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Abstra
tWe show that it is impossible to \boost" the level of fault-toleran
e of a system solving
onsensus by 
ombining less fault-tolerant 
omponents into a more fault-tolerant system. To dothis, we 
onsider an asyn
hronous distributed 
omputing model in whi
h a known set of pro
essesintera
t in two ways: by using reliable point-to-point 
hannels, and by a

essing shared servi
es.Ea
h of the shared servi
es is 
onne
ted to a subset of all the pro
esses.Our boosting impossibility result is: for any f � 1, the 
onsensus problem is unsolvable inthis model in the presen
e of up to f pro
ess stopping failures, if ea
h of the shared servi
esis assumed to tolerate only f � 1 pro
ess failures. This result holds regardless of the types ofthe shared servi
es and the pattern of 
onne
tivity of pro
esses and servi
es. In parti
ular, itis impossible to 
onstru
t a proto
ol to solve the 
onsensus problem for f pro
ess failures usingany number of 
onsensus servi
es that tolerate f � 1 pro
ess failures.Interestingly, it is possible to boost the level of a system solving problems easier than 
on-sensus. For example, we show that the k-
onsensus problem is solvable for 2k� 1 failures usingonly (
onsensus) servi
es that tolerate only 1 failure apie
e.



1 Introdu
tionIt is generally a

epted that large distributed systems should be 
onstru
ted from building blo
ks(su
h as middleware-provided servi
es) that intera
t with ea
h other through well-de�ned inter-fa
es. Large systems must also tolerate a variety of types of failures. Establishing fault-toleran
eproperties of a large system is diÆ
ult, as many s
enarios have to be 
onsidered. A parti
ularlydesirable approa
h is to \boost" the level of fault-toleran
e by 
ombining less fault-tolerant 
ompo-nents into a more fault-tolerant system. It is plausible that this might be a
hieved using te
hniquessu
h as quorums, repli
ation, and redundan
y.In this paper, we demonstrate a fundamental limitation on this approa
h. Namely, we inves-tigate the possibility of fault-toleran
e boosting for implementing a 
onsensus servi
e tolerant tof stopping failures from underlying \subservi
es" that are tolerant to f � 1 stopping failures. Weshow that, in the setting of purely asyn
hronous message passing, su
h fault-toleran
e boosting
annot be a
hieved, for any type of underlying servi
es. That is, the availability of any set ofdistributed servi
es, ea
h of whi
h tolerates up to f�1 stopping failures, is insuÆ
ient to 
onstru
ta 
onsensus proto
ol that tolerates f failures.In more detail, we 
onsider a set of asyn
hronous pro
esses of whi
h f 
an fail by stopping,
ommuni
ating with ea
h other by sending messages through reliable point to point 
hannels. Inaddition, there is a set of servi
es through whi
h they 
an 
ommuni
ate impli
itly. A pro
ess 
aninvoke operations of a servi
e by sending a message to one of its ports, and eventually get a responsefrom the servi
e. A pro
ess 
an invoke multiple operations on a servi
e, and 
on
urrently on otherservi
es. But before issuing a new operation on the same servi
e, it must �rst wait for a responseto the 
urrent invo
ation. Ea
h servi
e has a �xed set of \ports" and ea
h port is hardwiredto one pro
ess, where it re
eives invo
ations and returns responses to the 
orresponding pro
ess.Ea
h servi
e has some degree of fault toleran
e, say f , whi
h represents the number of (hardwired)pro
esses a

essing it that 
ould 
ause it to 
rash. This is intended to re
e
t the idea that servi
esare implemented by distributed algorithms, whi
h run at a number of lo
ations, represented byports. The failure really a�e
ts the lo
ation, 
ausing not only the failure of the pro
ess hardwiredto the 
orresponding port, but also the failure of that part of the distributed implementation ofthe servi
e whi
h resides at that lo
ation. If a suÆ
ient number (> f) of lo
ations of a distributedimplementation fail, then the implementation itself will fail. Note that this idea does not in anyway prevent the use of arbitrary ora
les in the implementation of a servi
e, e.g., su
h as failuredete
tors or powerful hardware 
on
urrent obje
ts.Noti
e that, ex
ept for the failure behavior, our servi
es are just like the linearizable typedshared obje
ts usually 
onsidered in the literature e.g. [Her91, CJT94, Jay97, LH00℄. The servi
esusually 
onsidered in the literature do not fail at all. There are only two papers we are aware ofthat 
onsider servi
es that 
an fail, [JCT98℄ and [AGMT95℄, but these papers assume the servi
esare not implemented by the pro
esses. In 
ontrast to our model, the failures of the servi
es and ofthe pro
esses are not 
orrelated in those two papers. We dis
uss this further in the Related Workse
tion below.Our impossibility result says that it is impossible to build a 
onsensus servi
e tolerating f failuresfrom servi
es that tolerate less than f failures, independently of the number of su
h servi
es, howpowerful they are, or in what way they are a

essed by the pro
esses. Thus, for example, a strategyin whi
h multiple instan
es of (f � 1)-fault-tolerant servi
es are used by di�erent subsets of thepro
esses in the system, 
annot work. Methods based on splitting up pro
esses, or divide and
onquer, also 
annot work. In parti
ular, our result holds when the underlying servi
es in
lude1




onsensus servi
es tolerant to f � 1 stopping failures.It is important to study 
onsensus implementability be
ause it is su
h a fundamental problemin distributed 
omputing. In parti
ular, there is Herlihy's [Her91℄ universality result for servi
esthat do not fail: it is possible to design a wait-free implementation of a servi
e of any type, sharedby n pro
esses, using only 
onsensus servi
es with n ports and registers. Our boosting impossibilityresult shows a limitation on this universality result when servi
es 
an fail.Our impossibility holds for 
onsensus implementability, but not for implementability of weakerproblems. Our se
ond result is that it is is possible to boost the level of a system solving problemseasier than 
onsensus, like k-
onsensus. In this problem pro
esses have to agree on at most kdi�erent values; thus, k-
onsensus redu
es to 
onsensus when k = 1. We present a simple algorithm(generalizing the one in [HR94, HR00℄) that solves k-
onsensus and tolerates f failures using k0-
onsensus servi
es that tolerate f 0 less than f failures, for various values of k0 and f 0. For example,k-
onsensus is solvable for 2k�1 failures using only (
onsensus) servi
es that tolerate only 1 failureapie
e.Related work. Our main result is the impossibility of solving 
onsensus f -resiliently usingf�1-resilient servi
es in an asyn
hronous system. There is a lot of work that studied the feasibilityof implementing f -tolerant 
onsensus as a fun
tion of the available 
omponents in the asyn
hronoussystem. The \
omponents" 
an be simple message transmission 
hannels or shared read/writeregisters, but also more powerful obje
ts, perhaps implemented in hardware su
h as test&set orimplemented with timeouts su
h as failure dete
tors, or even 
ombinations of di�erent kinds ofobje
ts. A typed shared obje
t used in many papers is what we 
all a servi
e, i.e., it has (i) anumber of ports; (ii) a set of states of the obje
t (or values as we 
all them); (iii) the set ofoperations that pro
esses may apply through its ports; (iv) the behavior of the obje
t in terms ofa transition relation Æ, and is assumed to be linearizable. Ex
ept that the usual assumption is thatthe 
omponents themselves are reliable.Work that assumed that the available 
omponents are the most basi
 ones is [FLP85℄ for justmessage transmission, and [LAA87, Her91℄ for shared read/write registers, and proved that it isimpossible to solve f -tolerant 
onsensus using only these simple 
omponents. That is, the available
omponents, either 
hannels or registers never fail. Sin
e a 
onsensus proto
ol that tolerates zero
rash faults is trivial, our result generalizes that of [FLP85℄, whi
h is a spe
ial 
ase, for f = 1.Indeed, our proof te
hnique is a generalization of the one in [FLP85℄. The main di�eren
e is theidea of modelling the servi
es. This introdu
es many more s
enarios to deal with in the proof. Also,our events are mu
h �ner grain: in FLP, in one event a pro
ess re
eives a message, makes a lo
alstate 
hange, and also sends any �nite number of messages. Our events are I/O automata a
tionsin the model of distributed systems with servi
es. So, for example, a pro
ess re
eiving a message
an only make a lo
al state 
hange, it 
annot perform any output of any kind in the same event.Other papers 
onsider more general and powerful base obje
ts (again that never fail), andinvestigate when they 
an be used to solve 
onsensus. For example, [LH00℄ ask the question forf = 1: Let n � 3 and S be a set of obje
t types that 
an be used to solve one-resilient 
onsensusamong n pro
esses. Can S always be used to solve one-resilient 
onsensus among n� 1 pro
esses?Many papers 
onsider the other extreme, of f = n � 1 and deal with the robustness questionposed in [Jay97℄: 
an you 
ombine obje
ts of type T and T 0 that 
annot be used to solve wait-free
onsensus ea
h one by themselves in su
h a way as together solve wait-free 
onsensus?Other papers relate implementations for di�erent number of pro
esses based on the same fault-toleran
e level f . Spe
i�
ally, [CJT94℄ show for all n > f � 2 and all sets S of shared obje
t types2



