Efficiently Verifiable Conditions for
Deadlock-freedom of Large Concurrent
Programs (Extended Abstract)

Paul C. Attie! 2 and Hana Chockler? 3

! College of Computer Science, Northeastern University,
360 Huntington Avenue, Boston, Massachusetts 02115.
attie@ccs.neu.edu, hanac@ccs.neu.edu
2 MIT CSAIL, 32 Vassar street,

Cambridge, MA, 02139, USA.
attie@theory.csail.mit.edu, hanac@theory.lcs.mit.edu
3 Department of Computer Science, WPI,

100 Institute Road, Worcester, MA 01609, USA.

Abstract. We present two polynomial-time algorithms for automatic
verification of deadlock-freedom of large finite-state concurrent programs.
We consider shared-memory concurrent programs in which a process
can nondeterministically choose amongst several (enabled) actions at
any step. As shown in [23], deadlock-freedom analysis is NP-hard even
for concurrent programs of restricted form (no nondeterministic choice).
Therefore, research in this area concentrates either on the search for
efficiently checkable sufficient conditions for deadlock-freedom, or on im-
proving the complexity of the check in some special cases. In this paper,
we present two efficiently checkable sufficient conditions for deadlock
freedom.

Our algorithms apply to programs which are expressed in a particular
syntactic form, in which variables are shared between pairs of processes.
The first algorithm improves the complexity of the deadlock check of At-
tie and Emerson [4] to polynomial in all parameters, as opposed to the
exponential complexity of [4]. The second algorithm involves a concep-
tually new construction of a “global wait-for graph” for all processes. Its
running time is also polynomial in all its parameters, and it is more dis-
criminating than the first algorithm. We illustrate our algorithms by ap-
plying them to several examples of concurrent programs that implement
resource allocation and priority queues. To the best of our knowledge,
this is the first work that describes polynomially checkable conditions for
assuring deadlock freedom of large concurrent programs.

1 Introduction

One of the important correctness properties of concurrent programs is the ab-
sence of deadlocks, e.g. as defined in [28]: “a set of processes is deadlocked if
each process in the set is waiting for an event that only another process in the
set can cause.” Most approaches to deadlock assume that the “event” that each
process waits for is the release of a resource held by another process. We refer to

this setting as the resource allocation setting. Four conditions are necessary for
a deadlock to arise [10,20]: (1) resources can be held by at most one process; (2)
processes can hold some resources while waiting to acquire several (more than
1, in general) others; (3) resources cannot be taken away from a process (no pre-
emption); and (4) a cyclical pattern of waiting amongst the involved processes.
The exact pattern of waiting required to cause a deadlock depends on the spe-
cific resource model, and can be depicted in terms of a wait-for-graph (WFG):
a graph whose edges depict the “wait-for” relationships between processes. The
following models have been formulated [22]: (1) AND model: a process blocks iff
one or more of the resources it has requested are unavailable; (2) OR model: a
process blocks iff all of the resources it has requested are unavailable; (3) AND-
OR model: a process can use any combination of AND and OR operators in
specifying a resource request; and (4) k-out-of-n: a process requests any k re-
sources out of a pool of n resources. For the AND-model, deadlock arises if the
WEFG contains a cycle. For the OR-model, deadlock arises if the WFG contains
a knot, i.e., a set of processes each of which can reach exactly all the others
by traversing wait-for edges. To our knowledge, no graph-theoretic construct
characterizing deadlock in the AND-OR or the k-out-of-n models is known [22].

In this paper, we address a version of the deadlock problem that is more
general than the resource-based model. We consider the deadlock problem in the
case that the event which each process waits for is the truthification of a predicate
over shared state. Thus, we deal with a shared variables model of concurrency.
However, our approach is applicable in principle to other models such as message
passing or shared events. We exploit the representation of concurrent programs
in a form where the synchronization between processes can be factored out, so
that the synchronization code for each pair of interacting processes is expressed
separately from that for other pairs, even for two pairs that have a process in
common. This “pairwise” representation was introduced in [4], where it was used
to synthesize programs efficiently from CTL specifications.

Traditionally, three approaches to dealing with deadlock have been investi-
gated: (1) deadlock detection and recovery: since a deadlock is stable, by defi-
nition, it can be detected and then broken, e.g., by the preemption, rollback, or
termination of an involved process. (2) deadlock avoidance: avert the occurrence
of a deadlock by taking appropriate action. Deadlock avoidance algorithms have
been devised for the resource-based formulation of deadlock [28], (3) deadlock
prevention: prevent a deadlock from arising by design. In particular, attempt to
negate one of the four conditions mentioned above for the occurrence of dead-
lock. As Tanenbaum [28] observes, attempting to negate any of the first three
conditions is usually impractical, and so we are left with condition (4): a cyclical
pattern of waiting.

Related work As shown in [23], deciding the deadlock-freedom of a finite-state
concurrent program is NP-hard even for constrained programs in which each
process consists of a finite prefix followed by an infinite loop.

Most model checking algorithms can be applied to verifying deadlock free-
dom. The main impediment is state-explosion. Some approaches to ameliorating

state-explosion are to use a partial order instead of an interleaving model [16-18,
26], using symbolic model checking [21,7, 8, 25] or by using symmetry reductions
[2,9,13,14]. These approaches, however, have worst case running time exponen-
tial in the number of processes in a system, and often rely on the processes being
similar. (Roughly, two processes are similar if the code for one can be obtained
from the code for the other by replacing process indices). Our first algorithm has
better accuracy (i.e., returns a positive answer for deadlock-free programs) when
processes are similar, but our second algorithm does not depend on similarity in
any way.

