn%(p, q), for any two processors p and q. This

implies that SaI,p – SmI,q < S~,p – SU,9 + m%(p, q).

4.3 The Lower Bound

Fix a system (G, A), an admissible execution a of

a clock synchronization algorithm, and a correction

function ~. The following lemma relates admissible

shifts and attainable precision in clock synchroniza-

tion algorithms (its proof appears in the full version).

Lemma 4.3 Let p and q be arbitrary processors. Ifs

is an admissible shift of q w.r.t. p in ~, then ~~(f ) >

U,P – f(a, P) – SCW + f(~, q) + s.s

We now define an expression which we later show

to be a lower bound on the precision that can be

achieved in a. Let O be a cyclic sequence of pro-

cessors, that is, 6 = po, pl, . . . I Pk-1> pkj where pk =

PO; processors pi and Pi+l are not necessarily adj~
cent in the graph. Denote 181 = k and ms~(~) =

~~~~ msa(pi, Pi+l) Let As(0) = msa(6)/[@l, and

A;.3x .

max{Aa (0) :0 is a cyclic sequence of processors}.

Theorem 4.4 FOT any comectaon function f,

z(f) 2 A:-.

Proof: Let 6 = PO,..., pk be an arbitrary cyclic

sequence of processors. For every i, O < i < k – 1, let

s be an arbitrary admissible shift of pi+ 1 w .r.t. pi in

a. Lemma 4.3 implies that

Pa(f) 2 Sa,p, – f(Q, P2) – Sa,p,+l + f(~, Pi+l) + s .

Since this holds for every admissible shift, the defini-

tion of ms~(pi, P;+I) implies that

i%(f) 2 SW – f (% Pi) – Scz,p,+, + f (% P%+l)

+msa(p~, p~+l).

Summing over all the consecutive processors in 0, we

have

k “ j%(f) > ~~~~ [Sa,p. – f (~, Pi) – Sa,P.+,

+ f(cx, pi+l) + msa(pi, Pi+l)].

Clearly,

k–1

~ [SW, - f(%Pi) - S-z,p,+, + f(%Pi+l)] = 0,
i=o

and hence,

as needed. ■

Observe that A~- depends only on the values of

msa (p, q), for every pair of processors p and q; the

topology of the graph is not explicitly used.

4.4 The Upper Bound

We now show the converse direction, i.e. that there

exists a correction function f with jia ( f ) = A~”, for

every a, provided certain estimates can be computed

from the views. By Theorem 4.4, no other correc-

tion function can achieve better results and hence the

function we present is optimal, in a very strong sense.

114



Clearly, if the values of msa(p, q) are known then

it is possible to calculate A:=. As we shall see, com-

puting Am‘- is the crux of computing optimal correc-

tions. However, since the views do not include the

actual message delays, it is not clear what is the set

of equivalent executions; hence, in general, it is im-

possible to compute the values of msa (p, q) from the

views. Below we show that it suffices to have only

estimates on msa (p, q). In the next sections, we show

how to obtain such estimates for specific systems.

Define the estimated maximal global shifi to be

I-15sa (p, q) = msa (p, q) + S~,P — S~,~. The next lemma

is the key to replacing msa with the estimates riisa in

the calculation of A~x. The lemma shows that the

maximum average cycle weight with respect to the

actual maximal admissible shifts is equal to the max-

imum average cycle weight with respect to the esti-

mates. Specifically, for any cyclic sequence of proces-

sors O = po, . . .p~, let n&(0) = ~~~~ fi%(?%l 1%+1).

Also, let &(0) = r&.a(0)/ 1(11,and define

J&x .

max{&(@) :6 is a cyclic sequence of processors}.

In the full version we prove:

Lemma 4.5 A:= = ~~=.

Thus, we have the following function SHIFTS, for

computing corrections, given inputs rfisa (p, q) =

msa (P, q) + Sa,p – Sa,q, for every pair of processors p

and

1.

2.

q.

Compute A~- (by computing ~~x).

Select an arbitrary root processor r. The correc-

tion for each processor p E V, is distW (r, p)—the

distance in the (complete) graph relative to the

weights w(p, q) = A%- – riisa (p, q).

The value of ~~ can be computed in Step 1 by

using an algorithm of Karp [5], that runs in 0(n3)

time. By Lemma 4.5, this is equivalent to computing

A%-. By definition, AR= ~ Aa = ms&(0)/ 161, for

any cycle 0. Therefore, there are no negative weight

cycles in the graph respective to the weights w (p, q) =

(A&” – riisa(p, q)), since

