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Abstract 

Emulators that translate algorithms from the shared- 
memory model to two different message-passing mod- 
els are presented. Both are achieved by implementing 
a wait-free, atomic, single-writer multi-reader regis- 
ter in unreliable, asynchronous networks. The two 
message-passing models considered are a complete 
network with processor failures and an arbitrary net- 
work with dynamic link failures. 

These results make it possible to view the shared- 
memory model as a higher-level language for de- 
signing algorithms in asynchronous distributed sys- 
tems. Any wait-free algorithm based on atomic, 
single-writer multi-reader registers can be automati- 
cally emulated in message-passing systems. The over- 
head introduced by these emulations is polynomial in 
the number of processors in the systems. 

Immediate new results are obtained by applying 
the emulators to known shared-memory algorithms. 
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These include, among others, protocols to solve the 
following problems in the message-passing model in 
the presence of processor or link failures: multi- 
writer multi-reader registers, concurrent time-stamp 
systems, .&exclusion, atomic snapshots, randomized 
consensus, and implementation of a class of data 
structures. 

1 Introduction 

Two major interprocessor communication mod- 
els in distributed systems have attracted much 
attention and study: the shared-memory model 
and the message-passing model. In the shared- 
memory model, n processors communicate by 

writing and reading to shared atomic registers. 
In the message-passing model, n processors are 
located at, the nodes of a network and commu- 
nicate by sending messages over communication 
links. 

In both models we consider asynchronous un- 
reliable systems in which failures may occur. In 
the shared-memory model, processors may fail 
by stopping (and a slow processor cannot be 
distinguished from a failed processor). In the 
message-passing model failures may occur in ei- 
ther of two ways. In the complete network model, 
processors may fail by stopping (without being 
detected). In the arbitrary network model, links 
fail and recover dynamically, possibly discon- 
necting the network for some periods. 

The design of fault-tolerant (or w&-free) algo- 
rithms in either of these models is a delicate and 
error-prone task. However, this task is somewhat 
easier in shared-memory systems, where proces- 

sors enjoy a more global view of the system. A 



shared register guarantees that once a processor 
reads a particular value, then, unless the value of 
this register is changed by a write, every future 
read of this register by any other processor will 
obtain the same value. Furthermore, the value of 
a shared register is always available, regardless of 
processor slow-down or failure. These properties 
permit us to ignore issues that must be addressed 
in message-passing systems. For example, there 
are discrepancies in the local views of different 
processors that are not necessarily determined 
by the relative order at which processors execute 
their operations. 

An interesting example is provided by the 
problem of achieving randomized consensus. 
Several solutions for this problem exist in the 
message-passing model, e.g., [15, 18, 241, and in 
the shared-memory model, e.g., [17, 1, 8, 111. 
However, the algorithm of [8] is the first to have 
polynomial expected running time and still over- 
come an “omnipotent” adversary-one that has 
access to the outcomes of local coin-flips. The 
difficulty of overcoming messages’ asynchrony in 
the message-passing model made it hard to come 
up with algorithms that tolerate such omnipo- 
tent adversary with polynomial expected run- 
ning time.r 

This paper presents emulators of shared- 
memory systems in message-passing systems 
(net works), in the presence of processor or link 
failures. Any wait-free algorithm in the shared- 
memory model that is based on atomic, single- 
writer multi-reader registers can be emulated in 
both message-passing models. The overhead for 
the emulations is polynomial in the number of 
processors. The complexity measures considered 
are the number of messages and their size, the 
time and the local memory size for each read or 
write operation. 

Thus, shared-memory systems may serve as a 
“laboratory” for designing resilient algorithms. 
Once a problem is solved in the shared-memory 
model, it is automatically solved in the message- 
passing model, and only optimization issues re- 

1 The asynchronous message-passing algorithm of [25] 
is resilient to Byzantine faults, but requires private com- 
munication links and thus is not resilient to an omnipotent 
adversary. 
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main to be addressed. 
Among the immediate new results obtained 

by applying the emulators to existing shared- 
memory algorithms, are network protocols that 
solve the following problems in the presence of 
processor or link failures: 

Atomic, multi-writer multi-reader registers 
([35, 3311. 

Concurrent time-stamp systems ([30, 231). 

Variants of 4Lexclusion ([21, 16, 41) 

Atomic snapshot scan ([2, 71). 

