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1 Introduction

Byzantine consensus has traditionally been studied in the context of message passing models of dis-
tributed computing, with various asynchrony /timing assumptions on message transit times and/or
process speeds [2, 4]. In an asynchronous shared memory model, Byzantine consensus has been
considered “uninteresting” because a single Byzantine process can repeatedly corrupt the entire
memory, thereby overwhelming any consensus algorithm. One way to address this problem is to
impose assumptions on the relative speeds of processes, even Byzantine ones, so that a process can
do only a limited amount of damage within a fixed time interval. Another possibility is to limit the
amount of memory that each process can access, e.g., through operating system level mechanisms
such as access control matrices, access control lists, or capability lists [8, 10, 11]. We consider the
latter approach in this paper.

A consensus protocol must have some degree of fault-tolerance (otherwise the problem is trivial).
Among the attributes of a fault are: (1) the entity suffering the fault, e.g., the memory itself, or a
process that accesses the memory, and (2) the type of the fault, e.g., crash (entity stops responding),
omission (entity responds to only some inputs), or Byzantine (entity behaves arbitrarily). We
restrict attention in this paper to faults that affect the processes, and assume that shared memory
is reliable. A particularly useful type of fault-tolerance is wait-freedom [5]. A principal advantage
of wait-free protocols is that the progress of each participating process is independent of that of
the other processes. In particular, a process can progress even if all other processes crash. Thus, a
wait-free protocol with n processes tolerates up to n — 1 crash failures.

In this paper, we study the problem of devising wait-free shared memory consensus proto-
cols that tolerate Byzantine processes (i.e., processes that have suffered a Byzantine fault). We
show that weak wait-free Byzantine consensus can be achieved, but only by using “nonresettable”
shared objects, that is, objects whose state cannot be reset to an initial state (by any sequence
of permissible operations). With resettable objects, even a single Byzantine process is enough to
prevent any solution to weak wait-free Byzantine consensus. Our impossibility result holds even

if we can limit every process (including Byzantine processes) to invoking objects in a particular



fixed set (i.e., impose access-control). Although this limited-access model restricts the amount of
damage a Byzantine process can do, the restriction is not powerful enough to enable a solution
using resettable objects.

In the technical report version of this paper [1] we also show that wait-free Byzantine consensus
cannot be achieved at all, in the presence of even one Byzantine process, and we give a straight-
forward protocol for weak wait-free Byzantine consensus that uses a nonresettable object (a sticky
register—a generalization of Plotkin’s sticky bit [9] to more than three values).

Related work. Malkhi et al. [3] consider shared-object systems in which the processes are
subject to Byzantine faults. They provide universal constructions and a consensus algorithm.
None of their constructions and algorithms are wait-free. They also exploit the idea of limiting the
access of each object to a specified part of memory by using access control lists. Jayanti et al. [6]
studies the “dual” problem of implementing wait-free shared objects in a setting where processes
are reliable but shared objects are subject to faults (including arbitrary responses): they exploit
redundancy by implementing a single shared object using many “internal” shared objects.

The paper is as follows. Section 2 defines our model of computation. Section 3 defines the
wait-free Byzantine consensus problem and its weak variant. Section 4 presents our impossibility
result for weak wait-free Byzantine consensus. Section 5 discusses directions for further research

and concludes.

2 Model of Computation

A concurrent program P = (P, || -+ || Py, 01,...,0n,A) consists of n sequential processes that
execute concurrently and interact by performing operations on shared data objects Oi,...,Onp,.
An object Oy is a nondeterministic state-machine with a nonempty set of initial local states, and
transitions of the form (vy, op,resp,w;): when in local state v;,, object Oy can respond to an
invocation of operation op (by some process) by moving to local state wy and producing the response
resp. The local state of an object is not visible to the processes except via its responses to operation
invocations. Each shared object Oy has an interface: a defined set of legal operations that can be
invoked on Oy. We require that, from any local state, a transition exists for every legal operation
(c.f., the input-enabling assumption of I/O automata [7, chapter 13]). We also assume that all
objects are reliable, i.e., that they always behave in accordance with their transition relation.