(that in
lude simple read/write registers) there is a f -resilient solution to n-pro
ess 
onsensus usingobje
ts of types in S if and only if there is a f -resilient solution to (f + 1)-pro
ess 
onsensus usingobje
ts of types in S. And [BGLR01℄ for k-set 
onsensus: if there is a f -resilient implementation ofn-ported f -set 
onsensus from registers then there is a f -resilient implementation of f + 1-portedf -set 
onsensus from registers.Thus, our question is orthogonal to the 
on
erns of these previous works: while they assumereliable 
omponents, we 
onsider 
omponents that are less reliable, i.e. we ask what problems 
anbe solved in an f -resilient manner using 
omponents that tolerate less than f failures. We knowof two papers that do 
onsider shared obje
ts that may fail. Afek, Greenberg, Merritt, Taubenfeld[AGMT95℄ study wait-free implementations using obje
ts that 
an fail by returning the wrong valuefor a response. And more 
losely related to our work is [JCT98℄ that 
onsider base obje
ts that mayfail by not responding (both [JCT98℄ and [AGMT95℄ 
onsider other types of failures, like wrongvalues returned, less related to our work). In their model any number of pro
esses may fail, and atmost t base obje
ts may fail. When an obje
t fails, it stops responding. They have an impossibilityresult for solving 
onsensus for two pro
esses tolerating even one nonresponsive-faulty servi
e, andeven if that servi
e 
an be nonresponsive wrt only one predetermined pro
ess. This proof worksby a redu
tion from [LAA87℄. This result is orthogonal to ours: the failures of the servi
es in theirmodel are unrelated to the failures of the pro
esses, while in our model, servi
es 
an fail only dueto failures of pro
esses. Thus, if no pro
ess fails, in our model we know no servi
e will fail, whilein su
h a situation in their model still servi
es 
ould fail. On the other hand, they know that atmost one servi
e will fail, while in ours there is no bound: if one servi
e will fail due to too manypro
esses failing, all the servi
es with the same pro
esses asso
iated 
an also fail.Our main 
on
ern in this paper is on the implementation of 
onsensus. Re
all that Herlihy[Her91℄ has shown that any obje
t 
an be implemented using 
onsensus. Thus 
onsensus is at thetop of a hierar
hy. As mentioned above, our impossibility result does not hold for obje
ts weakerthan 
onsensus.The paper is organized as follows. Se
tion 2 gives te
hni
al preliminaries. Se
tion 3 gives ourmodel of a distributed system, and de�nes the 
onsensus problem. Se
tion 4 presents our impossi-bility result for 
onsensus. Se
tion 5 des
ribes the 
ontrasting result for k-set 
onsensus. Se
tion 6dis
usses dire
tions for further resear
h and 
on
ludes. Appendix A presents some te
hni
al ba
k-ground.2 Modeling Preliminaries2.1 Basi
 underlying model of 
on
urrent 
omputationWe use the I/O automaton model [Lyn96, 
hapter 8℄ as our underlying model for 
on
urrent 
om-putation. We assume the terminology of [Lyn96, 
hapter 8℄. An I/O automaton A is deterministi
i�, for ea
h task t of A, and ea
h state s of A, there is at most one transition (s; a; s0) su
h thata 2 t.2.2 Variable typesWe de�ne the notion of a \variable type", in order to des
ribe allowable sequential behavior ofservi
es. The de�nition used here is a generalization of the one in [Lyn96, 
hapter 9℄; the gener-3



alization allows nondeterminism in the 
hoi
e of the initial state and the next state. Namely, avariable type T = hV; V0; invs; resps ; Æi 
onsists of:� V , a nonempty set of states of the variable, 
alled values,� V0 � V , a nonempty set of initial values,� invs, a set of invo
ations,� resps, a set of responses, and� Æ, a subset of (invs � V ) � (resps� V ) that is \total", in the sense that, for every (a; v) 2invs� V , there is at least one (b; v0) 2 resps� V su
h that ((a; v); (b; v0)) 2 Æ.A deterministi
 variable type is one in whi
h Æ is a mapping, i.e., for every (a; v) 2 invs � V ,there is exa
tly one (b; v0) 2 resps� V su
h that ((a; v); (b; v0)) 2 Æ.The reason for generalizing the notion of a variable type to allow nondeterminism is that wewant to make our notion of \servi
e", de�ned below, as general as possible. In parti
ular, we wantto in
lude the problem of k-
onsensus, whi
h 
an be spe
i�ed using a nondeterministi
 variabletype, in our 
onsideration.Example. Read/write variable type: Here, V is some arbitrary set of \values," V0 = V ,invs = freadg [ fwrite(v) : v 2 V g, resps = V [ fa
kg, and Æ is de�ned to in
lude the followingpairs: ((read; v); (v; v)) for v 2 V , and ((write(v); v0); (a
k; v)) for v; v0 2 V . 2Example. Consensus variable type: Here, V is the set of subsets of f0; 1g having at most oneelement, V0 = ;, invs = finit(v) : v 2 f0; 1gg, resps = fde
ide(v) : v 2 f0; 1gg, and Æ is de�ned toin
lude the following pairs:((init(v); ;); (de
ide(v); fvg)) for v 2 V , and ((init(v); fv0g); (de
ide(v0); fv0g)) for v; v0 2 V . 2Example. k-
onsensus variable type: Here, V is the set of subsets of f0; 1; : : : ; kg havingat most k elements, V0 = ;, invs = finit(v) : v 2 f0; 1gg, resps = fde
ide(v) : v 2 f0; 1gg,and Æ is de�ned to in
lude the following pairs: ((init(v);W ); (de
ide(v0);W [ fvg)) for jW j < k,v0 2W [ fvg, and ((init(v);W ); (de
ide(v0);W ) for jW j = k, v0 2W .Thus, the �rst k values get remembered, and all operations return one of these �rst k values. 22.3 Canoni
al f-fault-tolerant atomi
 obje
tsWe now de�ne the notion of 
anoni
al f -fault-tolerant atomi
 obje
t, whi
h des
ribes the allowable
on
urrent behavior of servi
es. The 
anoni
al f -fault-tolerant atomi
 obje
t of type T for endpointset J and with index k is given in Figure 1 as an I/O automaton that is parameterized by k, T , J ,and f , where these are:1. A unique index k, drawn from some index set K,2. An underlying variable type T = hV; V0; invs ; resps ; Æi, whi
h de�nes the sequential behaviorof the obje
t,3. A set of \endpoints" J , and4. The required degree of fault-toleran
e f . 4



A 
anoni
al atomi
 obje
t a

ommodates 
on
urrent invo
ations by di�erent pro
esses, i.e.,between an invo
ation from and response to a parti
ular pro
ess, the invo
ations of other pro
essesmay arrive and be pro
essed. The use of a set of endpoints allows di�erent servi
es to be 
onne
tedto di�erent sets of pro
esses. Thus, J will be a subset of some set I of pro
ess indi
es, whi
hrepresents all the pro
esses in the system.Our notion of atomi
 obje
t generalizes that in [Lyn96, se
tion 13.1.2℄. We note the follow-ing features of our atomi
 obje
ts. Ea
h pro
ess in J 
an issue any invo
ation of the atomi
obje
t's underlying variable type, and 
an (potentially) re
eive any allowable response. The re-sult of performing an parti
ular operation is nondeterministi
ally sele
ted from all results allowedby the transition relation Æ and the 
urrent value val of the obje
t. Thus, the obje
t is, in gen-eral, inherently nondeterministi
 in that it 
an exhibit nondeterminism that is not just due to thenondeterminism of its invo
ations by di�erent pro
esses.For every pro
ess Pi, i 2 J , there 
orresponds a task of the atomi
 obje
t, whi
h we 
all ani-task . The i-task 
onsists of all the perform a
tions that 
arry out the operations invoked byPi, together with all the possible response a
tions giving responses to Pi. In addition, the i-task
ontains a dummyk;i a
tion, whi
h is enabled when either Pi has failed or more than f pro
essesin J have failed. Thus, by inspe
ting Figure 1 we see that for every i 2 J , the task stru
turerequires that the obje
t eventually respond to an outstanding invo
ation by Pi, unless either Pihas failed or more than f pro
esses in J have failed. In the latter 
ase, the obje
t is allowed toabstain from responding to Pi, sin
e the internal a
tion dummyk;i is enabled, and 
an be exe
utedto dis
harge the fairness requirement imposed by the task stru
ture. If more than f pro
esses havefailed, then the obje
t is allowed to abstain from responding to any pro
ess in J , sin
e dummyk;i isenabled for all i 2 J . This re
e
ts the idea that the obje
t is f -tolerant; on
e more than f failureshave o

urred (amongst pro
esses 
onne
ted to the obje
t), then the obje
t 
an itself \fail" bybeing \silent" forever from that point onwards. That is, we allow the obje
t to violate its livenessproperty. Note, however, that the obje
t 
an never violate its safety property, e.g., by returningvalues in
onsistent with the transition relation Æ. Note that we also allow the obje
t to be silent ifall pro
esses it is 
onne
ted to (i.e., in J) fail, sin
e dummyk;i is then enabled for all i 2 J .2.4 f-fault-tolerant atomi
 obje
tsGiven a variable type Tk and set Jk of endpoints, de�ne an I/O automaton U to be a well-formedenvironment for Tk and Jk if and only if1. Its outputs are exa
tly the invo
ations of Tk at the endpoints in Jk, and its inputs are exa
tlythe responses of Tk at the endpoints in Jk, and2. In every exe
ution of U , for ea
h endpoint i 2 Jk, there aren't two 
onse
utive invo
ations ati without an intervening response at i.An I/O automaton A (a full-blown I/O automaton, with tasks) is said to be an f -fault-tolerantatomi
 obje
t of type Tk, set Jk of endpoints, and index k, if and only if it implements the f -fault-tolerant 
anoni
al atomi
 obje
t Sk of type Tk for Jk, in the following sense:1. It has the same input and output a
tions (in
luding the fail a
tions).2. If U is a well-formed environment for Tk and Jk, then5