In [1,19] sufficient conditions for verifying deadlock-freedom are given, but it
is not shown that these can be evaluated in polynomial time. Also, no example
applications are given.

Attie and Emerson [4] formulate a condition that is sufficient but not nec-
essary for deadlock-freedom. Checking this condition requires the construction
of the automata-theoretic product of n + 2 processes, where n is the maximum
branching degree of a state-node in a state-transition graph that represents the
behavior of processes (essentially, n reflects the degree of “local” nondeterminism
of a single process in a state). The n+2 processes are arranged in a “star” config-
uration with a central process P, and n + 1 “satellite” processes. The condition
is that after every transition of Py, either Py does not block another process, or
Py, has another enabled transition. Hence Pj, cannot be part of a cyclical waiting
pattern in either case. Since this product has size exponential in n, checking the
condition is infeasible for concurrent programs that have a high degree of local
nondeterminism. While the condition in [4] is formulated for systems of similar
(isomorphic) processes, the restriction to similar processes does not play any role
in the proof of correctness given in [4], and thus can be removed.

Our Contribution In this paper we follow the approach of [4] to deadlock pre-
vention. We present two sufficient conditions for assuring deadlock freedom and
describe efficient (polynomial time) algorithms for checking these conditions.
The first condition is a modification of the condition presented in [4], but can
be checked by constructing the product of only three processes (triple-systems).
Roughly, the idea is to check the condition “after a transition, Pj either does
not block another process, or is itself enabled” in systems of only three pro-
cesses. We show that this implies the original condition of [4], and so implies
deadlock-freedom by the results of that paper. Since only triple-systems are
model-checked, the condition can be checked in time polynomial in all the in-
put parameters: the number of processes, the size of a single process, and the
branching degree of state-nodes of a process. Moreover, the space complexity
of the check is polynomial in the size of a single process, and the checks for
all triples can be performed sequentially, thus memory can be reused. Therefore,
this condition can be efficiently checked even on very large concurrent programs.
The second condition is more complex and also more discriminating. This
condition is based on constructing the “global wait-for graph,” a bipartite graph
whose nodes are the local states of all processes, and also the possible transi-
tions that each process can execute. The edges of this graph represent “pairwise

wait-for” conditions: if in the system consisting of P; and P; executing their syn-
chronization code in isolation (pair-system), there is a transition a; of P; that is
blocked in some state where the local state of P; is s;, then there is an edge from
a; to s;. Since only pair-systems need be checked, the global wait-for-graph can
be constructed in polynomial time. Existence of a deadlock implies the existence
of a subgraph of the global wait-for-graph in which every process is blocked by
some other processes in the subgraph. We call such a subgraph a supercycle and
define it formally in the sequel. One could check the global wait-for-graph for
the occurrence of supercycles, but the results of [23] imply that this cannot be
done in polynomial time. Instead we check the global wait-for-graph for the oc-
currence of subgraphs of a supercycle. If these subgraphs are not present, then
the supercycle cannot be present either, and so our check succeeds in verifying
deadlock-freedom. If these subgraphs are present, then the supercycle may or
may not be present, and so our check is inconclusive.

To the best of our knowledge, this is the first work that describes sufficient
and polynomially checkable conditions for deadlock-freedom of large concurrent
programs. We have implemented our pairwise representation using the XSB logic
programming system [27]. This implementation provides a platform for imple-
menting the algorithms in this paper. Due to the lack of space, all proofs and
many technical details are omitted from this version. The full version can be
found at authors’ home pages.

2 Technical Preliminaries

2.1 Model of concurrent computation

We consider finite-state concurrent programs of the form P = Py||---||Pk that
consist of a finite number n of fixed sequential processes P, ..., Px running in
parallel. Each P; is a synchronization skeleton [15], that is, a directed multigraph
where each node is a (local) state of P; (also called an i-state and is labeled by
a unique name (s;), and where each arc is labeled with a guarded command [12]
B; — A; consisting of a guard B; and corresponding action A;. With each P; we
associate a set AP; of atomic propositions, and a mapping V; from local states of
P; to subsets of AP;: V;(s;) is the set of atomic propositions that are true in s;.
As P; executes transitions and changes its local state, the atomic propositions in
AP; are updated. Different local states of P; have different truth assignments:
Vi(si) # Vi(t;) for s; # t;. Atomic propositions are not shared: AP; N AP; =
when ¢ # j. Other processes can read (via guards) but not update the atomic
propositions in AP;. There is also a set of shared variables 1, ..., Z;,, which
can be read and written by every process. These are updated by the action 4;. A
global state is a tuple of the form (sy,...,8k,v1,...,Vy) where s; is the current
local state of P; and vy, ...,v,, is a list giving the current values of zy,...,Zm,
respectively. A guard B; is a predicate on global states, and so can reference any
atomic proposition and any shared variable. An action A; is a parallel assignment
statement that updates the shared variables. We write just A; for true — A;
and just B; for B; — skip, where skip is the empty assignment,.

We model parallelism as usual by the nondeterministic interleaving of the
“atomic” transitions of the individual processes P;. Let s = (s1,---, 8i,---, 8K,
v1,...,Uy) be the current global state, and let P; contain an arc from node
s; to s} labeled with B; — A;. We write such an arc as the tuple (s;, B; —
A;,sh), and call it a P;-move from s; to s;. We use just move when P; is
specified by the context. If B; holds in s, then a permissible next state is
s =(s1,...,8},...,8K,V1,...,u.,) where v{,..., v, are the new values for the
shared variables resulting from action A;. Thus, at each step of the computation,
a process with an enabled arc is nondeterministically selected to be executed
next. The transition relation R is the set of all such (s,s'). The arc from node
s; to s} is enabled in state s. An arc that is not enabled is blocked.

