
Boosting Fault-Toleran
e in Asyn
hronous Message PassingSystems is ImpossiblePaul Attie1, Nan
y Lyn
h2, and Sergio Rajsbaum31. College of Computer S
ien
e, Northeastern University, attie�

s.neu.edu2. MIT Laboratory for Computer S
ien
e, lyn
h�theory.l
s.mit.edu3. Mathemati
s Institute, Universidad Na
ional Autonoma de Mexi
o (UNAM), rajsbaum�matem.unam.mx
De
ember 21, 2002

Abstra
tWe show that it is impossible to \boost" the level of fault-toleran
e of a system solving
onsensus by
ombining less fault-tolerant
omponents into a more fault-tolerant system. To dothis, we
onsider an asyn
hronous distributed
omputing model in whi
h a known set of pro
essesintera
t in two ways: by using reliable point-to-point
hannels, and by a

essing shared servi
es.Ea
h of the shared servi
es is
onne
ted to a subset of all the pro
esses.Our boosting impossibility result is: for any f � 1, the
onsensus problem is unsolvable inthis model in the presen
e of up to f pro
ess stopping failures, if ea
h of the shared servi
esis assumed to tolerate only f � 1 pro
ess failures. This result holds regardless of the types ofthe shared servi
es and the pattern of
onne
tivity of pro
esses and servi
es. In parti
ular, itis impossible to
onstru
t a proto
ol to solve the
onsensus problem for f pro
ess failures usingany number of
onsensus servi
es that tolerate f � 1 pro
ess failures.Interestingly, it is possible to boost the level of a system solving problems easier than
on-sensus. For example, we show that the k-
onsensus problem is solvable for 2k� 1 failures usingonly (
onsensus) servi
es that tolerate only 1 failure apie
e.

1 Introdu
tionIt is generally a

epted that large distributed systems should be
onstru
ted from building blo
ks(su
h as middleware-provided servi
es) that intera
t with ea
h other through well-de�ned inter-fa
es. Large systems must also tolerate a variety of types of failures. Establishing fault-toleran
eproperties of a large system is diÆ
ult, as many s
enarios have to be
onsidered. A parti
ularlydesirable approa
h is to \boost" the level of fault-toleran
e by
ombining less fault-tolerant
ompo-nents into a more fault-tolerant system. It is plausible that this might be a
hieved using te
hniquessu
h as quorums, repli
ation, and redundan
y.In this paper, we demonstrate a fundamental limitation on this approa
h. Namely, we inves-tigate the possibility of fault-toleran
e boosting for implementing a
onsensus servi
e tolerant tof stopping failures from underlying \subservi
es" that are tolerant to f � 1 stopping failures. Weshow that, in the setting of purely asyn
hronous message passing, su
h fault-toleran
e boosting
annot be a
hieved, for any type of underlying servi
es. That is, the availability of any set ofdistributed servi
es, ea
h of whi
h tolerates up to f�1 stopping failures, is insuÆ
ient to
onstru
ta
onsensus proto
ol that tolerates f failures.In more detail, we
onsider a set of asyn
hronous pro
esses of whi
h f
an fail by stopping,
ommuni
ating with ea
h other by sending messages through reliable point to point
hannels. Inaddition, there is a set of servi
es through whi
h they
an
ommuni
ate impli
itly. A pro
ess
aninvoke operations of a servi
e by sending a message to one of its ports, and eventually get a responsefrom the servi
e. A pro
ess
an invoke multiple operations on a servi
e, and
on
urrently on otherservi
es. But before issuing a new operation on the same servi
e, it must �rst wait for a responseto the
urrent invo
ation. Ea
h servi
e has a �xed set of \ports" and ea
h port is hardwiredto one pro
ess, where it re
eives invo
ations and returns responses to the
orresponding pro
ess.Ea
h servi
e has some degree of fault toleran
e, say f , whi
h represents the number of (hardwired)pro
esses a

essing it that
ould
ause it to
rash. This is intended to re
e
t the idea that servi
esare implemented by distributed algorithms, whi
h run at a number of lo
ations, represented byports. The failure really a�e
ts the lo
ation,
ausing not only the failure of the pro
ess hardwiredto the
orresponding port, but also the failure of that part of the distributed implementation ofthe servi
e whi
h resides at that lo
ation. If a suÆ
ient number (> f) of lo
ations of a distributedimplementation fail, then the implementation itself will fail. Note that this idea does not in anyway prevent the use of arbitrary ora
les in the implementation of a servi
e, e.g., su
h as failuredete
tors or powerful hardware
on
urrent obje
ts.Noti
e that, ex
ept for the failure behavior, our servi
es are just like the linearizable typedshared obje
ts usually
onsidered in the literature e.g. [Her91, CJT94, Jay97, LH00℄. The servi
esusually
onsidered in the literature do not fail at all. There are only two papers we are aware ofthat
onsider servi
es that
an fail, [JCT98℄ and [AGMT95℄, but these papers assume the servi
esare not implemented by the pro
esses. In
ontrast to our model, the failures of the servi
es and ofthe pro
esses are not
orrelated in those two papers. We dis
uss this further in the Related Workse
tion below.Our impossibility result says that it is impossible to build a
onsensus servi
e tolerating f failuresfrom servi
es that tolerate less than f failures, independently of the number of su
h servi
es, howpowerful they are, or in what way they are a

essed by the pro
esses. Thus, for example, a strategyin whi
h multiple instan
es of (f � 1)-fault-tolerant servi
es are used by di�erent subsets of thepro
esses in the system,
annot work. Methods based on splitting up pro
esses, or divide and
onquer, also
annot work. In parti
ular, our result holds when the underlying servi
es in
lude1

onsensus servi
es tolerant to f � 1 stopping failures.It is important to study
onsensus implementability be
ause it is su
h a fundamental problemin distributed
omputing. In parti
ular, there is Herlihy's [Her91℄ universality result for servi
esthat do not fail: it is possible to design a wait-free implementation of a servi
e of any type, sharedby n pro
esses, using only
onsensus servi
es with n ports and registers. Our boosting impossibilityresult shows a limitation on this universality result when servi
es
an fail.Our impossibility holds for
onsensus implementability, but not for implementability of weakerproblems. Our se
ond result is that it is is possible to boost the level of a system solving problemseasier than
onsensus, like k-
onsensus. In this problem pro
esses have to agree on at most kdi�erent values; thus, k-
onsensus redu
es to
onsensus when k = 1. We present a simple algorithm(generalizing the one in [HR94, HR00℄) that solves k-
onsensus and tolerates f failures using k0-
onsensus servi
es that tolerate f 0 less than f failures, for various values of k0 and f 0. For example,k-
onsensus is solvable for 2k�1 failures using only (
onsensus) servi
es that tolerate only 1 failureapie
e.Related work. Our main result is the impossibility of solving
onsensus f -resiliently usingf�1-resilient servi
es in an asyn
hronous system. There is a lot of work that studied the feasibilityof implementing f -tolerant
onsensus as a fun
tion of the available
omponents in the asyn
hronoussystem. The \
omponents"
an be simple message transmission
hannels or shared read/writeregisters, but also more powerful obje
ts, perhaps implemented in hardware su
h as test&set orimplemented with timeouts su
h as failure dete
tors, or even
ombinations of di�erent kinds ofobje
ts. A typed shared obje
t used in many papers is what we
all a servi
e, i.e., it has (i) anumber of ports; (ii) a set of states of the obje
t (or values as we
all them); (iii) the set ofoperations that pro
esses may apply through its ports; (iv) the behavior of the obje
t in terms ofa transition relation Æ, and is assumed to be linearizable. Ex
ept that the usual assumption is thatthe
omponents themselves are reliable.Work that assumed that the available
omponents are the most basi
 ones is [FLP85℄ for justmessage transmission, and [LAA87, Her91℄ for shared read/write registers, and proved that it isimpossible to solve f -tolerant
onsensus using only these simple
omponents. That is, the available
omponents, either
hannels or registers never fail. Sin
e a
onsensus proto
ol that tolerates zero
rash faults is trivial, our result generalizes that of [FLP85℄, whi
h is a spe
ial
ase, for f = 1.Indeed, our proof te
hnique is a generalization of the one in [FLP85℄. The main di�eren
e is theidea of modelling the servi
es. This introdu
es many more s
enarios to deal with in the proof. Also,our events are mu
h �ner grain: in FLP, in one event a pro
ess re
eives a message, makes a lo
alstate
hange, and also sends any �nite number of messages. Our events are I/O automata a
tionsin the model of distributed systems with servi
es. So, for example, a pro
ess re
eiving a message
an only make a lo
al state
hange, it
annot perform any output of any kind in the same event.Other papers
onsider more general and powerful base obje
ts (again that never fail), andinvestigate when they
an be used to solve
onsensus. For example, [LH00℄ ask the question forf = 1: Let n � 3 and S be a set of obje
t types that
an be used to solve one-resilient
onsensusamong n pro
esses. Can S always be used to solve one-resilient
onsensus among n� 1 pro
esses?Many papers
onsider the other extreme, of f = n � 1 and deal with the robustness questionposed in [Jay97℄:
an you
ombine obje
ts of type T and T 0 that
annot be used to solve wait-free
onsensus ea
h one by themselves in su
h a way as together solve wait-free
onsensus?Other papers relate implementations for di�erent number of pro
esses based on the same fault-toleran
e level f . Spe
i�
ally, [CJT94℄ show for all n > f � 2 and all sets S of shared obje
t types2

