
Sharing Memory Robustly in Message-Passing Systems
(EXTENDED ABSTRACT)

Hagit Attiya* Amotz Bar-Noyt Danny Dolevz

Abstract

Emulators that translate algorithms from the shared-
memory model to two different message-passing mod-
els are presented. Both are achieved by implementing
a wait-free, atomic, single-writer multi-reader regis-
ter in unreliable, asynchronous networks. The two
message-passing models considered are a complete
network with processor failures and an arbitrary net-
work with dynamic link failures.

These results make it possible to view the shared-
memory model as a higher-level language for de-
signing algorithms in asynchronous distributed sys-
tems. Any wait-free algorithm based on atomic,
single-writer multi-reader registers can be automati-
cally emulated in message-passing systems. The over-
head introduced by these emulations is polynomial in
the number of processors in the systems.

Immediate new results are obtained by applying
the emulators to known shared-memory algorithms.

*Laboratory for Computer Science, MIT, Cambridge,
MA 02139. Supported by NSF grants CCR-8613442
and CCR-8915206, by ONR contract no N00014-85-K-
0168, and by DARPA contracts no N00014-83-K-0125 and
NOOO14-89-J-1988.

‘IBM T. J. Watson Research Center, P. 0. Box 704,
Yorktown Heights, NY 10598. Part of the work was done
while the author was at the Computer Science Depart-
ment, Stanford University, Stanford, CA 94305. Sup-
ported in part by a Weizmann fellowship, by contract
ONR N00014-88-K-0166 and a grant of Stanford’s Center
for Integrated Systems.

SIBM Almaden Research Center, 650 Harry Road, San
Jose, CA 95120, and the Computer Science Department,
Hebrew University, Jerusalem.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM-0-89791-404-X/90/0008/0363 $1.50
36

These include, among others, protocols to solve the
following problems in the message-passing model in
the presence of processor or link failures: multi-
writer multi-reader registers, concurrent time-stamp
systems, .&exclusion, atomic snapshots, randomized
consensus, and implementation of a class of data
structures.

1 Introduction

Two major interprocessor communication mod-
els in distributed systems have attracted much
attention and study: the shared-memory model
and the message-passing model. In the shared-
memory model, n processors communicate by

writing and reading to shared atomic registers.
In the message-passing model, n processors are
located at, the nodes of a network and commu-
nicate by sending messages over communication
links.

In both models we consider asynchronous un-
reliable systems in which failures may occur. In
the shared-memory model, processors may fail
by stopping (and a slow processor cannot be
distinguished from a failed processor). In the
message-passing model failures may occur in ei-
ther of two ways. In the complete network model,
processors may fail by stopping (without being
detected). In the arbitrary network model, links
fail and recover dynamically, possibly discon-
necting the network for some periods.

The design of fault-tolerant (or w&-free) algo-
rithms in either of these models is a delicate and
error-prone task. However, this task is somewhat
easier in shared-memory systems, where proces-

sors enjoy a more global view of the system. A

shared register guarantees that once a processor
reads a particular value, then, unless the value of
this register is changed by a write, every future
read of this register by any other processor will
obtain the same value. Furthermore, the value of
a shared register is always available, regardless of
processor slow-down or failure. These properties
permit us to ignore issues that must be addressed
in message-passing systems. For example, there
are discrepancies in the local views of different
processors that are not necessarily determined
by the relative order at which processors execute
their operations.

An interesting example is provided by the
problem of achieving randomized consensus.
Several solutions for this problem exist in the
message-passing model, e.g., [15, 18, 241, and in
the shared-memory model, e.g., [17, 1, 8, 111.
However, the algorithm of [8] is the first to have
polynomial expected running time and still over-
come an “omnipotent” adversary-one that has
access to the outcomes of local coin-flips. The
difficulty of overcoming messages’ asynchrony in
the message-passing model made it hard to come
up with algorithms that tolerate such omnipo-
tent adversary with polynomial expected run-
ning time.r

This paper presents emulators of shared-
memory systems in message-passing systems
(net works), in the presence of processor or link
failures. Any wait-free algorithm in the shared-
memory model that is based on atomic, single-
writer multi-reader registers can be emulated in
both message-passing models. The overhead for
the emulations is polynomial in the number of
processors. The complexity measures considered
are the number of messages and their size, the
time and the local memory size for each read or
write operation.

Thus, shared-memory systems may serve as a
“laboratory” for designing resilient algorithms.
Once a problem is solved in the shared-memory
model, it is automatically solved in the message-
passing model, and only optimization issues re-

1 The asynchronous message-passing algorithm of [25]
is resilient to Byzantine faults, but requires private com-
munication links and thus is not resilient to an omnipotent
adversary.

364

main to be addressed.
Among the immediate new results obtained

by applying the emulators to existing shared-
memory algorithms, are network protocols that
solve the following problems in the presence of
processor or link failures:

Atomic, multi-writer multi-reader registers
([35, 3311.

Concurrent time-stamp systems ([30, 231).

Variants of 4Lexclusion ([21, 16, 41)

Atomic snapshot scan ([2, 71).

