
Wait-free Byzantine ConsensusPaul AttieCollege of Computer S
ien
e, Northeastern University andMIT Laboratory for Computer S
ien
eKeywords: distributed
omputing, fault toleran
e, wait-freedom1 Introdu
tionByzantine
onsensus has traditionally been studied in the
ontext of message passing models of dis-tributed
omputing, with various asyn
hrony/timing assumptions on message transit times and/orpro
ess speeds [2, 4℄. In an asyn
hronous shared memory model, Byzantine
onsensus has been
onsidered \uninteresting" be
ause a single Byzantine pro
ess
an repeatedly
orrupt the entirememory, thereby overwhelming any
onsensus algorithm. One way to address this problem is toimpose assumptions on the relative speeds of pro
esses, even Byzantine ones, so that a pro
ess
ando only a limited amount of damage within a �xed time interval. Another possibility is to limit theamount of memory that ea
h pro
ess
an a

ess, e.g., through operating system level me
hanismssu
h as a

ess
ontrol matri
es, a

ess
ontrol lists, or
apability lists [8, 10, 11℄. We
onsider thelatter approa
h in this paper.A
onsensus proto
ol must have some degree of fault-toleran
e (otherwise the problem is trivial).Among the attributes of a fault are: (1) the entity su�ering the fault, e.g., the memory itself, or apro
ess that a

esses the memory, and (2) the type of the fault, e.g.,
rash (entity stops responding),omission (entity responds to only some inputs), or Byzantine (entity behaves arbitrarily). Werestri
t attention in this paper to faults that a�e
t the pro
esses, and assume that shared memoryis reliable. A parti
ularly useful type of fault-toleran
e is wait-freedom [5℄. A prin
ipal advantageof wait-free proto
ols is that the progress of ea
h parti
ipating pro
ess is independent of that ofthe other pro
esses. In parti
ular, a pro
ess
an progress even if all other pro
esses
rash. Thus, await-free proto
ol with n pro
esses tolerates up to n� 1
rash failures.In this paper, we study the problem of devising wait-free shared memory
onsensus proto-
ols that tolerate Byzantine pro
esses (i.e., pro
esses that have su�ered a Byzantine fault). Weshow that weak wait-free Byzantine
onsensus
an be a
hieved, but only by using \nonresettable"shared obje
ts, that is, obje
ts whose state
annot be reset to an initial state (by any sequen
eof permissible operations). With resettable obje
ts, even a single Byzantine pro
ess is enough toprevent any solution to weak wait-free Byzantine
onsensus. Our impossibility result holds evenif we
an limit every pro
ess (in
luding Byzantine pro
esses) to invoking obje
ts in a parti
ular1

�xed set (i.e., impose a

ess-
ontrol). Although this limited-a

ess model restri
ts the amount ofdamage a Byzantine pro
ess
an do, the restri
tion is not powerful enough to enable a solutionusing resettable obje
ts.In the te
hni
al report version of this paper [1℄ we also show that wait-free Byzantine
onsensus
annot be a
hieved at all, in the presen
e of even one Byzantine pro
ess, and we give a straight-forward proto
ol for weak wait-free Byzantine
onsensus that uses a nonresettable obje
t (a sti
kyregister|a generalization of Plotkin's sti
ky bit [9℄ to more than three values).Related work. Malkhi et al. [3℄
onsider shared-obje
t systems in whi
h the pro
esses aresubje
t to Byzantine faults. They provide universal
onstru
tions and a
onsensus algorithm.None of their
onstru
tions and algorithms are wait-free. They also exploit the idea of limiting thea