(that in
lude simple read/write registers) there is a f -resilient solution to n-pro
ess
onsensus usingobje
ts of types in S if and only if there is a f -resilient solution to (f + 1)-pro
ess
onsensus usingobje
ts of types in S. And [BGLR01℄ for k-set
onsensus: if there is a f -resilient implementation ofn-ported f -set
onsensus from registers then there is a f -resilient implementation of f + 1-portedf -set
onsensus from registers.Thus, our question is orthogonal to the
on
erns of these previous works: while they assumereliable
omponents, we
onsider
omponents that are less reliable, i.e. we ask what problems
anbe solved in an f -resilient manner using
omponents that tolerate less than f failures. We knowof two papers that do
onsider shared obje
ts that may fail. Afek, Greenberg, Merritt, Taubenfeld[AGMT95℄ study wait-free implementations using obje
ts that
an fail by returning the wrong valuefor a response. And more
losely related to our work is [JCT98℄ that
onsider base obje
ts that mayfail by not responding (both [JCT98℄ and [AGMT95℄
onsider other types of failures, like wrongvalues returned, less related to our work). In their model any number of pro
esses may fail, and atmost t base obje
ts may fail. When an obje
t fails, it stops responding. They have an impossibilityresult for solving
onsensus for two pro
esses tolerating even one nonresponsive-faulty servi
e, andeven if that servi
e
an be nonresponsive wrt only one predetermined pro
ess. This proof worksby a redu
tion from [LAA87℄. This result is orthogonal to ours: the failures of the servi
es in theirmodel are unrelated to the failures of the pro
esses, while in our model, servi
es
an fail only dueto failures of pro
esses. Thus, if no pro
ess fails, in our model we know no servi
e will fail, whilein su
h a situation in their model still servi
es
ould fail. On the other hand, they know that atmost one servi
e will fail, while in ours there is no bound: if one servi
e will fail due to too manypro
esses failing, all the servi
es with the same pro
esses asso
iated
an also fail.Our main
on
ern in this paper is on the implementation of
onsensus. Re
all that Herlihy[Her91℄ has shown that any obje
t
an be implemented using
onsensus. Thus
onsensus is at thetop of a hierar
hy. As mentioned above, our impossibility result does not hold for obje
ts weakerthan
onsensus.The paper is organized as follows. Se
tion 2 gives te
hni
al preliminaries. Se
tion 3 gives ourmodel of a distributed system, and de�nes the
onsensus problem. Se
tion 4 presents our impossi-bility result for
onsensus. Se
tion 5 des
ribes the
ontrasting result for k-set
onsensus. Se
tion 6dis
usses dire
tions for further resear
h and
on
ludes. Appendix A presents some te
hni
al ba
k-ground.2 Modeling Preliminaries2.1 Basi
 underlying model of
on
urrent
omputationWe use the I/O automaton model [Lyn96,
hapter 8℄ as our underlying model for
on
urrent
om-putation. We assume the terminology of [Lyn96,
hapter 8℄. An I/O automaton A is deterministi
i�, for ea
h task t of A, and ea
h state s of A, there is at most one transition (s; a; s0) su
h thata 2 t.2.2 Variable typesWe de�ne the notion of a \variable type", in order to des
ribe allowable sequential behavior ofservi
es. The de�nition used here is a generalization of the one in [Lyn96,
hapter 9℄; the gener-3

alization allows nondeterminism in the
hoi
e of the initial state and the next state. Namely, avariable type T = hV; V0; invs; resps ; Æi
onsists of:� V , a nonempty set of states of the variable,
alled values,� V0 � V , a nonempty set of initial values,� invs, a set of invo
ations,� resps, a set of responses, and� Æ, a subset of (invs � V) � (resps� V) that is \total", in the sense that, for every (a; v) 2invs� V , there is at least one (b; v0) 2 resps� V su
h that ((a; v); (b; v0)) 2 Æ.A deterministi
 variable type is one in whi
h Æ is a mapping, i.e., for every (a; v) 2 invs � V ,there is exa
tly one (b; v0) 2 resps� V su
h that ((a; v); (b; v0)) 2 Æ.The reason for generalizing the notion of a variable type to allow nondeterminism is that wewant to make our notion of \servi
e", de�ned below, as general as possible. In parti
ular, we wantto in
lude the problem of k-
onsensus, whi
h
an be spe
i�ed using a nondeterministi
 variabletype, in our
onsideration.Example. Read/write variable type: Here, V is some arbitrary set of \values," V0 = V ,invs = freadg [fwrite(v) : v 2 V g, resps = V [fa
kg, and Æ is de�ned to in
lude the followingpairs: ((read; v); (v; v)) for v 2 V , and ((write(v); v0); (a
k; v)) for v; v0 2 V . 2Example. Consensus variable type: Here, V is the set of subsets of f0; 1g having at most oneelement, V0 = ;, invs = finit(v) : v 2 f0; 1gg, resps = fde
ide(v) : v 2 f0; 1gg, and Æ is de�ned toin
lude the following pairs:((init(v); ;); (de
ide(v); fvg)) for v 2 V , and ((init(v); fv0g); (de
ide(v0); fv0g)) for v; v0 2 V . 2Example. k-
onsensus variable type: Here, V is the set of subsets of f0; 1; : : : ; kg havingat most k elements, V0 = ;, invs = finit(v) : v 2 f0; 1gg, resps = fde
ide(v) : v 2 f0; 1gg,and Æ is de�ned to in
lude the following pairs: ((init(v);W); (de
ide(v0);W [fvg)) for jW j < k,v0 2W [fvg, and ((init(v);W); (de
ide(v0);W) for jW j = k, v0 2W .Thus, the �rst k values get remembered, and all operations return one of these �rst k values. 22.3 Canoni
al f-fault-tolerant atomi
 obje
tsWe now de�ne the notion of
anoni
al f -fault-tolerant atomi
 obje
t, whi
h des
ribes the allowable
on
urrent behavior of servi
es. The
anoni
al f -fault-tolerant atomi
 obje
t of type T for endpointset J and with index k is given in Figure 1 as an I/O automaton that is parameterized by k, T , J ,and f , where these are:1. A unique index k, drawn from some index set K,2. An underlying variable type T = hV; V0; invs ; resps ; Æi, whi
h de�nes the sequential behaviorof the obje
t,3. A set of \endpoints" J , and4. The required degree of fault-toleran
e f . 4

A
anoni
al atomi
 obje
t a

ommodates
on
urrent invo
ations by di�erent pro
esses, i.e.,between an invo
ation from and response to a parti
ular pro
ess, the invo
ations of other pro
essesmay arrive and be pro
essed. The use of a set of endpoints allows di�erent servi
es to be
onne
tedto di�erent sets of pro
esses. Thus, J will be a subset of some set I of pro
ess indi
es, whi
hrepresents all the pro
esses in the system.Our notion of atomi
 obje
t generalizes that in [Lyn96, se
tion 13.1.2℄. We note the follow-ing features of our atomi
 obje
ts. Ea
h pro
ess in J
an issue any invo
ation of the atomi
obje
t's underlying variable type, and
an (potentially) re
eive any allowable response. The re-sult of performing an parti
ular operation is nondeterministi
ally sele
ted from all results allowedby the transition relation Æ and the
urrent value val of the obje
t. Thus, the obje
t is, in gen-eral, inherently nondeterministi
 in that it
an exhibit nondeterminism that is not just due to thenondeterminism of its invo
ations by di�erent pro
esses.For every pro
ess Pi, i 2 J , there
orresponds a task of the atomi
 obje
t, whi
h we
all ani-task . The i-task
onsists of all the perform a
tions that
arry out the operations invoked byPi, together with all the possible response a
tions giving responses to Pi. In addition, the i-task
ontains a dummyk;i a
tion, whi
h is enabled when either Pi has failed or more than f pro
essesin J have failed. Thus, by inspe
ting Figure 1 we see that for every i 2 J , the task stru
turerequires that the obje
t eventually respond to an outstanding invo
ation by Pi, unless either Pihas failed or more than f pro
esses in J have failed. In the latter
ase, the obje
t is allowed toabstain from responding to Pi, sin
e the internal a
tion dummyk;i is enabled, and
an be exe
utedto dis
harge the fairness requirement imposed by the task stru
ture. If more than f pro
esses havefailed, then the obje
t is allowed to abstain from responding to any pro
ess in J , sin
e dummyk;i isenabled for all i 2 J . This re
e
ts the idea that the obje
t is f -tolerant; on
e more than f failureshave o

urred (amongst pro
esses
onne
ted to the obje
t), then the obje
t
an itself \fail" bybeing \silent" forever from that point onwards. That is, we allow the obje
t to violate its livenessproperty. Note, however, that the obje
t
an never violate its safety property, e.g., by returningvalues in
onsistent with the transition relation Æ. Note that we also allow the obje
t to be silent ifall pro
esses it is
onne
ted to (i.e., in J) fail, sin
e dummyk;i is then enabled for all i 2 J .2.4 f-fault-tolerant atomi
 obje
tsGiven a variable type Tk and set Jk of endpoints, de�ne an I/O automaton U to be a well-formedenvironment for Tk and Jk if and only if1. Its outputs are exa
tly the invo
ations of Tk at the endpoints in Jk, and its inputs are exa
tlythe responses of Tk at the endpoints in Jk, and2. In every exe
ution of U , for ea
h endpoint i 2 Jk, there aren't two
onse
utive invo
ations ati without an intervening response at i.An I/O automaton A (a full-blown I/O automaton, with tasks) is said to be an f -fault-tolerantatomi
 obje
t of type Tk, set Jk of endpoints, and index k, if and only if it implements the f -fault-tolerant
anoni
al atomi
 obje
t Sk of type Tk for Jk, in the following sense:1. It has the same input and output a
tions (in
luding the fail a
tions).2. If U is a well-formed environment for Tk and Jk, then5