(P19)E@

Thus, the distances can be computed in Step 2,

Theorem 4.6 The function SHIFTS computes opti-

mal corrections, with pvecision given by pm = A~m.

Proof: Denote by ~(a) the vector of corrections

computed by SHIFTS when given riisa (p, q). We will

show that pa(~) < A:=; it follows from Theo-

rem 4.4, that these are optimal corrections and that

& = A~.

To prove that j&(~) < A%= we need to show

that p(a’, f(d)) < A%= for any admissible execu-

tion cd z a. That is, we need to show that for every

P,q=v,

Sa~,P – f(a’, p) – Sa,,q + ~(cx’, q) < A:a .

By Claim 4.2,

a,, – f(a’, P) + f(~’)q) sSa:,p– s :

s~*P– Sa,q + msa(p, q) – f(cJ, p) + f(a’, q) .

However, since a R a’, it follows from Claim 3.1 that

$(a) = ~(a’), and hence the right hand side is equal

to

s~#P– S’a,q + msa(p, ~) – ~(~,p) + ~(~, q) .

Thus, it suffices to prove that

sQtP– &,q + ms~(p, q) – f(a,p) + f(a, q) < Awx .

This amounts to proving that for any two processors

p and q,

satP– s~,q + f(cI, q) – f(a,p) < A%ax– rrw(p, q) .

By the definition of estimated maximal admissible

shifts, r-fis~(p, q) = ms~(p, q) + Sa,p — Sa, g; that k

s, — Sa, g = fisa (P, q) — ms~ (p, q), hence it suffices
t: ~rove that

A~ – ms. (p, q) > (1)

riisa(p, q) – msa(p, q) + f(a, q) – ~(% P)

By the definition of the function SHIFTS,

f(a, q) = distW (r, q) and $(cx, p) = dist~(r, p) ,

relative to the weights w(p, q) = (At= – riisa(p, q)).

By the triangle inequality,

dist~ (r, p) + W(P, q) 2 dist~ (~, q) ,

which implies

~(a, q) – f(cx, p) < w(p, q) = A:- – Iii@, q) .

To prove Equation (1) note that

IIISa(p,q) – msa(p, q) + ~(% ~) – ~(~) P)

< riisa(p, q) – msa(p, q) + A~” – riisa(p, q)

= A= – ms.(P, q)

■

115



We have reduced the problem of designing an opti-

mal clock synchronization algorithm to the problem

of finding the estimates iisa of maximal admissible

shifts. Given such estimates, the clock synchroniza-

tion problem can be solved by computing the function

SHIFTS.

5 Calculating Estimates

in Local Systems

In the previous section, we presented a function for

computing optimal corrections, which relies on esti-

mates riis(p, q) of the maximal admissible shifts for

each pair of processors p and q. We next show how

to compute these estimates in the natural class of lo-

cal systems. Intuitively, in local systems the delays

of messages sent between a specific pair of processors

(along edges interconnecting them) do not depend on

the delays of messages sent between other processors.

For local systems, estimates riis(p, q) can be com-

puted in tw~ steps. In the first step, local (pairwise)

estimates mls(p, q) are computed. In the second step,

the desired global estimates riis(p, q) are produced by

combining the local estimates. In this section we deal

only with the second step, i.e., we show how to com-

pute global estimates from local estimates. In the

next section, we compute for several systems the lo-

cal estimates given the views.

The same computation applies to all local systems.

Therefore, in order to design a clock synchroniza-

tion algorithm for a specific local system, only the

calculation of local estimates needs to be modified.

As illustrated by the particular cases solved in the

next section, the calculation of local estimates han-

dles each pair of processors separately. This signifi-

cantly simplifies reasoning, and allows us to deal with

combinations of several assumptions on the same or

on different edges, as we show towards the end of this

section.

5.1 Local Systems

Informally, a system is local if its behavior can be

expressed as the intersection of a set of locally ad-

missible histories, e.g., one for each pair of processors

sharing an edge.

In more detail, let AP,~ be a set of (unordered) pairs

of histories, one for processor p and one for processor

q. Let a be an execution, and let alP,g be the (un-

ordered) pair consisting of the history of p in a and

the history of q in a. We say that a is locally admis-

sible on {p, q} w.r.t. dP,~ if a[P,g is in AP,~. When