Randomized consensus ([8, 11]).2 

Implementation of a class of data structures 

w- 

First we introduce the basic communication 
primitive which is used in our algorithms. We 
then present an unbounded emulator for the com- 
plete network in the presence of processor fail- 
ures. This implementation exposes some of the 
basic ideas underlying our constructions. More- 
over, part of the correctness proof for this emula- 
tor can be carried over to the other models. We 
then describe the modifications needed in order 
to obtain the bounded emulator for the complete 
network in the presence of processor failures. Fi- 
nally, we modify this emulator to work in an ar- 
bitrary network in the presence of link failures. 
We present two ways to do so. The first modi- 
fication is based on replacing each physical link 
of the complete network with a “virtual viable 
link” using an end-to-end protocol ([5, 13, 61). 
The second modification results in a more effi- 
cient emulation. It is based on implementing our 
communication primitive as a diffusing computa- 
tion using the resynchronization technique of [6]. 

We consider systems that are completely asyn- 
chronous since this enables us to isolate the 
study from any model-dependent synchroniza- 
tion assumptions. Although many “real” shared- 
memory systems are at least partially syn- 
chronous, asynchrony allows us to provide an 

2This result also follows from the transformation of 
c141. 



abstract treatment of systems in which different 
processors have different priorities. 

Wait-free protocols in shared-memory systems 
enable a processor to complete any operation re- 
gardless of the speed of other processors. In 
message-passing systems, it can be shown, fol- 
lowing the proof in [lo], that for many problems 
requiring global coordination, there is no solu- 
tion that can prevail over a “strong” adversary- 
an adversary that can stop a majority of the pro- 
cessors or disconnect large portions of the net- 
work. Such an adversary can cause two groups of 
fewer than majority of the processors to operate 
separately by suspending all the messages from 
one group to the other. For many global coordi- 
nation problems this leads to contradicting and 
inconsistent operations by the two groups. As 
mentioned in [lo], similar arguments show that 
processors cannot halt after deciding. Thus, in 
our emulators a processor which is disconnected 
(permanently) from a majority of the processors 
is considered faulty and is blocked.3 Our solu- 
tions do not depend on connection with a spe- 
cific majority at any time. Moreover, it might 
be that at no time there exists a full connection 
to any party. The only condition is that mes- 
sages will eventually reach some majority which 
will acknowledge them. 

Although the difficult construction is the so- 
lution in the complete network with bounded 
size messages, the unbounded construction is not 
straightforward. In both cases, to avoid prob- 
lems resulting from processors having old val- 
ues we attach time-stamps to the values writ- 
ten by the writer. In the unbounded construc- 
tion, the time-stamps are the integer numbers. 
In the bounded construction, we use a nontriv- 
ial method to let the writer keep track of old 
time-stamps that are still in the system. This 
allows us to employ a bounded sequential time- 
stump system ([30]). 

Some of the previous research on dynamic 
networks (e.g., [27, 31) assumed a “grace pe- 
riod” during which the network stabilizes for long 
enough time in order to guarantee correctness. 

Our results do not rely on the existence of such 
a period, and follow the approach taken in, e.g., 
[34, 5, 13, 61. 

There are two related studies on the rela- 
tionships between shared-memory and message- 
passing systems. Bar-Noy and Dolev ([14]) 
provide translations between protocols in the 
shared-memory and the message-passing mod- 
els. These translations apply only to protocols 
that use a very restricted form of communica- 
tion. Chor and Moscovici ([19]) present a hierar- 
chy of resiliency for problems in shared-memory 
systems and complete networks. They show that 
the wait-free shared-memory model is not equiv- 
alent to complete network, where up to half of 
the processors may fail. This result does not 
contradict our emulations since it is based on the 
assumption that processors halt after deciding. 

2 Preliminaries 

In this section we discuss the models addressed 
in this paper. Our definitions follow [31] for 
shared-memory systems, [28] for complete net- 
works with processor failures, and [13] for arbi- 
trary networks with link failures. In all models 
we consider, a system consists of n independent 
and asynchronous processors, which we number 
1 71. ,“‘, 

A formal definition of an atomic, single-writer 
multi-reader register can be found in [31], the 
definition presented here is an equivalent one 
(see [31, Proposition 31) which is simpler to use. 
An atomic, single-writer multi-reader register is 
an abstract data structure. Each register is ac- 
cessed by two procedures, write,(u) which is ex- 
ecuted only by some specific processor w, called 
the writer, and read,(v) which may be executed 
by any processor 1 5 r 5 n, called a reader. It 
is assumed that the values of these procedures 
satisfy the following two properties: 

1. Every read operation returns either the last 
value written or a value that is written con- 
currently with this read. 