Canoni
al Atomi
-Obje
t(k; hV; V0; invs ; resps ; Æi; J; f)SignatureInput:ai;k, a 2 invs, the invo
ations of Atomi
-Obje
t(k; hV; V0; invs; resps ; Æi; J; f) by Pi, i 2 Jfail i, i 2 JOutput:bk;i, b 2 resps , the responses of Atomi
-Obje
t(k; hV; V0; invs; resps ; Æi; J; f) to Pi, i 2 JInternal:perform((a; v); (b; v0))k;i, a 2 invs, b 2 resps , v; v0 2 V , i 2 Jdummyk;i, i 2 JStateval , a value in V , initially a value in V0inv�bu�er , a set of pairs (i; a), for ai an input a
tionresp�bu�er , a set of pairs (i; b), for bi an output a
tionfailed � J , initially emptyA
tionsInput ai;kE�: inv�bu�er inv�bu�er [f(i; a)gInternal perform((a; v); (b; v0))k;iPre: (i; a) 2 inv�bu�er ^ val = v ^ Æ((a; v); (b; v0))E�: inv�bu�er inv�bu�er � f(i; a)g;val v0;resp�bu�er resp�bu�er [f(i; b)g
Output bk;iPre: f(i; b)g 2 resp�bu�erE�: resp�bu�er resp�bu�er � f(i; b)g;Input failiE�: failed failed [figInternal dummyk;iPre: i 2 failed _ jfailed j > fE�: noneTasksFor every i 2 J : fperform((a; v); (b; v0))k;i : Æ((a; v); (b; v0))g [fbi : b 2 respsg [fdummyk;igFigure 1: I/O automaton for the
anoni
al f -fault-tolerant atomi
 obje
t with endpoints J andtype T = hV; V0; invs ; resps ; Æi(a) Any tra
e � of A � U is also a tra
e of Sk � U . (This should imply that A preserveswell-formedness and guarantees atomi
ity.)(b) Any fair tra
e � of A � U is also a fair tra
e of Sk � U . (This should imply that theimplementation is f -fault-tolerant.)3 Model of ComputationThe model we
onsider for our problem
onsists of a
olle
tion of pro
esses,
hannels, and servi
es,whi
h we de�ne formally below. For the rest of this se
tion, we �x:� I, K, �nite index sets, and� T , a variable type for the entire system, representing the problem being solved, and6

Pj : : :Cj;i
Ci;j: : :: : : Pi

Sk
ai;k
ai bi

: : : : : :
fail i re
eive(m)i;j

send(m)j;i
bk;i

re
eive(m)j;i
send(m)i;j

Figure 2: The interfa
es of pro
ess Pi,
hannels Ci;j; Cj;i and servi
e Sk in the
omplete system.� M , a message alphabet.A distributed system with servi
es (DSS) for I;K;T ;M is the parallel
omposition of I/O automata(see [Lyn96,
hapter 8℄) of the following kinds:1. pro
esses Pi, i 2 I, and2.
hannels Ci;j, i; j 2 I, i 6= j, and3. servi
es Sk, k 2 K. We let Tk denote the variable type and Jk � I denote the set of endpointsof servi
e Sk.Pro
esses intera
t only via
hannels: Pro
ess Pi
ommuni
ates with pro
ess Pj over unidire
tional
hannel Ci;j. Pro
esses also intera
t with servi
es: Pro
ess Pi
an invoke servi
e Sk provided thati is in Sk's set of endpoints. Servi
es do not
ommuni
ate dire
tly with one another; however, theyintera
t indire
tly via
ommon pro
esses. Figure 2 shows the interfa
es that a pro
ess,
hannel,and servi
e have. In the remainder of this se
tion, we provide more details about the
omponents.3.1 Pro
essesPro
ess Pi, i 2 I has the following kinds of inputs and outputs:1. Inputs ai and outputs bi, where a is an invo
ation of type T and b is a response of type T .These represent Pi's intera
tions with its own
lients (the outside world).2. Outputs send(m)i;j and inputs re
eive(m)j;i, m 2 M , whi
h
onne
t to
hannels Ci;j andCj;i, respe
tively.3. For every servi
e Sk su
h that i 2 Jk, outputs ai;k, where a is an invo
ation of type Tk, andinputs bk;i, where b is a response of type Tk.7

4. Input fail i.We assume that Pi observes well-formedness for ea
h separate servi
e Sk: it does not issue twoinvo
ations on Sk without re
eiving a response to the �rst one. However, Pi is allowed to issue aninvo
ation on a servi
e without waiting for previous invo
ations on other servi
es to respond. Thatis, Pi
an issue
on
urrent invo
ations to di�erent servi
es, but not to the same servi
e. We alsoassume that the
lient of Pi is well-formed with respe
t to Pi: it does not issue two invo
ations toPi without re
eiving a response to the �rst one. We assume that Pi has only a single task, whi
htherefore
onsists of all the lo
ally-
ontrolled a
tions of Pi. We assume that in every state, somea
tion in that single task is enabled. We assume that the fail i input a
tion sends Pi into somekind of state from whi
h (from that point onward), no output a
tions are enabled. However, otherlo
ally-
ontrolled a
tions may be enabled|in fa
t, by the restri
tion just above, some su
h a
tionmust be enabled. This a
tion might be a \dummy" a
tion, as in the fault-tolerant atomi
 obje
tsde�ned earlier.3.2 Servi
esWe de�ne a f -fault-tolerant servi
e of a parti
ular variable type Tk for a parti
ular set Jk ofendpoints, to be simply the
anoni
al f -fault-tolerant atomi
 obje
t of type Tk for Jk. Let Tk:invs,Tk:resps denote the set of invo
ations, responses, respe
tively, of the variable type Tk.The safety properties of a servi
e Sk are determined by its �nite tra
es, whi
h are determinedby its start states, transitions, and signature. These are all part of the de�nition of the servi
e as anI/O automaton. Likewise, the liveness properties of a servi
e Sk are determined by the automatontask stru
ture and the usual
onventions for fair exe
utions of I/O automata.We say that Pi has an outstanding invo
ation to a servi
e Sk i� either (1) the invo
ation bu�erof Sk
ontains an invo
ation of the form (i; a), a 2 Tk:invs, or (2) the response bu�er of Sk
ontainsa response of the form (i; b), b 2 Tk:resps.We say that a servi
e Sk is silent along an exe
ution � i� the only a
tions that Sk exe
utesalong � are dummy a
tions.3.3 ChannelsChannel Ci;j is a FIFO reliable
hannel, as de�ned in [Lyn96,
hapter 14℄. Its inputs are send(m)i;ja
tions, whi
h are outputs of Pi, and its outputs are re
eive(m)i;j a
tions, whi
h are inputs of Pj .A
hannel has exa
tly one task,
onsisting of its lo
ally
ontrolled a
tions.3.4 The task stru
ture of a
omplete systemThe ordinary assumptions about I/O automata mean that the system exe
utes using a \weaklyfair" s
heduling dis
ipline: in any exe
ution, every task that is
ontinuously enabled gets sele
tedfor exe
ution in�nitely often. (Thus, an enabled task is eventually either disabled or exe
uted.)For a servi
e Sk, there is a task for ea
h i 2 Jk,
onsisting of the a
tions fperform((a; v); (b; v0))k;i :Æ((a; v); (b; v0))g[fbi : b 2 respsg[fdummyk;ig, see Figure 1. For a pro
ess Pi there is a single task,
onsisting of all the lo
ally
ontrolled a
tions of Pi. Likewise, for a
hannel Ci;j, there is a singletask,
onsisting of all the lo
ally
ontrolled a
tions of Ci;j, i.e., the re
eive(m)i;j a
tions, m 2M .8

Sin
e a task of a
omponent
ontains only its lo
ally
ontrolled a
tions, we infer from thesignature
ompatibility
ondition for I/O automata that the tasks de�ne a partition of the set ofall a
tions in the system, ex
ept the init(v)i and fail i a
tions; ea
h a
tion o

urs in exa
tly onetask.With this task stru
ture, the weak fairness dis
ipline implies that every message that is sentis eventually re
eived, every pro
ess exe
utes in�nitely often along an in�nite fair exe
ution, andevery outstanding invo
ation (of a servi
e) eventually re
eives a response.We introdu
e a naming s
heme for tasks as follows. The single task of Pi, i 2 I is
alled pti. Thesingle task of
hannel Ci;j, i; j 2 I, i 6= j, is
alled
ti;j. The task of servi
e Sk, k 2 K for i 2 Jk is
alled stk;i. We de�ne PT = fpti : i 2 Ig, CT = f
ti;j : i; j 2 I; i 6= jg, ST = fstk;i : k 2 K; i 2 Jkg,and T = PT [CT [ST . We
all the tasks pti (i 2 I) pro
ess tasks, the tasks
ti;j (i; j 2 I; i 6= j)
hannel tasks, and the tasks stk;i (k 2 K; i 2 Jk) servi
e tasks.For any a
tion a ex
ept an init(v)i or fail i, we de�ne task(a) to be the unique t su
h that t 2 Tand a 2 t, i.e., task (a) is the name of the task
ontaining a. We de�ne task(init(v)i) = init(v)i,and task (fail i) = fail i, i.e., we
onsider these a
tions as being the sole members of singleton tasks,and overload the name of the a
tion as the name of the
orresponding task. If e is a
hannel task
ti;j, then let re
eiver (e) be the pro
ess Pj .3.5 The Consensus problemThe \traditional" spe
i�
ation of f -fault-tolerant
onsensus is given in terms of a set fPi; i 2 Ig(I is an index set) of pro
esses that ea
h starts with some value vi drawn from f0; 1g. Pro
essesare subje
t to
rash failures [S
h90℄, that disable the pro
ess from produ
ing any output.1 As aresult of engaging in a
onsensus algorithm, ea
h nonfaulty pro
ess eventually \de
ides" on a valuefrom f0; 1g. The behavior of pro
esses is required to satisfy the following three
onditions [Lyn96,
hapter 6℄:Agreement No two pro
esses de
ide on di�erent values.Validity The value de
ided on is the initial value of some pro
ess.Termination In every in�nite fair exe
ution, all nonfaulty pro
esses eventually de
ide.We spe
ify the
onsensus problem in a slightly di�erent way. We say that a DSS S solves f -fault-tolerant
onsensus for I if and only if S is an f -fault-tolerant atomi
 obje
t of type
onsensus(Se
tion 2.2) for endpoint set I.We now show that any system that meets our de�nition also meets the traditional one. Weargue that the f -fault-tolerant
anoni
al
onsensus obje
t for endpoint set I satis�es the three
onditions above (with a slight variation of the termination
ondition).From the de�nition of the
onsensus variable type, ea
h pro
ess in I has two invo
ations, init(0),init(1) and two responses, de
ide(0), de
ide(1). By inspe
ting the
onsensus variable type given inSe
tion 2.2, we see that the value of the variable is initially ;, and on invo
ation init(0)
an
hangefrom ; to f0g, and on invo
ation init(1)
an
hange from ; to f1g, and is stable on
e it is di�erentfrom ;. It is also
lear that any de
ide(0) response is only issued by the obje
t when the variable1Crash failures are usually de�ned as disabling the pro
ess from exe
uting at all. However, the two de�nitions areequivalent with respe
t to overall system behavior. 9