Randomized consensus ([8, 11]).2

Implementation of a class of data structures

w-

First we introduce the basic communication
primitive which is used in our algorithms. We
then present an unbounded emulator for the com-
plete network in the presence of processor fail-
ures. This implementation exposes some of the
basic ideas underlying our constructions. More-
over, part of the correctness proof for this emula-
tor can be carried over to the other models. We
then describe the modifications needed in order
to obtain the bounded emulator for the complete
network in the presence of processor failures. Fi-
nally, we modify this emulator to work in an ar-
bitrary network in the presence of link failures.
We present two ways to do so. The first modi-
fication is based on replacing each physical link
of the complete network with a “virtual viable
link” using an end-to-end protocol ([5, 13, 61).
The second modification results in a more effi-
cient emulation. It is based on implementing our
communication primitive as a diffusing computa-
tion using the resynchronization technique of [6].

We consider systems that are completely asyn-
chronous since this enables us to isolate the
study from any model-dependent synchroniza-
tion assumptions. Although many “real” shared-
memory systems are at least partially syn-
chronous, asynchrony allows us to provide an

2This result also follows from the transformation of
c141.

abstract treatment of systems in which different
processors have different priorities.

Wait-free protocols in shared-memory systems
enable a processor to complete any operation re-
gardless of the speed of other processors. In
message-passing systems, it can be shown, fol-
lowing the proof in [lo], that for many problems
requiring global coordination, there is no solu-
tion that can prevail over a “strong” adversary-
an adversary that can stop a majority of the pro-
cessors or disconnect large portions of the net-
work. Such an adversary can cause two groups of
fewer than majority of the processors to operate
separately by suspending all the messages from
one group to the other. For many global coordi-
nation problems this leads to contradicting and
inconsistent operations by the two groups. As
mentioned in [lo], similar arguments show that
processors cannot halt after deciding. Thus, in
our emulators a processor which is disconnected
(permanently) from a majority of the processors
is considered faulty and is blocked.3 Our solu-
tions do not depend on connection with a spe-
cific majority at any time. Moreover, it might
be that at no time there exists a full connection
to any party. The only condition is that mes-
sages will eventually reach some majority which
will acknowledge them.

Although the difficult construction is the so-
lution in the complete network with bounded
size messages, the unbounded construction is not
straightforward. In both cases, to avoid prob-
lems resulting from processors having old val-
ues we attach time-stamps to the values writ-
ten by the writer. In the unbounded construc-
tion, the time-stamps are the integer numbers.
In the bounded construction, we use a nontriv-
ial method to let the writer keep track of old
time-stamps that are still in the system. This
allows us to employ a bounded sequential time-
stump system ([30]).

Some of the previous research on dynamic
networks (e.g., [27, 31) assumed a “grace pe-
riod” during which the network stabilizes for long
enough time in order to guarantee correctness.

Our results do not rely on the existence of such
a period, and follow the approach taken in, e.g.,
[34, 5, 13, 61.

There are two related studies on the rela-
tionships between shared-memory and message-
passing systems. Bar-Noy and Dolev ([14])
provide translations between protocols in the
shared-memory and the message-passing mod-
els. These translations apply only to protocols
that use a very restricted form of communica-
tion. Chor and Moscovici ([19]) present a hierar-
chy of resiliency for problems in shared-memory
systems and complete networks. They show that
the wait-free shared-memory model is not equiv-
alent to complete network, where up to half of
the processors may fail. This result does not
contradict our emulations since it is based on the
assumption that processors halt after deciding.

2 Preliminaries

In this section we discuss the models addressed
in this paper. Our definitions follow [31] for
shared-memory systems, [28] for complete net-
works with processor failures, and [13] for arbi-
trary networks with link failures. In all models
we consider, a system consists of n independent
and asynchronous processors, which we number
1 71. ,“‘,

A formal definition of an atomic, single-writer
multi-reader register can be found in [31], the
definition presented here is an equivalent one
(see [31, Proposition 31) which is simpler to use.
An atomic, single-writer multi-reader register is
an abstract data structure. Each register is ac-
cessed by two procedures, write,(u) which is ex-
ecuted only by some specific processor w, called
the writer, and read,(v) which may be executed
by any processor 1 5 r 5 n, called a reader. It
is assumed that the values of these procedures
satisfy the following two properties:

1. Every read operation returns either the last
value written or a value that is written con-
currently with this read.

3Such a processor will not be able to terminate its
operation but will never produce erroneous results.

2. If a read operation Rz started after a read
operation Rr has finished, then the value

365

Rz returns cannot be older than the value
returned by RI.

In message-passing systems, processors are lo-
cated at the nodes of a network and communicate
by sending messages along communication links.
Communication is completely asynchronous and
messages may incur an unknown delay. At each
atomic step, a processor may receive some set of
messages that were sent to it, perform some local
computation and send some messages.

