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aDepartment of Computer Science, American University of Beirut, Beirut, Lebanon
bMIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA

Abstract

We present dynamic I/O automata (DIOA), a compositional model of dynamic sys-
tems, based on I/O automata. In our model, automata can be created and destroyed dy-
namically, as computation proceeds. In addition, an automaton can dynamically change
its signature, that is, the set of actions in which it can participate. This allows us to
model mobility, by enforcing the constraint that only automata at the same location may
synchronize on common actions.

Our model features operators for paral lel composition, action hiding, and action re-
naming. It also features a notion of automaton creation, and a notion of trace inclusion
from one dynamic system to another, which can be used to prove that one system imple-
ments the other. Our model is hierarchical: a dynamically changing system of interacting
automata is itself modeled as a single automaton that is “one level higher.” This can
be repeated, so that an automaton that represents such a dynamic system can itself be
created and destroyed. We can thus model the addition and removal of entire subsystems
with a single action.

We establish fundamental compositionality results for DIOA: if one component is
replaced by another whose traces are a subset of the former, then the set of traces of
the system as a whole can only be reduced, and not increased, i.e., no new behaviors
are added. That is, parallel composition, action hiding, and action renaming, are all
monotonic with respect to trace inclusion. We also show that, under certain technical
conditions, automaton creation is monotonic with respect to trace inclusion: if a system
creates automaton Ai instead of (previously) creating automaton A′

i, and the traces of
Ai are a subset of the traces of A′

i, then the set of traces of the overall system is possibly
reduced, but not increased. Our trace inclusion results imply that trace equivalence is
a congruence relation with respect to parallel composition, action hiding, and action
renaming.

Our trace inclusion results enable a design and refinement methodology based solely
on the notion of externally visible behavior, and which is therefore independent of specific
methods of establishing trace inclusion. It permits the refinement of components and
subsystems in isolation from the entire system, and provides more flexibility in refine-
ment than a methodology which is, for example, based on the monotonicity of forward
simulation with respect to parallel composition. In the latter, every automaton must be
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refined using forward simulation, whereas in our framework different automata can be
refined using different methods.

The DIOA model was defined to support the analysis of mobile agent systems , in a
joint project with researchers at Nippon Telegraph and Telephone. It can also be used for
other forms of dynamic systems, such as systems described by means of object-oriented
programs, and systems containing services with changing access permissions.

Keywords: dynamic systems, formal methods, semantics, automata, process creation,
mobility

1. Introduction

Many modern distributed systems are dynamic: they involve changing sets of compo-
nents, which are created and destroyed as computation proceeds, and changing capabili-
ties for existing components. For example, programs written in object-oriented languages
such as Java involve objects that create new objects as needed, and create new references
to existing objects. Mobile agent systems involve agents that create and destroy other
agents, travel to different network locations, and transfer communication capabilities.

To describe and analyze such distributed systems rigorously, one needs an appropri-
ate mathematical foundation : a state-machine-based framework that allows modeling of
individual components and their interactions and changes. The framework should admit
standard modeling methods such as parallel composition and levels of abstraction, and
standard proof methods such as invariants and simulation relations. As dynamic sys-
tems are even more complex than static distributed systems, the developmentof practical
techniques for specification and reasoning is imperative. For static distributed systems
and concurrent programs, compositional reasoning is proposed as a means of reducing
the proof burden: reason about small components and subsystems as much as possible,
and about the large global system as little as possible. For dynamic systems, composi-
tional reasoning is a priori necessary, since the environment in which dynamic software
components (e.g., software agents) operate is continuously changing. For example, given
a software agent B , suppose we then refine B to generate a new agent A, and we prove
that A’s externally visible behaviors are a subset of B ’s. We would like to then conclude
that replacing B by A, within any environment does not introduce new, and possibly
erroneous, behaviors.