has value f0g, and any de
ide(1) response is only issued by the obje
t when the variable has valuef1g. Hen
e, after the �rst de
ide(0) response, all subsequent responses will be de
ide(0), and afterthe �rst de
ide(1) response, all subsequent responses will be de
ide(1). So, the
anoni
al
onsensusobje
t satis�es the agreement
ondition. If all invo
ations are init(0), then the only possible
hangeof the variable is from ; to f0g. Hen
e, all responses will be de
ide(0). Likewise if all invo
ationsare init(1), then all responses will be de
ide(1). Otherwise, there are both init(0) and init(1)invo
ations. Hen
e, in all
ases, the value de
ided on is the value o

urring in some invo
ation.Hen
e, the
anoni
al
onsensus obje
t satis�es the validity
ondition. If at least one pro
ess invokesthe f -fault-tolerant
anoni
al
onsensus obje
t, then the value of the variable will eventually beeither f0g or f1g, provided that less than f pro
esses fail, and that the s
heduling is weakly fair, asdis
ussed in Se
tion 3.4. Hen
e, all nonfaulty pro
esses that invoke the obje
t will re
eive a de
ideresponse, along fair exe
utions in whi
h no more than f pro
esses fail. Pro
esses that do not invokethe obje
t will not re
eive a response, even if they are nonfaulty. That is, pro
esses that do notinvoke the obje
t (with an init(v) a
tion) do not parti
ipate in the
onsensus algorithm, and hen
eare not required to have an initial value. This is a slightly di�erent
ondition than the traditionaltermination
ondition, whi
h requires that all nonfaulty pro
esses do have an initial value, and thatthey all eventually de
ide. Here, only the nonfaulty pro
esses that \parti
ipate," by invoking theobje
t, will re
eive a de
ision.Sin
e any system S that solves solves f -fault-tolerant
onsensus for I
an only exhibit behaviors(in
omposition with a well-formed environment) that are a subset of the behaviours of the f -fault-tolerant
anoni
al
onsensus obje
t, the desired
on
lusion follows.4 The Impossibility ResultThe problem we address is to design a system, as given in Se
tion 3, whi
h is an f -fault-tolerantatomi
 obje
t (Se
tion 2.4) of type
onsensus for some (arbitrary) set I of endpoints. We showthat, when the servi
es in the system are restri
ted to be (f � 1)-fault-tolerant atomi
 obje
ts,that this problem is impossible to solve. The servi
es
an have arbitrary types, and
an have asendpoints any subset of I. Thus, te
hniques based on quorums, repli
ation, and redundan
y,
ouldall be implemented within our model. Our result implies that none of these approa
hes would help:a limitation on the fault-toleran
e of the underlying servi
es is also a fundamental limitation onthe fault-toleran
e of any
onsensus servi
e that
an be built from these underlying servi
es.Sin
e we now restri
t attention to systems that are
onsensus obje
ts, the inputs ai and outputsbi that represent Pi's intera
tions with its own
lients are now instantiated as the inputs init(0)i,init(1)i, and the outputs de
ide(0)i, de
ide(1)i, for the single
onsensus
lient that Pi now intera
tswith.4.1 Main result and proof assumptionsThe main result of the paper is:Theorem 1 Let I be an arbitrary endpoint set su
h that jIj � 2, and let f be su
h that 1 � f <jIj. Then there does not exist a distributed system with servi
es that is an f -fault-tolerant atomi

onsensus obje
t for endpoint set I, if the servi
es are (f � 1)-fault-tolerant.10

Note that the servi
es
an be of any variable type. We assume in the sequel, that su
h a DSS, P ,exists and derive a
ontradi
tion.We assume that all the pro
esses of P are deterministi
 automata, as de�ned in Se
tion 2.1.Sin
e
hannels are FIFO, they are already deterministi
. We assume a slightly weaker
onditionfor servi
es, namely that variable type of ea
h servi
e is deterministi
, i.e, the relation Æ of theunderlying variable type is a mapping. For an impossibility proof, these assumptions are madewithout loss of generality, sin
e pro
esses and servi
es
an be made to satisfy the above
onditionsby removing a subset of the lo
ally-
ontrolled transitions. Hen
e, if an unrestri
ted solution exists,then a solution satisfying our assumptions also exists.4.2 Terminology used in the proof4.2.1 TransitionsA transition is a triple (s; a; s0). We de�ne �rst(s; a; s0) = s, a
tion(s; a; s0) = a, last(s; a; s0) = s0.The parti
ipants of a lo
ally
ontrolled a
tion (i.e., not an init(v)i or fail i a
tion) a of the systemare all automata with a in their signature: parti
ipants (a) = fA j a 2 a
ts(A)g. The parti
ipantsof a transition (s; a; s0) are the parti
ipants of its a
tion: parti
ipants(s; a; s0) = parti
ipants(a).If the a
tion a of a transition is an output a
tion of some
omponent A (pro
ess or servi
e, sin
e
hannels do not have internal a
tions), then we say that the transition is an output transition ofA. We de�ne internal transition of A similarly. Due to I/O automaton signature
ompatibility, atransition
an be the output or internal transition of at most one
omponent. Furthermore, due tothe stru
ture of the system, as given in Se
tion 3, every transition, with the ex
eption of transitionsdue to the exe
ution of the init(v)i inputs to Pi, and fail i a
tions, is either an output transition oran internal transition of exa
tly one
omponent.4.2.2 Tasks and s
hedulingWe say that a task e is appli
able to a global state s i� some a
tion of e is enabled in state s. If� is a �nite exe
ution, then we say that e is appli
able to � i� e is appli
able to last(�). Thus,if e is an appli
able
hannel task
ti;j , then the
orresponding
hannel Ci;j must be nonempty, sothat a message
an a
tually be delivered. If e is an appli
able servi
e task stk;i, then either theinvo
ation bu�er of servi
e Sk must
ontain an invo
ation from pro
ess Pi, or the response bu�erof Sk must
ontain a response to Pi, or the dummyk;i a
tion must be enabled. We assume, forte
hni
al
onvenien
e, that a pro
ess always has an enabled lo
ally
ontrolled a
tion, and so apro
ess task is always appli
able.An appli
able task e, together with the
urrent global state, determines a unique transition(arising from the s
heduling of task e in the
urrent state) sin
e pro
esses and
hannels are de-terministi
, and the variable type underlying a servi
e is also deterministi
. We denote this tran-sition as transition(e; s). Let transition(e; s) = (s; a; s0). Then, we apply the notation de�ned inSe
tion 4.2.1 to transition(e; s) as follows: �rst(e; s) = s, a
tion(e; s) = a, last(e; s) = s0. Weabbreviate last(e; s) by e(s). We note that transition(e; s), �rst(e; s), a
tion(e; s), last(e; s) arede�ned if and only if e is appli
able to s.We note that when e is a
hannel task, then transition(e; s) always
auses a
hange of state,i.e., e(s) 6= s, sin
e some message is delivered by the
hannel. When e is a servi
e task stk;i, thentransition(e; s)
auses a
hange of state unless it
orresponds to the exe
ution of a dummyk;i a
tion.11

When e is a pro
ess task, then transition(e; s) may or may not
ause a state
hange. This woulddepend on the transition stru
ture of the pro
ess, about whi
h we make no assumptions.4.2.3 Exe
utionsDe�ne an initialization of P to be a �nite exe
ution
ontaining exa
tly jIj a
tions, whi
h moreoverare all init(vi)i a
tions, one for ea
h i 2 I. De�ne an exe
ution � of P to be input-�rst i� it has aninitialization as a pre�x, and otherwise
ontains no init a
tions. If � is a �nite exe
ution, then anextension of � is an exe
ution �0 su
h that � is a pre�x of �0. De�ne a �nite input-�rst failure-freeexe
ution � to be 0-valent if (1) some input-�rst failure-free extension of �
ontains a de
ide(0)ia
tion, for at least one i 2 I, and (2) no input-�rst failure-free extension of �
ontains a de
ide(1)ia
tion, for any i 2 I. The de�nition of 1-valent is analogous. De�ne a �nite failure-free exe
ution� to be univalent i� it is either 0-valent or 1-valent. De�ne a �nite input-�rst failure-free exe
ution� to be bivalent i� it has some input-�rst failure-free extension that
ontains a de
ide(0)i a
tion,for at least one i 2 I, and some input-�rst failure-free extension that
ontains a de
ide(1)i a
tion,for at least one i 2 I.Sin
e the assumed f -fault-tolerant atomi

onsensus obje
t P is an I/O automaton, we
anview its transition relation as de�ning a labeled dire
ted graph whose nodes are the states of P andwhi
h
ontains a dire
ted edge from s to s0 labeled with a i� (s; a; s0) is in the transition relationof P . This graph is
alled the global state transition graph of P . Let G(P) be the subgraph ofthe global state transition graph of P obtained as follows: (1) in
lude every state that lies alongan input-�rst exe
ution, and (2) in
lude all the transitions of P that
onne
t the states that arein
luded by virtue of (1).4.2.4 S
hedulesA s
hedule is a �nite sequen
e of task names drawn from T [finit(v)i; fail i : v 2 f0; 1g; i 2 Ig.Let � = e1e2 : : : en be a s
hedule, and s be a global state, su
h that, e1 is appli
able to s, e2 isappli
able to e1(s), and, generally, ei is appli
able to ei�1(ei�2(: : : (e1(s)) : : :)) for all i, 1 < i � n.Then, we say that � is appli
able to s, and we let �(s) denote en(en�1(: : : (e1(s)) : : :)). A s
hedule� is appli
able to a �nite exe
ution � i� � is appli
able to last(�). In this
ase, we let �(�) denotethe resulting extension of �.Let � = s0a1s1a2s2 : : : si�1aisi be a �nite exe
ution. Then, we de�ne the s
hedules
hedule(�) = task(a1)task (a2) : : : task (ai). That is, for ea
h a
tion in �, we take the name ofthe task
ontaining the a
tion. s
hedule(�) then
onsists of these task names in the same order astheir
orresponding a
tions.4.3 The proofOur proof will build up a series of lemmas establishing
ertain
onstraints on G(P). We start withthe basi