Let S° be a given set of initial states in which computations of P can start.
A computation path is a sequence of states whose first state is in S° and where
each successive pair of states is related by R. A state is reachable iff it lies on
some computation path. Let S be the set of all reachable global states of P, and
redefine R to restrict it to S x S, i.e, to reachable states. Then, M = (5%, S, R)
is the global state transition diagram (GSTD) of P. We write states(M) for S.

2.2 Pairwise normal form

We will restrict our attention to concurrent programs that are written in a certain
syntactic form, as follows. Let @, ® be binary infix operators. A general guarded
command [4] is either a guarded command as given in Section 2.1 above, or has
the form G; ® G2 or G; ® G2, where G1, G5 are general guarded commands.
Roughly, the operational semantics of G; ® G4 is that either G; or G2, but not
both, can be executed, and the operational semantics of G; ® G2 is that both
(G or G must be executed, that is, the guards of both G; and G2 must hold at
the same time, and the bodies of G; and G5 must be executed simultaneously,
as a single parallel assignment statement. For the semantics of G; ® G2 to be
well-defined, there must be no conflicting assignments to shared variables in G
and G». This will always be the case for the programs we consider. We refer the
reader to [4] for a comprehensive presentation of general guarded commands.

A concurrent program P = Py||---||Pk is in pairwise normal form iff the
following four conditions all hold: (1) every move a; of every process P; has
the form a; = (si, ®jer(s) ®eefn,...n;} Biy = Aiti), where B], — A}, is a
guarded command, I is an irreflexive symmetric relation over {1...K} that
defines a “interconnection” (or “neighbors”) relation amongst processes?, and
I(i) = {j | (i,j) € I}, (2) variables are shared in a pairwise manner, i.e., for
each (i,j) € I, there is some set SH;; of shared variables that are the only
variables that can be read and written by both P; and P;, (3) Bz] , can reference
only variables in SH;; and atomic propositions in AP}, and (4) Ag, , can update
only variables in SH;;.

For each neighbor P; of F;, @ee[lzn]Bi .= Ag, , specifies n alternatives Bf; .=
AZ o> 1 <€ < n for the interaction between P; and P; as P; transitions from s;

4 In other words, I is the topology of the connection network.

to t;. P; must execute such an interaction with each of its neighbors in order
to transition from s; to ¢; (®;er(;) specifies this). We emphasize that I is not
necessarily the set of all pairs, i.e., there can be processes that do not directly
interact by reading each others atomic propositions or reading/writing pairwise
shared variables. We do not assume, unless otherwise stated, that processes are
isomorphic, or similar (we define process similarity later in this section).

We will usually use a superscript I to indicate the relation I, e.g., process
P/, and P{-move af. For a] = (si, ®jcr(s) ®eef1,...n;} Bly = Al ti), we define
aj.start = si, aj.guard; = \ye(1 B!,, and a!.guard = Njers ai-guard;.
We write al € P/ when a! is a move of P/. If P = P]||...|| PL is a concurrent
program with interconnection relation I, then we call PT an I-system. Global
states of PT are called I-states.

In pairwise normal form, the synchronization code for P} with one of its
neighbors Pj] (i.e., @46{1’___7,”}31{4 — Ag,e) is expressed separately from the
synchronization code for P with another neighbor P (i.e., ®seqy,...n, 1 Bfy =
Ai.“’ ¢.)- We can exploit this property to define “subsystems” of an I-system P as
follows. Let J C I and range(J) = {i | 35 : (i,5) € J}. If af is a move of P!
then define a = (si, ®jess) Beef1..n} Bg,e — Ag’e,t,-). We also use a![J for
aiJ , to emphasize the projection onto the subrelation J. Then the J-system P”
is P/ ||...|| P/ where {ji,...,jn} = range(J) and P} consists of the moves
{a] | af is a move of P}. Intuitively, a J-system consists of the processes in
range(J), where each process contains only the synchronization code needed
for its J-neighbors, rather than its I-neighbors. If J = {{4,j}} for some i,j
then Py is a pair-system, and if J = {{i,j}, {j, k}} for some i, j, k then P; is a
triple-system. For J C I, My = (S9,S;,Ry) is the GSTD of P/ as defined in
Section 2.1, and a global state of P” is a J-state. If J = {{i,j}}, then we write
Mz'j = (S%,Sij,Rij) instead of My = (Sg, SJ,RJ).

Also, if s; is a J-state, and J' C J, then s[.J' is the .J'-state that agrees
with s on the local state of all P; € range(J') and the value of all variables
z;; € SH;j such that i, j € range(J'), i.e, the projection of s onto the processes
in J'.If J' = {{i,j}} then we write s[J as slij. Also, sli is the local state of P;
in s. Two processes P; and P; are similar if they are isomorphic to each other up
to a change of indices [4, p. 78]. A concurrent program P = Py||---||Pk consists
of similar processes if for each 1 <4,j < K, we have that P; and P; are similar.

[4, 3, 5] give, in pairwise normal form, solutions to many well-known problems,
such as dining philosophers, drinking philosophers, mutual exclusion, k-out-of-
n mutual exclusion, two-phase commit, and replicated data servers. Attie [6]
shows that any finite-state concurrent program can be rewritten (up to strong
bisimulation) in pairwise normal form. Thus, the algorithms we present here are
applicable to any concurrent program, up to strong bisimulation.

2.3 The Wait-For-Graph

The wait-for-graph for an I-state s gives all of the blocking relationships in s.