Canoni
al Atomi
-Obje
t(k; hV; V0; invs ; resps ; Æi; J; f)SignatureInput:ai;k, a 2 invs, the invo
ations of Atomi
-Obje
t(k; hV; V0; invs; resps ; Æi; J; f) by Pi, i 2 Jfail i, i 2 JOutput:bk;i, b 2 resps , the responses of Atomi
-Obje
t(k; hV; V0; invs; resps ; Æi; J; f) to Pi, i 2 JInternal:perform((a; v); (b; v0))k;i, a 2 invs, b 2 resps , v; v0 2 V , i 2 Jdummyk;i, i 2 JStateval , a value in V , initially a value in V0inv�bu�er , a set of pairs (i; a), for ai an input a
tionresp�bu�er , a set of pairs (i; b), for bi an output a
tionfailed � J , initially emptyA
tionsInput ai;kE�: inv�bu�er  inv�bu�er [ f(i; a)gInternal perform((a; v); (b; v0))k;iPre: (i; a) 2 inv�bu�er ^ val = v ^ Æ((a; v); (b; v0))E�: inv�bu�er  inv�bu�er � f(i; a)g;val  v0;resp�bu�er  resp�bu�er [ f(i; b)g
Output bk;iPre: f(i; b)g 2 resp�bu�erE�: resp�bu�er  resp�bu�er � f(i; b)g;Input failiE�: failed  failed [ figInternal dummyk;iPre: i 2 failed _ jfailed j > fE�: noneTasksFor every i 2 J : fperform((a; v); (b; v0))k;i : Æ((a; v); (b; v0))g [ fbi : b 2 respsg [ fdummyk;igFigure 1: I/O automaton for the 
anoni
al f -fault-tolerant atomi
 obje
t with endpoints J andtype T = hV; V0; invs ; resps ; Æi(a) Any tra
e � of A � U is also a tra
e of Sk � U . (This should imply that A preserveswell-formedness and guarantees atomi
ity.)(b) Any fair tra
e � of A � U is also a fair tra
e of Sk � U . (This should imply that theimplementation is f -fault-tolerant.)3 Model of ComputationThe model we 
onsider for our problem 
onsists of a 
olle
tion of pro
esses, 
hannels, and servi
es,whi
h we de�ne formally below. For the rest of this se
tion, we �x:� I, K, �nite index sets, and� T , a variable type for the entire system, representing the problem being solved, and6



Pj : : :Cj;i
Ci;j: : :: : : Pi

Sk
ai;k
ai bi

: : : : : :
fail i re
eive(m)i;j

send(m)j;i
bk;i

re
eive(m)j;i
send(m)i;j

Figure 2: The interfa
es of pro
ess Pi, 
hannels Ci;j; Cj;i and servi
e Sk in the 
omplete system.� M , a message alphabet.A distributed system with servi
es (DSS) for I;K;T ;M is the parallel 
omposition of I/O automata(see [Lyn96, 
hapter 8℄) of the following kinds:1. pro
esses Pi, i 2 I, and2. 
hannels Ci;j, i; j 2 I, i 6= j, and3. servi
es Sk, k 2 K. We let Tk denote the variable type and Jk � I denote the set of endpointsof servi
e Sk.Pro
esses intera
t only via 
hannels: Pro
ess Pi 
ommuni
ates with pro
ess Pj over unidire
tional
hannel Ci;j. Pro
esses also intera
t with servi
es: Pro
ess Pi 
an invoke servi
e Sk provided thati is in Sk's set of endpoints. Servi
es do not 
ommuni
ate dire
tly with one another; however, theyintera
t indire
tly via 
ommon pro
esses. Figure 2 shows the interfa
es that a pro
ess, 
hannel,and servi
e have. In the remainder of this se
tion, we provide more details about the 
omponents.3.1 Pro
essesPro
ess Pi, i 2 I has the following kinds of inputs and outputs:1. Inputs ai and outputs bi, where a is an invo
ation of type T and b is a response of type T .These represent Pi's intera
tions with its own 
lients (the outside world).2. Outputs send(m)i;j and inputs re
eive(m)j;i, m 2 M , whi
h 
onne
t to 
hannels Ci;j andCj;i, respe
tively.3. For every servi
e Sk su
h that i 2 Jk, outputs ai;k, where a is an invo
ation of type Tk, andinputs bk;i, where b is a response of type Tk.7



4. Input fail i.We assume that Pi observes well-formedness for ea
h separate servi
e Sk: it does not issue twoinvo
ations on Sk without re
eiving a response to the �rst one. However, Pi is allowed to issue aninvo
ation on a servi
e without waiting for previous invo
ations on other servi
es to respond. Thatis, Pi 
an issue 
on
urrent invo
ations to di�erent servi
es, but not to the same servi
e. We alsoassume that the 
lient of Pi is well-formed with respe
t to Pi: it does not issue two invo
ations toPi without re
eiving a response to the �rst one. We assume that Pi has only a single task, whi
htherefore 
onsists of all the lo
ally-
ontrolled a
tions of Pi. We assume that in every state, somea
tion in that single task is enabled. We assume that the fail i input a
tion sends Pi into somekind of state from whi
h (from that point onward), no output a
tions are enabled. However, otherlo
ally-
ontrolled a
tions may be enabled|in fa
t, by the restri
tion just above, some su
h a
tionmust be enabled. This a
tion might be a \dummy" a
tion, as in the fault-tolerant atomi
 obje
tsde�ned earlier.3.2 Servi
esWe de�ne a f -fault-tolerant servi
e of a parti
ular variable type Tk for a parti
ular set Jk ofendpoints, to be simply the 
anoni
al f -fault-tolerant atomi
 obje
t of type Tk for Jk. Let Tk:invs,Tk:resps denote the set of invo
ations, responses, respe
tively, of the variable type Tk.The safety properties of a servi
e Sk are determined by its �nite tra
es, whi
h are determinedby its start states, transitions, and signature. These are all part of the de�nition of the servi
e as anI/O automaton. Likewise, the liveness properties of a servi
e Sk are determined by the automatontask stru
ture and the usual 
onventions for fair exe
utions of I/O automata.We say that Pi has an outstanding invo
ation to a servi
e Sk i� either (1) the invo
ation bu�erof Sk 
ontains an invo
ation of the form (i; a), a 2 Tk:invs, or (2) the response bu�er of Sk 
ontainsa response of the form (i; b), b 2 Tk:resps.We say that a servi
e Sk is silent along an exe
ution � i� the only a
tions that Sk exe
utesalong � are dummy a
tions.3.3 ChannelsChannel Ci;j is a FIFO reliable 
hannel, as de�ned in [Lyn96, 
hapter 14℄. Its inputs are send(m)i;ja
tions, whi
h are outputs of Pi, and its outputs are re
eive(m)i;j a
tions, whi
h are inputs of Pj .A 
hannel has exa
tly one task, 
onsisting of its lo
ally 
ontrolled a
tions.3.4 The task stru
ture of a 
omplete systemThe ordinary assumptions about I/O automata mean that the system exe
utes using a \weaklyfair" s
heduling dis
ipline: in any exe
ution, every task that is 
ontinuously enabled gets sele
tedfor exe
ution in�nitely often. (Thus, an enabled task is eventually either disabled or exe
uted.)For a servi
e Sk, there is a task for ea
h i 2 Jk, 
onsisting of the a
tions fperform((a; v); (b; v0))k;i :Æ((a; v); (b; v0))g[fbi : b 2 respsg[fdummyk;ig, see Figure 1. For a pro
ess Pi there is a single task,
onsisting of all the lo
ally 
ontrolled a
tions of Pi. Likewise, for a 
hannel Ci;j, there is a singletask, 
onsisting of all the lo
ally 
ontrolled a
tions of Ci;j, i.e., the re
eive(m)i;j a
tions, m 2M .8



Sin
e a task of a 
omponent 
ontains only its lo
ally 
ontrolled a
tions, we infer from thesignature 
ompatibility 
ondition for I/O automata that the tasks de�ne a partition of the set ofall a
tions in the system, ex
ept the init(v)i and fail i a
tions; ea
h a
tion o

urs in exa
tly onetask.With this task stru
ture, the weak fairness dis
ipline implies that every message that is sentis eventually re
eived, every pro
ess exe
utes in�nitely often along an in�nite fair exe
ution, andevery outstanding invo
ation (of a servi
e) eventually re
eives a response.We introdu
e a naming s
heme for tasks as follows. The single task of Pi, i 2 I is 
alled pti. Thesingle task of 
hannel Ci;j, i; j 2 I, i 6= j, is 
alled 
ti;j. The task of servi
e Sk, k 2 K for i 2 Jk is
alled stk;i. We de�ne PT = fpti : i 2 Ig, CT = f
ti;j : i; j 2 I; i 6= jg, ST = fstk;i : k 2 K; i 2 Jkg,and T = PT [ CT [ ST . We 
all the tasks pti (i 2 I) pro
ess tasks, the tasks 
ti;j (i; j 2 I; i 6= j)
hannel tasks, and the tasks stk;i (k 2 K; i 2 Jk) servi
e tasks.For any a
tion a ex
ept an init(v)i or fail i, we de�ne task(a) to be the unique t su
h that t 2 Tand a 2 t, i.e., task (a) is the name of the task 
ontaining a. We de�ne task(init(v)i) = init(v)i,and task (fail i) = fail i, i.e., we 
onsider these a
tions as being the sole members of singleton tasks,and overload the name of the a
tion as the name of the 
orresponding task. If e is a 
hannel task
ti;j, then let re
eiver (e) be the pro
ess Pj .3.5 The Consensus problemThe \traditional" spe
i�
ation of f -fault-tolerant 
onsensus is given in terms of a set fPi; i 2 Ig(I is an index set) of pro
esses that ea
h starts with some value vi drawn from f0; 1g. Pro
essesare subje
t to 
rash failures [S
h90℄, that disable the pro
ess from produ
ing any output.1 As aresult of engaging in a 
onsensus algorithm, ea
h nonfaulty pro
ess eventually \de
ides" on a valuefrom f0; 1g. The behavior of pro
esses is required to satisfy the following three 
onditions [Lyn96,
hapter 6℄:Agreement No two pro
esses de
ide on di�erent values.Validity The value de
ided on is the initial value of some pro
ess.Termination In every in�nite fair exe
ution, all nonfaulty pro
esses eventually de
ide.We spe
ify the 
onsensus problem in a slightly di�erent way. We say that a DSS S solves f -fault-tolerant 
onsensus for I if and only if S is an f -fault-tolerant atomi
 obje
t of type 
onsensus(Se
tion 2.2) for endpoint set I.We now show that any system that meets our de�nition also meets the traditional one. Weargue that the f -fault-tolerant 
anoni
al 
onsensus obje
t for endpoint set I satis�es the three
onditions above (with a slight variation of the termination 
ondition).From the de�nition of the 
onsensus variable type, ea
h pro
ess in I has two invo
ations, init(0),init(1) and two responses, de
ide(0), de
ide(1). By inspe
ting the 
onsensus variable type given inSe
tion 2.2, we see that the value of the variable is initially ;, and on invo
ation init(0) 
an 
hangefrom ; to f0g, and on invo
ation init(1) 
an 
hange from ; to f1g, and is stable on
e it is di�erentfrom ;. It is also 
lear that any de
ide(0) response is only issued by the obje
t when the variable1Crash failures are usually de�ned as disabling the pro
ess from exe
uting at all. However, the two de�nitions areequivalent with respe
t to overall system behavior. 9