ommutativity situation illustrated in Figure 3.Lemma 2 Let s be any global state of the f -fault-tolerant atomi

onsensus obje
t P , and let e1,e2 be tasks su
h that1. e1, e2 are both appli
able to s, and 12

e1
s

e2(s1); e1(s2)
e2

s2
e2
e1

s1

Figure 3: Commuting tasks w.r.t. a state s.2. parti
ipants (e1; s) \ parti
ipants (e2; s) = ;.Let e1(s) = s1, and e2(s) = s2. Then, e2 is appli
able to s1, and e1 is appli
able to s2, ande2(s1) = e1(s2).Proof. By assumption (e1; s) and (e2; s) only a�e
t the state of di�erent
omponents. It fol-lows that e2 is appli
able to s1, and that e1 is appli
able to s2. By determinism, it follows thatparti
ipants (e1; s) = parti
ipants (e1; s2), and that (e1; s) and (e1; s2) are the same transition \lo-
ally," i.e, they e�e
t exa
tly the same state
hanges in the
omponents in parti
ipants(e1; s).Likewise for (e2; s) and (e2; s1). Thus, the a

umulated state
hanges of (e1; s) followed by (e2; s1)are the same as the a

umulated state
hanges of (e2; s) followed by (e1; s2). Hen
e the lemmaholds. Figure 3 illustrates the proof. 2Lemma 3 The f -fault-tolerant atomi

onsensus obje
t P must have a bivalent initialization.Proof. Re
all that we assume f � 1 (Se
tion 4.1). The argument is then exa
tly the same as thatin the proof of Lemma 12.3 in [Lyn96,
hapter 12℄. 2Suppose there exists a �nite input-�rst failure-free exe
ution �s, and states s, s0, s00, s0, s1,and tasks e; e0 whi
h are related as given by Figure 4. We
all su
h a
on�guration a hook, after[CHT96℄. We say that the hook starts in state s, and we
all �s the stem of the hook. We alsoadmit as a hook a
on�guration in whi
h the 0-valent and 1-valent states are inter
hanged.Lemma 4 Let �s be a �nite input-�rst failure-free bivalent exe
ution of G(P), and let �rst(�s) =sstart, last(�s) = s. Let e be a task of P appli
able to �s. LetU = f�u j �u = �(�s); � is a �nite failure-free s
hedule appli
able to �s and not
ontaining eg,V = fe(�u) j �u 2 U and e is appli
able to �ug.Then either (1) V
ontains a bivalent exe
ution, or (2) G(P)
ontains a subgraph whi
h is a hookstarting in sstart, as given by Figure 4. 13

ssstart

s0 (0-valent)
s1 (1-valent)

s00e
e e0s0

�s

Figure 4: A hook starting in s.Proof. We assume both the ante
edent of the lemma and the negation of (1), and establish (2).Now e is either a
hannel task, pro
ess task, or servi
e task. If e is a
hannel task
ti;j, thenappli
ability of e to s means that
hannel Ci;j
ontains a message in state s. Thus, e is also ap-pli
able to any state rea
hed from s by a s
hedule not
ontaining e, sin
e the message remains inCi;j as long as
ti;j is not s
heduled. If e is a pro
ess task, then e is appli
able to any state, byour assumption that a pro
ess always has some enabled lo
ally
ontrolled a
tion. If e is a servi
etask stk;i, then appli
ability of e to s means that either servi
e Sk has a pending invo
ation frompro
ess Pi in state s, or dummyk;i is enabled. Thus, e is also appli
able to any state rea
hed froms by a s
hedule not
ontaining e, sin
e the invo
ation (if present) remains pending as long as stk;iis not s
heduled, and dummyk;i remains enabled on
e it is enabled. We have therefore shown,e is appli
able to every exe
ution in U . (a)Sin
e �s is bivalent, there exists a 0-valent extension �x0 of �s and a 1-valent extension �x1 of�s. For i 2 f0; 1g, we argue as follows.CASE 1 : �xi 2 U . Let �vi = e(�xi). Hen
e �vi is i-valent, sin
e �xi is i-valent. Also, �vi 2 V ,sin
e �xi 2 U .CASE 2 : �xi 62 U . Then, e was applied in extending �s to �xi . Let �vi be the unique extensionof �s whose last a
tion has task e. �vi is unique due to our assumptions in Se
tion 4.1 about thedeterministi
 behavior of pro
esses and variable types. Hen
e �vi = e(�0s) for some extension �0sof �s. Hen
e �vi 2 V by de�nition of V . Sin
e (1) is false by assumption, V
ontains no bivalentexe
utions. Hen
e �vi is univalent. But �xi is i-valent and is an extension of �vi . Hen
e �vi isi-valent. 14

s
v (w0) w1

v�j (wm)wm�1

u1
um�1

e e
e e um

Figure 5: Existen
e of the hook.Thus, in both
ases, we have that �vi 2 V and �vi is i-valent. Moreover, this holds for bothi = 0 and i = 1. Thus there exist 0-valent �v0 2 V and 1-valent �v1 2 V (b)Let �v = e(�s), and let v = last(�v). Hen
e �v 2 V , and so �v is univalent by the assumption that(1) is false. Without loss of generality, let �v be 0-valent. By (b), there exists �v1 2 V whi
h is1-valent. Let �um be an exe
ution in U su
h that e(um) = �v1 , and let um = last(�um). Hen
e, wehave the situation depi
ted in Figure 5, sin
e �um is an extension of �s. (The state s is the samestate in Figures 4 and 5). Consider the (unique) exe
ution fragment
 su
h that �um = �_s
. By(a), e is appli
able to every state along
. Sin
e the resulting exe
utions are all in V by de�nition,they are all univalent, by assumption. Sin
e �v is 0-valent and �v1 is 1-valent, it follows that thereexist two su
h exe
utions, �0 and �1 su
h that �0 is 0-valent, �1 is 1-valent, and �0, �1 result fromapplying e to adja
ent states along
. The subgraph of G(P) generated by taking the \union" of �0and �1 (i.e., take all states and transitions o

uring in one, or both, of �0, �1) is then the desiredhook. 2Lemma 5 G(P) does not
ontain as a subgraph a hook whose stem is a �nite input-�rst failure-freeexe
ution.Proof. Our proof is by
ontradi
tion. We assume that G(P) does
ontain su
h a hook, and establishthat P is not a f -fault-tolerant atomi

onsensus obje
t,
ontrary to assumption.Without loss of generality, we assume the
on�guration in Figure 4. For ea
h state ex
ept sstart,we let � subs
ripted with the state name denote the unique �nite exe
ution whi
h is
ontained inthe hook and whi
h ends in that state: �s0 is the stem of the hook, �s0 ends in s0, �s1 ends in s1,and �s00 ends in s00.We remark that �s0
annot
ontain any de
ide a
tions, sin
e it is bivalent, and this wouldotherwise violate the agreement property. We �rst establish Claims 1{3.15

Claim 1: e 6= e0.Suppose not. Then, by determinism (Se
tion 4.1), we have s0 = s00. Now s1 is rea
hable from s00,and s1 is 1-valent. Hen
e, s00 is either bivalent or 1-valent. s0 however, is 0-valent. Hen
e we havea
ontradi
tion. So,
laim 1 is established.Claim 2: jparti
ipants (e; s0)j � 2, jparti
ipants(e0; s0)j � 2.From the stru
ture of a DSS (Se
tion 3), we see that every output a
tion of some
omponent is aninput a
tion of at most one other
omponent. The
laim follows.Claim 3: jparti
ipants (e; s0) \ parti
ipants (e0; s0)j � 1.From Claim 2, we immediately have that jparti
ipants (e; s0) \ parti
ipants(e0; s0)j � 2. Supposejparti
ipants (e; s0) \ parti
ipants (e0; s0)j = 2. From Claim 1, we know that e 6= e0. Hen
e, it mustbe that, for some distin
t
omponents C1, C2, a
tion(e; s0) is an output a
tion of C1 and an inputa
tion of C2, a
tion(e0; s0) is an input a
tion of C1 and an output a
tion of C2. Sin
e servi
es and
hannels have no a
tions in
ommon, the only possibilities for this are:� fC1; C2g = fPi; Skg for some Pi, Sk.This violates well-formedness of Pi for Sk.� fC1; C2g = fPi; Ci;jg for some Pi, Ci;j.No output a
tion of Ci;j is an input a
tion of Pi.� fC1; C2g = fPi; Cj;ig for some Pi, Cj;i.No output a
tion of Pi is an input a
tion of Cj;i.Sin
e all three
ases lead to a
ontradi
tion, the
laim is established.From Claim 3, we have four possibilities for parti
ipants (e; s0)\parti
ipants (e0; s0). To
ompletethe proof of the lemma, we
onsider ea
h separately.CASE 1 : parti
ipants(e; s0) \ parti
ipants (e0; s0) = ;. Hen
e, the ante
edent of Lemma 2 holdsfor s = s0, e1 = e, and e2 = e0. Hen
e, e0 is appli
able to s0, and e0(s0) = s1. Hen
e, e0(�s0) and�s1 have at least one in�nite fair extension with a
ommon suÆx. Sin
e �s0 does not
ontain anyde
ide a
tions, it follows that the suÆx must
ontain de
ide a
tions. Now �s0 is 0-valent and �s1is 1-valent. Hen
e, no matter what de
ide a
tions this
ommon suÆx
ontains, it will violate thevalen
ies of at least one of �s0 , �s1 .CASE 2 : parti
ipants(e; s0) \ parti
ipants(e0; s0) = Sk.Sub
ase 2.1 : At least one of a
tion(e; s0), a
tion(e0; s0) is not a perform a
tion of Sk. Hen
eat least one of these is an invo
ation or a response. Now invo
ation and response a
tions do not
hange the value of the underlying variable of Sk.Sin
e both these a
tions are enabled in s0, it follows that the enablement of neither a
tiondepends on the prior exe
ution of the other a
tion (this might be the
ase for
ertain invo
ation,perform or perform, response pairs of a
tions, but not here). Hen
e, from Figure 1, we see thatthese a
tions
ommute, in that their order
an be reveresed and the same �nal global state wilresult. Hen
e, e0 is appli
able to s0, and e0(s0) = s1. Hen
e, e0(�s0) and �s1 have at least one16