ess of ea
h obje
t to a spe
i�ed part of memory by using a

ess
ontrol lists. Jayanti et al. [6℄studies the \dual" problem of implementing wait-free shared obje
ts in a setting where pro
essesare reliable but shared obje
ts are subje
t to faults (in
luding arbitrary responses): they exploitredundan
y by implementing a single shared obje
t using many \internal" shared obje
ts.The paper is as follows. Se
tion 2 de�nes our model of
omputation. Se
tion 3 de�nes thewait-free Byzantine
onsensus problem and its weak variant. Se
tion 4 presents our impossibilityresult for weak wait-free Byzantine
onsensus. Se
tion 5 dis
usses dire
tions for further resear
hand
on
ludes.2 Model of ComputationA
on
urrent program P = (P1 k � � � k Pn; O1; : : : ; Om;A)
onsists of n sequential pro
esses thatexe
ute
on
urrently and intera
t by performing operations on shared data obje
ts O1; : : : ; Om.An obje
t O` is a nondeterministi
 state-ma
hine with a nonempty set of initial lo
al states, andtransitions of the form (v`; op; resp; w`): when in lo
al state v`, obje
t O`
an respond to aninvo
ation of operation op (by some pro
ess) by moving to lo
al state w` and produ
ing the responseresp. The lo
al state of an obje
t is not visible to the pro
esses ex
ept via its responses to operationinvo
ations. Ea
h shared obje
t O` has an interfa
e: a de�ned set of legal operations that
an beinvoked on O`. We require that, from any lo
al state, a transition exists for every legal operation(
.f., the input-enabling assumption of I/O automata [7,
hapter 13℄). We also assume that allobje
ts are reliable, i.e., that they always behave in a

ordan
e with their transition relation.A pro
ess Pi is a nondeterministi
 state-ma
hine with a nonempty set of initial lo
al states, andtwo types of transitions. An internal transition (si; ti) takes Pi from lo
al state si to lo
al state ti.An invo
ation/response transition (si; O`; op; resp; ti) takes Pi from lo
al state si to lo
al state ti,provided that resp is the response that obje
t O` returns for the invo
ation of operation op. The lo-
al state of a pro
ess is not visible to other pro
esses. A global state is a tuple hs1; : : : ; sn; v1; : : : ; vmi,2

where si, 1 � i � n, is the lo
al state of pro
ess Pi, and v`, 1 � ` � m, is the lo
al state of obje
t O`.Global transitions are of two types, as follows: (1) If hs1; : : : ; si; : : : ; sn; v1; : : : ; vmi is a global state,and (si; ti) is an internal transition of Pi, then hs1; : : : ; ti; : : : ; sn; v1; : : : ; vmi is a possible next globalstate, and (2) If hs1; : : : ; si; : : : ; sn; v1; : : : ; v`; : : : ; vmi is a global state, (si; O`; op; resp; ti) is an invo-
ation/response transition of Pi, and (v`; op; resp; w`) is a transition of O`, then hs1; : : : ; ti; : : : ; sn,v1; : : : ; w`; : : : ; vmi is a possible next global state. In either
ase, we say that Pi makes a step, andthat this step takes state s to state t. Thus, a step of pro
ess Pi is either an internal transition(si; ti) of Pi, or an invo
ation/response transition (si; O`; op; resp; ti) of Pi.A � fP1; : : : ; Png� fO1; : : : ; Omg is an a

ess pattern: Pi
an perform operations on O` only if(Pi; O`) 2 A. This a

ess restri
tion remains in for
e even if Pi is Byzantine. A nonfaulty pro
ess isone that behaves a

ording to its transition relation. A faulty pro
ess is one that behaves arbitrarily,i.e., it
an invoke any operation on any obje
t that it has a

ess to (a

ording to A). If the operationis not legal, a

ording to the obje
t's interfa
e, then we assume that the obje
t does not
hangestate. Also, even a Byzantine pro
ess
annot invoke operations on obje
ts that it does not havea