has value f0g, and any de
ide(1) response is only issued by the obje
t when the variable has valuef1g. Hen
e, after the �rst de
ide(0) response, all subsequent responses will be de
ide(0), and afterthe �rst de
ide(1) response, all subsequent responses will be de
ide(1). So, the 
anoni
al 
onsensusobje
t satis�es the agreement 
ondition. If all invo
ations are init(0), then the only possible 
hangeof the variable is from ; to f0g. Hen
e, all responses will be de
ide(0). Likewise if all invo
ationsare init(1), then all responses will be de
ide(1). Otherwise, there are both init(0) and init(1)invo
ations. Hen
e, in all 
ases, the value de
ided on is the value o

urring in some invo
ation.Hen
e, the 
anoni
al 
onsensus obje
t satis�es the validity 
ondition. If at least one pro
ess invokesthe f -fault-tolerant 
anoni
al 
onsensus obje
t, then the value of the variable will eventually beeither f0g or f1g, provided that less than f pro
esses fail, and that the s
heduling is weakly fair, asdis
ussed in Se
tion 3.4. Hen
e, all nonfaulty pro
esses that invoke the obje
t will re
eive a de
ideresponse, along fair exe
utions in whi
h no more than f pro
esses fail. Pro
esses that do not invokethe obje
t will not re
eive a response, even if they are nonfaulty. That is, pro
esses that do notinvoke the obje
t (with an init(v) a
tion) do not parti
ipate in the 
onsensus algorithm, and hen
eare not required to have an initial value. This is a slightly di�erent 
ondition than the traditionaltermination 
ondition, whi
h requires that all nonfaulty pro
esses do have an initial value, and thatthey all eventually de
ide. Here, only the nonfaulty pro
esses that \parti
ipate," by invoking theobje
t, will re
eive a de
ision.Sin
e any system S that solves solves f -fault-tolerant 
onsensus for I 
an only exhibit behaviors(in 
omposition with a well-formed environment) that are a subset of the behaviours of the f -fault-tolerant 
anoni
al 
onsensus obje
t, the desired 
on
lusion follows.4 The Impossibility ResultThe problem we address is to design a system, as given in Se
tion 3, whi
h is an f -fault-tolerantatomi
 obje
t (Se
tion 2.4) of type 
onsensus for some (arbitrary) set I of endpoints. We showthat, when the servi
es in the system are restri
ted to be (f � 1)-fault-tolerant atomi
 obje
ts,that this problem is impossible to solve. The servi
es 
an have arbitrary types, and 
an have asendpoints any subset of I. Thus, te
hniques based on quorums, repli
ation, and redundan
y, 
ouldall be implemented within our model. Our result implies that none of these approa
hes would help:a limitation on the fault-toleran
e of the underlying servi
es is also a fundamental limitation onthe fault-toleran
e of any 
onsensus servi
e that 
an be built from these underlying servi
es.Sin
e we now restri
t attention to systems that are 
onsensus obje
ts, the inputs ai and outputsbi that represent Pi's intera
tions with its own 
lients are now instantiated as the inputs init(0)i,init(1)i, and the outputs de
ide(0)i, de
ide(1)i, for the single 
onsensus 
lient that Pi now intera
tswith.4.1 Main result and proof assumptionsThe main result of the paper is:Theorem 1 Let I be an arbitrary endpoint set su
h that jIj � 2, and let f be su
h that 1 � f <jIj. Then there does not exist a distributed system with servi
es that is an f -fault-tolerant atomi

onsensus obje
t for endpoint set I, if the servi
es are (f � 1)-fault-tolerant.10



Note that the servi
es 
an be of any variable type. We assume in the sequel, that su
h a DSS, P ,exists and derive a 
ontradi
tion.We assume that all the pro
esses of P are deterministi
 automata, as de�ned in Se
tion 2.1.Sin
e 
hannels are FIFO, they are already deterministi
. We assume a slightly weaker 
onditionfor servi
es, namely that variable type of ea
h servi
e is deterministi
, i.e, the relation Æ of theunderlying variable type is a mapping. For an impossibility proof, these assumptions are madewithout loss of generality, sin
e pro
esses and servi
es 
an be made to satisfy the above 
onditionsby removing a subset of the lo
ally-
ontrolled transitions. Hen
e, if an unrestri
ted solution exists,then a solution satisfying our assumptions also exists.4.2 Terminology used in the proof4.2.1 TransitionsA transition is a triple (s; a; s0). We de�ne �rst(s; a; s0) = s, a
tion(s; a; s0) = a, last(s; a; s0) = s0.The parti
ipants of a lo
ally 
ontrolled a
tion (i.e., not an init(v)i or fail i a
tion) a of the systemare all automata with a in their signature: parti
ipants (a) = fA j a 2 a
ts(A)g. The parti
ipantsof a transition (s; a; s0) are the parti
ipants of its a
tion: parti
ipants(s; a; s0) = parti
ipants(a).If the a
tion a of a transition is an output a
tion of some 
omponent A (pro
ess or servi
e, sin
e
hannels do not have internal a
tions), then we say that the transition is an output transition ofA. We de�ne internal transition of A similarly. Due to I/O automaton signature 
ompatibility, atransition 
an be the output or internal transition of at most one 
omponent. Furthermore, due tothe stru
ture of the system, as given in Se
tion 3, every transition, with the ex
eption of transitionsdue to the exe
ution of the init(v)i inputs to Pi, and fail i a
tions, is either an output transition oran internal transition of exa
tly one 
omponent.4.2.2 Tasks and s
hedulingWe say that a task e is appli
able to a global state s i� some a
tion of e is enabled in state s. If� is a �nite exe
ution, then we say that e is appli
able to � i� e is appli
able to last(�). Thus,if e is an appli
able 
hannel task 
ti;j , then the 
orresponding 
hannel Ci;j must be nonempty, sothat a message 
an a
tually be delivered. If e is an appli
able servi
e task stk;i, then either theinvo
ation bu�er of servi
e Sk must 
ontain an invo
ation from pro
ess Pi, or the response bu�erof Sk must 
ontain a response to Pi, or the dummyk;i a
tion must be enabled. We assume, forte
hni
al 
onvenien
e, that a pro
ess always has an enabled lo
ally 
ontrolled a
tion, and so apro
ess task is always appli
able.An appli
able task e, together with the 
urrent global state, determines a unique transition(arising from the s
heduling of task e in the 
urrent state) sin
e pro
esses and 
hannels are de-terministi
, and the variable type underlying a servi
e is also deterministi
. We denote this tran-sition as transition(e; s). Let transition(e; s) = (s; a; s0). Then, we apply the notation de�ned inSe
tion 4.2.1 to transition(e; s) as follows: �rst(e; s) = s, a
tion(e; s) = a, last(e; s) = s0. Weabbreviate last(e; s) by e(s). We note that transition(e; s), �rst(e; s), a
tion(e; s), last(e; s) arede�ned if and only if e is appli
able to s.We note that when e is a 
hannel task, then transition(e; s) always 
auses a 
hange of state,i.e., e(s) 6= s, sin
e some message is delivered by the 
hannel. When e is a servi
e task stk;i, thentransition(e; s) 
auses a 
hange of state unless it 
orresponds to the exe
ution of a dummyk;i a
tion.11