in�nite fair extension with a
ommon suÆx. Sin
e �s0 does not
ontain any de
ide a
tions, itfollows that the suÆx must
ontain de
ide a
tions. Now �s0 is 0-valent and �s1 is 1-valent. Hen
e,no matter what de
ide a
tions this
ommon suÆx
ontains, it will violate the valen
ies of at leastone of �s0 , �s1 .Sub
ase 2.2 : Both of a
tion(e; s0), a
tion(e0; s0) are perform a
tions of Sk. Sin
e �s0 isbivalent, then, under the assumption that P solves f -fault-tolerant
onsensus, �s0
annot
ontainany de
ide a
tions, sin
e that would violate agreement. Hen
e, �s0 does not
ontain any de
idea
tions either, sin
e a
tion(e; s0) is not a de
ide.Let �00 be an in�nite fair exe
ution that extends �s0 , and let �0 be the suÆx of �0 starting instate s0. Furthermore, let �0 be
hosen su
h that:1. The �rst f a
tions along �0 are fail j a
tions for f di�erent j 2 Jk2. For every o
urren
e of an a
tion a along �0, and every i 2 I, if task(a) = stk;i, then a =dummyk;i. That is, whenever stk;i is s
heduled along �, the dummyk;i a
tion is
hosen. Sin
edummyk;i is enabled at all states of �0 ex
ept the �rst, it is
ertainly possible to always
hooseto s
hedule the dummyk;i a
tion in this way, along �0.Sin
e P is f -tolerant, f � 1, a de
ide(v)j a
tion, for every nonfaulty pro
ess must o

ur along�0. Let �0d be the pre�x of �0 ending in the state just after the �rst su
h de
ide(v)j a
tion. Let� = s
hedule(�0d). From �, derive the s
hedule �0 by removing:1. Every o

urren
e of a fail i, and2. Every o

urren
e of stk;i for all i 2 I (these all
orrespond to dummyk;i a
tions in �0d),It is
lear that �0 is a failure-free s
hedule. Sin
e, in �, the transitions
orresponding to the abovetask o

urren
es do not indu
e any
hange of state other than to Sk, whi
h is silent, it follows that�0 is appli
able to s0, and that �0(�s0)
ontains a single de
ide a
tion.By the
ase
ondition, s0 and s1 di�er only in the state of Sk. Sin
e pro
esses and
hannels aredeterministi
, and sin
e servi
es have a deterministi
 type and also behave as given by Figure 1,we
an see that �0 is appli
able to s1, and that �0(�s1) is the same as �0(�s0), with the ex
eption ofthe lo
al state of Sk. In parti
ular, �0(�s1) and �0(�s0)
ontain the same a
tion subsequen
e. So,�0(�s1) and �0(�s0)
ontain the same single de
ide(v)i a
tion, for some v 2 f0; 1g, Choosing v = 0
ontradi
ts the 1-valen
y of s1, and
hoosing v = 1
ontradi
ts the 0-valen
y of s0.CASE 3 : parti
ipants (e; s0) \ parti
ipants (e0; s0) = Ci;j. Sin
e Pi and Ci;j are deterministi
,and e 6= e0, it follows that one of a
tion(e; s0), a
tion(e0; s0), is a send(m)i;j , and the other isa re
eive(m0)i;j, for some m;m0 2 M . Sin
e these are both enabled in s0, it follows from thede�nition of a FIFO
hannel (see [Lyn96,
hapter 14℄) that transition(e; s0) and transition(e0; s0)
ommute. The remainder of the argument is similar to Case 2.1.CASE 4 : parti
ipants(e; s0) \ parti
ipants(e0; s0) = Pi.Sin
e �s0 is bivalent, then, under the assumption that P solves f -fault-tolerant
onsensus, �s0
annot
ontain any de
ide() a
tions, sin
e that would violate agreement.Let �00 be an in�nite fair exe
ution that extends �s0 , and let �0 be the suÆx of �0 starting instate s0. Furthermore, let �0 be
hosen su
h that:17

1. The a
tion along �0 that starts in s0 is fail i, and2. No fail j a
tions, j 6= i, o

ur along �0, and3. For every a
tion a, and every o

urren
e of a along �0, if task(a) = stk;i for some k 2 K, thena = dummyk;i. That is, whenever stk;i is s
heduled along �, the dummyk;i a
tion is
hosen.Sin
e dummyk;i is enabled at all states, ex
ept the �rst, of any exe
ution fragment that startswith fail i, it is
ertainly possible to always
hoose to s
hedule the dummyk;i a
tion in thisway, along �0.Sin
e P is f -tolerant, f � 1, a de
ide(v)j a
tion, for every j 6= i must o

ur along �0. Let �0d bethe pre�x of �0 ending in the state just after the �rst su
h de
ide(v)j a
tion. Let � = s
hedule(�0d).From �, derive the s
hedule �0 by removing:1. The single o

urren
e of fail i, and2. Every o

urren
e of stk;i for all k 2 K, (these all
orrespond to dummyk;i a
tions in �0d), and3. Every o

urren
e of
tj;i, for all j 2 I, j 6= iSin
e the only fail a
tion along � is fail i, it is
lear that �0 is a failure-free s
hedule. Sin
e, in�, the transitions
orresponding to the above task o

urren
es do not indu
e any
hange of stateother than to Pi, whi
h has failed, it follows that �0 is appli
able to s0, and that �0(�s0)
ontains asingle de
ide a
tion. We now establish Claims 4.1 and 4.2.Claim 4.1:1. �0 is appli
able to s0.2. Let
 be the suÆx of �0(�s0) starting in s0, and let
0 be the suÆx of �0(�s0) starting in s0.Then
,
0
ontain the same de
ide a
tions.We establish the
laim by
ase analysis on the possibilities for a
tion(e; s0). From the
ase 4
ondition, we have that Pi 2 parti
ipants (e; s0). This restri
ts the possibilities for a
tion(e; s0) tothe following.Sub
ase 4.1.1 : a
tion(e; s0) = ai;k; a 2 Tk:invs. By de�nition, �0
ontains no o

urren
e ofstk;i. Hen
e,

ontains no a
tion in stk;i. Let
00 be the same as
 ex
ept that, for
orrespondingstates along
00, the invo
ation bu�er of Sk
ontains additionally the invo
ation (i; a). Sin
e
00
ontains no a
tion in stk;i, this extra invo
ation is never pro
essed (by a perform() a
tion) along
00. Hen
e, the state-a
tion-state triples along
00 are a
tual transitions of P (i.e., elements ofsteps(P)). Thus,
00 is an a
tual exe
ution fragment of G(P). Furthermore, the �rst state of
00is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
able to s0. Now
00 is the suÆx of �0(s0) startingin s0. Also,
 and
00
ontain the same subsequen
e of a
tions, and so in parti
ular
ontain thesame de
ide a
tions. Letting
0 =
00 establishes the
laim in this
ase.Sub
ase 4.1.2 : a
tion(e; s0) = bk;i; b 2 Tk:resps. By de�nition, �0
ontains no o

urren
e ofpti nor of stk;i. Let
 be the suÆx of �0(�s0) starting in s0. Hen
e,

ontains no a
tion in pti nor in18

stk;i. Let
00 be the same as
 ex
ept that, for
orresponding states along
00, the response bu�erof Sk is missing the response (i; b), and the state of Pi is the result of exe
uting input a
tion bk;i instate s0.We now argue that every state-a
tion-state triple along
00 is in steps(P), i.e, is an a
tual tran-sition of P . Sin
e
00
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not
auseany state-a
tion-state triple along
00 to not be a transition of P , sin
e no a
tion along
00 eitherdepends on (for enablement) nor
hanges Pi's lo
al state. Likewise, sin
e
00
ontains no a
tionsin stk;i, then the di�eren
e in the response bu�er of Sk
annot
ause any state-a
tion-state triplealong
00 to not be a transition of P , sin
e no a
tion along
00 either depends on (for enablement)those elements of Sk's response bu�er of the form (i; b), nor does any su
h a
tion add or removeelements of the form (i; b) to Sk's response bu�er. Thus,
00 is an a
tual exe
ution fragment ofG(P). Furthermore, the �rst state of
00 is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
able tos0. Now
00 is the suÆx of �0(s0) starting in s0. Also,
 and
00
ontain the same subsequen
eof a
tions, and so in parti
ular
ontain the same de
ide a
tions. Letting
0 =
00 establishes the
laim in this
ase.Sub
ase 4.1.3 : a
tion(e; s0) = send(m)i;j ; m 2 M . By de�nition, �0
ontains no o