ess to. We assume that su
h invo
ations would be blo
ked by, e.g., the operating system, and sothe targeted obje
t would be una�e
ted. We extend our de�nition of pro
ess step to allow for su
harbitrary steps if the pro
ess is faulty. We also assume that a Byzantine pro
ess
annot
hange the
ode of another pro
ess. Sin
e pro
ess
ode also resides in memory, this assumption is ne
essary.Without it, a single Byzantine pro
ess
an
orrupt the entire system.An exe
ution fragment is a (�nite or in�nite) alternating sequen
e of global states and steps(starting with a state) su
h that ea
h step takes the state pre
eding it to the state following it. Anexe
ution is an exe
ution fragment that starts in an initial global state. Hen
e, we model
on
ur-ren
y by the nondeterministi
 interleaving of internal transitions, exe
uted by a single pro
ess, andinvo
ation/response transitions, exe
uted jointly by one pro
ess and one obje
t. A rea
hable stateis a state lying on some exe
ution.Note that obje
ts have \high" atomi
ity in that invo
ations and responses o

ur \together"in one atomi
 transition. Our impossibility results
arry over to a model in whi
h invo
ationsand responses are separate events, sin
e su
h a model would still admit exe
utions in whi
h everyinvo
ation is immediately followed by its mat
hing response. Hen
e, the proofs in this paper wouldstill apply, sin
e they only rely on the ability to
onstru
t
ertain exe
utions.An in�nite exe
ution is fair if and only if every nonfaulty pro
ess takes an in�nite number ofsteps in the exe
ution. We assume (without further statement) that every in�nite exe
ution is fair.We also assume that a nonfaulty pro
ess
an always take a step, i.e, is always enabled. This isreasonable, sin
e our model does not permit operations su
h as \await some
ondition," whi
h hidebusy waiting or
onditional waiting within their implementation. Any busy waiting or
onditional3

waiting must be programmed expli
itly into the transition relation of a pro
ess, e.g., as a repeated\polling" of some obje
t until a parti
ular response is observed. Hen
e, in our model, if a pro
essenters a lo
al state from whi
h it
urrently has no enabled a
tions, then the pro
ess is stu
k foreverin that state.2.1 Notation and Te
hni
al De�nitionsIf � is an exe
ution, then �jPi is obtained by taking the subsequen
e of steps that Pi exe
utes along�. Also, �jO` is the subsequen
e of steps along � that involve O`. This extends to a set of obje
tsin the obvious way: �j(O1; : : : ; O`) is the subsequen
e of steps along � that ea
h involve one obje
tin O1; : : : ; O`. Finally, these notations
an be nested, so that (�jPi)jO` denotes the subsequen
e ofall pro
ess Pi's steps along � that involve O` (i.e., that arise from an invo
ation by Pi on O`). Ifs = hs1; : : : ; sn; v1; : : : ; vmi is a global state, then s(Pi) is si, i.e., Pi's lo
al state in s, and s(O`) isv`, i.e., O`'s lo
al state in s. If s and t are two global states, we say s i� t if and only if s(Pi) = t(Pi)and s(O`) = t(O`) for all obje
ts O` su
h that (Pi; O`) 2 A, i.e., all obje
ts that Pi has a

ess to.3 The Wait-free Byzantine Consensus problemWe spe
ify the wait-free Byzantine
onsensus problem as follows. Ea
h pro
ess starts with an initialvalue from a �xed set V (part of its initial lo
al state), and ea
h nonfaulty pro
ess eventually de
ideson some value in V . The
orre
tness requirements are as follows (agreement and validity are from[7,
hapter 6℄):Agreement No two nonfaulty pro
esses de
ide on di�erent values.Validity If all nonfaulty pro
esses start with the same initial value val 2 V , then val is the onlypossible de
ision value for a nonfaulty pro
ess.Wait-free Termination If Pi is nonfaulty in an in�nite fair exe
ution �, then Pi de
ides exa
tlyon
e in �.Uniform-initial-state Every
ombination of initial lo
al state for ea
h pro
ess and initial lo
alstate for ea
h shared obje
t is a possible initial global state.We impose the uniform-initial-state requirement in order to rule out trivial solutions in whi
hea
h pro
ess has a \shared" obje
t that only it
an a

ess, and whose initial value gives a
orre
tde
ision value. The wait-free termination requirement embodies the wait-freedom aspe
t of theproblem, sin
e it requires all nonfaulty pro
esses to de
ide, regardless of how many other pro
essesfail. In the sequel, we assume without loss of generality that f0; 1g � V .4