In the complete network model we assume that
the network formed by the communication links
is complete, and that processors might be faulty.
A faulty processor simply stops operating. A
nonfaulty processor is one that takes an infinite
number of steps, and all of its messages are deliv-
ered after a finite delay. We assume that at most
]y] processors are faulty in any execution of
the system.

In dynamic networks communication links
might become non-viable. A link is non-viable, if,
starting from some message and on, it will not
deliver any further messages to the other end-
point. For those messages the delay is consid-
ered to be infinite. Otherwise, the link is vi-
able. This model is called the oo-delay model
in 151. Afek and Gafni ([5]) point out that the
standard model of dynamic message-passing sys-
tems, where communication links alternate be-
tween periods of operation and non-operation,
can be reduced to this model. A processor that
is permanently disconnected from [f] proces-
sors or more is considered faulty. We assume
there are [q] processors that are eventually in
the same connected component. Thus, at most
[YJ processors are faulty.

The complexity measures we consider are: (a)
The number of messages sent in an execution of
a write or read operation, (b) the size of the mes-
sages, ccl the time it takes to execute a write or
read operation, under the assumption that any
message is either delivered within one time unit,
or never at all (cf. [12]), and (d) the amount of
the overhead local memory used by a processor.
In all cases we are interested in the worst case
complexity.

3 Procedure communicate

In this section we present the basic primitive
used for communication in our algorithms, called
communicate. This primitive operates in com-
plete networks. It enables a processor to send
a message and get acknowledgements (possibly
carrying some information) from a majority of
the processors.

Because of possible processors’ crash failures,
a processor cannot wait for acknowledgements
from all the other processors or from any par-
ticular processor. However, at least a majority
of the processors will not crash and thus a pro-
cessor can wait to get acknowledgements from
them. Notice that processors want to commu-
nicate with any majority of the processors, not
necessarily the same majority each time. A pro-
cessor utilizes the primitive to broadcast a mes-
sage (M) to all the processors and then to collect
a corresponding (ACK) message from a major-
ity of them. In some cases, information will be
added to the (ACK) messages.

For simplicity, we assume that each edge (i, j)
is composed of two distinct “virtual” directed
edges (i, j} and (j, i). The communication on
(i, j) is independent of the communication on
(j, +

Procedure communicate uses a simple ping-
pong mechanism. This mechanism ensures FIFO
communication on each directed link in the net-
work, and guarantees that at any time only one
message is in transit on each link. Informally,
this is achieved by the following rule: i sends the
first message on (i, i> and then i and j alternate
turns in sending further messages and acknowl-
edgements on (i, j) .

For simplicity, a processor sends each message
also to itself and responds with the appropriate
acknowledgement.

Procedure communicate gets as an input a
message M and returns as an output a vector
info, of length 12. The jth entry in this vector
contains information received with j’s acknowl-
edgement (or 1. if no acknowledgement was re-
ceived from j). The precise code of the pro-
cedure is omitted from this version. We note
that whenever this procedure is employed we

366

also specify its companion procedure, ack, which
specifies the information sent with the acknowl-
edgement for each message and the local com-
putation triggered by receiving a particular mes-
sage.

The ping-pong mechanism guarantees the fol-
lowing two properties of the communicate proce-
dure. First, the acknowledgements stored in the
output vector info were indeed sent as acknowl-
edgements to the message M, and, in particular,
at least 191 processors received the message
M. Second, the number of messages sent during
each execution of the procedure is at most 2n.
Also, it is not hard to see that the procedure ter-
minates under our assumptions. The next lemma
summarizes the properties and the complexity of
procedure communicate.

Lemma 3.1 The following all hold for each ex-
ecution of procedure communicate by processor i
with the message (AI):

I.

2.

3.

4

5.

4

if i is connected to at least a majority of the
processors then the execution terminates,

at least [VI processors receive (M) and
return the corresponding acknowledgement,

at most 2n messages are sent during this ex-
ecution,

the procedure terminates after at most two
time units, and

the site of i’s local memory is O(n) times
the size of the acknowledgements to (M).

The unbounded implemen-
tation - complete network

Informally, in order to write a new value, the
writer executes communicate to send its new
value to a majority of the processors. It com-
pletes the write operation only after receiving
acknowledgements from a majority of the proces-
sors. In order to read a value, the reader sends
a request to all processors and gets in return the

latest values known to a majority of the proces-
sors (using communicate). Then it adopts (re-
turns) the maximal among them. Before finish-
ing the read operation, the reader announces the
value it intends to adopt to at least a majority
of the processors (again by using communicate).

The writer appends a label to every new value
it writes. In the unbotinded implementation this
is an integer. For simplicity, we ignore the value
itself and identify it with the label.

Processor i stores in its local memory a vari-
able val;, holding the most recent value of the
register known to i. This value may be acquired
either during i’s read operations, from messages
sent during other processors’ read operations, or
directly from the writer. In addition, i holds a
vector of length n of the most recent values of
the register sent to i by other processors.

In the implementation, there are three proce-
dures: read for the reader, write for the writer,
and ack, used by all processors to respond to
messages. These procedures utilize six types of
messages, arranged in three pairs, each consist-
ing of a message and a corresponding acknowl-
edgement .