3Such a processor will not be able to terminate its 
operation but will never produce erroneous results. 

2. If a read operation Rz started after a read 
operation Rr has finished, then the value 
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Rz returns cannot be older than the value 
returned by RI. 

In message-passing systems, processors are lo- 
cated at the nodes of a network and communicate 
by sending messages along communication links. 
Communication is completely asynchronous and 
messages may incur an unknown delay. At each 
atomic step, a processor may receive some set of 
messages that were sent to it, perform some local 
computation and send some messages. 

In the complete network model we assume that 
the network formed by the communication links 
is complete, and that processors might be faulty. 
A faulty processor simply stops operating. A 
nonfaulty processor is one that takes an infinite 
number of steps, and all of its messages are deliv- 
ered after a finite delay. We assume that at most 
]y] processors are faulty in any execution of 
the system. 

In dynamic networks communication links 
might become non-viable. A link is non-viable, if, 
starting from some message and on, it will not 
deliver any further messages to the other end- 
point. For those messages the delay is consid- 
ered to be infinite. Otherwise, the link is vi- 
able. This model is called the oo-delay model 
in 151. Afek and Gafni ([5]) point out that the 
standard model of dynamic message-passing sys- 
tems, where communication links alternate be- 
tween periods of operation and non-operation, 
can be reduced to this model. A processor that 
is permanently disconnected from [f] proces- 
sors or more is considered faulty. We assume 
there are [q] processors that are eventually in 
the same connected component. Thus, at most 
[YJ processors are faulty. 

The complexity measures we consider are: (a) 
The number of messages sent in an execution of 
a write or read operation, (b) the size of the mes- 
sages, ccl the time it takes to execute a write or 
read operation, under the assumption that any 
message is either delivered within one time unit, 
or never at all (cf. [12]), and (d) the amount of 
the overhead local memory used by a processor. 
In all cases we are interested in the worst case 
complexity. 

3 Procedure communicate 

In this section we present the basic primitive 
used for communication in our algorithms, called 
communicate. This primitive operates in com- 
plete networks. It enables a processor to send 
a message and get acknowledgements (possibly 
carrying some information) from a majority of 
the processors. 

Because of possible processors’ crash failures, 
a processor cannot wait for acknowledgements 
from all the other processors or from any par- 
ticular processor. However, at least a majority 
of the processors will not crash and thus a pro- 
cessor can wait to get acknowledgements from 
them. Notice that processors want to commu- 
nicate with any majority of the processors, not 
necessarily the same majority each time. A pro- 
cessor utilizes the primitive to broadcast a mes- 
sage (M) to all the processors and then to collect 
a corresponding (ACK) message from a major- 
ity of them. In some cases, information will be 
added to the (ACK) messages. 

For simplicity, we assume that each edge (i, j) 
is composed of two distinct “virtual” directed 
edges (i, j} and (j, i). The communication on 
(i, j) is independent of the communication on 
(j, + 

Procedure communicate uses a simple ping- 
pong mechanism. This mechanism ensures FIFO 
communication on each directed link in the net- 
work, and guarantees that at any time only one 
message is in transit on each link. Informally, 
this is achieved by the following rule: i sends the 
first message on (i, i> and then i and j alternate 
turns in sending further messages and acknowl- 
edgements on ( i, j) . 

For simplicity, a processor sends each message 
also to itself and responds with the appropriate 
acknowledgement. 

Procedure communicate gets as an input a 
message M and returns as an output a vector 
info, of length 12. The jth entry in this vector 
contains information received with j’s acknowl- 
edgement (or 1. if no acknowledgement was re- 
ceived from j). The precise code of the pro- 
cedure is omitted from this version. We note 
that whenever this procedure is employed we 
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also specify its companion procedure, ack, which 
specifies the information sent with the acknowl- 
edgement for each message and the local com- 
putation triggered by receiving a particular mes- 
sage. 