We extend the de�nition of a pro
ess so that a subset of the internal transitions are de
isiontransitions. A de
ision transition de
ides on some value in V .Proposition 1 The wait-free termination requirement implies:if Pi is a nonfaulty pro
ess and s is a rea
hable global state in whi
h Pi has not yet de
ided, thenthere exists an exe
ution fragment � starting in s su
h that:1. �
onsists only of steps of Pi, and2. Pi de
ides in �.Proof. Let Pi be a nonfaulty pro
ess, and let s be an arbitrary rea
hable state in whi
h Pi hasnot de
ided. Sin
e a nonfaulty pro
ess is (by assumption) always enabled, s lies along at least onein�nite exe
ution. Sin
e one possible behavior of a Byzantine pro
ess is to emulate a nonfaultypro
ess up to some point, and then do nothing, there exists an in�nite exe
ution �0
ontaining ssu
h that �0
an be split into two parts: a pre�x �00 ending in s su
h that every pro
ess ex
ept Piis faulty in �00, and a suÆx �000 starting from s, su
h that no pro
ess other than Pi takes a stepalong �000. By the wait-free termination requirement, Pi de
ides along �000. 2We also de�ne the weak wait-free Byzantine
onsensus problem, in whi
h the Validity require-ment is repla
ed by the Weak Validity requirement:Weak Validity If there are no faulty pro
esses and all pro
esses start with the same initial valueval 2 V , then val is the only possible de
ision value.4 Impossibility of Weak Wait-free Byzantine Consensus using Re-settable Obje
tsWe show that weak wait-free Byzantine
onsensus
annot be solved when ea
h of the shared obje
tsmay be reset to some initial state. We de�ne:De�nition 1 An obje
t is resettable if, for ea
h of its rea
hable lo
al states, there exists a sequen
eof operations that takes the obje
t ba
k to some initial lo
al state. We
all su
h a sequen
e ofoperations a reset sequen
e.Note that our de�nition allows an obje
t to be reset to several initial states from a given rea
hablestate v. The obje
t
annot however, be reset to an initial state that is not rea
hable from v. Anextreme
ase is when every initial state is rea
hable from v, and so the obje
t
ould be reset to anyinitial state (from v). 5

Resettable obje
ts are more desirable than nonresettable obje
ts, be
ause they
an be easilyreused (e.g., for su

essive instan
es of
onsensus).We show that there is no solution to weak wait-free Byzantine
onsensus using only resettableobje
ts, even if only a single pro
ess is Byzantine.Proposition 2 Let P = (P1 k � � � k Pn; O1; : : : ; Om;A) be a proto
ol for weak wait-free Byzantine
onsensus. In any exe
ution of P in whi
h Pi, 1 � i � n, runs alone and de
ides before any otherpro
ess takes a single step, Pi must de
ide its own initial value.Proof. Let s be an arbitrary initial global state, and let �s be an arbitrary exe
ution starting in sin whi
h Pi �rst runs alone until it de
ides. Let the initial value of Pi in s be val i. Let t be theglobal initial state whi
h is identi
al to s ex
ept that all pro
esses have initial value val i (thus allshared obje
ts have the same initial lo
al states in s as in t). t exists by the uniform-initial-staterequirement. Starting in state t, it is possible for Pi to exe
ute the same sequen
e of steps (up tothe point that it de
ides) that it exe
utes in �s, sin
e Pi's lo
al state and all obje
t states are thesame in s as in t. Let �t be the resulting exe
ution, and furthermore assume that no pro
ess isfaulty in �t (it is
lear that su
h an �t exists). By weak validity, Pi de
ides val i in �t. Hen
e, Pialso de
ides val i in �s sin
e it exe
utes the same steps in both exe
utions, up to the point that itde
ides. Sin
e �s was
hosen arbitrarily, the proposition follows. 2We �rst establish the impossibility result for three pro
esses. The generalization to n pro
essesis easily done using the wait-free termination and uniform-initial-state requirements.Theorem 3 There is no solution to the weak wait-free Byzantine
onsensus problem for threepro
esses if one of them
an be Byzantine and all shared obje
ts are resettable.Proof. By
ontradi
tion. Suppose a solution P = (P1 k P2 k P3; O1; : : : ; Om;A) exists. Let Oij �fO1; : : : ; Omg be the (possibly empty) set of obje
ts that
an be a