When e is a pro
ess task, then transition(e; s) may or may not 
ause a state 
hange. This woulddepend on the transition stru
ture of the pro
ess, about whi
h we make no assumptions.4.2.3 Exe
utionsDe�ne an initialization of P to be a �nite exe
ution 
ontaining exa
tly jIj a
tions, whi
h moreoverare all init(vi)i a
tions, one for ea
h i 2 I. De�ne an exe
ution � of P to be input-�rst i� it has aninitialization as a pre�x, and otherwise 
ontains no init a
tions. If � is a �nite exe
ution, then anextension of � is an exe
ution �0 su
h that � is a pre�x of �0. De�ne a �nite input-�rst failure-freeexe
ution � to be 0-valent if (1) some input-�rst failure-free extension of � 
ontains a de
ide(0)ia
tion, for at least one i 2 I, and (2) no input-�rst failure-free extension of � 
ontains a de
ide(1)ia
tion, for any i 2 I. The de�nition of 1-valent is analogous. De�ne a �nite failure-free exe
ution� to be univalent i� it is either 0-valent or 1-valent. De�ne a �nite input-�rst failure-free exe
ution� to be bivalent i� it has some input-�rst failure-free extension that 
ontains a de
ide(0)i a
tion,for at least one i 2 I, and some input-�rst failure-free extension that 
ontains a de
ide(1)i a
tion,for at least one i 2 I.Sin
e the assumed f -fault-tolerant atomi
 
onsensus obje
t P is an I/O automaton, we 
anview its transition relation as de�ning a labeled dire
ted graph whose nodes are the states of P andwhi
h 
ontains a dire
ted edge from s to s0 labeled with a i� (s; a; s0) is in the transition relationof P . This graph is 
alled the global state transition graph of P . Let G(P ) be the subgraph ofthe global state transition graph of P obtained as follows: (1) in
lude every state that lies alongan input-�rst exe
ution, and (2) in
lude all the transitions of P that 
onne
t the states that arein
luded by virtue of (1).4.2.4 S
hedulesA s
hedule is a �nite sequen
e of task names drawn from T [ finit(v)i; fail i : v 2 f0; 1g; i 2 Ig.Let � = e1e2 : : : en be a s
hedule, and s be a global state, su
h that, e1 is appli
able to s, e2 isappli
able to e1(s), and, generally, ei is appli
able to ei�1(ei�2(: : : (e1(s)) : : : )) for all i, 1 < i � n.Then, we say that � is appli
able to s, and we let �(s) denote en(en�1(: : : (e1(s)) : : : )). A s
hedule� is appli
able to a �nite exe
ution � i� � is appli
able to last(�). In this 
ase, we let �(�) denotethe resulting extension of �.Let � = s0a1s1a2s2 : : : si�1aisi be a �nite exe
ution. Then, we de�ne the s
hedules
hedule(�) = task(a1)task (a2) : : : task (ai). That is, for ea
h a
tion in �, we take the name ofthe task 
ontaining the a
tion. s
hedule(�) then 
onsists of these task names in the same order astheir 
orresponding a
tions.4.3 The proofOur proof will build up a series of lemmas establishing 
ertain 
onstraints on G(P ). We start withthe basi
 
ommutativity situation illustrated in Figure 3.Lemma 2 Let s be any global state of the f -fault-tolerant atomi
 
onsensus obje
t P , and let e1,e2 be tasks su
h that1. e1, e2 are both appli
able to s, and 12



e1
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e2(s1); e1(s2)
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s2
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Figure 3: Commuting tasks w.r.t. a state s.2. parti
ipants (e1; s) \ parti
ipants (e2; s) = ;.Let e1(s) = s1, and e2(s) = s2. Then, e2 is appli
able to s1, and e1 is appli
able to s2, ande2(s1) = e1(s2).Proof. By assumption (e1; s) and (e2; s) only a�e
t the state of di�erent 
omponents. It fol-lows that e2 is appli
able to s1, and that e1 is appli
able to s2. By determinism, it follows thatparti
ipants (e1; s) = parti
ipants (e1; s2), and that (e1; s) and (e1; s2) are the same transition \lo-
ally," i.e, they e�e
t exa
tly the same state 
hanges in the 
omponents in parti
ipants(e1; s).Likewise for (e2; s) and (e2; s1). Thus, the a

umulated state 
hanges of (e1; s) followed by (e2; s1)are the same as the a

umulated state 
hanges of (e2; s) followed by (e1; s2). Hen
e the lemmaholds. Figure 3 illustrates the proof. 2Lemma 3 The f -fault-tolerant atomi
 
onsensus obje
t P must have a bivalent initialization.Proof. Re
all that we assume f � 1 (Se
tion 4.1). The argument is then exa
tly the same as thatin the proof of Lemma 12.3 in [Lyn96, 
hapter 12℄. 2Suppose there exists a �nite input-�rst failure-free exe
ution �s, and states s, s0, s00, s0, s1,and tasks e; e0 whi
h are related as given by Figure 4. We 
all su
h a 
on�guration a hook, after[CHT96℄. We say that the hook starts in state s, and we 
all �s the stem of the hook. We alsoadmit as a hook a 
on�guration in whi
h the 0-valent and 1-valent states are inter
hanged.Lemma 4 Let �s be a �nite input-�rst failure-free bivalent exe
ution of G(P ), and let �rst(�s) =sstart, last(�s) = s. Let e be a task of P appli
able to �s. LetU = f�u j �u = �(�s); � is a �nite failure-free s
hedule appli
able to �s and not 
ontaining eg,V = fe(�u) j �u 2 U and e is appli
able to �ug.Then either (1) V 
ontains a bivalent exe
ution, or (2) G(P ) 
ontains a subgraph whi
h is a hookstarting in sstart, as given by Figure 4. 13



ssstart

s0 (0-valent)
s1 (1-valent)

s00e
e e0s0

�s

Figure 4: A hook starting in s.Proof. We assume both the ante
edent of the lemma and the negation of (1), and establish (2).Now e is either a 
hannel task, pro
ess task, or servi
e task. If e is a 
hannel task 
ti;j, thenappli
ability of e to s means that 
hannel Ci;j 
ontains a message in state s. Thus, e is also ap-pli
able to any state rea
hed from s by a s
hedule not 
ontaining e, sin
e the message remains inCi;j as long as 
ti;j is not s
heduled. If e is a pro
ess task, then e is appli
able to any state, byour assumption that a pro
ess always has some enabled lo
ally 
ontrolled a
tion. If e is a servi
etask stk;i, then appli
ability of e to s means that either servi
e Sk has a pending invo
ation frompro
ess Pi in state s, or dummyk;i is enabled. Thus, e is also appli
able to any state rea
hed froms by a s
hedule not 
ontaining e, sin
e the invo
ation (if present) remains pending as long as stk;iis not s
heduled, and dummyk;i remains enabled on
e it is enabled. We have therefore shown,e is appli
able to every exe
ution in U . (a)Sin
e �s is bivalent, there exists a 0-valent extension �x0 of �s and a 1-valent extension �x1 of�s. For i 2 f0; 1g, we argue as follows.CASE 1 : �xi 2 U . Let �vi = e(�xi). Hen
e �vi is i-valent, sin
e �xi is i-valent. Also, �vi 2 V ,sin
e �xi 2 U .CASE 2 : �xi 62 U . Then, e was applied in extending �s to �xi . Let �vi be the unique extensionof �s whose last a
tion has task e. �vi is unique due to our assumptions in Se
tion 4.1 about thedeterministi
 behavior of pro
esses and variable types. Hen
e �vi = e(�0s) for some extension �0sof �s. Hen
e �vi 2 V by de�nition of V . Sin
e (1) is false by assumption, V 
ontains no bivalentexe
utions. Hen
e �vi is univalent. But �xi is i-valent and is an extension of �vi . Hen
e �vi isi-valent. 14
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Figure 5: Existen
e of the hook.Thus, in both 
ases, we have that �vi 2 V and �vi is i-valent. Moreover, this holds for bothi = 0 and i = 1. Thus there exist 0-valent �v0 2 V and 1-valent �v1 2 V (b)Let �v = e(�s), and let v = last(�v). Hen
e �v 2 V , and so �v is univalent by the assumption that(1) is false. Without loss of generality, let �v be 0-valent. By (b), there exists �v1 2 V whi
h is1-valent. Let �um be an exe
ution in U su
h that e(um) = �v1 , and let um = last(�um). Hen
e, wehave the situation depi
ted in Figure 5, sin
e �um is an extension of �s. (The state s is the samestate in Figures 4 and 5). Consider the (unique) exe
ution fragment 
 su
h that �um = �_s 
. By(a), e is appli
able to every state along 
. Sin
e the resulting exe
utions are all in V by de�nition,they are all univalent, by assumption. Sin
e �v is 0-valent and �v1 is 1-valent, it follows that thereexist two su
h exe
utions, �0 and �1 su
h that �0 is 0-valent, �1 is 1-valent, and �0, �1 result fromapplying e to adja
ent states along 
. The subgraph of G(P ) generated by taking the \union" of �0and �1 (i.e., take all states and transitions o

uring in one, or both, of �0, �1) is then the desiredhook. 2Lemma 5 G(P ) does not 
ontain as a subgraph a hook whose stem is a �nite input-�rst failure-freeexe
ution.Proof. Our proof is by 
ontradi
tion. We assume that G(P ) does 
ontain su
h a hook, and establishthat P is not a f -fault-tolerant atomi
 
onsensus obje
t, 
ontrary to assumption.Without loss of generality, we assume the 
on�guration in Figure 4. For ea
h state ex
ept sstart,we let � subs
ripted with the state name denote the unique �nite exe
ution whi
h is 
ontained inthe hook and whi
h ends in that state: �s0 is the stem of the hook, �s0 ends in s0, �s1 ends in s1,and �s00 ends in s00.We remark that �s0 
annot 
ontain any de
ide a
tions, sin
e it is bivalent, and this wouldotherwise violate the agreement property. We �rst establish Claims 1{3.15