A process P; is a nondeterministic state-machine with a nonempty set of initial local states, and
two types of transitions. An internal transition (s;,t;) takes P; from local state s; to local state ¢;.
An invocation/response transition (s;, Oy, op, resp,t;) takes P; from local state s; to local state t;,
provided that resp is the response that object Oy returns for the invocation of operation op. The lo-

cal state of a process is not visible to other processes. A global state is a tuple (s1,. .., 8p, V15, Um),
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where s;, 1 <4 < n, is the local state of process P;, and vy, 1 < £ < m, is the local state of object O,.
Global transitions are of two types, as follows: (1) If (s1,...,84,...,8n,01,...,0y,) is a global state,
and (s;,t;) is an internal transition of P;, then (s1,...,%;,...,8,,01,...,0,) is a possible next global
state, and (2) If (s1,..., 85,y Sn, U1, ..., Vg, ..., V) 18 a global state, (s;, Oy, op, resp, t;) is an invo-
cation/response transition of P;, and (v, op, resp, wy) is a transition of Oy, then (s1,...,%, ..., Sp,
V1,. .., Wy, ..., Vy) is a possible next global state. In either case, we say that P; makes a step, and
that this step takes state s to state t. Thus, a step of process F; is either an internal transition
(s, t;) of P;, or an invocation/response transition (s;, Oy, op,resp,t;) of P;.

ACH{Py,...,P,} x{O1,...,0n,} is an access pattern: P; can perform operations on Oy only if
(P;,04) € A. This access restriction remains in force even if P; is Byzantine. A nonfaulty process is
one that behaves according to its transition relation. A faulty process is one that behaves arbitrarily,
i.e., it can invoke any operation on any object that it has access to (according to A). If the operation
is not legal, according to the object’s interface, then we assume that the object does not change
state. Also, even a Byzantine process cannot invoke operations on objects that it does not have
access to. We assume that such invocations would be blocked by, e.g., the operating system, and so
the targeted object would be unaffected. We extend our definition of process step to allow for such
arbitrary steps if the process is faulty. We also assume that a Byzantine process cannot change the
code of another process. Since process code also resides in memory, this assumption is necessary.
Without it, a single Byzantine process can corrupt the entire system.

An ezecution fragment is a (finite or infinite) alternating sequence of global states and steps
(starting with a state) such that each step takes the state preceding it to the state following it. An
execution is an execution fragment that starts in an initial global state. Hence, we model concur-
rency by the nondeterministic interleaving of internal transitions, executed by a single process, and
invocation/response transitions, executed jointly by one process and one object. A reachable state
is a state lying on some execution.

Note that objects have “high” atomicity in that invocations and responses occur “together”
in one atomic transition. Our impossibility results carry over to a model in which invocations
and responses are separate events, since such a model would still admit executions in which every
invocation is immediately followed by its matching response. Hence, the proofs in this paper would
still apply, since they only rely on the ability to construct certain executions.

An infinite execution is fair if and only if every nonfaulty process takes an infinite number of
steps in the execution. We assume (without further statement) that every infinite execution is fair.
We also assume that a nonfaulty process can always take a step, i.e, is always enabled. This is
reasonable, since our model does not permit operations such as “await some condition,” which hide

busy waiting or conditional waiting within their implementation. Any busy waiting or conditional



waiting must be programmed explicitly into the transition relation of a process, e.g., as a repeated
“polling” of some object until a particular response is observed. Hence, in our model, if a process
enters a local state from which it currently has no enabled actions, then the process is stuck forever

in that state.

2.1 Notation and Technical Definitions

If o is an execution, then a|P; is obtained by taking the subsequence of steps that P; executes along
a. Also, a/Oy is the subsequence of steps along « that involve ;. This extends to a set of objects
in the obvious way: «|(Oy,..., ;) is the subsequence of steps along « that each involve one object
in O1,...,0y,. Finally, these notations can be nested, so that («|P;)|O, denotes the subsequence of
all process P;’s steps along a that involve Oy (i.e., that arise from an invocation by P; on Oy). If
$={(81,..+,8n,V1,...,0m) 18 a global state, then s(F;) is s;, i.e., P;’s local state in s, and s(Oy) is
vy, 1.e., Of’s local state in s. If s and ¢ are two global states, we say s A tif and only if s(P;) = t(F;)

and s(Oy) = t(0y) for all objects Oy such that (P;, Oy) € A, i.e., all objects that P; has access to.