1. The pair of write messages.

(W, val): sent by the writer in order to
write ual in its register.

(A CK- w) : the corresponding acknowledge-
ment .

2. The first pair of read messages.

(RI): sent by the reader to request the re-
cent value of the writer.

(val): the corresponding acknowledgement,
contains the sender’s most updated
value of the register.

3. The second pair of read messages.

(&, val): sent by the reader before termi-
nating in order to announce that it is
going to return val as the value of the
register.

(A CK-Rz) : the corresponding acknowledg-
ement .

367

Procedure readi{ ml;); (* executed by processor 8’ and returns uali *)
communicate((R1), info);
Vali := mw~j~,{W(j) I info(j) #Q;
communicate((R2, vUli), void);

end procedure readi ;

Procedure write, ; (* for the writer w *)
val, := val, + 1; (* the new value of the register *)
communicate((W, val,), void);

end procedure write,;

Procedure ackj ; (* executed by processor j *)
case received from UJ

(W, Vd,): Vdj := max{val,, Valj) ;
send (A CK- W) to w;

case received from i
(RI): send (valj) to i;
(RB , di): t&j := max(val;, ?lUlj) ;

send (A CK-Rz) to i;
end procedure ackj ;

Figure 1: The read, write and ack procedures of the unbounded emulator.

The descriptions of procedures write, read and
ack appear in Figure 1. Procedure ack instructs
each processor what to do upon receiving a mes-
sage (as explained in Section 3). We use ooid
to emphsis that the information sent with the
acknowledgements to a particular message is ig-
nored. Since communication is done only by
communicate, Lemma 3.1 (part 1) implies:

Lemma 4.1 Each execution of a read operation
or a write operation terminates.

The value contained in the first write message
and the second read message is called the value
communicuted by the communicate procedure ex-
ecution. The maximum value among the values
contained in the acknowledgements of the first
read message is called the value acknowledged by
the communicated procedure execution. The fol-
lowing lemma deals with the ordering of these
values, and is the crux of the correctness proof.

Lemma 4.2 Assume a communicate procedure
execution Cl communicated x, and a communi-

cate procedure execution Cz acknowledged y. As-

368

sume that Cl has completed before Cz has started.
Then x < y.

Since a write operation completes only after its
communicate procedure completes, Lemma 4.2
implies:

Lemma 4.3 Assume a: read operation, 72, re-
turns the value y. Then y is either the value of
the last write operation that was completed before
R started or it is the value of a concurrent write
operation.

In a similar manner, since a read operation
completes only after its second execution of com-

municate is completed, Lemma 4.2 implies:

Lemma 4.4 Assume some read operation, 721,
returns the value x, and that another read opera-
tion, 722, that started after RI completed, returns
y. Then x < y.

The next theorem summarizes the above dis-
cussion. The complexity propositions follow
from Lemma 3.1 (parts 3 and 41, since proces-
sors communicate only by using the communicate

procedure.

Theorem 4.5 There exists an unbounded emu-
lator of an atomic, single-writer multi-reader reg-
ister in a complete network, in the presence of at
most [YJ processor failures. Each execution
of a read operation or a write operation requires
O(n) messages and O(l) time.

5 The bounded implementa-
tion - complete network

5.1 Informal Description

The only source of unboundedness in the above
emulation is the integer labels utilized by the
writer. In order to eliminate this, we use an idea
which was employed previously in 130, 131. The
integer labels are replaced by bounded sequential
time-stamp system ([30]), which is a finite do-
main L of label values together with a total order
relation +. Whenever the writer needs a new la-
bel it produces a new one, larger (with respect to
the 4 order) than all the labels that exist in the
system. Thus, instead of just adding one to the
label, as in the unbounded emulation, here the
writer invokes a special procedure called LABEL.

The input for this procedure is a set of labels and
the output is a new label which is greater than all
the labels in this set. This can be achieved by the
constructions presented in [30, 221 for bounded
sequential time-stamp systems.

The main difficulty in carrying this idea over to
the message-passing model is in maintaining the
set of labels existing in the system, a task which
need not be addressed in the shared-memory
model (cf. [30, 321). Notice that in order to as-
sure correctness, it suffices to guarantee that the
set of labels that exist in the system is contained
in the input set of labels of procedure LABEL.
The key idea is as follows.

Whenever a processor adopts a label (as the
maximum value of the writer it knows about), it
records this fact in the system. This is done by
broadcasting an appropriate message and wait-
ing for acknowledgements from a majority of the
processors (using communicate). Upon receiving
a recording message, a processor stores the in-
formation it contains in its local memory, but

ignores the values it carries. This process guar-
antees that labels do not get lost as a majority
of the processors have recorded them.

To avoid inconsistencies that might occur, a
processor blocks all computation that is related
to new labels during the recording process. It
does not adopt new labels and does not send non-
recording messages colitaining new labels. An in-
dependent ping-pong mechanism is employed for
each type of messages, e.g., i may send a record-
ing message to j although j did not acknowledge
a read message of i. Since recording messages do
not cause a processor to adopt a label, deadlock
is avoided.