AP,q is obvious from the context, we say simply that

a is locally admissible on {p, q}.

We say that s is a locally admissible shift of q

w.r.t. p in a, if there exists a vector of shifts S =

(s1,..., Sn), with Sg — SP = s, such that at =

shift (a, S) is locally admissible on {p, q}. If S is a

vector of shifts such that a’ = shift (a, S) is locally

admissible on {p, q}, then for every S’ = (sI, . . . . s~)

such that s; = SP and s; = Sl, shift(a, (s!, . . . . s~))

is also locally admissible on {p, q}. This follows since

AP,~ involves only the histories of p and q are involved.

A set of pairs of histories, AP,g is closed under con-

st ant shifts provided that if {rP, rq} is in AP,~ then

{Aift(xP, c), Shift(mg, c)} is in AP,q, for any constant

c.

Claim 5.1 I.f AP,g is closed under constant shifts,

then s is a locally admissible shift of q w.r.t. p in CY

if and only if for every vector S = (sl, . . . . Sri), with

Sq – SP = s, shift (a, S) is locally admissible on {p, q].

A set of admissible executions A is local if there

are sets AP,~, closed under constant shifts, such that

an execution a is in A if and only if a lP,~ is in AP, q,

for every set AP,g. Namely, execution Q is locaIly

admissible on {p, q}, for every pair of processors p

and q. We say that A is local w.r.t. {AP,g}.

Define the mazimal local shift of q w.r.t. p in a

under A to be

mlsa (p, q) = sup{s : s is a locally admissible shift

of q w.r.t. p in a}.

Intuitively, mlsa(p, q) is the maximal possible shift

of q w.r.t. p in CY, when the admissibility of proces-

sors other than p, q need not be preserved. Hence,

msa (p, q) < mlsa (p, q). We say that mlsa (p, q) is a

local shift, while ms~(p, q) is a global shift. Note that

mlsa (P, q) 2 0 and that mls~ (p, q) may differ from

mls=(q, p). However, if shift(a, (sl, ..., Sri)) is locally

admissible on {p, q} then s~ – SP is an admissible local

shift of q w.r.t. p and SP– Sq is a admissible local shift

of p w.r.t. q. Thus, ifs is a locally admissible shift of

q w.r.t. p in a, then –s is a locally admissible shift

of p w.r.t. q in a.

Throughout the rest of the section, we assume that

A is local, and hence the locally admissible shifts are

defined. Furthermore, we assume that the locally

admissible shifts have the following property, which

holds in most natural applications.

Assumption 1 For every two processors p, q, and

every a E A, if z, y s.t. y < z aTe locally admissible

shifts of q w.T.t. p in a., then every value z E [y, z] is

a locally admissible shift of q w.r.t. p in a.

116



5.2 From Local Shifts to Global Shifts

Our goal is to compute global estimates rfisa (p, q)

from local estimates mlsa (p, q). In this section, as

a first step in this direction, we show how to obtain

maximal global shifts msa (p, q) from maximal local

shifts mlsa (p, q). This also shows how to derive a

lower bound on the precision of clock synchroniza-

tion from a lower bound on the precision of each edge

independently. In the full version we prove the fol-

lowing lemma.

Lemma 5.2 Let S = (sl, . . . . Sn) be a vector of shifts

and let a E A. Then S is an admissible vector of

shifts for a, if and only if (s~ —sP ) is a locally admissi-

ble shift of q w.r.t. p in a, for every pair of processom

p and q.

Let a be an admissible execution. Denote by

dMW/ (p, q) the distance from p to q in the graph G

relative to the weights w’(p, q) = mlsa (p, q). We have:

Lemma 5.3 FOT any pair of processom p and q,

dis~, (p, q) = msa(p, q).

proof: We show only that dist~~ (p, q) < msa(p, q);

the other inequality is easier and appears in the full

version.

We show that for any -y > 1, ‘ist ~’ fp)~~ is a

(globally) admissible shift of q w.r.t. p in a. The

lemma follows since if we assume, by way of con-

tradiction, that for some pair of processors p and q,

distWl (p, q) > msti (p, q), it follows that there exists

some y > 1 such that dis~W, (p, q) = -y2 . msa(p, q).

But we have shown that * = ~ . msa (p, q) is