essed by Pi and Pj , and no otherpro
ess, i; j 2 f1; 2; 3g; i 6= j (all a

ording to the a

ess pattern A). Also let O123 � fO1; : : : ; Omgbe the (possibly empty) set of obje
ts that
an be a

essed by P1, P2, and P3, again a

ording toA. Thus, these sets of obje
ts are all pairwise disjoint. We
onstru
t two exe
utions �1 and �2of P as follows (Figure 1 shows how �1 and �2 are \alternately"
onstru
ted from ea
h other in awell-de�ned manner).The �rst part of �1 is as follows. P1 is Byzantine, P2 and P3 have initial value 1, and O23 isin some initial state V23.1 First, P2 runs alone until it de
ides. By Proposition 2, P2 de
ides 1.Next, P1 invokes reset sequen
es for all obje
ts in O13 and O123. Let the resulting initial states ofO13;O123 be V13;V123 respe
tively.1For brevity, we dis
uss the sets of obje
ts Oij ;O123 as if they were single obje
ts. For example, V23 is a
tually atuple of initial obje
t states. 6

and de
ides 1P3 runs alone(�2jP1)j(O13 [O123)P1 exe
utesP1 resets O13;O123to V13;V123and de
ides 1P2 runs alone
P3 exe
utes �1jP3and de
ides 1,agreementthereby violatingand de
ides 0P1 runs alone (�1jP2)jO23P2 exe
utes �1:sExe
ution �1

Exe
ution �2
Initially:P2 is faultyP1 has initial value 0P3 has the same initialstate as in �1O13 = V13O23 = V23O123 = V123

Initially:

�2:t
P3 has initial value 1O23 = V23P1 is faultyP2 has initial value 1

Figure 1: Exe
utions �1 and �2 in the proof of Theorem 3.�2 is as follows. P2 is Byzantine, P1 is nonfaulty and has initial value 0, and P3 is nonfaultyand has the same initial state as in �1 (and therefore has initial value 1). The initial states ofO13;O23;O123 are V13;V23;V123 respe
tively. By the uniform-initial-state requirement, these initial
onditions must exist for some exe
ution. First, P1 runs alone until it de
ides. By Proposition 2,P1 de
ides 0. Next, P2 exe
utes (�1jP2)jO23 (sin
e P2 is Byzantine and has a

ess to O23, it
aninvoke any sequen
e of operations on O23). Let the global state at this point be �2:t. Finally, P3runs alone until it de
ides. By agreement, P3 must de
ide 0, sin
e P1 de
ided 0, and P1; P3 arenonfaulty.The last part of �1 is as follows. P1 exe
utes (�2jP1)j(O13 [O123)|sin
e P1 is Byzantine andhas a