Claim 1: e 6= e0.Suppose not. Then, by determinism (Se
tion 4.1), we have s0 = s00. Now s1 is rea
hable from s00,and s1 is 1-valent. Hen
e, s00 is either bivalent or 1-valent. s0 however, is 0-valent. Hen
e we havea 
ontradi
tion. So, 
laim 1 is established.Claim 2: jparti
ipants (e; s0)j � 2, jparti
ipants(e0; s0)j � 2.From the stru
ture of a DSS (Se
tion 3), we see that every output a
tion of some 
omponent is aninput a
tion of at most one other 
omponent. The 
laim follows.Claim 3: jparti
ipants (e; s0) \ parti
ipants (e0; s0)j � 1.From Claim 2, we immediately have that jparti
ipants (e; s0) \ parti
ipants(e0; s0)j � 2. Supposejparti
ipants (e; s0) \ parti
ipants (e0; s0)j = 2. From Claim 1, we know that e 6= e0. Hen
e, it mustbe that, for some distin
t 
omponents C1, C2, a
tion(e; s0) is an output a
tion of C1 and an inputa
tion of C2, a
tion(e0; s0) is an input a
tion of C1 and an output a
tion of C2. Sin
e servi
es and
hannels have no a
tions in 
ommon, the only possibilities for this are:� fC1; C2g = fPi; Skg for some Pi, Sk.This violates well-formedness of Pi for Sk.� fC1; C2g = fPi; Ci;jg for some Pi, Ci;j.No output a
tion of Ci;j is an input a
tion of Pi.� fC1; C2g = fPi; Cj;ig for some Pi, Cj;i.No output a
tion of Pi is an input a
tion of Cj;i.Sin
e all three 
ases lead to a 
ontradi
tion, the 
laim is established.From Claim 3, we have four possibilities for parti
ipants (e; s0)\parti
ipants (e0; s0). To 
ompletethe proof of the lemma, we 
onsider ea
h separately.CASE 1 : parti
ipants(e; s0) \ parti
ipants (e0; s0) = ;. Hen
e, the ante
edent of Lemma 2 holdsfor s = s0, e1 = e, and e2 = e0. Hen
e, e0 is appli
able to s0, and e0(s0) = s1. Hen
e, e0(�s0) and�s1 have at least one in�nite fair extension with a 
ommon suÆx. Sin
e �s0 does not 
ontain anyde
ide a
tions, it follows that the suÆx must 
ontain de
ide a
tions. Now �s0 is 0-valent and �s1is 1-valent. Hen
e, no matter what de
ide a
tions this 
ommon suÆx 
ontains, it will violate thevalen
ies of at least one of �s0 , �s1 .CASE 2 : parti
ipants(e; s0) \ parti
ipants(e0; s0) = Sk.Sub
ase 2.1 : At least one of a
tion(e; s0), a
tion(e0; s0) is not a perform a
tion of Sk. Hen
eat least one of these is an invo
ation or a response. Now invo
ation and response a
tions do not
hange the value of the underlying variable of Sk.Sin
e both these a
tions are enabled in s0, it follows that the enablement of neither a
tiondepends on the prior exe
ution of the other a
tion (this might be the 
ase for 
ertain invo
ation,perform or perform, response pairs of a
tions, but not here). Hen
e, from Figure 1, we see thatthese a
tions 
ommute, in that their order 
an be reveresed and the same �nal global state wilresult. Hen
e, e0 is appli
able to s0, and e0(s0) = s1. Hen
e, e0(�s0) and �s1 have at least one16



in�nite fair extension with a 
ommon suÆx. Sin
e �s0 does not 
ontain any de
ide a
tions, itfollows that the suÆx must 
ontain de
ide a
tions. Now �s0 is 0-valent and �s1 is 1-valent. Hen
e,no matter what de
ide a
tions this 
ommon suÆx 
ontains, it will violate the valen
ies of at leastone of �s0 , �s1 .Sub
ase 2.2 : Both of a
tion(e; s0), a
tion(e0; s0) are perform a
tions of Sk. Sin
e �s0 isbivalent, then, under the assumption that P solves f -fault-tolerant 
onsensus, �s0 
annot 
ontainany de
ide a
tions, sin
e that would violate agreement. Hen
e, �s0 does not 
ontain any de
idea
tions either, sin
e a
tion(e; s0) is not a de
ide.Let �00 be an in�nite fair exe
ution that extends �s0 , and let �0 be the suÆx of �0 starting instate s0. Furthermore, let �0 be 
hosen su
h that:1. The �rst f a
tions along �0 are fail j a
tions for f di�erent j 2 Jk2. For every o
urren
e of an a
tion a along �0, and every i 2 I, if task(a) = stk;i, then a =dummyk;i. That is, whenever stk;i is s
heduled along �, the dummyk;i a
tion is 
hosen. Sin
edummyk;i is enabled at all states of �0 ex
ept the �rst, it is 
ertainly possible to always 
hooseto s
hedule the dummyk;i a
tion in this way, along �0.Sin
e P is f -tolerant, f � 1, a de
ide(v)j a
tion, for every nonfaulty pro
ess must o

ur along�0. Let �0d be the pre�x of �0 ending in the state just after the �rst su
h de
ide(v)j a
tion. Let� = s
hedule(�0d). From �, derive the s
hedule �0 by removing:1. Every o

urren
e of a fail i, and2. Every o

urren
e of stk;i for all i 2 I (these all 
orrespond to dummyk;i a
tions in �0d),It is 
lear that �0 is a failure-free s
hedule. Sin
e, in �, the transitions 
orresponding to the abovetask o

urren
es do not indu
e any 
hange of state other than to Sk, whi
h is silent, it follows that�0 is appli
able to s0, and that �0(�s0) 
ontains a single de
ide a
tion.By the 
ase 
ondition, s0 and s1 di�er only in the state of Sk. Sin
e pro
esses and 
hannels aredeterministi
, and sin
e servi
es have a deterministi
 type and also behave as given by Figure 1,we 
an see that �0 is appli
able to s1, and that �0(�s1) is the same as �0(�s0), with the ex
eption ofthe lo
al state of Sk. In parti
ular, �0(�s1) and �0(�s0) 
ontain the same a
tion subsequen
e. So,�0(�s1) and �0(�s0) 
ontain the same single de
ide(v)i a
tion, for some v 2 f0; 1g, Choosing v = 0
ontradi
ts the 1-valen
y of s1, and 
hoosing v = 1 
ontradi
ts the 0-valen
y of s0.CASE 3 : parti
ipants (e; s0) \ parti
ipants (e0; s0) = Ci;j. Sin
e Pi and Ci;j are deterministi
,and e 6= e0, it follows that one of a
tion(e; s0), a
tion(e0; s0), is a send(m)i;j , and the other isa re
eive(m0)i;j, for some m;m0 2 M . Sin
e these are both enabled in s0, it follows from thede�nition of a FIFO 
hannel (see [Lyn96, 
hapter 14℄) that transition(e; s0) and transition(e0; s0)
ommute. The remainder of the argument is similar to Case 2.1.CASE 4 : parti
ipants(e; s0) \ parti
ipants(e0; s0) = Pi.Sin
e �s0 is bivalent, then, under the assumption that P solves f -fault-tolerant 
onsensus, �s0
annot 
ontain any de
ide() a
tions, sin
e that would violate agreement.Let �00 be an in�nite fair exe
ution that extends �s0 , and let �0 be the suÆx of �0 starting instate s0. Furthermore, let �0 be 
hosen su
h that:17



1. The a
tion along �0 that starts in s0 is fail i, and2. No fail j a
tions, j 6= i, o

ur along �0, and3. For every a
tion a, and every o

urren
e of a along �0, if task(a) = stk;i for some k 2 K, thena = dummyk;i. That is, whenever stk;i is s
heduled along �, the dummyk;i a
tion is 
hosen.Sin
e dummyk;i is enabled at all states, ex
ept the �rst, of any exe
ution fragment that startswith fail i, it is 
ertainly possible to always 
hoose to s
hedule the dummyk;i a
tion in thisway, along �0.Sin
e P is f -tolerant, f � 1, a de
ide(v)j a
tion, for every j 6= i must o

ur along �0. Let �0d bethe pre�x of �0 ending in the state just after the �rst su
h de
ide(v)j a
tion. Let � = s
hedule(�0d).From �, derive the s
hedule �0 by removing:1. The single o

urren
e of fail i, and2. Every o

urren
e of stk;i for all k 2 K, (these all 
orrespond to dummyk;i a
tions in �0d), and3. Every o

urren
e of 
tj;i, for all j 2 I, j 6= iSin
e the only fail a
tion along � is fail i, it is 
lear that �0 is a failure-free s
hedule. Sin
e, in�, the transitions 
orresponding to the above task o

urren
es do not indu
e any 
hange of stateother than to Pi, whi
h has failed, it follows that �0 is appli
able to s0, and that �0(�s0) 
ontains asingle de
ide a
tion. We now establish Claims 4.1 and 4.2.Claim 4.1:1. �0 is appli
able to s0.2. Let 
 be the suÆx of �0(�s0) starting in s0, and let 
0 be the suÆx of �0(�s0) starting in s0.Then 
, 
0 
ontain the same de
ide a
tions.We establish the 
laim by 
ase analysis on the possibilities for a
tion(e; s0). From the 
ase 4
ondition, we have that Pi 2 parti
ipants (e; s0). This restri
ts the possibilities for a
tion(e; s0) tothe following.Sub
ase 4.1.1 : a
tion(e; s0) = ai;k; a 2 Tk:invs. By de�nition, �0 
ontains no o

urren
e ofstk;i. Hen
e, 
 
ontains no a
tion in stk;i. Let 
00 be the same as 
 ex
ept that, for 
orrespondingstates along 
00, the invo
ation bu�er of Sk 
ontains additionally the invo
ation (i; a). Sin
e 
00
ontains no a
tion in stk;i, this extra invo
ation is never pro
essed (by a perform() a
tion) along
00. Hen
e, the state-a
tion-state triples along 
00 are a
tual transitions of P (i.e., elements ofsteps(P )). Thus, 
00 is an a
tual exe
ution fragment of G(P ). Furthermore, the �rst state of 
00is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
able to s0. Now 
00 is the suÆx of �0(s0) startingin s0. Also, 
 and 
00 
ontain the same subsequen
e of a
tions, and so in parti
ular 
ontain thesame de
ide a
tions. Letting 
0 = 
00 establishes the 
laim in this 
ase.Sub
ase 4.1.2 : a
tion(e; s0) = bk;i; b 2 Tk:resps. By de�nition, �0 
ontains no o