a (globally) admissible shift of q w.r. t. p in ~. Since

Y . msa(p, q) > msa (p, q), this contradicts the defini-

tion of msa(p, q).

To prove that ‘ist~(p)’) is a (globally) admissible

shift of q w.r.t. pin a, note that for any two processors

k, j, by the triangle inequality

dist~l(p, j) < dist~~(p, k) + ~’(k, j) ,

since w’(k, j) = mlsa (k, j), we have (by changing

sides)

distW, (p, j) – distW, (p, k) s mlsa(k, j) . (2)

For every processor i, define Sa =
distw,(p,i]. Since

y >1, by dividing Equation (2) by -y and~substituting

sj and Sk, we get

mlsa(k, j)
f?j-sk~ < mls~(k, j) (3)

‘Y

mlsa (j, k)
and sk—sj~ < mls~(j, k) ,

‘Y

which implies

‘1dj7 k) ~ sj_ Sk– mlsa(j, k) < –
‘Y

(4)

@&d is a locally admissibleBy Assumption 1, ~

shift of j w.r.t. k and _ is a locally admis-

sible shift of k w.r.t. j. Since the system is local,

Assumption 1 and the definition of mls imply that

mls~(j,~) .— IS a locally admissible shift of j w.r.t. k.

Thus,7Assumption 1 and Equations (3) and (4) imply

that Sj – .?k k a locally admissible shift of j w.r.t. k

in a. Lemma 5.2 implies that (sl, . . . . Sn) is a (glob-

ally) admissible shift vector of a. In particular, since

Sp = O, it follows that s~ = ‘ist~’ ‘p’~~ is a (globally)

admissible shift of q w.r.t. p in a. H

Since distW, (p, q) depends only on mlsa (p, q), we

get:

Theorem 5.4 For any admissible ezecution ~ and

any two processors p and q, msa (p, q) can be computed

from mlsa (p, q).

5.3 Using Estimates for Local Shifts

Now, the issue is how to compute the values rfisa(p, q)

needed as inputs for Function SHIFTS. We assume

that the function is provided with estimates of the

local shifts. Under this assumption the compu-

tation can be accomplished by the following func-

tion GLOBAL ESTIMATES, with inputs m-lsa(p, q) =

mlsa (p, q) + Sa,p — S&, q, for every pair of processors

p and q.

1. Compute rnsa (p, q) by a shortest path computa-

tion in G with weights m-lsa (p, q).

Theorem 5.5 The function GLOBAL ESTIMATES

COmpUteS ~Sa (p, q), fOT eveTy @T Of pTOCeSSOTS p and

q.

Proof: Observe that the weight of any cycle w.r.t.

the weights m-lsa is equal to the weight of the cycle

w.r.t. the weights mlsa because the S components

cancel, It follows that there are no negative weight

cycles in G with weights m-lsa. Also, the weight of

any path from p to q w.r.t. weights m-lsa is equal to

the weight of the path w.r.t. mlsa plus Sa,p – Sa,q.

The claim follows from Theorem 5.4. ■

By composing functions GLOBAL ESTIMATES and

SHIFTS, we can compute the optimal corrections and

their precision given only the estimatea to the maxi-

mal local shifts m-lsa. This follows immediately from

Theorem 5.5 above, together with Theorem 4.6.

117



5.4 A Decomposition Theorem

In the full paper, we prove a decomposition theorem

that allows us to find optimal corrections for systems

with multiple local restrictions on the delays, by com-

bining the solution for each restriction.

Theorem 5.6 6’onsideT two sets of admissible exe-

cutions, d’ which is local w.r.t. d~,q and d“ which

is local w.r.t. A$’q. Let AP,~ be the intersection

of d~,~ and ~,q, and let A be the comespond-

ing set of admissible executions. For any execu-

tion CYE A, let mls~(p, q), mls~(p, q) and mls~(p, q)

be the maximal local shift of q w.r.t. p in ci un-

der, respectively, A, A’ or A“. Then mls~(p, q) =

min{mlio (p, q), mM~(P1 q)} c

6 Clock Synchronization for

Specific Delay Assumptions

We now show how to compute optimal corrections

based on the views of the processors, in systems which

satisfy two types of timing assumptions; both as-

sumptions are reasonable in reaIistic systems. The

first assumption is lower and upper bounds on the

delays (including infinite bounds). The second as-

sumption is a bound on the difference between the

delay in two directions of a link. In both cases, the

system is local and optimal corrections are computed

using the results of the previous sections. By Theo-

rem 5.5, all we have to show is how to compute the