5.2 Data Structures and Messages

To implement the recording process, each proces-
sor i maintains an n x n matrix L; of labels. The
ith row vector L;(i) is updated dynamically by i
according to messages i sends. The jth row vec-
tor L;(j) is updated by the messages i receives
from j during a recording process initiated by j.
Each entry, L;(i, k), is composed of two fields:
sent and ack. The field Li(i, Ic).sent contains the
last label i sent to k and the field Li(i, k).ack is
the last label i sent to k as an acknowledgement
to a read request of k. In particular, L;(i, i) is the
current maximum label of the writer known to i.
The writer starts each write operation by obtain-
ing from a majority of the processors their most
updated values for the matrix L (using commu-

nicate). The union of the labels that appear in
its own matrix and these matrices is the input to
procedure LABEL.

Procedures read and write use five pairs of mes-
sages and corresponding acknowledgements.

1. The first pair of write messages.

(WI): sent by the writer at the beginning
of its operation in order to collect in-
formation about existing labels.

(L) : the corresponding acknowledgement, L
is the sender’s updated value of the la-
bels’ matrix.

2. The second pair of write messages, (Ws, val)
and (ACK- Wz), the first pair of read mes-
sages, (RI) and (val), and the second pair

369

of read messages, (Rs, val) and (ACK-Rp),
are the same as the corresponding messages
in the unbounded algorithm.

3. The pair of recording messages.

(REC, L(i)): before adopting any new
value for the register, processor i sends
Li(i) to other processors. The vector
L;(i) contains this new value and all
the recent values that i sent on its links
to other processors.

(A CK-REC): the corresponding acknowled-
gement .

Let Y denote the number of bits needed to
represent any label value from C (Y = log IL[).
Since the longest message is (L), it follows that
the maximum size of a message is 0(n2 . Y). Re-
call that during the recording process, processors
do not reply to nonrecording messages. There-
fore, messages are accumulated in the local mem-
ory of the processor and are ordered in a queue.
As soon as the recording process ends, the pro-
cessor first handles the messages on the queue.4
Due to the ping-pong mechanism the length of
this queue is at most O(n). Hence, the size of
the local memory is at most O(n3 . V).

5.3 The Algorithm

The pseudo-code for the algorithm appears in
Figure 2. Procedure update and the first part
of procedure recording update dynamically the
vector L;(i). Therefore, in procedure read, it is
enough to take val; as L;(i, i). The flag blocked
is set to true during the recording process and
prevents the processor from receiving or sending
some messages as described in procedure ack. As
mentioned before, in order to prevent deadlocks
a separate ping-pong mechanism is employed for
each type of message. In order to distinguish
between the different mechanisms, calls to com-
municate are subscripted with the message type.

‘The details of how this queue is handled are omitted.

370

5.4 Correctness and Complexity

Atomicity of the bounded emulator follow from
the same reasoning as in the unbounded case
(Lemma 4.3 and Lemma 4.4). The following
lemma is the core of the correctness proof for the
bounded emulator-it assures that the writer al-
ways obtain a superset of the labels that might
be adopted as the register’s value by some pro-
cessor. We call a label z viable, if in some system
state, at some possible extension from this state,
for some processor i, val; = 2. Intuitively, a
viable label is held by some processor as the cur-
rent register’s value or it will become the current
register’s value for some processor.

Lemma 5.1 Each viable label is stored either in
the writer matrix or in the matrices of at least a
majority of the processors.

Proof: We say that processor i is responsible
for label 2, if x is stored in L;(i), i.e., if either
L;(i, i) = x, Li(i,j).sent = x or &(i,j).ack = x.
We first claim that for any viable label there ex-
ists a processor that is responsible for it. Assume
that z is a label that is held by i as the current
register’s value, then by the code of the algorithm
Li(i, i) = z and by definition i is responsible for
x. Assume x will become the current register’s
value for processor j in the future, then it must
be that some processor i has sent it to j (either
by R2 (Wz) messages of i or in response to an
Ri request message by j) thus x E Li(i,j).

Now assume that i is responsible for x. Look
at a simple path on which the label z has arrived
at i, i.e., a sequence ie, ir,. . . , i,, where ie is the
writer and i, = i. In this sequence, for any l,
1 < e 5 m, processor ie adopted z as a result of
a message from it-r.