urren
eof pti. Let
 be the suÆx of �0(�s0) starting in s0. Hen
e,

ontains no a
tion in pti. Also, messagem is not re
eived by Pj along
, sin
e it was not sent. (Wlog, we assume that all messages aretagged with unique identi�ers. This is for the purpose of the proof only, and is not a restri
tionon the assumed system P .) Let
00 be the same as
 ex
ept that, for
orresponding states along
00, Ci;j
ontains in addition message m at its end (i.e., m is the \last" message in Ci;j, re
all that
hannels are FIFO), and the state of Pi is the result of exe
uting output a
tion send(m)i;j in states0. We now argue that every state-a
tion-state triple along
00 is in steps(P), i.e, is an a
tual tran-sition of P . Sin
e
00
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not
auseany state-a
tion-state triple along
00 to not be a transition of P , sin
e no a
tion along
00 eitherdepends on (for enablement) nor
hanges Pi's lo
al state. Likewise, the di�eren
e in the
ontents ofCi;j
annot
ause any state-a
tion-state triple along
00 to not be a transition of P . The only triplesthat
ould possibly be a�e
ted are those whose a
tion is re
eive(m0)i;j for some m0 2 M . But allsu
h triples will
orrespond to the re
eption of the message m0 a
tually at the head of Ci;j (in theinitial global state of the triple), sin
e the only di�eren
e in the
ontents of Ci;j is that an extramessage has been appended at the rear of Ci;j. In other words, Ci;j delivers the same sequen
e ofmessages along
00 that it does along
. Hen
e, all these triples will be a
tual transitions of P .Thus,
00 is an a
tual exe
ution fragment of G(P). Furthermore, the �rst state of
00 is s0, ands
hedule(
00) = �0. Hen
e �0 is appli
able to s0. Now
00 is the suÆx of �0(s0) starting in s0. Also,
 and
00
ontain the same subsequen
e of a
tions, and so in parti
ular
ontain the same de
idea
tions. Letting
0 =
00 establishes the
laim in this
ase.Sub
ase 4.1.4 : a
tion(e; s0) = re
eive(m)j;i; m 2M . By de�nition, �0
ontains no o

urren
eof pti nor of
tj;i. Let
 be the suÆx of �0(�s0) starting in s0. Hen
e,

ontains no a
tion in ptinor in
tj;i. Let
00 be the same as
 ex
ept that, for
orresponding states along
00, Cj;i is missingthe message m at its head, and the state of Pi is the result of exe
uting input a
tion re
eive(m)j;iin state s0. 19

We now argue that every state-a
tion-state triple along
00 is in steps(P), i.e, is an a
tual tran-sition of P . Sin
e
00
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not
auseany state-a
tion-state triple along
00 to not be a transition of P , sin
e no a
tion along
00 eitherdepends on (for enablement) nor
hanges Pi's lo
al state. Likewise, the di�eren
e in the
ontentsof Cj;i
annot
ause any state-a
tion-state triple along
00 to not be a transition of P , sin
e
00
ontains no a
tion in
tj;i. Thus,
00 is an a
tual exe
ution fragment of G(P). Furthermore, the�rst state of
00 is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
able to s0. Now
00 is the suÆx of�0(s0) starting in s0. Also,
 and
00
ontain the same subsequen
e of a
tions, and so in parti
ular
ontain the same de
ide a
tions. Letting
0 =
00 establishes the
laim in this
ase.Sub
ase 4.1.5 : a
tion(e; s0) = de
ide(v)i or a
tion(e; s0) is an internal a
tion of Pi. Byde�nition, �0
ontains no o

urren
e of pti. Let
 be the suÆx of �0(�s0) starting in s0. Hen
e,

ontains no a
tion in pti. Let
00 be the same as
 ex
ept that, for
orresponding states along
00,Cj;i and the state of Pi is the result of exe
uting a
tion(e; s0).We now argue that every state-a
tion-state triple along
00 is in steps(P), i.e, is an a
tual tran-sition of P . Sin
e
00
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not
auseany state-a
tion-state triple along
00 to not be a transition of P , sin
e no a
tion along
00 eitherdepends on (for enablement) nor
hanges Pi's lo
al state. Thus,
00 is an a
tual exe
ution fragmentof G(P). Furthermore, the �rst state of
00 is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
ableto s0. Now
00 is the suÆx of �0(s0) starting in s0. Also,
 and
00
ontain the same subsequen
eof a
tions, and so in parti
ular
ontain the same de
ide a
tions. Letting
0 =
00 establishes the
laim in this
ase.From our de�nition of distributed system with servi
es, we see that the above are all the possible
ases for a
tion(e; s0). Having established Claim 4.1 in ea
h
ase, we
on
lude that it holds generally.(end proof of Claim 4.1)Claim 4.2:1. �0 is appli
able to s1.2. Let
 be the suÆx of �0(�s0) starting in s0, and let
1 be the suÆx of �0(�s1) starting in s1.Then
,
1
ontain the same de
ide a
tions.From the
ase 4
ondition, we have that Pi 2 parti
ipants(e0; s0). Hen
e, we
an apply exa
tly thesame argument as used in the proof of Claim 1 to
on
lude that:1. �0 is appli
able to s00.2. Let
00 be the suÆx of �0(�s00) starting in s00. Then
,
00
ontain the same de
ide a
tions.From the
ase 4
ondition, we have that Pi 2 parti
ipants(e; s0). Hen
e, e = pti, or e =
tj;i,or e = stk;i, with a
tion(e; s0) = bk;i for some b 2 Tk:resps. If e = pti or e =
tj;i, then
learlyPi 2 parti
ipants(e; s00). If e = stk;i, with a
tion(e; s0) = bk;i for some b 2 Tk:resps, then, by well-formedness of Pi w.r.t. Sk, and Pi 2 parti
ipants (e0; s0), it follows that a
tion(e0; s0) 6= ak;i for alla 2. From e 6= e0 it follows that a
tion(e0; s0) 6= bk;i for all b 2 Tk:resps, sin
e otherwise we wouldhave e0 = e = stk;i. Hen
e, from Pi 2 parti
ipants (e0; s0), we
on
lude Sk 62 parti
ipants (e0; s0).20

Hen
e, the lo
al state of Sk is the same in s0 and s00, i.e., s0�Sk = s00�Sk. Sin
e a
tion(e; s0) = bk;i,we know that in state s0, (i; b) is in the response bu�er of Sk. Hen
e, we
on
lude that in states00, (b; i) is in the response bu�er of Sk. Thus, by well-formedness of Pi w.r.t. Sk, in state s00, theinvo
ation bu�er of Sk
ontains no invo
ation (i; a), for any a 2 Tk:invs. Now s00 lies along a fault-free exe
ution. Hen
e, dummyk;i is not enabled in s00. Hen
e, in state s00, the only a
tion of taskstk;i that is enabled is bk;i (see Figure 1). Hen
e a
tion(e; s00) = bk;i. Hen
e Pi 2 parti
ipants(e; s00).Thus, for all possible
ases of e, we have established Pi 2 parti
ipants(e; s00). Hen
e, from (1)�0 is appli
able to s00, and (2)
,
00
ontain the same de
ide a
tions, whi
h we showed above, we
an apply exa
tly the same argument as used in the proof of Claim 1 to establish Claim 4.2.(end proof of Claim 4.2)Sin
e �0 is a failure-free s
hedule, and �s0 is a �nite failure-free exe
ution, we
on
lude that�0(�s0) is a �nite failure-free exe
ution. Sin
e s0 is 0-valent, it follows that �0(�s0)
ontains at leastone de
ide(0)j a
tion, for some j 2 I.Sin
e �0 is a failure-free s
hedule, and �s1 is a �nite failure-free exe
ution, we
on
lude that�0(�s1) is a �nite failure-free exe
ution. Sin
e s1 is 1-valent, it follows that �0(�s1)
ontains at leastone de
ide(1)j0 a
tion, for some j0 2 I.Let
 be the suÆx of �0(�s0),
0 be the suÆx of �0(�s0), and
1 be the suÆx of �0(�s1).From Claims 4.1 and 4.2, we have that
,
0, and
1 all
ontain the same de
ide a
tions. By its
onstru
tion,

ontains a single de
ide a
tion. Hen
e,
0,
1
ontain a single de
ide(v)` a
tion in
ommon, for some v 2 f0; 1g, ` 2 I. Choosing v = 0
ontradi
ts the 1-valen
y of s1, and
hoosingv = 1
ontradi
ts the 0-valen
y of s0. Hen
e, we have derived the desired
ontradi
tion.(end of CASE 4)Sin
e we have established a
ontradi
tion in all of CASES 1{4, the lemma holds. 2Lemma 6 Let �s be a �nite input-�rst failure-free bivalent exe
ution of G(P), and let last(�s) = s.Let e be a task of P appli
able to �s. LetU = f�u j �u = �(�s); � is a �nite failure-free s
hedule appli
able to �s and not
ontaining eg,V = fe(�u) j �u 2 U and e is appli
able to �ug.Then V
ontains a bivalent exe
ution.Proof. In the statement of Lemma 4, �s is a �nite failure-free exe
ution and � is a �nite failure-frees
hedule. Hen
e,
ondition (2) of Lemma 4 is the existen
e of a hook in G(P) whose stem is a �niteinput-�rst failure-free exe
ution. By Lemma 5, we know that (2)
annot hold. Thus, the desiredresult follows immediately from Lemma 4. 2We now present the proof of Theorem 1:Assume that P is su
h a distributed system with servi
es. Using Lemma 6, we
onstru
t anin�nite exe
ution
 of P in whi
h no de
ide a
tion o

urs. By Lemma 3, P must have a bivalentinitialization. Call it
0. We now apply Lemma 6 to extend
0 repeatedly.Fix an arbitrary round-robin order of all the tasks in P , ex
ept for the init(v)i and fail i tasks.Let
i be the
urrent exe
ution, and let tj be the next task in the round robin order. Assumeindu
tively that
i is bivalent. (
0 gives the base
ase).If tj is not appli
able to last(
i), then move on to the next task in the round robin order, et
.until an appli
able task is found. Sin
e the pro
ess tasks are always appli
able, we are guaranteedto �nd an appli
able task. So, without loss of generality, let tj be this task.21