estimates of the maximal local shifts m-lsa (p, q). This

calculation is based on estimates for the delays (de-

fined below), which can be easily computed from the

views of the processors during the execution.

The estimated delay ~(rn) of message m sent from p

to q is the actual (real time) delay plus the difference

in (real time) start times of the processors; that is

~(m) = d(m) + S~,P – S~,g. This is similar in flavor

to the definitions of estimated maximal global shifts

and estimated maximal local shifts. The next lemma

shows that the estimated delay can be computed from

the views. (The proof appears in the full version.)

Lemma 6.1 Given the views VP, v~ of processors p

and q duTing execution a, it is possible to compute the

estimated delay ~(m) of any message m sent from p

to q.

6.1 Bounds on the Delay

In the systems considered in [10, 3], there is an up-

per and a lower bound on the transmission delay, for

any edge. We extend this model by allowing edges

without upper bounds, in which case we say that

the upper bound is 00. Thus, for the first time, we

have a solution for optimal clock synchronization in

a completely asynchronous network where there are

no bounds on the delay.

Consider sets AP,g [lb, ub] of pairs of histories for

each edge (p, q), defined as follows. We associate a

pair of numbers ub(p, q) and lb(p, q) such that O <

lb(p, q) ~ ub(p, q) < m. For every execution a, the

pair of histories a [P,g (of p and q) is in AP,~ [lb, ub] if

the delay of every message sent from p to q is in the

range[/b(p, q), ub(p, q)] and the delay of every message

from q to p is in the range [/b(q, p), ub(q, p)]. Clearly,

the local sets AP,q are closed under constant shifts.

Define a set of admissible executions A[16, ub] which

includes all executions a such that, for each edge

(P, q)) the Pair of histories alP>!l is in 4,9[14 ubl. Ob-
viously this set of executions is local. Observe that

an execution CY is admissible if and only if for each

edge (p, q), the delay of every message sent in a from

p to q is in the range [lb(p, q), ub(p, q)].

The maximal delay of a message received by q from

p in execution a is denoted d~”(p, q). Similarly,

the minimal delay of a message received by p from

q ~n a is denoted d~in(p, q). If no message was re-

ceived by q from p in a then d~=(p, q) = -cm and

d~(p, q) = 00. We first observe that in such SYS-

tems, mlsa (p, q) depends only on the maximal and

minimal delays between p and q. (The proof is omit-

ted from this version.)

Lemma 6.2 Let CYbe an admissible execution of sys-

tem (G, A[lb, ub]). Then mls~(p, q) = min{(ub(q, p) –

d:”(q, P)), (W”(p, q) – ib(p, q))}.

Lemma 6.2 gives the maximal local shifts as a func-

tion of the actual maximal and minimal delays. How-

ever, the views of the processors give only estimates

of the delays, not the delays themselves. Yet, the esti-

mates of the deIays give an estimate for the maximal

local shift m-lsa (p, q). Formally, the estimated mazi-

mal delay is defined as ~~=(p, q) = d~a(p, q)-i-S’a,P -

Sa,.g ~ while the estimated minimal delay is defined as

‘T”(p) q) = ‘%in(PI q) + ‘w – ‘cz,g o we ‘ave:

Corollary 6.3 Let a ~ an admissible execution of

(G, A[lb, uh]). Then mlsq(p, q) = min{(tih(q, p) –

~~=(%p)), (~;’n(P, q) - Wp, q))}.

If we make the natural assumption that all delays

are non-negative, we get a bound on mls and m-is for

any system (without any other bounds on the delay).

Corollary 6.4 Let CY be an admissible execu~ion of

a local system (G, ~). Then mlsa(p, q) < d~n(p, q)

and m“lsa (p, q) < a~n(p, q).

118



6.2 Links with Bounds on the Round

Trip Delay Bias

In many bidirectional communication links there are

no tight bounds on the transmission delays. However,

whenever the traffic load on one direction of a link is

high, the load on the other direction of the link is

also high. Thus, it is possible to give a bound on

the difference, or bias, between delay in one direction

and delay in the other direction. We now show how to

calculate maximal local shifts in systems where there