ess to O13 [O123, it
an exe
ute any sequen
e of operations on O13 [O123. Let the globalstate at this point be �1:s. Finally, P3 runs alone until it de
ides. By agreement, P3 must de
ide1, sin
e P2 de
ided 1, and P2; P3 are nonfaulty.We now establish �1:s 3� �2:t. In �1:s, the state of O23 results from the sequen
e (�1jP2)jO23applied to the initial state V23 of O23 (by de�nition of j). In �2:t, the state of O23 results from thesame sequen
e, namely (�1jP2)jO23, applied to the same initial state V23 (by
onstru
tion of �2).Hen
e, we
an sele
t the lo
al transitions of all the obje
ts in O23 so that �1:s(O23) = �2:t(O23).In �1:s, the states of O13;O123 result from the sequen
e (�2jP1)j(O13 [O123) applied to thestates V13;V123 respe
tively (be
ause of the reset sequen
es invoked by P1 in �1, the a
tual initialstates of O13;O123 don't matter). In �2:t, the states of O13;O123 also result from the sequen
e7

(�2jP1)j(O13 [O123) applied to the (initial) states V13;V123 respe
tively (by de�nition of j). Hen
ewe
an
hoose the lo
al transitions of all the obje
ts in O13 [O123 so that �1:s(O13) = �2:t(O13)and �1:s(O123) = �2:t(O123). Finally, the lo
al state of P3 in �1:s is its initial state in �1, sin
e P3takes no steps in the pre�x of �1 up to �1:s. Likewise the lo
al state of P3 in �2:t is its initial statein �2. But these initial states are the same, by
onstru
tion of �2. Hen
e �1:s(P3) = �2:t(P3).Sin
e P3's state and the states of all obje
ts that P3
an a

ess are the same in �1:s as in �2:t, we
on
lude �1:s 3� �2:t.In �1, P3 runs alone from �1:s until it de
ides. In �2, P3 runs alone from �2:t until it de
ides.Sin
e �1:s 3� �2:t, and P3 runs alone from �1:s, �2:t until it de
ides, it is possible for P3 to exe
utethe same sequen
e (i.e., �1jP3) of steps in �2 as in �1. Let this then be the sequen
e that P3a
tually exe
utes in �2. Hen
e, P3 must de
ide the same value in �2 as in �1. But we showedabove that P3 de
ides 1 in �1 and 0 in �2. Hen
e the desired
ontradi
tion. 2Theorem 4 There is no solution to the weak wait-free Byzantine
onsensus problem for n � 3pro
esses if one of them
an be faulty and all shared obje
ts are resettable.Proof. We assume a solution exists and derive a
ontradi
tion exa
tly as in the proof of Theorem 3.From the wait-free termination and uniform-initial-state requirements, and Proposition 1, it is
learthat the exe
utions �1, �2 (with their initial states extended arbitrarily to P4; : : : ; Pn)
onstru
tedin the aforementioned proof are exe
utions of a solution for any n � 3 (simply delay P4; : : : ; Pnuntil �1, �2 have been fully exe
uted). 2We note that if an a

ess pattern is not imposed, then the proof of Theorem 3 be
omes trivial:let P1 be nonfaulty and run alone until it de
ides; then let P2 be faulty and reset all obje
ts inthe system; �nally let P3 be nonfaulty and run alone until it de
ides. Invoking Proposition 2 thenallows us to
on
lude that P1 and P3 must both de
ide on their initial values, sin
e P3's view of theexe
ution is indistinguishable from its view of some exe
ution in whi
h it runs alone and de
idesbefore any other pro
ess takes a step.5 Further Work and Con
lusionsWe studied the problem of wait-free
onsensus in the presen
e of Byzantine faults. We showedthat weak wait-free Byzantine
onsensus is a
hievable only if we use nonresettable obje
ts (and, inthe te
hni
al report version of this paper, that wait-free Byzantine
onsensus is not a
hievable atall). Our impossibility results hold in the presen
e of only a single Byzantine pro
ess, and even ifwe
an impose an \a