Definition 1 (Wait-For-Graph Wi(s)). Let s be an arbitrary I-state. The wait-
for-graph Wi(s) of s is a directed bipartite AND-OR graph, where
1. The AND nodes of Wi(s) (also called local-state nodes) are the i-states
{sli|ie{l...K}}%
2. The OR-nodes of Wi(s) (also called move nodes) are the moves
{al |i€e{1...K} and al is a move of P! and a!.start = sli }
3. There is an edge from sli to every node of the form al in Wi(s);
4. There is an edge from al to slj in Wi(s) if and only if {i,j} € I and
al € Wi(s) and slij(al.guard;) = false.

The AND-nodes are the local states s; (= sli) of all processes when the
global state is s, and the OR-nodes are the moves a! such that local control in
P! is currently at the start state of af, i.e., all the moves that are candidates for
execution. There is an edge from s; to each move of the form a{ . Nodes s; are
AND nodes since P/ is blocked iff all of its possible moves are blocked. There
is an edge from af to s; (= slj) iff a] is blocked by P/: af can be executed in
s only if slij(al.guard;) = true for all j € I(i); if there is some j in I(i) such
that slij(af.guard;) = false, then a! cannot be executed in state s. The nodes
labeled with moves are OR nodes, since a; is blocked iff some neighbor P of P/
blocks aj. We cannot, however, say that P/ itself is blocked by P/, since there
could be another move b! in P/ such that s[ij(b!.guard;) = true, i.e., b! is not
blocked by P/ (in state s), so P can progress in state s by executing b;.

In the sequel, we use s;—sal € Wi(s) to denote the existence of an edge from
s; to al in Wi(s), and af —s; € Wi(s) to denote the existence of an edge from
al to s; in Wy(s). We also abbreviate ((s;—sal € W(s)) A (al —s; € W(s)))
with s;—sal—s; € W(s), and similarly for longer “wait-chains.” For J C I
and J-state sy we define W;(sy) by replacing I by J and {1... K} by range(J)
in the above definition.

2.4 Establishing Deadlock-freedom: Supercycles

Deadlock is characterized by the presence in the wait-for-graph of a graph-
theoretic construct called a supercycle [4]:

Definition 2 (Supercycle). Let s be an I-state and s; = sli for all i €
{1...K}. SC is a supercycle in Wi(s) if and only if all of the following hold:
1. SC is nonempty,
2. if s; € SC then Va!l : al € Wi(s) implies s;—al € SC, and
3. if al € SC then 3s; : al —s; € Wi(s) and af —s; € SC.

® In [4] state nodes are denoted by processes P; and not by local states, since they
consider wait-for-graphs for each state of the system separately; in this paper, we
study wait-for-graphs that encompass all blocking conditions for all local nodes of all
processes together; hence we need to distinguish between different local state-nodes
of the same process.

Note that SC is a subgraph of Wi (s). If an i-state s; is in a supercycle SC, then
every move of P/ that starts in s; is also in SC and is blocked by some other
I-process PJI which has a j-state s; in SC (note that a process has at most one
local state in SC, and we say that the process itself is in SC). It follows that no
I-process in SC' can execute any of its moves, and that this situation persists

forever.

In the figure on the right we give an example
of a wait-for-graph for a three process sys-
tem. And-nodes (local states of processes)
are shown as e, and or-nodes (moves) are
shown as o. Each process P;, i € {1,2,3}
has two moves a; and b; in the local state
s;. Since every move has at least one out-
going edge, i.e., is blocked by at least one
process, the figure is also an example of
supercycle. In fact, several edges can be removed and still leave a supercycle
(for example, a3—> Py, b3— P>, aa— Py can all be removed). Thus, the figure
contains several subgraphs that are also supercycles.

From [4], we have that the absence of supercycles in the wait-for-graph of a
state implies that there is at least one enabled move in that state:

Proposition 1 ([4]). If W;(s) is supercycle-free, then some move a! has no
outgoing edges in Wi(s), and so can be executed in state s.

We say that s is supercycle-free iff Wi(s) does not contain a supercycle. We
assume that all initial states of the I-system are supercycle free. That is, we do
not allow initial states that contain deadlocks.

3 Improving the Attie-Emerson Deadlock Freedom
Condition

In this section we improve the Attie and Emerson [4] deadlock-freedom check
(the wait-for-graph assumption of [4]). Consider the following condition.

For every reachable I-state ¢t in M such that

sShte R; for some reachable I-state s,
(ﬂEIaf : (af—)tk € Wi(t))) or
(3al e Wi(t) : (VLe{1...K}: (af—ts € W1(2)))). (a)

This condition implies that, after PkI executes a transition, either PkI blocks no
move of another process, or P/ itself has an enabled move. Thus P/ cannot be
in a supercycle. Hence, this transition of P} could not have created a supercycle;
any supercycle present after the transition must also have been present before
the transition. Since initial states are supercycle-free, we conclude, by induction
on computation path length, that every reachable I-state is supercycle-free.

Let ty.moves = {a} | al € Pl A a}.start = t;}. It is proved in [4] that
it is enough to check condition (a) for all local states t; of P{ and for all J-
systems for J € 7, where J is the set of all interconnection relations of the form
{44, k}, {k, b1}, {k, b2}, . .., {k, £,}}, and n = |tg.moves|, 1 < j, k, by ..., £, < K,
k & {j,41...,£,}. This condition implies an algorithm that checks all possi-
ble subsystems J of the form {{j, k},{k,l},...,{k,€n}}. The algorithm must
construct My, and so is exponential in n. It is thus impractical for large n.