By Lemma 6, there is a bivalent extension
i+1 of
i su
h that the last a
tion along
i+1 is intask e.Let
 be the unique exe
ution su
h that for all i � 0,
i is a pre�x of
. If a task t is
ontinuouslyenabled, then, when it is sele
ted in the round robin order, it will be found appli
able to the laststate of the
urrent exe
ution. Hen
e, the extension will
ontain an a
tion from t. Along
, thiswill happen in�nitely often. Hen
e,
 satis�es the I/O automaton weak fairness
ondition. Sin
e
has in�nitely many pre�xes
i, i � 0, that are exe
utions of P , it thus follows that
 is an exe
utionof P . Sin
e none of the
i
ontain a de
ide a
tion, it follows that
 does not either. 25 k-set
onsensusWe now show that when the system is solving a problem that is weaker than
onsensus, namelyk-
onsensus (se
tion 2.2), it is possible to boost the fault-toleran
e level. Assume we have availablef -fault-tolerant k-
onsensus servi
es, ea
h one with m ports. An f 0-fault-tolerant algorithm thatsolves k0-
onsensus is as follows. Take a prin
ipal subset of the pro
esses, and divide it into sdisjoint groups, ea
h one a

essing a di�erent servi
e. Ea
h prin
ipal pro
ess parti
ipates in anexe
ution proposing its input value to its designated servi
e. If and when it gets a de
ision ba
k, itsends the de
ision to all the other pro
esses in the entire set of pro
esses (not just those involvedin the same
onsensus servi
e). Meanwhile, ea
h prin
ipal pro
ess
olle
ts all the results it re
eivesfrom all pro
esses, and de
ides on any of these results. The remaining pro
esses simply wait fora result from one of the prin
ipal pro
esses. The values of k0 and f 0 depend on the size of theprin
ipal set, and on the number s of servi
es we divide it into. There is a tradeo� between k0 andf 0: if a small number of failures f 0 is tolerated, then a high degree of agreement is a
hieved, namelya small k0. If more failures f 0 must be tolerated, then a lower degree of agreement is a
hieved,namely a large k0.To prove
orre
tness, we divide the prin
ipal pro
esses appropriately into the servi
es theya

ess. We must ensure that less than s � (f + 1) prin
ipal pro
ess
an fail, i.e., f 0 < s � (f + 1), toguarantee that at least one servi
e S has at most f failures. Servi
e S is therefore not killed, andmoreover, S has at least one nonfaulty parti
ipant, who su

eeds in sending the value to everyone.That means that every nonfaulty pro
ess de
ides. The value of k0, i.e., the number of possibledi�erent de
ision values is at most s � k: there are at most k di�erent values returned per servi
e;more pre
isely, at most k values per servi
e being a

essed by at least k pro
esses, and
 values for aservi
e that is being a

essed by
 pro
esses for
 < k. Thus, for a desired overall fault-toleran
e f 0,we want the smallest possible k0 and so we �nd the smallest integer s that guarantees f 0 < s�(f+1).Thus we use s = d(f 0 + 1)=(f + 1)e servi
es, and take the �rst f 0 + 1 pro
esses to be the prin
ipalpro
esses (f 0 + 1 pro
esses using as few servi
es as possible, ea
h one with f + 1 input ports). Itfollows thatTheorem 7 For any 1 � k < m, k � f � m� 1, 1 � f 0 � n� 1, it is possible to solve f 0-tolerantk0-
onsensus for an endpoint set of n pro
esses using f -tolerant k-
onsensus servi
es, ea
h one withm ports, for k0 = k � �f 0 + 1f + 1 �+min(k; (f 0 + 1)mod(f + 1)):When ea
h servi
e is
ompletely reliable, that is f = m � 1, and we divide the pro
esses asdes
ribed above, this algorithm redu
es to the one of [HR00℄, and gives an upper bound proved to22

be tight using topology. As an example, we want to build an f 0 = 2
�1-fault-tolerant algorithm foran endpoint set
ontaining at least 2
 pro
esses, and using only 1-fault-tolerant
onsensus servi
es,i.e., f = 1, k = 1. The smallest k0 for whi
h we
an do this is k0 =
, using s =
 servi
es, ea
hwith 2 pro
esses (f 0 + 1 = 2
 prin
ipal pro
esses).6 Further Work and Con
lusionsWe studied the
onsensus problem in an asyn
hronous distributed system with stopping failures,and where pro
esses
an a

ess servi
es that abstra
t ora
les su
h as hardware primitives or failuredete
tors. Many papers have studied a similar model, but to our knowledge this is the �rst timeservi
es that are implemented by the pro
esses in the system are
onsidered. We showed that f -tolerant
onsensus is not a
hievable using less fault-tolerant
onsensus servi
es as building blo
ks,but that k-
onsensus
an be solved with less fault-tolerant k0-
onsensus servi
es as building blo
ks.Our algorithm for k-
onsensus generalizes that of [HR94, HR00℄ for reliable servi
es. Thatalgorithm a
hieves a tight upper bound. It is an open question what is the exa
t situation fork-set
onsensus in our model: for whi
h k; k0; f; f 0 is it possible to
onstru
t a k-
onsensus servi
etolerating f failures from k0-
onsensus servi
es tolerating f 0 failures ea
h? This seem to lead tomore general hierar
hy results, in the style of Herlihy's universality result [Her91℄, the
onsensuswait-free hierar
hy [Jay97℄, and the set-
onsensus hierar
hy e.g. [BG93℄, all of these for servi
esthat
an fail in our sense.

23

Referen
es[AGMT95℄ Y. Afek, D. S. Greenberg, M. Merritt, and G. Taubenfeld. Computing with faultyshared obje
ts. J. ACM, 42(6):1231{1274, 1995.[BG93℄ E. Borowsky and E. Gafni. The impli
ation of the borowsky-gafni simulation on the set-
onsensus hierar
hy. University of California, Los Angeles, Te
hni
al Report 930021,1993.[BGLR01℄ Elizabeth Borowsky, Eli Gafni, Nan
y Lyn
h, and Sergio Rajsbaum. The BG dis-tributed simulation algorithm. Distributed Computing, 14(3):127{146, July 2001.[CHT96℄ T.D. Chandra, V. Hadzila
os, and S. Toueg. The weakest failure dete
tor for solving
onsensus. J. ACM, 43(4):685{722, July 1996.[CJT94℄ V. Chandra, T.D.and Hadzila
os, P. Jayanti, and S. Toueg. Wait-freedom vs. t-resilien
y and the robustness of wait-free hierar
hies. In 13'th ACM Symposium onthe Prin
iples of Distributed Computing (PODC), pages 334{343, 1994.[FLP85℄ Mi
hael J. Fis
her, Nan
y A. Lyn
h, and Mi
hael S. Paterson. Impossibility of dis-tributed
onsensus with one faulty pro
ess. J. ACM, 32(2):374{382, April 1985.[Her91℄ M. Herlihy. Wait-free syn
hronization. ACM Trans. Program. Lang. Syst., 11(1):124{149, Jan. 1991.[HR94℄ Mauri
e Herlihy and Sergio Rajsbaum. Set
onsensus using arbitrary obje
ts. InThirteenth Annual ACM Symposium on the Prin
iples of Distributed Computing, pages324{333, Los Angeles, CA, August 1994.[HR00℄ Mauri
e Herlihy and Sergio Rajsbaum. Algebrai
 spans. Mathemati
al Stru
tures inComputer S
ien
e (Spe
ial Issue: Geometry and Con
urren
y), 10(4):549{573, August2000.[Jay97℄ P. Jayanti. Robust wait-free hierar
hies. J. ACM, 44(4):592{614, July 1997.[JCT98℄ P. Jayanti, T.D. Chandra, and S. Toueg. Fault-tolerant wait-free shared obje
ts. J.ACM, 45(3):451{500, May 1998.[LAA87℄ M. C. Loui and Abu-Amara. Memory requirements for agreement among unreliableasyn
hronous pro
esses. Adv. Comput. Res., 4:163{183, 1987.[LH00℄ W-K. Lo and V. Hadzila
os. On the power of shared obje
t types to implement one-resilient
onsensus. Distributed Computing, 13(4):219{238, 2000.[Lyn96℄ N. A. Lyn
h. Distributed Algorithms. Morgan-Kaufmann, San Fran
is
o, California,USA, 1996.[S
h90℄ F.B. S
hneider. Implementing fault-tolerant servi
es using the state ma
hine approa
h:a tutorial. ACM Comput. Surv., 22(4):299{319, De
. 1990.
24

A Te
hni
al Ba
kgroundDe�nition 1 (I/O Automaton) An I/O automaton A
onsists of �ve
omponents:1. A set of states states(A).2. A nonempty set start(A) � states(A) of start states.3. A signature sig(A) = (in(A); out(A); int(A)) where in(A), out(A), and int(A) are disjointsets of input, output, and internal a
tions, respe
tively. Denote by lo
al(A) the set out(A) [int(A) and by a
ts(A) the set in(A) [out(A) [int(A).4. A task partition tasks(A), whi
h is a partition of lo
al (A) into at most a
ountable numberof
lasses.5. A transition relation steps(A) � states(A)� a
ts(A) � states(A)Let s; s0; u; u; ; : : : range over states and a; b; ::: range over a
tions. We say that a is enabled instate s i� there exists state s0 su
h that (s; a; s0) 2 steps(A). If t is a task and some a
tion a 2 t isenabled in state s, then we say that task t is enabled in state s.An exe
ution fragment of A is an alternating sequen
e of states and a
tions s0a1s1 : : : si�1aisi : : :su
h that for all i �, (si�1aisi) 2 steps(A), i.e., the sequen
e
onforms to the transition relation ofA. An exe
ution of A is an exe
ution fragment that begins with a state in start(A).If � is a �nite exe
ution or exe
ution fragment, then �rst(�) denotes the �rst state of �, andlast(�) denotes the last state of �. If � is a �nite exe
ution or exe
ution fragment, �0 is an exe
utionfragment, and last(�) = �rst(�0), then �_�0 denotes the
on
atenation of � and �0.

25