3 The Wait-free Byzantine Consensus problem

We specify the wait-free Byzantine consensus problem as follows. Each process starts with an initial
value from a fixed set V' (part of its initial local state), and each nonfaulty process eventually decides
on some value in V. The correctness requirements are as follows (agreement and validity are from

[7, chapter 6]):
Agreement No two nonfaulty processes decide on different values.

Validity If all nonfaulty processes start with the same initial value val € V, then val is the only

possible decision value for a nonfaulty process.

Wait-free Termination If P, is nonfaulty in an infinite fair execution «, then P; decides exactly

once in «.

Uniform-initial-state Every combination of initial local state for each process and initial local

state for each shared object is a possible initial global state.

We impose the uniform-initial-state requirement in order to rule out trivial solutions in which
each process has a “shared” object that only it can access, and whose initial value gives a correct
decision value. The wait-free termination requirement embodies the wait-freedom aspect of the
problem, since it requires all nonfaulty processes to decide, regardless of how many other processes

fail. In the sequel, we assume without loss of generality that {0,1} C V.



We extend the definition of a process so that a subset of the internal transitions are decision

transitions. A decision transition decides on some value in V.

Proposition 1 The wait-free termination requirement implies:

if P; is a nonfaulty process and s is a reachable global state in which P; has not yet decided, then

there exists an execution fragment « starting in s such that:
1. « consists only of steps of P;, and

2. P; decides in «.

Proof. Let P; be a nonfaulty process, and let s be an arbitrary reachable state in which P; has
not decided. Since a nonfaulty process is (by assumption) always enabled, s lies along at least one
infinite execution. Since one possible behavior of a Byzantine process is to emulate a nonfaulty
process up to some point, and then do nothing, there exists an infinite execution o' containing s
such that o’ can be split into two parts: a prefix o ending in s such that every process except P;
is faulty in o”, and a suffix o starting from s, such that no process other than P; takes a step
along o/”. By the wait-free termination requirement, P; decides along o". |

We also define the weak wait-free Byzantine consensus problem, in which the Validity require-

ment is replaced by the Weak Validity requirement:

Weak Validity If there are no faulty processes and all processes start with the same initial value

val € V', then val is the only possible decision value.

4 TImpossibility of Weak Wait-free Byzantine Consensus using Re-
settable Objects

We show that weak wait-free Byzantine consensus cannot be solved when each of the shared objects

may be reset to some initial state. We define:

Definition 1 An object is resettable if, for each of its reachable local states, there exists a sequence
of operations that takes the object back to some initial local state. We call such a sequence of

operations a reset sequence.

Note that our definition allows an object to be reset to several initial states from a given reachable
state v. The object cannot however, be reset to an initial state that is not reachable from v. An
extreme case is when every initial state is reachable from v, and so the object could be reset to any

initial state (from v).



Resettable objects are more desirable than nonresettable objects, because they can be easily
reused (e.g., for successive instances of consensus).
We show that there is no solution to weak wait-free Byzantine consensus using only resettable

objects, even if only a single process is Byzantine.

Proposition 2 Let P = (P, || -+ || Py, 01,...,0m,A) be a protocol for weak wait-free Byzantine
consensus. In any execution of P in which P;, 1 <1 < n, runs alone and decides before any other

process takes a single step, P; must decide its own initial value.