The ping-pong mechanism guarantees the fol- 
lowing two properties of the communicate proce- 
dure. First, the acknowledgements stored in the 
output vector info were indeed sent as acknowl- 
edgements to the message M, and, in particular, 
at least 191 processors received the message 
M. Second, the number of messages sent during 
each execution of the procedure is at most 2n. 
Also, it is not hard to see that the procedure ter- 
minates under our assumptions. The next lemma 
summarizes the properties and the complexity of 
procedure communicate. 

Lemma 3.1 The following all hold for each ex- 
ecution of procedure communicate by processor i 
with the message (AI): 

I. 

2. 

3. 

4 

5. 

4 

if i is connected to at least a majority of the 
processors then the execution terminates, 

at least [VI processors receive (M) and 
return the corresponding acknowledgement, 

at most 2n messages are sent during this ex- 
ecution, 

the procedure terminates after at most two 
time units, and 

the site of i’s local memory is O(n) times 
the size of the acknowledgements to (M). 

The unbounded implemen- 
tation - complete network 

Informally, in order to write a new value, the 
writer executes communicate to send its new 
value to a majority of the processors. It com- 
pletes the write operation only after receiving 
acknowledgements from a majority of the proces- 
sors. In order to read a value, the reader sends 
a request to all processors and gets in return the 

latest values known to a majority of the proces- 
sors (using communicate). Then it adopts (re- 
turns) the maximal among them. Before finish- 
ing the read operation, the reader announces the 
value it intends to adopt to at least a majority 
of the processors (again by using communicate). 

The writer appends a label to every new value 
it writes. In the unbotinded implementation this 
is an integer. For simplicity, we ignore the value 
itself and identify it with the label. 

Processor i stores in its local memory a vari- 
able val;, holding the most recent value of the 
register known to i. This value may be acquired 
either during i’s read operations, from messages 
sent during other processors’ read operations, or 
directly from the writer. In addition, i holds a 
vector of length n of the most recent values of 
the register sent to i by other processors. 

In the implementation, there are three proce- 
dures: read for the reader, write for the writer, 
and ack, used by all processors to respond to 
messages. These procedures utilize six types of 
messages, arranged in three pairs, each consist- 
ing of a message and a corresponding acknowl- 
edgement . 

1. The pair of write messages. 

(W, val): sent by the writer in order to 
write ual in its register. 

(A CK- w) : the corresponding acknowledge- 
ment . 

2. The first pair of read messages. 

(RI): sent by the reader to request the re- 
cent value of the writer. 

(val): the corresponding acknowledgement, 
contains the sender’s most updated 
value of the register. 

3. The second pair of read messages. 

(&, val): sent by the reader before termi- 
nating in order to announce that it is 
going to return val as the value of the 
register. 

(A CK-Rz ) : the corresponding acknowledg- 
ement . 
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Procedure readi{ ml;); (* executed by processor 8’ and returns uali *) 
communicate((R1), info); 
Vali := mw~j~,{W(j) I info(j) #Q; 
communicate((R2, vUli), void); 

end procedure readi ; 

Procedure write, ; (* for the writer w *) 
val, := val, + 1; (* the new value of the register *) 
communicate( ( W, val,), void); 

end procedure write,; 

Procedure ackj ; (* executed by processor j *) 
case received from UJ 

( W, Vd,): Vdj := max{val,, Valj) ; 
send (A CK- W) to w; 

case received from i 
(RI): send (valj) to i; 
( RB , di): t&j := max(val;, ?lUlj ) ; 

send (A CK-Rz) to i; 
end procedure ackj ; 

Figure 1: The read, write and ack procedures of the unbounded emulator. 

The descriptions of procedures write, read and 
ack appear in Figure 1. Procedure ack instructs 
each processor what to do upon receiving a mes- 
sage (as explained in Section 3). We use ooid 
to emphsis that the information sent with the 
acknowledgements to a particular message is ig- 
nored. Since communication is done only by 
communicate, Lemma 3.1 (part 1) implies: 

Lemma 4.1 Each execution of a read operation 
or a write operation terminates. 

The value contained in the first write message 
and the second read message is called the value 
communicuted by the communicate procedure ex- 
ecution. The maximum value among the values 
contained in the acknowledgements of the first 
read message is called the value acknowledged by 
the communicated procedure execution. The fol- 
lowing lemma deals with the ordering of these 
values, and is the crux of the correctness proof. 