is a bound on the difference between the delay in one

direction and delay in the other direction of a link.

For the purpose of this paper, we simplify the as-

sumption and require that the difference between the

delay of any two messages in opposite directions is

bounded. It is possible to generalize our results to the

more realistic model in which this assumption holds

only for messages that were sent “around the same

time.”

In more detail, we associate a positive number

~(p, q) = b(q, p), with each edge (p, q). Denote the

delay of message m by d(m). A pair of histories for

p and q is in AP,g [b] if for every message ~ received

by p from q, and every message m~ received by q

from p, Id(%) – d(m~)l < b(p, q). We also restrict

dP,q [b] to non-negative delays, i.e., for every message

m, d(m) ~ O. This obviously defines a local set of ad-

missible executions A[b], where a c A[b] if and only

if a E AP, g [b] for each edge (p, q). The next lemma

shows that, as for the case of lower and upper bounds,

mlsa (p, q) depends only on the maximal and minimal

delays between p and q.

Lemma 6.5 Let a be an admissible execution of

(G, A[b]). Then

mlsa (p, q) =

~(p,g)+dfi(nq)–d~(~,p)
min{d~in(p, q), 2 }.

Proof: Consider the following two local sets of ad-

missible executions. The first set A’ contains ev-

ery execution a such that the delay of each mes-

sage in a is non-negative. The second set A“

is like A[b] except that the delays are allowed to

be negative. Clearly d[b] is the intersection of

d’ and A“, and thus, Theorem 5.6 implies that

mlsa (p, q) = min{mls~ (p, q), mls~ (p, q)}. By Lemma

6.2, mls~ (p, q) = d~(p, q), and thus we only have to

prove that mls~ (p, q) =
qp,g)+d~”(p,~)-d~ (~,p)

Let KP denote p’s history in a aid ~~ denote q’s

history in a. For any S3 > 0 let Z; = sJt@(mq, Sf ).

In (TP, m~), the delay d(zp,m; )(~) of any message ~

from q top is Sq more than the delay d.(~) of the

same message in a; similarly, the delay of any message

mg from p to q, C4(TP,T:) (mg ) is Sg less than the delay,

da (mg) of the same message in a. It follows that

%p)@(m9) - km;)(%)=. .

%-p,q)(%

Therefore,

ddmg. – da(%) – 2s9 !

– d(mp,r:) (%) =
d~(~ – da(mg) + 2sg .

da(mg) – da(~) – asq S b(P, !7)

and d.(~) – d~(mq) + 2sq S b(PJ q)

if and only if the round trip delay bias in (TP, n;) of

~ and mq is at most b(p, q). Since a is admissible

and Sq ~ O, the first inequality trivially holds. Hence,

both inequalities hold for every s~ ~ O such that

b(p, q) + L(mq) – da(%)
Sq <

2

The inequalities hold for every pair of messages si-

multaneously, for every Sq z O such that

b(p, q) + d:in(p, q) – d:-(q) P)
Sq <

2

Namely, this is the set of locally admissible shifts of

q w.r.t. p in CY relative to A“. We conclude that

mls{(p, q) =
qp,q)+d~(p,q)-d~ (q,p)

2 ■

Corollary 6.6 Let a be an admissible execution of

(G, A[b]). Then

m-lsa (p, q) =

min{~~n(p, q),
b(p,q)+a;”(p,q) –a~’(q,p)

2 }.

7 Discussion and Open

Questions

We have shown a framework for designing optimal

clock synchronization algorithms under a variety of

assumptions on message delay uncertainty. The gen-

eral result yields optimal clock synchronization al-

gorithms for the following models: upper and lower

bounds on delays are known; only lower bounds on

the delays are known; no bounds are known; and only

a bound on the difference of the round trip delays is

known. Moreover, the results apply to cases where

different links satisfy different assumptions. Our re-

sults extend and simplify results of Halpern, Megiddo

and Munshi [3]. Our results are based on a new no-

tion of optimality in any specific instance.

119



In this paper, we only address the issue of comput-

ing optimal corrections, given (somehow) the views

of the processors. An interesting open question is

to compute the optimal corrections in a distributed

manner. To understand the difficulty involved in the

distributed implementation of this computation, con-

sider the following straightforward approach. Each