Proof. Let s be an arbitrary initial global state, and let «; be an arbitrary execution starting in s
in which P; first runs alone until it decides. Let the initial value of P; in s be wval;. Let t be the
global initial state which is identical to s except that all processes have initial value val; (thus all
shared objects have the same initial local states in s as in t). ¢ exists by the uniform-initial-state
requirement. Starting in state ¢, it is possible for P; to execute the same sequence of steps (up to
the point that it decides) that it executes in «ay, since P;’s local state and all object states are the
same in s as in t. Let a; be the resulting execution, and furthermore assume that no process is
faulty in oy (it is clear that such an «y exists). By weak validity, P; decides val; in «y. Hence, P;
also decides val; in a4 since it executes the same steps in both executions, up to the point that it

decides. Since o was chosen arbitrarily, the proposition follows. O

We first establish the impossibility result for three processes. The generalization to n processes

is easily done using the wait-free termination and uniform-initial-state requirements.

Theorem 3 There is no solution to the weak wait-free Byzantine consensus problem for three

processes if one of them can be Byzantine and all shared objects are resettable.

Proof. By contradiction. Suppose a solution P = (P || P || P3,01,...,0pn, A) exists. Let O;; C
{O1,...,0,,} be the (possibly empty) set of objects that can be accessed by P; and P;, and no other
process, ,j € {1,2,3},7 # j (all according to the access pattern A4). Also let Q193 C {O1,...,0,}
be the (possibly empty) set of objects that can be accessed by P;, P, and Ps, again according to
A. Thus, these sets of objects are all pairwise disjoint. We construct two executions a7 and aq
of P as follows (Figure 1 shows how a; and ay are “alternately” constructed from each other in a
well-defined manner).

The first part of «; is as follows. P is Byzantine, P, and P3 have initial value 1, and Os3 is

! First, P, runs alone until it decides. By Proposition 2, P, decides 1.

in some initial state Vo3.
Next, P; invokes reset sequences for all objects in O3 and Oj93. Let the resulting initial states of

013, 0123 be Vi3, V193 respectively.

'For brevity, we discuss the sets of objects O;;, O123 as if they were single objects. For example, Vo3 is actually a
tuple of initial object states.



11 P, runs alone | p, regets 2. O Py executes P; runs alone
Initially: and decides 1 tol Vis, Vigs 19 (2| P1)|(O13 U O193) |and decides 1
P, is faulty

P, has initial value 1

P5 has initial value 1# .

_ . 1.8
Oa3 = Vo3 Execution oy

Initially:
P; runs alone P, executes P; executes o |Ps
Py is faulty and decides 0 (al‘PQ)‘OQS - and decides 1,
P has initial value 0 thereby violating
P5 has the same initial agreement
state as in oy . °
O13 = Vi3 ) a.t
Og3 = Vo3 Execution asy
O123 = V123

Figure 1: Executions «; and g in the proof of Theorem 3.

ag is as follows. Ps is Byzantine, P; is nonfaulty and has initial value 0, and P3 is nonfaulty
and has the same initial state as in a; (and therefore has initial value 1). The initial states of
013, 093, 0193 are Vi3, Vog, Vio3 respectively. By the uniform-initial-state requirement, these initial
conditions must exist for some execution. First, P, runs alone until it decides. By Proposition 2,
Py decides 0. Next, P executes (a1|P;)|Oa3 (since P, is Byzantine and has access to Oag, it can
invoke any sequence of operations on Os3). Let the global state at this point be as.t. Finally, Ps
runs alone until it decides. By agreement, P; must decide 0, since P, decided 0, and Py, P; are
nonfaulty.

The last part of oy is as follows. P executes (az|P;)|(O13 U O193)—since Py is Byzantine and
has access to O13 U O193, it can execute any sequence of operations on Q13 U O193. Let the global
state at this point be a;.s. Finally, P; runs alone until it decides. By agreement, P; must decide
1, since P, decided 1, and P,, P3 are nonfaulty.

We now establish «;.s 3 as.t. In 1.5, the state of Qg3 results from the sequence (aq|Py)|Og3
applied to the initial state Vg of Oy3 (by definition of |) In as.t, the state of Qo3 results from the
same sequence, namely (ozl\PQ)\(’)Qg, applied to the same initial state Va3 (by construction of ay).
Hence, we can select the local transitions of all the objects in Qa3 so that ay.5(0a3) = ag.t(Oa3).