Lemma 4.2 Assume a communicate procedure 
execution Cl communicated x, and a communi- 

cate procedure execution Cz acknowledged y. As- 
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sume that Cl has completed before Cz has started. 
Then x < y. 

Since a write operation completes only after its 
communicate procedure completes, Lemma 4.2 
implies: 

Lemma 4.3 Assume a: read operation, 72, re- 
turns the value y. Then y is either the value of 
the last write operation that was completed before 
R started or it is the value of a concurrent write 
operation. 

In a similar manner, since a read operation 
completes only after its second execution of com- 

municate is completed, Lemma 4.2 implies: 

Lemma 4.4 Assume some read operation, 721, 
returns the value x, and that another read opera- 
tion, 722, that started after RI completed, returns 
y. Then x < y. 

The next theorem summarizes the above dis- 
cussion. The complexity propositions follow 
from Lemma 3.1 (parts 3 and 41, since proces- 
sors communicate only by using the communicate 

procedure. 



Theorem 4.5 There exists an unbounded emu- 
lator of an atomic, single-writer multi-reader reg- 
ister in a complete network, in the presence of at 
most [YJ processor failures. Each execution 
of a read operation or a write operation requires 
O(n) messages and O(l) time. 

5 The bounded implementa- 
tion - complete network 

5.1 Informal Description 

The only source of unboundedness in the above 
emulation is the integer labels utilized by the 
writer. In order to eliminate this, we use an idea 
which was employed previously in 130, 131. The 
integer labels are replaced by bounded sequential 
time-stamp system ([30]), which is a finite do- 
main L of label values together with a total order 
relation +. Whenever the writer needs a new la- 
bel it produces a new one, larger (with respect to 
the 4 order) than all the labels that exist in the 
system. Thus, instead of just adding one to the 
label, as in the unbounded emulation, here the 
writer invokes a special procedure called LABEL. 

The input for this procedure is a set of labels and 
the output is a new label which is greater than all 
the labels in this set. This can be achieved by the 
constructions presented in [30, 221 for bounded 
sequential time-stamp systems. 

The main difficulty in carrying this idea over to 
the message-passing model is in maintaining the 
set of labels existing in the system, a task which 
need not be addressed in the shared-memory 
model (cf. [30, 321). Notice that in order to as- 
sure correctness, it suffices to guarantee that the 
set of labels that exist in the system is contained 
in the input set of labels of procedure LABEL. 
The key idea is as follows. 

Whenever a processor adopts a label (as the 
maximum value of the writer it knows about), it 
records this fact in the system. This is done by 
broadcasting an appropriate message and wait- 
ing for acknowledgements from a majority of the 
processors (using communicate). Upon receiving 
a recording message, a processor stores the in- 
formation it contains in its local memory, but 

ignores the values it carries. This process guar- 
antees that labels do not get lost as a majority 
of the processors have recorded them. 

To avoid inconsistencies that might occur, a 
processor blocks all computation that is related 
to new labels during the recording process. It 
does not adopt new labels and does not send non- 
recording messages colitaining new labels. An in- 
dependent ping-pong mechanism is employed for 
each type of messages, e.g., i may send a record- 
ing message to j although j did not acknowledge 
a read message of i. Since recording messages do 
not cause a processor to adopt a label, deadlock 
is avoided. 

5.2 Data Structures and Messages 

To implement the recording process, each proces- 
sor i maintains an n x n matrix L; of labels. The 
ith row vector L;(i) is updated dynamically by i 
according to messages i sends. The jth row vec- 
tor L;(j) is updated by the messages i receives 
from j during a recording process initiated by j. 
Each entry, L;(i, k), is composed of two fields: 
sent and ack. The field Li(i, Ic).sent contains the 
last label i sent to k and the field Li(i, k).ack is 
the last label i sent to k as an acknowledgement 
to a read request of k. In particular, L;( i, i) is the 
current maximum label of the writer known to i. 
The writer starts each write operation by obtain- 
ing from a majority of the processors their most 
updated values for the matrix L (using commu- 

nicate). The union of the labels that appear in 
its own matrix and these matrices is the input to 
procedure LABEL. 

Procedures read and write use five pairs of mes- 
sages and corresponding acknowledgements. 