Let J; = {{j,k},{k,4:}} C J, for 1 < i < n.® Then, for each move aj and
state ty € states(MJ), Vi e {81, ... ,En} : a,{ —tyl 4 WJ(tJ) holds iff

Vills/isn:aki—)tJrZi€WJi(tJrJi). (1)

The last equation follows from wait-for-graph projection [4, Proposition 6.5.4.1].

Equation 1 is checked with respect to all systems of three processes, for all
reachable states of these triple-systems. To avoid constructing the J-system, we
check the following condition (b), which requires constructing only J;-systems.
Define triple—reachable(k) = {ty : (VJ = {{j, k}, {k,€}} C I : (3t; € states(M;) :
tylk = t;))}. That is, triple — reachable(k) is the set of local states tj, of Py
such that in every triple system J; involving Py there is a reachable state t,
that projects onto t;. Then, the appropriate condition is:

Vi € triple — reachable(k)
day, € tr.moves
Vty, such that t;, € states(My,) and tz, [k =ty
and s, A t;, for some s, € states(My,):
(—5(],]'.]" : aJ'-]" —ty € Wy, (t4,)) or
(ay' —ts, 16 & Wy, (t2)) for af = [T (b)

Condition (b) holds if either P, blocks no move of another process or there exists
a move of Py that is not blocked in any of the triple systems J;. In either case,
in every system J = {{j,k},{k,l1},...,{k,l,}}, either P} has an enabled move,
or P, does not block any move of P;. Hence, in the I-system, P} cannot be
involved in a deadlock. Note that if the state t; that projects onto ¢z, for all J;
is reachable in the J-system, then condition (b) implies the deadlock-freedom
condition of [4] for the J-system. The converse always holds.

Theorem 1. If condition (b) holds, then the I-system P! is deadlock-free.

Intuitively, checking condition (b) involves constructing all triples of processes
with P being the middle process. Since the size of a triple system is polynomial
in the size of a single process, and the number of triples is polynomial in the
number of processes in the system, the check is polynomial in all parameters.

We check condition (b) as follows. For every process Py, we compute the set
Sk = triple — reachable(k), and the set J of all triple-systems J; which have
Py, as the “middle’ process:

Te ={Ji: Ji = {4, k}, {k, L} } N T CINKF# 5,4}

5 Since J C I and I is irreflexive, we have k # i, £;.

For every ty, € Sk, we compute the set t.moves of outgoing moves of P, from
ty. Then, for each ar € tp.moves and each J; € Ji, we find every state tj, €

states(M,) such that t;, [k = t;, A (3s,, € states(My,) : sy, LA ts,). This can be
done by a graph search of Mj,. We then evaluate

(Vaj" : aj" —ty € W, (t2)) V (@ — ts, 16 € W, (ty,)) (2)

where a;' = alJ; and a‘j]" ranges over all moves of P]-J" such that a;-]".start =
ty, 14, i-e., the moves of process j in the J;-system which start in the local state
that process j has in state ¢,.

Iffor all k € {1...K?} and all ¢, there exists aj € tg.moves for which Equa-
tion 2 holds for all J; € J, then we conclude that the system is deadlock-free.
We formalize the procedure given above as the procedure CHECK-TRIPLES(PT).

CHECK-TRIPLES(PT)
0. forallke{l...K}
1. Sk 1= triple — reachable(Py)
2. Te ={Ji | Ji ={{j, k}, {k, &:} N J; C I}
3. for all ¢t € Sy
for all ay € tx.moves
for all J; in Ji
generate My,
for all t;, such that t;, [k =ty A (3sy, € states(My,) : sy, —k>t.]1-)
evaluate Equation 2
if Equation 2 was found true for all J; and all ¢;;, then mark ¢,
4. if Vk € {1... K}: all ty € Si are marked, then return (“No supercycle possible”)
else return (“Inconclusive”)

Upon termination of CHECK-TRIPLES(PT), condition (b) holds iff “No su-
percycle possible” is returned. Termination is assured since all loops are finite.

Let b be the branching factor of a process, i.e., the maximum value of
|tr.moves| over all k € {1... K} and all ¢ € triple — reachable(FPy,).

Theorem 2. The time complexity of procedure CHECK-TRIPLES(P!) s
O(K®N*b), and the space complezity is O(N?3).

We apply our check to the general resource allocation problem [24, Chapter
11]. For a system of n processes, an explicit resource specification R consists
of a universal finite set R of (unsharable) resources and sets R; C R for all
i €1,...,n, where R; is the set of resources that process P; requires to execute.

Ezample 1 (Deadlock detection in the general resource allocation problem). In
this example, we describe an solution to the the resource allocation problem in
which there is a potential deadlock and show how this deadlock can be detected
by studying triples of processes. We assume that each process needs at least one
resource in order to execute. We first consider a naive algorithm in which each
process chooses the order of requests for resources non-deterministically. That
is, if a process P; needs resources {1,...,k}, it non-deterministically acquires

resource 1 < r; < k, then a resource ro € {1,...,k} \ r1, etc. After the last
resource has been acquired, P; executes. Clearly, if a resource r is already allo-
cated to another process, P; cannot acquire it. If at some state in the resources
allocation all remaining resources are allocated to other processes, P; cannot
proceed. It can be shown that condition (b) fails, and indeed there is a dead-
locked state in the system (in which each process is trying to acquire a resource
already acquired by another process). In the full version we present the formal
and detailed description of this example.

Now consider the hierarchical resource allocation presented in Lynch [24, Chap-
ter 11]. In this case, there is a global hierarchy between processes, and the
resource is acquired to the process with the highest priority that requests it.
The system is deadlock-free. However, condition (b) fails, giving a false dead-
lock indication. The reason for its failure is existence of waiting chains of length
three in the system, despite the fact that cyclical waiting pattern never ocurs. In
Section 4 we present a more complex (and more discriminating) test that shows
deadlock freedom of hierarchical resource allocation.