The claim is proved by induction on m, the
length of this path. The base case, m = 0, occurs
when i is the writer. Then the codes of proce-
dures update and write imply that x is stored in
i’s matrix. For the induction step, assume that
m > 0, and that the induction hypothesis holds
for any e, 0 5 J? < m. We have two cases.
Case 1: Processor i has not finished the record-
ing process for 5. It follows from the code of
procedure recording that L;(i,i) = x. We show

Procedure readi ; (* executed by processor i and returns vu4 *)
communicatefi((R1), irafo) ;

VUli := I;&, i) ;
communicateR((& , v&i), void) ;

end procedure readi ;

Procedure write, ; (* for the writer w *)
communicatew((WI), L) ;
&,(w, w) := LABEL(UL) ; (* all the non-empty entries in L *)
communicatew((Wz, &(w, w)), void) ;

end procedure write,;

Procedure recording; ; (* executed by processor i *)
upon receiving new label 2 > Li(i, i):

blocked := true ;
L;(i, i) := t;
communicate~~~((REC, Lj(i)), void) ;

blocked := false ;
end procedure recordingi ;

Procedure updatei ; (* executed by processor i *)
upon sending label z to j in i’s read operation:
Li(i, j).sent := 2 ;
upon sending label z to j in j’s read operation:
Li(i, j).ack := z ;

end procedure updatei ;

Procedure acki; (* executed by processor j *)
case received from w

(Wr): send (Lj) to W;

(wz, v&J): if ml,,, > Lj (j, J’) then wait until blocked = false ;
send (ACK- W2) to w ;

case received from i

(Ri): wait until blocked = false ;
send (+Cj(j,j)) to i;

(Rz, vali): if vali > Li(j, j) then wait until blocked = false ;
send (ACK-Be) to i;

(REC,Li(i)): Lj(i) := Li(i) ;
send (ACK-REC) to i;

end procedure ackj;

Figure 2: The read, write, recording, update and ack procedures of the bounded emulator.

371

that k = i,-r is responsible for x, and the lemma
follows from the induction hypothesis.

If i received x from Ic through an Rz (Wz)
message, then since i is blocked during the
recording process it would not reply until the
recording process of z is done. Consequently,
L,(k, i).sent = 2.

If i received x from k through an A CK-RI mes-
sage, then since i would not terminate a read op-
eration until it finishes the recording process of
z, it would not start a new read operation. Con-
sequently, Lk(k, i).ack = x.
Case 2: Processor i has finished the recording
process for x. If Li(i,i) = x, i.e., 2 is still the
current value that i holds, then the code for pro-
cedure record, and the properties of procedure
communicate (Lemma 3.1, part 2) imply that x
is stored in the matrices of at least a majority of
the processors.

If L;(i, i) # 3, then since i is responsible for x
there must exist a j such that z E L;(i, j). Fur-
thermore, since i has a more recent value for the
register it must be that &(i,i) = y > z. By the
code for procedure recording and the properties
of procedure communicate (Lemma 3.1), at the
end of the recording process for 2, x is stored
as L(i, i) in the matrices of at least a majority
of the processors. Let k be some processor that
recorded z for i, i.e., such that Lk(i,i) = x at
the end of the recording process for x.

If currently, Lk(i,i) = z # x then it must be
that z 4 Z. Since forwarding a new value is
blocked during the recording process, it must be
that z was sent by i to i before the recording
process for z started. Thus 2 E L;(i,j) during
the recording process for Z, and consequently 5 E
Lk(i, j). Therefore, x appears in the matrices of
a majority of the processors. n

Lemma 5.1 and the constructions of bounded
sequential time-stamp systems of [30, 221 imply:

Corollary 5.2 The new label generated by pro-
cedure LABEL is greater than any viable label in
the system.

Recording messages are acknowledged imme-
diately and are never blocked. Thus, a processor

never deadlocks during a recording process and
will eventually acknowledge all the messages it
receives. The next lemma follows since during a
read or a write operation, at most 2n recording
processes could occur.

Lemma 5.3 Each execution of a read operation
or a write operation terminates.

Each acknowledgement the reader receives
might cause it to initiate a recording process. By
Lemma 3.1, part 3, at most 2n messages are sent
during each of these recording processes. In addi-
tion, each message of type IV2 or &. might cause
other processors to initiate a recording process.
Thus, at most O(n2) messages are sent during
each execution of an operation, and it takes at
most O(l) time units.

The constructions of bounded sequential time-
stamp system ([30,22]) imply that a label can be
represented using Q(n) bits. The next theorem
summarizes the above discussion.

Theorem 5.4 There exists a bounded emulator
of an atomic, single-writer multi-reader regis-

ter in a complete network, in the presence of at

most -
L 1
9 processor failures. Each execution

of a read operation or a write operation requires
O(n2) messages each of size O(n3), O(1) time,
and O(n4) 1ocaZ memory.

6 The bounded implementa-
tion - arbitrary network

In an arbitrary network a processor is considered
faulty if it cannot communicate with a major-
ity of the processors, and a correctly function-
ing processor is guaranteed to be eventually in
the same connected component with a majority
of the processors. The first construction in this
section is achieved by replacing every send op-
eration from i to j by an execution of an end-to-
end protocol between i and j. Implementations
of such a protocol are known (see [5, 13, 61). An
end-to-end protocol establishes traffic between i
and j if there is eventually a path between them.
In our case, eventually there will be a path be-
tween any nonfaulty processor and a majority of

372

the processors, thus the system behaves as in the
case of complete network with processor failures.

Note that there are labels in the system that
will not appear in the input of procedure LABEL.
However, these are not viable labels because the
end-to-end protocol will prevent processors from
adopting them as the writer’s label and hence
correctness is preserved.