1. The first pair of write messages. 

( WI): sent by the writer at the beginning 
of its operation in order to collect in- 
formation about existing labels. 

(L) : the corresponding acknowledgement, L 
is the sender’s updated value of the la- 
bels’ matrix. 

2. The second pair of write messages, ( Ws, val) 
and (ACK- Wz), the first pair of read mes- 
sages, (RI) and (val), and the second pair 
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of read messages, (Rs, val) and (ACK-Rp), 
are the same as the corresponding messages 
in the unbounded algorithm. 

3. The pair of recording messages. 

(REC, L(i)): before adopting any new 
value for the register, processor i sends 
Li(i) to other processors. The vector 
L;(i) contains this new value and all 
the recent values that i sent on its links 
to other processors. 

(A CK-REC): the corresponding acknowled- 
gement . 

Let Y denote the number of bits needed to 
represent any label value from C (Y = log IL[). 
Since the longest message is (L), it follows that 
the maximum size of a message is 0( n2 . Y). Re- 
call that during the recording process, processors 
do not reply to nonrecording messages. There- 
fore, messages are accumulated in the local mem- 
ory of the processor and are ordered in a queue. 
As soon as the recording process ends, the pro- 
cessor first handles the messages on the queue.4 
Due to the ping-pong mechanism the length of 
this queue is at most O(n). Hence, the size of 
the local memory is at most O(n3 . V). 

5.3 The Algorithm 

The pseudo-code for the algorithm appears in 
Figure 2. Procedure update and the first part 
of procedure recording update dynamically the 
vector L;(i). Therefore, in procedure read, it is 
enough to take val; as L;(i, i). The flag blocked 
is set to true during the recording process and 
prevents the processor from receiving or sending 
some messages as described in procedure ack. As 
mentioned before, in order to prevent deadlocks 
a separate ping-pong mechanism is employed for 
each type of message. In order to distinguish 
between the different mechanisms, calls to com- 
municate are subscripted with the message type. 

‘The details of how this queue is handled are omitted. 
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5.4 Correctness and Complexity 

Atomicity of the bounded emulator follow from 
the same reasoning as in the unbounded case 
(Lemma 4.3 and Lemma 4.4). The following 
lemma is the core of the correctness proof for the 
bounded emulator-it assures that the writer al- 
ways obtain a superset of the labels that might 
be adopted as the register’s value by some pro- 
cessor. We call a label z viable, if in some system 
state, at some possible extension from this state, 
for some processor i, val; = 2. Intuitively, a 
viable label is held by some processor as the cur- 
rent register’s value or it will become the current 
register’s value for some processor. 

Lemma 5.1 Each viable label is stored either in 
the writer matrix or in the matrices of at least a 
majority of the processors. 

Proof: We say that processor i is responsible 
for label 2, if x is stored in L;(i), i.e., if either 
L;(i, i) = x, Li(i,j).sent = x or &(i,j).ack = x. 
We first claim that for any viable label there ex- 
ists a processor that is responsible for it. Assume 
that z is a label that is held by i as the current 
register’s value, then by the code of the algorithm 
Li(i, i) = z and by definition i is responsible for 
x. Assume x will become the current register’s 
value for processor j in the future, then it must 
be that some processor i has sent it to j (either 
by R2 (Wz) messages of i or in response to an 
Ri request message by j) thus x E Li(i,j). 

Now assume that i is responsible for x. Look 
at a simple path on which the label z has arrived 
at i, i.e., a sequence ie, ir,. . . , i,, where ie is the 
writer and i, = i. In this sequence, for any l, 
1 < e 5 m, processor ie adopted z as a result of 
a message from it-r. 

The claim is proved by induction on m, the 
length of this path. The base case, m = 0, occurs 
when i is the writer. Then the codes of proce- 
dures update and write imply that x is stored in 
i’s matrix. For the induction step, assume that 
m > 0, and that the induction hypothesis holds 
for any e, 0 5 J? < m. We have two cases. 
Case 1: Processor i has not finished the record- 
ing process for 5. It follows from the code of 
procedure recording that L;(i,i) = x. We show 



Procedure readi ; (* executed by processor i and returns vu4 *) 
communicatefi((R1), irafo) ; 

VUli := I;&, i) ; 
communicateR( (& , v&i), void) ; 

end procedure readi ; 