urren
e ofpti nor of stk;i. Let 
 be the suÆx of �0(�s0) starting in s0. Hen
e, 
 
ontains no a
tion in pti nor in18



stk;i. Let 
00 be the same as 
 ex
ept that, for 
orresponding states along 
00, the response bu�erof Sk is missing the response (i; b), and the state of Pi is the result of exe
uting input a
tion bk;i instate s0.We now argue that every state-a
tion-state triple along 
00 is in steps(P ), i.e, is an a
tual tran-sition of P . Sin
e 
00 
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not 
auseany state-a
tion-state triple along 
00 to not be a transition of P , sin
e no a
tion along 
00 eitherdepends on (for enablement) nor 
hanges Pi's lo
al state. Likewise, sin
e 
00 
ontains no a
tionsin stk;i, then the di�eren
e in the response bu�er of Sk 
annot 
ause any state-a
tion-state triplealong 
00 to not be a transition of P , sin
e no a
tion along 
00 either depends on (for enablement)those elements of Sk's response bu�er of the form (i; b), nor does any su
h a
tion add or removeelements of the form (i; b) to Sk's response bu�er. Thus, 
00 is an a
tual exe
ution fragment ofG(P ). Furthermore, the �rst state of 
00 is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
able tos0. Now 
00 is the suÆx of �0(s0) starting in s0. Also, 
 and 
00 
ontain the same subsequen
eof a
tions, and so in parti
ular 
ontain the same de
ide a
tions. Letting 
0 = 
00 establishes the
laim in this 
ase.Sub
ase 4.1.3 : a
tion(e; s0) = send(m)i;j ; m 2 M . By de�nition, �0 
ontains no o

urren
eof pti. Let 
 be the suÆx of �0(�s0) starting in s0. Hen
e, 
 
ontains no a
tion in pti. Also, messagem is not re
eived by Pj along 
, sin
e it was not sent. (Wlog, we assume that all messages aretagged with unique identi�ers. This is for the purpose of the proof only, and is not a restri
tionon the assumed system P .) Let 
00 be the same as 
 ex
ept that, for 
orresponding states along
00, Ci;j 
ontains in addition message m at its end (i.e., m is the \last" message in Ci;j, re
all that
hannels are FIFO), and the state of Pi is the result of exe
uting output a
tion send(m)i;j in states0. We now argue that every state-a
tion-state triple along 
00 is in steps(P ), i.e, is an a
tual tran-sition of P . Sin
e 
00 
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not 
auseany state-a
tion-state triple along 
00 to not be a transition of P , sin
e no a
tion along 
00 eitherdepends on (for enablement) nor 
hanges Pi's lo
al state. Likewise, the di�eren
e in the 
ontents ofCi;j 
annot 
ause any state-a
tion-state triple along 
00 to not be a transition of P . The only triplesthat 
ould possibly be a�e
ted are those whose a
tion is re
eive(m0)i;j for some m0 2 M . But allsu
h triples will 
orrespond to the re
eption of the message m0 a
tually at the head of Ci;j (in theinitial global state of the triple), sin
e the only di�eren
e in the 
ontents of Ci;j is that an extramessage has been appended at the rear of Ci;j. In other words, Ci;j delivers the same sequen
e ofmessages along 
00 that it does along 
. Hen
e, all these triples will be a
tual transitions of P .Thus, 
00 is an a
tual exe
ution fragment of G(P ). Furthermore, the �rst state of 
00 is s0, ands
hedule(
00) = �0. Hen
e �0 is appli
able to s0. Now 
00 is the suÆx of �0(s0) starting in s0. Also,
 and 
00 
ontain the same subsequen
e of a
tions, and so in parti
ular 
ontain the same de
idea
tions. Letting 
0 = 
00 establishes the 
laim in this 
ase.Sub
ase 4.1.4 : a
tion(e; s0) = re
eive(m)j;i; m 2M . By de�nition, �0 
ontains no o

urren
eof pti nor of 
tj;i. Let 
 be the suÆx of �0(�s0) starting in s0. Hen
e, 
 
ontains no a
tion in ptinor in 
tj;i. Let 
00 be the same as 
 ex
ept that, for 
orresponding states along 
00, Cj;i is missingthe message m at its head, and the state of Pi is the result of exe
uting input a
tion re
eive(m)j;iin state s0. 19



We now argue that every state-a
tion-state triple along 
00 is in steps(P ), i.e, is an a
tual tran-sition of P . Sin
e 
00 
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not 
auseany state-a
tion-state triple along 
00 to not be a transition of P , sin
e no a
tion along 
00 eitherdepends on (for enablement) nor 
hanges Pi's lo
al state. Likewise, the di�eren
e in the 
ontentsof Cj;i 
annot 
ause any state-a
tion-state triple along 
00 to not be a transition of P , sin
e 
00
ontains no a
tion in 
tj;i. Thus, 
00 is an a
tual exe
ution fragment of G(P ). Furthermore, the�rst state of 
00 is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
able to s0. Now 
00 is the suÆx of�0(s0) starting in s0. Also, 
 and 
00 
ontain the same subsequen
e of a
tions, and so in parti
ular
ontain the same de
ide a
tions. Letting 
0 = 
00 establishes the 
laim in this 
ase.Sub
ase 4.1.5 : a
tion(e; s0) = de
ide(v)i or a
tion(e; s0) is an internal a
tion of Pi. Byde�nition, �0 
ontains no o

urren
e of pti. Let 
 be the suÆx of �0(�s0) starting in s0. Hen
e, 

ontains no a
tion in pti. Let 
00 be the same as 
 ex
ept that, for 
orresponding states along 
00,Cj;i and the state of Pi is the result of exe
uting a
tion(e; s0).We now argue that every state-a
tion-state triple along 
00 is in steps(P ), i.e, is an a
tual tran-sition of P . Sin
e 
00 
ontains no a
tions in pti, this di�eren
e in Pi's lo
al state does not 
auseany state-a
tion-state triple along 
00 to not be a transition of P , sin
e no a
tion along 
00 eitherdepends on (for enablement) nor 
hanges Pi's lo
al state. Thus, 
00 is an a
tual exe
ution fragmentof G(P ). Furthermore, the �rst state of 
00 is s0, and s
hedule(
00) = �0. Hen
e �0 is appli
ableto s0. Now 
00 is the suÆx of �0(s0) starting in s0. Also, 
 and 
00 
ontain the same subsequen
eof a
tions, and so in parti
ular 
ontain the same de
ide a
tions. Letting 
0 = 
00 establishes the
laim in this 
ase.From our de�nition of distributed system with servi
es, we see that the above are all the possible
ases for a
tion(e; s0). Having established Claim 4.1 in ea
h 
ase, we 
on
lude that it holds generally.(end proof of Claim 4.1)Claim 4.2:1. �0 is appli
able to s1.2. Let 
 be the suÆx of �0(�s0) starting in s0, and let 
1 be the suÆx of �0(�s1) starting in s1.Then 
, 
1 
ontain the same de
ide a
tions.From the 
ase 4 
ondition, we have that Pi 2 parti
ipants(e0; s0). Hen
e, we 
an apply exa
tly thesame argument as used in the proof of Claim 1 to 
on
lude that:1. �0 is appli
able to s00.2. Let 
00 be the suÆx of �0(�s00) starting in s00. Then 
, 
00 
ontain the same de
ide a
tions.From the 
ase 4 
ondition, we have that Pi 2 parti
ipants(e; s0). Hen
e, e = pti, or e = 
tj;i,or e = stk;i, with a
tion(e; s0) = bk;i for some b 2 Tk:resps. If e = pti or e = 
tj;i, then 
learlyPi 2 parti
ipants(e; s00). If e = stk;i, with a
tion(e; s0) = bk;i for some b 2 Tk:resps, then, by well-formedness of Pi w.r.t. Sk, and Pi 2 parti
ipants (e0; s0), it follows that a
tion(e0; s0) 6= ak;i for alla 2. From e 6= e0 it follows that a
tion(e0; s0) 6= bk;i for all b 2 Tk:resps, sin
e otherwise we wouldhave e0 = e = stk;i. Hen
e, from Pi 2 parti
ipants (e0; s0), we 
on
lude Sk 62 parti
ipants (e0; s0).20



Hen
e, the lo
al state of Sk is the same in s0 and s00, i.e., s0�Sk = s00�Sk. Sin
e a
tion(e; s0) = bk;i,we know that in state s0, (i; b) is in the response bu�er of Sk. Hen
e, we 
on
lude that in states00, (b; i) is in the response bu�er of Sk. Thus, by well-formedness of Pi w.r.t. Sk, in state s00, theinvo
ation bu�er of Sk 
ontains no invo
ation (i; a), for any a 2 Tk:invs. Now s00 lies along a fault-free exe
ution. Hen
e, dummyk;i is not enabled in s00. Hen
e, in state s00, the only a
tion of taskstk;i that is enabled is bk;i (see Figure 1). Hen
e a
tion(e; s00) = bk;i. Hen
e Pi 2 parti
ipants(e; s00).Thus, for all possible 
ases of e, we have established Pi 2 parti
ipants(e; s00). Hen
e, from (1)�0 is appli
able to s00, and (2) 
, 
00 
ontain the same de
ide a
tions, whi
h we showed above, we
an apply exa
tly the same argument as used in the proof of Claim 1 to establish Claim 4.2.(end proof of Claim 4.2)Sin
e �0 is a failure-free s
hedule, and �s0 is a �nite failure-free exe
ution, we 
on
lude that�0(�s0) is a �nite failure-free exe
ution. Sin
e s0 is 0-valent, it follows that �0(�s0) 
ontains at leastone de
ide(0)j a
tion, for some j 2 I.Sin
e �0 is a failure-free s
hedule, and �s1 is a �nite failure-free exe
ution, we 
on
lude that�0(�s1) is a �nite failure-free exe
ution. Sin
e s1 is 1-valent, it follows that �0(�s1) 
ontains at leastone de
ide(1)j0 a
tion, for some j0 2 I.Let 
 be the suÆx of �0(�s0), 
0 be the suÆx of �0(�s0), and 
1 be the suÆx of �0(�s1).From Claims 4.1 and 4.2, we have that 
, 
0, and 
1 all 
ontain the same de
ide a
tions. By its
onstru
tion, 
 