The complexity claims in the next theorem are
implied by the end-to-end protocol of [6].5

Theorem 6.1 There exists a bounded emaZutor
of an atomic, single-writer multi-reader register
in an arbitrary network in the presence of link
failures the do not disconnect a majority of the
processors. Each execution of a read operation or
a write operation requires O(n5) messages, each
of size O(n3), and O(n2) time.

Instead of implementing each virtual link sep-
arately we can achieve improved performance by
implementing communicate directly. We make
use of the fact that Afek and Gafni ([S]) show
how to resynchronize any diDusing computation
([20]), not only an end-to-end protocol. Al-
though the task achieved by communicate is not
exactly a diffusing computation, we can modify
the algorithm of [6], by “piggybacking” acknowl-
edgement information. The resulting implemen-
tation requires 0(n3) messages and O(n2) time
for each invocation of communicate. Thus, we
have:

Theorem 6.2 There exists a bounded emulator
of an atomic, single-writer multi-reader register
in an arbitrary network in the presence of link
failures the do not disconnect a majority of the
processors. Each execution of a read operation or
a write operation requires O(n4) messages, each
of size O(n3), and O(n2) time.

7 Discussion and further re-
search

We have presented emulators of atomic, single-
writer multi-reader registers in message-passing
systems (networks), in the presence of proces-
sor or link failures. In the complete network, in
the presence of processor failures, each operation
to the register requires O(n2) messages, each of
size O(n3), and constant time. In an arbitrary
network, in the presence of link failures, each op-
eration to the register requires O(n*) messages,
each of size O(n3), and O(n2) time.

It is interesting to improve the complexity of
the emulations, in either of the message-passing
systems. Alternatively, it might be possible to
prove lower bounds on the cost of such emula-
tions.

An interesting direction is to emulate stronger
shared memory primitives in message-passing
systems in the presence of failures. Any prim-
itive that can be implemented from wait-free,
atomic, single-writer multi-reader registers, can
be also implemented in message-passing systems,
using the emulators we have presented. This
includes wait-free, atomic, multi-writer multi-
reader registers, atomic snapshots, and many
others. However, there are shared memory data-
structures that cannot be implemented from
wait-free, atomic, single-writer multi-reader reg-
isters ([29]). S ome of these primitives, such as
Read-Modify-Write, can be used to solve con-
sensus ([29]), and thus any emulation of them
in the presence of failures will imply a solution
to consensus in the presence of failures. It is
known ([28]) that consensus cannot be solved in
asynchronous message-passing systems even in
the presence of one failure. Thus, we need to
strengthen the message-passing model in order
to emulate primitive such as Read-Modify-Write.
Additional power can be added to the message-
passing model considered in this paper by, e.g.,
failure detection mechanisms or automatic ac-
knowledgement mechanisms (cf. [26]). We leave
all of this as a subject for future work.

5Any improvement in the complexity of the end-to-end
protocol will immediately result in an improvement to the
complexity of our implementation.

373

Acknowledgements:

We would like to thank Baruch Awerbuch and
Yishay Mansour for helpful discussions.

References

PI

PI

PI

PI

P31

PI

PI

PI

WI

WI

K. Abrahamson, On Achieving Consensus Us-
ing a Shared Memory, Proc. 7th ACM Symp.
on Principles of Dist. Computing, pp. 291-302,
1988.

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Mer-
ritt and N. Shavit, Atomic Snapshots of Shared
Memory, to appear, Proc. 9th ACM Symp. on
Principles of Distr. Computing, 1990.

Y. Afek, B. Awerbuch and E. Gafni, Apply-
ing Static Network Protocols to Dynamic Net-
works, Proc. 28th IEEE Symp. on Foundations
of Comp. Science, pp. 358-369, 1987.

Y. Afek, D. Dolev, E. Gafni, M. Merritt
and N. Shavit, A Bounded First-In First-
Enabled-Solution to the &Exclusion Problem,
manuscript.

Y. Afek and E. Gafni, End-to-End Communi-
cation in Unreliable Networks, Proc. 7th ACM
Symp. on Principles of Dist. Computing, pp.
131-147,1983.

Y. Afek and E. Gafni, Bootstrap Network Resyn-
chronization: An Efficient Technique for End-to
End Communication, manuscript.

J. H. Anderson, Composite Registers, to appear
in Proc. 9th ACM Symp. on Principles of Distr.
Computing, 1990.

J. Aspnes and M. Herlihy, Fast Randomized
Consensus Using Shared Memory, Journal of Al-
gorithms, September 1990, to appear.

J. Aspnes and M. P. Herlihy, Wait-Free Data
Structures in the Asynchronous PRAM model,
to appear in Proc. 2nd ACM Symp. on Parallel
Algorithms and Architectures, July 1990, Crete,
Greece.

H. Attiya, A. Bar-Noy, D. Dolev, D. Koller, D.
Peleg and R. Reischuk, Achievable Cases in an
Asynchronous Environment, Proc. 28th IEEE
Symp. on Foundations of Comp. Science, pp.
337-346,1987.