Procedure write, ; (* for the writer w *) 
communicatew(( WI ), L) ; 
&,(w, w) := LABEL(UL) ; (* all the non-empty entries in L *) 
communicatew(( Wz, &(w, w)), void) ; 

end procedure write,; 

Procedure recording; ; (* executed by processor i *) 
upon receiving new label 2 > Li(i, i): 

blocked := true ; 
L;(i, i) := t; 
communicate~~~((REC, Lj(i)), void) ; 

blocked := false ; 
end procedure recordingi ; 

Procedure updatei ; (* executed by processor i *) 
upon sending label z to j in i’s read operation: 
Li(i, j).sent := 2 ; 
upon sending label z to j in j’s read operation: 
Li(i, j).ack := z ; 

end procedure updatei ; 

Procedure acki; (* executed by processor j *) 
case received from w 

(Wr): send (Lj) to W; 

( wz, v&J): if ml,,, > Lj (j, J’) then wait until blocked = false ; 
send (ACK- W2) to w ; 

case received from i 

(Ri): wait until blocked = false ; 
send (+Cj(j,j)) to i; 

(Rz, vali): if vali > Li(j, j) then wait until blocked = false ; 
send (ACK-Be) to i; 

(REC,Li(i)): Lj(i) := Li(i) ; 
send (ACK-REC) to i; 

end procedure ackj; 

Figure 2: The read, write, recording, update and ack procedures of the bounded emulator. 
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that k = i,-r is responsible for x, and the lemma 
follows from the induction hypothesis. 

If i received x from Ic through an Rz (Wz) 
message, then since i is blocked during the 
recording process it would not reply until the 
recording process of z is done. Consequently, 
L,(k, i).sent = 2. 

If i received x from k through an A CK-RI mes- 
sage, then since i would not terminate a read op- 
eration until it finishes the recording process of 
z, it would not start a new read operation. Con- 
sequently, Lk(k, i).ack = x. 
Case 2: Processor i has finished the recording 
process for x. If Li(i,i) = x, i.e., 2 is still the 
current value that i holds, then the code for pro- 
cedure record, and the properties of procedure 
communicate (Lemma 3.1, part 2) imply that x 
is stored in the matrices of at least a majority of 
the processors. 

If L;(i, i) # 3, then since i is responsible for x 
there must exist a j such that z E L;(i, j). Fur- 
thermore, since i has a more recent value for the 
register it must be that &(i,i) = y > z. By the 
code for procedure recording and the properties 
of procedure communicate (Lemma 3.1), at the 
end of the recording process for 2, x is stored 
as L(i, i) in the matrices of at least a majority 
of the processors. Let k be some processor that 
recorded z for i, i.e., such that Lk(i,i) = x at 
the end of the recording process for x. 

If currently, Lk(i,i) = z # x then it must be 
that z 4 Z. Since forwarding a new value is 
blocked during the recording process, it must be 
that z was sent by i to i before the recording 
process for z started. Thus 2 E L;(i,j) during 
the recording process for Z, and consequently 5 E 
Lk(i, j). Therefore, x appears in the matrices of 
a majority of the processors. n 

Lemma 5.1 and the constructions of bounded 
sequential time-stamp systems of [30, 221 imply: 

Corollary 5.2 The new label generated by pro- 
cedure LABEL is greater than any viable label in 
the system. 

Recording messages are acknowledged imme- 
diately and are never blocked. Thus, a processor 

never deadlocks during a recording process and 
will eventually acknowledge all the messages it 
receives. The next lemma follows since during a 
read or a write operation, at most 2n recording 
processes could occur. 

Lemma 5.3 Each execution of a read operation 
or a write operation terminates. 

Each acknowledgement the reader receives 
might cause it to initiate a recording process. By 
Lemma 3.1, part 3, at most 2n messages are sent 
during each of these recording processes. In addi- 
tion, each message of type IV2 or &. might cause 
other processors to initiate a recording process. 
Thus, at most O(n2) messages are sent during 
each execution of an operation, and it takes at 
most O(l) time units. 

The constructions of bounded sequential time- 
stamp system ([30,22]) imply that a label can be 
represented using Q(n) bits. The next theorem 
summarizes the above discussion. 