In «ay.s, the states of O3, 0193 result from the sequence (ao|Py)[(O13 U O123) applied to the
states Vi3, V193 respectively (because of the reset sequences invoked by P; in «q, the actual initial

states of O3, 0193 don’t matter). In «ay.t, the states of O3, 193 also result from the sequence



(| Py)|(O13 U O193) applied to the (initial) states V;3, Va3 respectively (by definition of |). Hence
we can choose the local transitions of all the objects in O3 U Q193 so that a;.s(O13) = a9.t(O13)
and «a1.8(O123) = a9.t(O193). Finally, the local state of P3 in «.s is its initial state in aq, since Ps
takes no steps in the prefix of a; up to aq.s. Likewise the local state of P in «e.t is its initial state
in ay. But these initial states are the same, by construction of ay. Hence ay.5(P3) = ag.t(P3).
Since P3’s state and the states of all objects that P3 can access are the same in «;.s as in «s.t, we
conclude a;.s 2 .t

In aq, P5 runs alone from «q.s until it decides. In a9, P3 runs alone from as.t until it decides.
Since «aq.s £ as.t, and P3 runs alone from «a;.s, as.t until it decides, it is possible for P3 to execute
the same sequence (i.e., (11|_P3) of steps in a9 as in . Let this then be the sequence that P
actually executes in ag. Hence, P; must decide the same value in @y as in «;. But we showed

above that P3 decides 1 in 1 and 0 in . Hence the desired contradiction. O

Theorem 4 There is no solution to the weak wait-free Byzantine consensus problem for n > 3

processes if one of them can be faulty and all shared objects are resettable.

Proof. We assume a solution exists and derive a contradiction exactly as in the proof of Theorem 3.

From the wait-free termination and uniform-initial-state requirements, and Proposition 1, it is clear

that the executions a1, ay (with their initial states extended arbitrarily to Py, ..., P,) constructed
in the aforementioned proof are executions of a solution for any n > 3 (simply delay Py, ..., P,
until o, @y have been fully executed). O

We note that if an access pattern is not imposed, then the proof of Theorem 3 becomes trivial:
let P; be nonfaulty and run alone until it decides; then let P, be faulty and reset all objects in
the system; finally let P be nonfaulty and run alone until it decides. Invoking Proposition 2 then
allows us to conclude that P; and P3; must both decide on their initial values, since P3’s view of the
execution is indistinguishable from its view of some execution in which it runs alone and decides

before any other process takes a step.

5 Further Work and Conclusions

We studied the problem of wait-free consensus in the presence of Byzantine faults. We showed
that weak wait-free Byzantine consensus is achievable only if we use nonresettable objects (and, in
the technical report version of this paper, that wait-free Byzantine consensus is not achievable at
all). Our impossibility results hold in the presence of only a single Byzantine process, and even if
we can impose an “access pattern” that, for each process, fixes the objects that the process has
access to. Our results suggest that the “majority voting” considerations that give the usual bound

of less than one-third faulty processes (n > 3f + 1) do not come into play when wait-freedom is
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required. We also remark that our results are easily extended to low-atomicity objects, i.e., where
invocations and responses are separate events: simply construct the executions used in the proofs
above so that every response immediately follows its matching invocation.

The access patterns considered in this paper either grant a process access to all of the operations
defined by a particular shared object, or to none of them. A more refined notion would grant
different processes access to different subsets of the defined operations, e.g., like an access matrix
[8, 10]. Thus, some processes may only have access to “read” operations. The proof ideas we used
in this paper do not carry over to this more refined model. It would be worthwhile to investigate
whether our impossibility results themselves do carry over.

As mentioned in the introduction, the issue of Byzantine consensus in a shared memory system
is rendered nontrivial by introducing some restriction on the amount of damage a Byzantine process
can inflict. We considered a restriction based on access control in this paper. Other restrictions
could be based on timing, so that a Byzantine process can only inflict a limited amount of damage
within a fixed time interval (i.e., the “rate of damage” is finite). A first step in further investigation is
to categorize the restrictions on a Byzantine process that could be reasonably imposed in practice,
and then to study the existence (or not) of wait-free consensus, or consensus generally, c.f. [3],

subject to one (or more) of the restrictions.
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