ontains a single de
ide a
tion. Hen
e, 
0, 
1 
ontain a single de
ide(v)` a
tion in
ommon, for some v 2 f0; 1g, ` 2 I. Choosing v = 0 
ontradi
ts the 1-valen
y of s1, and 
hoosingv = 1 
ontradi
ts the 0-valen
y of s0. Hen
e, we have derived the desired 
ontradi
tion.(end of CASE 4)Sin
e we have established a 
ontradi
tion in all of CASES 1{4, the lemma holds. 2Lemma 6 Let �s be a �nite input-�rst failure-free bivalent exe
ution of G(P ), and let last(�s) = s.Let e be a task of P appli
able to �s. LetU = f�u j �u = �(�s); � is a �nite failure-free s
hedule appli
able to �s and not 
ontaining eg,V = fe(�u) j �u 2 U and e is appli
able to �ug.Then V 
ontains a bivalent exe
ution.Proof. In the statement of Lemma 4, �s is a �nite failure-free exe
ution and � is a �nite failure-frees
hedule. Hen
e, 
ondition (2) of Lemma 4 is the existen
e of a hook in G(P ) whose stem is a �niteinput-�rst failure-free exe
ution. By Lemma 5, we know that (2) 
annot hold. Thus, the desiredresult follows immediately from Lemma 4. 2We now present the proof of Theorem 1:Assume that P is su
h a distributed system with servi
es. Using Lemma 6, we 
onstru
t anin�nite exe
ution 
 of P in whi
h no de
ide a
tion o

urs. By Lemma 3, P must have a bivalentinitialization. Call it 
0. We now apply Lemma 6 to extend 
0 repeatedly.Fix an arbitrary round-robin order of all the tasks in P , ex
ept for the init(v)i and fail i tasks.Let 
i be the 
urrent exe
ution, and let tj be the next task in the round robin order. Assumeindu
tively that 
i is bivalent. (
0 gives the base 
ase).If tj is not appli
able to last(
i), then move on to the next task in the round robin order, et
.until an appli
able task is found. Sin
e the pro
ess tasks are always appli
able, we are guaranteedto �nd an appli
able task. So, without loss of generality, let tj be this task.21



By Lemma 6, there is a bivalent extension 
i+1 of 
i su
h that the last a
tion along 
i+1 is intask e.Let 
 be the unique exe
ution su
h that for all i � 0, 
i is a pre�x of 
. If a task t is 
ontinuouslyenabled, then, when it is sele
ted in the round robin order, it will be found appli
able to the laststate of the 
urrent exe
ution. Hen
e, the extension will 
ontain an a
tion from t. Along 
, thiswill happen in�nitely often. Hen
e, 
 satis�es the I/O automaton weak fairness 
ondition. Sin
e 
has in�nitely many pre�xes 
i, i � 0, that are exe
utions of P , it thus follows that 
 is an exe
utionof P . Sin
e none of the 
i 
ontain a de
ide a
tion, it follows that 
 does not either. 25 k-set 
onsensusWe now show that when the system is solving a problem that is weaker than 
onsensus, namelyk-
onsensus (se
tion 2.2), it is possible to boost the fault-toleran
e level. Assume we have availablef -fault-tolerant k-
onsensus servi
es, ea
h one with m ports. An f 0-fault-tolerant algorithm thatsolves k0-
onsensus is as follows. Take a prin
ipal subset of the pro
esses, and divide it into sdisjoint groups, ea
h one a

essing a di�erent servi
e. Ea
h prin
ipal pro
ess parti
ipates in anexe
ution proposing its input value to its designated servi
e. If and when it gets a de
ision ba
k, itsends the de
ision to all the other pro
esses in the entire set of pro
esses (not just those involvedin the same 
onsensus servi
e). Meanwhile, ea
h prin
ipal pro
ess 
olle
ts all the results it re
eivesfrom all pro
esses, and de
ides on any of these results. The remaining pro
esses simply wait fora result from one of the prin
ipal pro
esses. The values of k0 and f 0 depend on the size of theprin
ipal set, and on the number s of servi
es we divide it into. There is a tradeo� between k0 andf 0: if a small number of failures f 0 is tolerated, then a high degree of agreement is a
hieved, namelya small k0. If more failures f 0 must be tolerated, then a lower degree of agreement is a
hieved,namely a large k0.To prove 
orre
tness, we divide the prin
ipal pro
esses appropriately into the servi
es theya

ess. We must ensure that less than s � (f + 1) prin
ipal pro
ess 
an fail, i.e., f 0 < s � (f + 1), toguarantee that at least one servi
e S has at most f failures. Servi
e S is therefore not killed, andmoreover, S has at least one nonfaulty parti
ipant, who su

eeds in sending the value to everyone.That means that every nonfaulty pro
ess de
ides. The value of k0, i.e., the number of possibledi�erent de
ision values is at most s � k: there are at most k di�erent values returned per servi
e;more pre
isely, at most k values per servi
e being a

essed by at least k pro
esses, and 
 values for aservi
e that is being a

essed by 
 pro
esses for 
 < k. Thus, for a desired overall fault-toleran
e f 0,we want the smallest possible k0 and so we �nd the smallest integer s that guarantees f 0 < s�(f+1).Thus we use s = d(f 0 + 1)=(f + 1)e servi
es, and take the �rst f 0 + 1 pro
esses to be the prin
ipalpro
esses (f 0 + 1 pro
esses using as few servi
es as possible, ea
h one with f + 1 input ports). Itfollows thatTheorem 7 For any 1 � k < m, k � f � m� 1, 1 � f 0 � n� 1, it is possible to solve f 0-tolerantk0-
onsensus for an endpoint set of n pro
esses using f -tolerant k-
onsensus servi
es, ea
h one withm ports, for k0 = k � �f 0 + 1f + 1 �+min(k; (f 0 + 1)mod(f + 1)):When ea
h servi
e is 
ompletely reliable, that is f = m � 1, and we divide the pro
esses asdes
ribed above, this algorithm redu
es to the one of [HR00℄, and gives an upper bound proved to22



be tight using topology. As an example, we want to build an f 0 = 2
�1-fault-tolerant algorithm foran endpoint set 
ontaining at least 2
 pro
esses, and using only 1-fault-tolerant 
onsensus servi
es,i.e., f = 1, k = 1. The smallest k0 for whi
h we 
an do this is k0 = 
, using s = 
 servi
es, ea
hwith 2 pro
esses (f 0 + 1 = 2
 prin
ipal pro
esses).6 Further Work and Con
lusionsWe studied the 
onsensus problem in an asyn
hronous distributed system with stopping failures,and where pro
esses 
an a

ess servi
es that abstra
t ora
les su
h as hardware primitives or failuredete
tors. Many papers have studied a similar model, but to our knowledge this is the �rst timeservi
es that are implemented by the pro
esses in the system are 
onsidered. We showed that f -tolerant 
onsensus is not a
hievable using less fault-tolerant 
onsensus servi
es as building blo
ks,but that k-
onsensus 
an be solved with less fault-tolerant k0-
onsensus servi
es as building blo
ks.Our algorithm for k-
onsensus generalizes that of [HR94, HR00℄ for reliable servi
es. Thatalgorithm a
hieves a tight upper bound. It is an open question what is the exa
t situation fork-set 
onsensus in our model: for whi
h k; k0; f; f 0 is it possible to 
onstru
t a k-
onsensus servi
etolerating f failures from k0-
onsensus servi
es tolerating f 0 failures ea
h? This seem to lead tomore general hierar
hy results, in the style of Herlihy's universality result [Her91℄, the 
onsensuswait-free hierar
hy [Jay97℄, and the set-
onsensus hierar
hy e.g. [BG93℄, all of these for servi
esthat 
an fail in our sense.
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A Te
hni
al Ba
kgroundDe�nition 1 (I/O Automaton) An I/O automaton A 
onsists of �ve 
omponents:1. A set of states states(A).2. A nonempty set start(A) � states(A) of start states.3. A signature sig(A) = (in(A); out(A); int(A)) where in(A), out(A), and int(A) are disjointsets of input, output, and internal a
tions, respe
tively. Denote by lo
al(A) the set out(A) [int(A) and by a
ts(A) the set in(A) [ out(A) [ int(A).4. A task partition tasks(A), whi
h is a partition of lo
al (A) into at most a 
ountable numberof 
lasses.5. A transition relation steps(A) � states(A)� a
ts(A) � states(A)Let s; s0; u; u; ; : : : range over states and a; b; ::: range over a
tions. We say that a is enabled instate s i� there exists state s0 su
h that (s; a; s0) 2 steps(A). If t is a task and some a
tion a 2 t isenabled in state s, then we say that task t is enabled in state s.An exe
ution fragment of A is an alternating sequen
e of states and a
tions s0a1s1 : : : si�1aisi : : :su
h that for all i �, (si�1aisi) 2 steps(A), i.e., the sequen
e 
onforms to the transition relation ofA. An exe
ution of A is an exe
ution fragment that begins with a state in start(A).If � is a �nite exe
ution or exe
ution fragment, then �rst(�) denotes the �rst state of �, andlast(�) denotes the last state of �. If � is a �nite exe
ution or exe
ution fragment, �0 is an exe
utionfragment, and last(�) = �rst(�0), then �_�0 denotes the 
on
atenation of � and �0.
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