In the following example we demonstrate false deadlock indication. It de-
scribes a system in which there are two types of processes, and only processes
from one type can block other processes. The deadlock-freedom condition from
[4] (the “wait-for-graph assumption”) is satisfied, since it considers systems of
m + 2 processes, m being the branching degree of a single process. Since con-
dition (b) checks blocking for each outgoing move separately, it does not detect
unreachability of the blocking state.

Example 2. We give here only the brief informal description of the example.
For the formal description including the skeletons of participating processes the
reader is refered to the full version of the paper. The system in the example
consists of 4 processes Py, P, P3, and P, accessing two critical sections, where
the processes P; and P, can block all other processes, and the processes P; and
P; can only block each other. Consider a triple in which Pj is the middle process.
In its trying state it has two outgoing moves for accessing two critical sections.
Both moves can be blocked by process Py separately, depending on the state of
the process Py. That is, the process Py blocks the move of the process P; that
attempts to access the same critical section as Py. The condition (b) fails. At
the same time, the condition in [4] passes, since it checks blocking conditions
for both moves of P; at the same time. Then, it is easy to see that there are no
two processes that can block both moves of Ps simultaneously. In Section 4 we
show that the absence of reachable supercycles can be detected by examining
the global wait-for graph for this system.

Example 2 illustrates that while condition (b) implies the deadlock-freedom
condition of [4], the opposite is not true. That is, there exist cases in which
condition (b) fails, while the more discriminating condition of [4] is satisfied,
and hence the system is deadlock-free. This happens when the blocking state
is reachable for each triple separately, but not for the J-system with m + 2
processes.

4 A More Complex and Discriminating Deadlock-freedom
Check

We define a global wait-for graph VW which contains the union of all Wy (s), for all
reachable I-states s. Let reachable(P;) = {s; | 3j € (i), si; € Sij : sijli = s;},
that is, reachable(P;) is the set of local states of P; that are reachable in some
pair-system involving P;.

Definition 3. (W) The graph W is as follows. The nodes of W are
1. the states s; such thati € {1...K} and s; € reachable(F;);
2. the moves al such thati € {1...K}, al is a move of P!, and af .start = s;
for some node s;;
and the edges are:
1. an edge from s; to every al such that a!.start = s;;
2. for (i,j) € I and every move al of P}, there is an edge from al to s; iff
Jsi; € Sij : 8ijl§ = 8 A sij(al.guard;) = false.

We can view W as either a directed graph or as an AND-OR graph. When
viewed as an AND-OR graph, the AND-nodes are the local states s; of all pro-
cesses (which we call local-state nodes) and the OR-nodes are the moves a;
(which we call move nodes). We use MSCC to abbreviate “maximal strongly
connected component” in the sequel.

Proposition 2. For every reachable I-state s, Wi(s) is a subgraph of W.

Proposition 3. Let s be a reachable I-state, and assume that Wi(s) contains
a supercycle SC. Then, there exists a nontrivial subgraph SC' of SC which is
itself a supercycle, and which is contained within a maximal strongly connected
component of W.

Note that a supercycle is strongly connected, but is not necessarily a maximal
strongly connected component.

Proposition 4. If W is acyclic, then for all reachable I-states s, Wy(s) is
supercycle-free.

We now present a test for supercycle-freedom. In the following we will view
W as a regular directed graph, rather than an AND-OR graph. The test is
given by the procedure CHECK-SUPERCYCLE(W) below, which works as follows.
We first find the maximal strongly connected components (MSCC’s) of W. If no
nontrivial MSCC’s exist, then W is acyclic and so the I-system is supercycle-free
by Proposition 4. Otherwise, we execute the following check for each local-state
node t;, in W. If the check marks t; as “safe”, this means that no transition by P
that ends in state t; can create a supercycle where one did not exist previously.
If all local-state nodes in W are marked as “safe”, then we conclude that no
transition by any process in the I-system can create a supercycle. Given that all
initial I-states are supercycle-free, this then implies that every reachable I-state

is supercycle free, and so the I-system is deadlock-free. The check for ¢ is as
follows. If ¢; does not occur in a nontrivial MSCC of W, then, by Proposition 3,
tr cannot occur in any supercycle, so mark ¢ as safe and terminate. Otherwise,
invoke CHECK-STATE(ty, C'), where C is the nontrivial MSCC of W in which ¢t
occurs. Our test is sound but not complete. If some ¢, is not marked “safe”, then
we have no information about the possibility of the occurrence of supercycles.

CHECK-SUPERCYCLE(W)
1. Find the maximal strongly connected components of W
2. for each MSCC C of W that consists of a single node
if the node is a local-state node then mark it “safe”
3. for each MSCC C of W that contains more than one node
for each local-state node s; of C, invoke CHECK-STATE(s;, C)
4. if all local-state nodes in W are marked “safe”, then
return (“No supercycle possible”)
else return (“Inconclusive”)