pair of neighboring processors p and q compute

m“lsa (p, q) and m-ls~ (q, p) using the estimated delays

(which can be deduced from their views). All proces-

sors send the estimated maximum local shifts to a dis-

tinguished processor (leader). The leader computes

the estimated maximum global shifts using function

GLOBAL ESTIMATES, and a correction value for each

processor according to function SHIFTS. Finally, the

leader sends the corrections to the processors. Note,

however, that the precision obtained by this central-

ized clock synchronization algorithm is optimal only

with respect to the part of the execution that does not

include the messages to and from the leader. That is,

any additional communication, required for exchang-

ing the views, is bound to change the views them-

selves. A solution may require the definition of opti-

mality to be relaxed.

Another important open question, of considerable

practical significance, is to achieve optimal clock syn-

chronization in systems where the probabilistic prop-

erties of the message delay distribution are known.

This model is realistic and is at the heart of most

practical algorithms for clock synchronization [1, 12].

We believe the new notion of optimality allows one

to address this model, and that this will lead to im-

provements in these important algorithms.

Finally, an obvious open problem is to extend

our results to a fault tolerant solution, following the

many works addressing fault-tolerant clock synchro-

nizat ion.

Acknowledgments: We thank Joe Halpern for

helpful comments.

References

[1]

[2]

[3]

F. Cristian, “Probabilistic Clock Synchronization,”
Dist. amp., 3 (1989),pp. 146–158.

D. Dolev, J. Halpern and H. R. Strong, “On the pos-

sibility and impossibllit y of achieving clock synchro-

nizeation .“ J. Conap. and Sys. Sci., 32:2 (1986) pp.

230-250.

J. Halpern, N. Megiddo and A. A. Munshi, “Optimrd

precision in the presence of uncertain y.” J. Cornplez-

ity, 1 (1985), pp. 170-196.

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

J. Halpern and I. Suzuki, “Clock Synchronization

and the Power of Broadcasting.” Proc. Alle~ton Con-

ference, 1990, pp. 588-597.

R. M. Karp, “A characterization of the minimum

cycle mean in a digraph,” Disc. Math., 23 (1978),

pp. 309–311.

H. Kopetz and W. Ochsenreiter, “Clock Synchro-

nization in Distributed Real-Time Systems,” IEEE

Trans. Comp., 36:8 (August 1987), pp. 933-939.

L. Lamport, “Time, clocks and the ordering of events

in distributed systems.” CACM, 21:7 (July 1978),

pp. 558-565.

L. Lamport and P. Melliar-Smith, “Synchronizing

clocks in the presence of faults}” JACM, 32:1 (Jan-

uary 1985), pp. 52–78.

B. Liskov, “Practical Uses of Synchronized Clocks in

Distributed Systems, “ invited talk at the 9th ACM

Syrnp. on Principles of Distributed Computing, 1990,

appeared in pvoc. 10th ACM Syrnp. on Principles Of

Distributed Computing, 1991, pp. 1-9.

J. Lundelius and N. Lynch, “An Upper and Lower

Bound for Clock Synchronization,” Info. and Con-

trol, 62:2/3 (August/September 1984), pp. 190–204.

K. Marzullo, Loosely-Coupled Distributed Services:

A Distributed Time Service, Ph.D. thesis, Stanford

University, 1983.

D. Mills, “Network Time Protocol (Version 2) Speci-

fication and Implementation,” IEEE Trans. Comm.,

Vol. 39, No. 10 (October 1991), pp. 1482-1493.

Open Software Foundation, Introduction to OSF

DCE, OSF, Cambridge, Massachusetts, December

1991.

K. Sugihara and I. Suzuki, “Nearly Optimal Clock

Synchronization Under Unbounded Message Trans-

mission Time,” Proc. 1988 International Conference

on Parallel Processing III, 1988, pp. 14–17.

B. Simons, J. L. Welch and N. Lynch, “An overview

of clock synchronization,” IBM Technical Report RJ

6505, October 1988.

T. Srikanth and S. Toueg, “Optimal Clock Synchro-

nizeation ,“ JACMj 34:3 (July 1987), pp. 626-645.

J. L. Welch and N. Lynch, “A new fault-tolerant al-

gorithm for clock synchronization,” Info. and Comp,,

77:1 (April 1988), pp. 1-36.

120