Theorem 5.4 There exists a bounded emulator 
of an atomic, single-writer multi-reader regis- 

ter in a complete network, in the presence of at 

most - 
L 1 
9 processor failures. Each execution 

of a read operation or a write operation requires 
O(n2) messages each of size O(n3), O(1) time, 
and O(n4) 1ocaZ memory. 

6 The bounded implementa- 
tion - arbitrary network 

In an arbitrary network a processor is considered 
faulty if it cannot communicate with a major- 
ity of the processors, and a correctly function- 
ing processor is guaranteed to be eventually in 
the same connected component with a majority 
of the processors. The first construction in this 
section is achieved by replacing every send op- 
eration from i to j by an execution of an end-to- 
end protocol between i and j. Implementations 
of such a protocol are known (see [5, 13, 61). An 
end-to-end protocol establishes traffic between i 
and j if there is eventually a path between them. 
In our case, eventually there will be a path be- 
tween any nonfaulty processor and a majority of 
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the processors, thus the system behaves as in the 
case of complete network with processor failures. 

Note that there are labels in the system that 
will not appear in the input of procedure LABEL. 
However, these are not viable labels because the 
end-to-end protocol will prevent processors from 
adopting them as the writer’s label and hence 
correctness is preserved. 

The complexity claims in the next theorem are 
implied by the end-to-end protocol of [6].5 

Theorem 6.1 There exists a bounded emaZutor 
of an atomic, single-writer multi-reader register 
in an arbitrary network in the presence of link 
failures the do not disconnect a majority of the 
processors. Each execution of a read operation or 
a write operation requires O(n5) messages, each 
of size O(n3), and O(n2) time. 

Instead of implementing each virtual link sep- 
arately we can achieve improved performance by 
implementing communicate directly. We make 
use of the fact that Afek and Gafni ([S]) show 
how to resynchronize any diDusing computation 
([20]), not only an end-to-end protocol. Al- 
though the task achieved by communicate is not 
exactly a diffusing computation, we can modify 
the algorithm of [6], by “piggybacking” acknowl- 
edgement information. The resulting implemen- 
tation requires 0( n3) messages and O(n2) time 
for each invocation of communicate. Thus, we 
have: 

Theorem 6.2 There exists a bounded emulator 
of an atomic, single-writer multi-reader register 
in an arbitrary network in the presence of link 
failures the do not disconnect a majority of the 
processors. Each execution of a read operation or 
a write operation requires O(n4) messages, each 
of size O(n3), and O(n2) time. 

7 Discussion and further re- 
search 

We have presented emulators of atomic, single- 
writer multi-reader registers in message-passing 
systems (networks), in the presence of proces- 
sor or link failures. In the complete network, in 
the presence of processor failures, each operation 
to the register requires O(n2) messages, each of 
size O(n3), and constant time. In an arbitrary 
network, in the presence of link failures, each op- 
eration to the register requires O(n*) messages, 
each of size O(n3), and O(n2) time. 

It is interesting to improve the complexity of 
the emulations, in either of the message-passing 
systems. Alternatively, it might be possible to 
prove lower bounds on the cost of such emula- 
tions. 

An interesting direction is to emulate stronger 
shared memory primitives in message-passing 
systems in the presence of failures. Any prim- 
itive that can be implemented from wait-free, 
atomic, single-writer multi-reader registers, can 
be also implemented in message-passing systems, 
using the emulators we have presented. This 
includes wait-free, atomic, multi-writer multi- 
reader registers, atomic snapshots, and many 
others. However, there are shared memory data- 
structures that cannot be implemented from 
wait-free, atomic, single-writer multi-reader reg- 
isters ([29]). S ome of these primitives, such as 
Read-Modify-Write, can be used to solve con- 
sensus ([29]), and thus any emulation of them 
in the presence of failures will imply a solution 
to consensus in the presence of failures. It is 
known ([28]) that consensus cannot be solved in 
asynchronous message-passing systems even in 
the presence of one failure. Thus, we need to 
strengthen the message-passing model in order 
to emulate primitive such as Read-Modify-Write. 
Additional power can be added to the message- 
passing model considered in this paper by, e.g., 
failure detection mechanisms or automatic ac- 
knowledgement mechanisms (cf. [26]). We leave 
all of this as a subject for future work. 

5Any improvement in the complexity of the end-to-end 
protocol will immediately result in an improvement to the 
complexity of our implementation. 
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