CHECK-STATE(tg, C)
1. Construct a subgraph SC of C as follows.
Let SC initially be C
Remove from SC every si such that sy € reachable(Pr) — {tx}
repeat until no more nodes can be removed from SC
if a; is a node in SC with no outgoing edges in SC then
let s; be the unique node such that s;—a; € SC
remove s; and a; and their incident edges from SC
2. Compute the maximal strongly connected components of SC
3. if t; is not in some MSCC of SC then mark t; as “safe” and terminate.
else Let M C be the MSCC of SC containing ¢
4. for all (s;,a},tr,af,s¢) such that s;—a] —ty,—raj,—rs, € MC
Let J = {{j, k}, {k, £}}
if there exists a state s; of M; such that:
sy is reachable along a path in M that ends in a transition by Pk, and
8 —)aj —sty—>ai—s € Wy(ss)
then mark all the nodes and edges in s; —>aJI- —tp—raj—>s;
5. Remove from MC all nodes and edges within two hops from #; (in either direction)
that are unmarked. Call the resulting graph MC’
6. Calculate the maximal strongly connected components of MC’
7. if t; does not lie in an MSCC of MC’ then mark t;, as safe

The procedure CHECK-STATE(ty,C) tests whether the wait-for chain from
some local state s; to some j-move a; to state tx to some ¢-move a, to some state
s¢ can arise from a reachable transition of process Py in the triple system con-
sisting of processes P;, Py, Py. If so, then all these states and moves are marked
and are retained, since they might form part of a supercycle involving tj. After

all such “length 5” chains have been examined, all nodes within 2 hops of t; are
removed, since these nodes cannot possibly be part of a supercycle involving ¢y
If this removal process causes t; to no longer be contained in an MSCC, then
t; cannot possibly be an essential part of a supercycle, since every supercycle
is “essentially” contained inside a single MSCC, since removing all parts of the
supercycle outside the MSCC still leaves a supercycle (see Proposition 3).

In summary, we check for the existence of subgraphs of a potential supercycle
that are wait-chains of length 5. If enough of these are absent, then no supercycle
can be present. Our check could be made more accurate by using longer length
chains, but at the cost of greater time complexity.

Theorem 3. If all local-state nodes in YW are marked as “safe,” then the I-
system PT is supercycle-free.

Proposition 5. Let N be the size of the largest I-process (number of local states
plus number of I-moves). Then the size of W (number of nodes and edges) is
O(K?N?).

Theorem 4. The time complexity of CHECK-SUPERCYCLE(W) is O(K*N*).

It may be possible to improve the runtime complexity of the algorithm using
more sophisticated graph search strategies. For example, for each three-process
system, we could collect all the wait-chains together and search for them all
at once within the global state-transition graph (GSTD) of the three-process
system. Wait-chains that are found could then be marked appropriately for sub-
sequent processing.

It is not too hard to verify that the global wait-for graph for the hierarchical
resource allocation strategy that we discussed in Section 3 is acyclic. Indeed,
a supercycle in a wait-for graph represents a cyclical waiting pattern between
processes. However, a hierarchy establishes a total order between processes, and
the transitions in the graph represent blocking conditions, which can occur only
when moves of a process with a lower priority are blocked by a process with
higher priority. Thus, waiting conditions form chains, and not cycles in the wait-
for graph. In a more general situation, the requirement of total hierarchical order
can be relaxed for a subset of resources. Clearly, in this case deadlock can occur,
depending on the sets of resources that each process attempts to acquire and the
order of requests. Our algorithm can efficiently detect deadlocks in these cases.

The following proposition relates the deadlock-freedom check of Section 3
and the check introduced in this section.

Proposition 6. If procedure CHECK-TRIPLES(PT) returns “No supercycle pos-
sible,” then so does procedure CHECK-SUPERCYCLE(W).

5 Examples

In this section, we study several examples of deadlock-free and deadlock-prone
instances of the resource allocation problem [24, Chapter 11] and summarize the

results obtained by using our algorithms. Due to the lack of space, many details
are omitted here. They can be found in the full version.

Ezxample 3 (Deadlock-free instance with two resources). We study a special case
of resource allocation problem [24] that we presented in Section 3. In this system,
there are two resources (we refer to them as priority queues) and the additional
parameter is the set of priorities of processes for the queues. Consider an I-
system where the processes are partitioned into 3 classes, and are accessing two
priority queues R and . The first class of processes has the highest priority for
R, and the second class of processes has the highest priority for). For processes
in the same class and processes in different classes that have the same priority,
the access to a queue is FIFO. There can be only one process at a time at the
head of each queue. Intuitively, a deadlock can occur if there are several processes
with the same priority in a trying state. However, the guards on transitions to
trying states guarantee that a process enters a trying state iff either there is no
other process is in the trying state, or the other process in the trying state has
a lower priority. We note that the unreachability of supercycles in the wait-for
graph is evident already by considering triple-systems, and thus condition (b) is
also satisfied.

Ezxample 4 (Deadlock-prone instance with two resources). In this example we
describe a system with a reachable deadlocked state and demonstrate the evi-
dence for the deadlock in the global wait-for graph. The system consists of two
dissimilar processes P; and P, accessing two priority queues R and Q).

A deadlocked state [B; Az] can be reached in which

process P is in local state By, waiting for process @

2 —= R
P, to release), and process P, is in local state
Ay, waiting for process P; to release R. This cyclic 1 -
waiting can be discovered by examining the global @ -

wait-for graph for supercycles.

The drawing above presents a fragment of the graph that contains the su-
percycle for the deadlocked state [B; Az]. The node labeled By — () is the move
of P; that acquires (), and the move labeled A — R is the move of P, that
acquires R. Condition (b) fails for the triple system J; = {{Py, P2}, {P», P }},
and thus the cyclic waiting is discovered by applying CHECK-TRIPLES(PT).

Ezample 5 (Overlapping sets of resources). For a process P;, let R; be the set
of resources P; needs to acquire in order to execute. For each process Py in the
system, there exist two different processes P; and P; such that R; N Ry, # () and
R; N Ry, # (. Also, the order of acquiring the resources is non-deterministic for
each process. In this case, condition (b) fails, thus indicating a possible deadlock.
It is easy to see that the system is indeed deadlock-prone.