ess pattern" that, for ea
h pro
ess, �xes the obje
ts that the pro
ess hasa

ess to. Our results suggest that the \majority voting"
onsiderations that give the usual boundof less than one-third faulty pro
esses (n � 3f + 1) do not
ome into play when wait-freedom is8

required. We also remark that our results are easily extended to low-atomi
ity obje
ts, i.e., whereinvo
ations and responses are separate events: simply
onstru
t the exe
utions used in the proofsabove so that every response immediately follows its mat
hing invo
ation.The a

ess patterns
onsidered in this paper either grant a pro
ess a

ess to all of the operationsde�ned by a parti
ular shared obje
t, or to none of them. A more re�ned notion would grantdi�erent pro
esses a

ess to di�erent subsets of the de�ned operations, e.g., like an a

ess matrix[8, 10℄. Thus, some pro
esses may only have a

ess to \read" operations. The proof ideas we usedin this paper do not
arry over to this more re�ned model. It would be worthwhile to investigatewhether our impossibility results themselves do
arry over.As mentioned in the introdu
tion, the issue of Byzantine
onsensus in a shared memory systemis rendered nontrivial by introdu
ing some restri
tion on the amount of damage a Byzantine pro
ess
an in
i
t. We
onsidered a restri
tion based on a

ess
ontrol in this paper. Other restri
tions
ould be based on timing, so that a Byzantine pro
ess
an only in
i
t a limited amount of damagewithin a �xed time interval (i.e., the \rate of damage" is �nite). A �rst step in further investigation isto
ategorize the restri
tions on a Byzantine pro
ess that
ould be reasonably imposed in pra
ti
e,and then to study the existen
e (or not) of wait-free
onsensus, or
onsensus generally,
.f. [3℄,subje
t to one (or more) of the restri
tions.Referen
es[1℄ P. C. Attie. Wait-free byzantine agreement. Te
hni
al Report NU-CCS-00-02, College of Com-puter S
ien
e, Northeastern University, Boston, Massa
husetts, May 2000. Available on-line athttp://www.

s.neu.edu/home/attie/pubs.html.[2℄ H. Attiya, C. Dwork, N. Lyn
h, and L. Sto
kmeyer. Bounds on the time to rea
h agreement in thepresen
e of timing un
ertainty. J. ACM, 41(1):122{152, Jan. 1994.[3℄ M. Reiter D. Malkhi, M. Merritt and G. Taubenfeld. Obje
ts shared by byzantine pro
esses. In Pro-
eedings of the 14th International Symposium on DIStributed Computing (DISC 2000), Toledo, Spain,O
t. 2000.[4℄ C. Dwork, N. Lyn
h, and L. Sto
kmeyer. Consensus in the presen
e of partial syn
hrony. J. ACM,35(2):288{323, Apr. 1988.[5℄ M. Herlihy. Wait-free syn
hronization. ACM Trans. Program. Lang. Syst., 11(1):124{149, Jan. 1991.[6℄ P. Jayanti, T.D. Chandra, and S. Toueg. Fault-tolerant wait-free shared obje
ts. J. ACM, 45(3):451{500,May 1998.[7℄ N. A. Lyn
h. Distributed Algorithms. Morgan-Kaufmann, San Fran
is
o, California, USA, 1996.[8℄ C.P. P
eeger. Se
urity in Computing. Prenti
e-Hall, Englewood Cli�s, New Jersey, USA, 1989.[9℄ S. Plotkin. Sti
ky bits and the universality of
onsensus. In 8'th ACM Symposium on the Prin
iples ofDistributed Computing (PODC), Edmonton, Alberta, Canada, Aug. 1989.[10℄ A. Silbers
hatz and P. Galvin. Operating System Con
epts. Addison-Wesley, Reading, Massa
husetts,USA, 1994.[11℄ A. S. Tanenbaum. Operating Systems, Design and Implementation. Prenti
e-Hall, Englewood Cli�s,New Jersey, USA, 1987. 9