H. Attiya, D. Dolev and N. Shavit, Bounded
Polynomial Randomized Consensus, Proc, 8th
ACM Symp. on Principles of Dist. Computing,
pp. 281-293,1989.

374

WI

P31

[141

PI

[161

P71

WI

WI

WI

L91

PI

WI

B. Awerbuch, Optimal Distributed Algorithms
for Minimum Weight Spanning Tree, Counting,
Leader Election and Related Problems, Proc.
19th ACM Symp. OR Theory of Computing, pp.
230-240,1987.

B. Awerbuch, Y. Mansour and N. Shavit, Poly-
nomial End-To-End Communication, Proc. 30th
IEEE Symp. on Foundations of Comp. Science,
pp. 358-363, 1989.

A. Bar-Noy and D. Dolev, Shared-Memory
vs. Message-Passing in an Asynchronous Dis-
tributed Environment, Proc. 8th ACM Symp.
on Principles of Dist. Computing, pp. 307-318,
1989.

M. Ben-Or, Another Advantage of Free Choice:
Completely Asynchronous Agreement Protocols,
Proc. 2nd ACM Symp. on Principles of Dist.
Computing, pp. 27-30, 1983.

J. E. Burns and G. L. Peterson, The Ambiguity
of Choosing, Proc. 8th ACM Symp. on Principles
0fDist. Computing, pp. 145-157,1989.

B. Chor, A. Israeli and M. Li, On Processor Co-
ordination Using Asynchronous Hardware, Proc.
6th ACM Symp. on Principles of Dist. Comput-
ing, pp. 86-97, 1987.

B. Chor, M. Merritt and D. Shmoys, Simple
Constant-Time Consensus Protocols in Realistic
Failure Models, Proc. 4th ACM Symp. on Prin-
ciples of Dist. Computing, pp. 152-160, 1985.

B. Chor and L. Moscovici, Solvability in Asyn-
chronous Environments, Proc. 30th IEEE Symp.
on Foundations of Comp. Science, pp. 422-427,
1989.

E. W. Dijkstra and C. S. Scholten, Termination
Detection for Diffusing Computations, Informa-
tion Processing Letters, Vol. 1, No. 1, pp. l-4,
August 1980.

D. Dolev, E. Gafni and N. Shavit, Toward a Non-
Atomic Era: e-Exclusion as a Test Case, Proc.
29th ACM Symp. on Theory of Computation,
pp. 78-92,1988.

D. Dolev and N. Shavit, unpublished manu-
script, July 1987. Appears in [13].

D. Dolev and N. Shavit, Bounded Concurrent
Time-Stamp Systems are Constructible, Proc.
21st ACM Symp. on Theory of Computing, pp.
454-466,1989.

[24] C. Dwork, D. Shmoys and L. Stockmeyer, Flip-
ping Persuasively in Constant Expected Time,
Proc. 27th IEEE Symp. on Foundations of Com-
puter Science, pp. 222-232, 1986.

[25] P. Feldman, private communication.

[26] J. A. Feldman and A. Nigam, A Model and Proof
Technique for Message-Based Systems, SIAM J.
on Computing, Vol. 9, No. 4 (November 1980),
pp. 768-784.

[27] S. G. Finn, Resynch Procedures and a Fail-Safe
Network Protocol, IEEE Trans. Comm., COM-
27 pp. 840-845,1979.

1281 M. J. Fischer, N. A. Lynch and M.S. Paterson,
Impossibility of Distributed Consensus with one
Faulty Processor, Journal of the ACM, Vol. 32,
pp. 374-382,1985.

[29] M. P. Herlihy, Impossibility and Universality Re-
sults for Wait-Free Synchronization, in Proc. 7th
ACM Symposium on Principles of Distributed
Computing, pages 276-290, August 1988.

[30] A. Israeli and M. Li, Bounded Time-stamps,
Proc. 28th IEEE Symp. on Foundations of
Comp. Science, pp. 371-382, 1987.

[31] L. Lamport, On Interprocess Communication,
Part I and II, Distributed Computing, Vol. 1,
No. 2, pp. 77-101, 1986.

[32] M. Li, J. Tromp and P. Vitanyi, How to Share
Concurrent Wait-Free Variables, Report CS-
R8916, CWI, Amsterdam, April 1989. Earlier
version in Proc. 16th International Cal. on Au-
tomata, Languages ad Programming, Lecture
Notes in Computer Science #372, pp, 488-505,
1989.

[33] G. L. Peterson and James E. Burns, Concur-
rent Reading While Writing II: The Multi-writer
Case, Proc. 28th IEEE Symp. on Foundations of
Comp. Science, pp. 383-392,1987.

1341 U. Vishkin, A Distributed Orientation Algo-
rithm, IEEE Trans. on Information Theory,
June 1983.

[35] P. Vitanyi and B. Awerbuch, Atomic Shared
Register Access by Asynchronous Hardware,
Proc. 27th IEEE Symp. on Foundations of
Comp. Science, pp. 233-243, 1986.

375