Ezample 6 (Processes with rollback). Now we construct an example for which the
condition (b) described in Section 3 fails, although there is no deadlock. In this
example, we have two types of processes. One type is the processes that acquire
and lock resources one-by-one without the ability to rollback, as in the previous

examples. The second type is the processes that rollback in case they encounter
that one of the required resources is not available. In this case, condition (b)
fails, although there is no deadlock.

6 Summary and Conclusions

The inset table sum-

examples [lexistence |algorithm algorithm

of deadlock |from Section 3|from Section 4 mar.izes the deadlock ('1e—
Example 1||deadlock deadlock deadlock tection results for the in-
Example 2||no deadlock|deadlock no deadlock stances of resource allo-
Example 3||no deadlock|no deadlock |no deadlock cation problem (both in
Example 4||deadlock deadlock deadlock the previous section and
Example 5||deadlock |deadlock deadlock in Section 3). We note that
Example 6||no deadlock|deadlock no deadlock although we did not demon-

strate this explicitly, it is
easy to verify that the deadlock detection algorithm of [4] recognizes deadlock
correctly in all the examples studied in this paper. Our fist algorithm is very sim-
ple and has a polynomial complexity in all its parameters. The negative answer
from this algorithm, that is, if the system satisfies the condition (b), eliminates
the need to invoke more complex and time-consuming algorithms. In cases where
the system fails the condition (b), it might be necessary to invoke the more dis-
criminating algorithm from Section 4. While this algorithm is more complicated,
its complexity is still polynomial in all the parameters of the system.

By closely examining the instances of the resource allocation problem we
studied, we can see that the algorithm from Section 3 gives false positive deadlock
indications in systems with dissimilar processes, where there are some processes
with “more blocking power” than the others and the number of potentially
blocking processes is smaller than the branching degree of a single process. The
algorithm from Section 4 is more subtle, and is suitable for systems of any
number of dissimilar processes.

In conclusion, the success of our approach in verifying the deadlock-freedom
of many variants and instances of the resource allocation problem is evidence of
its wide applicability.

References

1. A. Aldini and M. Bernardo. A general approach to deadlock freedom verification
for software architectures. In FM 2003, pp. 658-677, LNCS 2805.

2. Tamarah Arons, Amir Pnueli, Sitvanit Ruah, Jessie Xu, and Lenore D. Zuck.
Parameterized verification with automatically computed inductive assertions. In
CAV, pp- 221-234, 2001.

3. P. C. Attie. Synthesis of large concurrent programs via pairwise composition. In
CONCUR, LNCS 1664, 1999.

4. P. C. Attie and E. A. Emerson. Synthesis of concurrent systems with many similar
processes. ACM Trans. Program. Lang. Syst., 20(1):51-115, 1998.

5. P.C. Attie. Synthesis of large dynamic concurrent programs from dynamic speci-
fications. Technical report, NEU, Boston, MA, 2003.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

26.

27.

28

P.C. Attie. Finite-state concurrent programs can be expressed pairwise. Technical
report, NEU, Boston, MA, 2004.

Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In TACAS, pp. 193-207, 1999.

E. M. Clarke, O.Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge,
MA, 2000.

E.M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal
logic model checking. FMSD, 9(2), 1996.

E.G. Coffman, M.J. Elphick, and A. Shoshani. System deadlocks. ACM Comput.
Surv., 3:67-78, 1971.

T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algo-
rithms; Second Edition. MIT Press and McGraw-Hill, 2001.

E. W. Dijkstra. A Discipline of Programming. Prentice-Hall Inc., 1976.

E. A. Emerson and V. Kahlon. Reducing model checking of the many to the few.
In CAD, pp. 236254, 2000.

E. Allen Emerson and A. Prasad Sistla. Symmetry and model checking. FMSD,
9(1/2):105-131, 1996.

E. A. Emerson and E. M. Clarke. Using branching time temporal logic to synthe-
size synchronization skeletons. Sci. Comput. Program., 2:241 — 266, 1982.

P. Godefroid. Partial Order Methods for the Verification of Concurrent Systems.
PhD thesis, University of Liege, 1994.

P. Godefroid, D. Peled, and M. Staskauskas. Using partial-order methods in the for-
mal validation of industrial concurrent programs. Trans. on Soft. Eng., 22(7):496—
507, 1996.

P. Godefroid and P. Wolper. A partial approach to model checking. Information
and Computation, 110(2):305-326, 1991.

Gregor Goessler and Joseph Sifakis. Component-based construction of deadlock-
free systems. In FSTTCS, pp. 420-433, LNCS 2914, 2003.

R. C. Holt. Some deadlock properties of computer systems. ACM Comput. Surv.,
4(3):179-196, 1972.

J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J. Hwang. Symbolic
Model Checking: 10%° States and Beyond. In LICS , pp. 1-33, 1990.

E. Knapp. Deadlock detection in distributed databases. ACM Comput. Surv.,
19(4):303-328, 1987.

P. Ladkin and B. Simons. Compile-time analysis of communicating processes. In
Proc. Int. Conf. on Supercomputing, pp. 248-259, 1992.

N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, 1996.

Kenneth L. McMillan. Symbolic Model Checking. Kluwer Academic Publishers,
1993.

D. Peled. Partial order reduction: Model-checking using representatives. In MFCS,
1996.

B. Rex. Inference of k-process behavior from two-process programs. Master’s
thesis, School of Computer Science, Florida International University, Miami, FL,
April 1999.

A. S. Tanenbaum. Modern Operating Systems, second edition. Prentice-Hall, 2001.