One issue that arises in systems where components can be created dynamically is
that of clones. Suppose that a particular component is created twice, in succession. In
general, this can result in the creation of two (or more) indistinguishable copies of the
component, known as clones. We make the fundamental assumption in our model that
this situation does not arise: components can always be distinguished, for example, by
a logical timestamp at the time of creation. This absence of clones assumption does not
preclude reasoning about situations in which an automaton A1 cannot be distinguished
from another automaton A2 by the other automata in the system. This could occur, for
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example, due to a malicious host which “replicates” agents that visit it. We distinguish
between such replicas at the meta-theoretic level by assigning unique identifiers to each.
These identifiers are not available to the other automata in the system, which remain
unable to tell A1 and A2 apart, for example in the sense of the “knowledge” [16] about
A1 and A2 which the other automata possess.

Static mathematical models like I/O automata [24] could be used to model dynamic
systems, with the addition of some extra structure (special Boolean flags) for modeling
dynamic aspects. For example, in [22], dynamically-created transactions were modeled
as if they existed all along, but were “awakened” upon execution of special create ac-
tions. However, dynamic behavior has by now become so prevalent that it deserves to
be modeled directly. The main challenge is to identify a small, simple set of constructs
that can be used as a basis for describing most interesting dynamic systems.

In this paper, we present our proposal for such a model: the Dynamic I/O Automaton
(DIOA) model . Our basic idea is to extend I/O automata with the ability to change
their signatures dynamically, and to create other I/O automata. We then combine such
extended automata into global configurations . Our model provides:

1. parallel composition, action hiding, and action renaming operators;
2. the ability to dynamically change the signature of an automaton; that is, the set

of actions in which the automaton can participate;
3. the ability to create and destroy automata dynamically, as computation proceeds;

and
4. a notion of externally visible behavior based on sets of traces.

Our notion of externally visible behavior provides a foundation for abstraction, and
a notion of behavioral subtyping by means of trace inclusion. Dynamically changing
signatures allow us to model mobility, by enforcing the constraint that only automata at
the same location may synchronize on common actions. This capability is not present
in a static model with extra structure (e.g., boolean flags). Modeling a mobile agent
in a static setting would be difficult at best, and would result in a contrived and over-
complicated model (how would you simulate location and signature change?) that would
lose the benefits of simple and direct representation that our model affords.

Our model is hierarchical: a dynamically changing system of interacting automata is
itself modeled as a single automaton that is “one level higher.” This can be repeated,
so that an automaton that represents such a dynamic system can itself be created and
destroyed. This allows us to model the addition and removal of entire subsystems with a
single action. This would also be quite difficult to represent naturally in a static model.

As in I/O automata [24, 25], there are three kinds of actions: input, output, and
internal. A trace of an execution results by removing all internal actions, replacing each
state by its external signature (i.e., the input and output actions), and finally replacing
blocks of identical external signatures by a single representative. We use the set of traces
of an automaton as our notion of external behavior. We show that parallel composition
is monotonic with respect to trace inclusion: if we have two systems A = A1 ‖ · · · ‖
Ai ‖ · · · ‖ An and A′ = A1 ‖ · · · ‖ A′

i ‖ · · · ‖ An consisting of n automata, executing in
parallel, then if the traces of Ai are a subset of the traces of A′

i (which it “replaces”),
then the traces of A are a subset of the traces of A′. We also show that action hiding
(convert output actions to internal actions) and action renaming (change action names
using an injective map) are monotonic with respect to trace inclusion, and, finally, we
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show that, if we have a system X in which an automaton A is created, and a system
Y in which an automaton B is created “instead of A”, and if the traces of A are a
subset of the traces of B , then the traces of X will be a subset of the traces of Y ,
but only under certain conditions. Specifically, systems X and Y must create A and
B , respectively, in “corresponding” states. A state of X and a state of Y correspond
iff they are the last states of finite executions of X and Y which have the same trace.
Otherwise, monotonicity of trace inclusion can be violated by having the system X
create the replacement A in more contexts than those in which Y creates B , resulting
in X possessing some traces which are not traces of Y . This phenomenon appears to
be inherent in situations where the creation of new automata can depend upon global
conditions (as in our model) and can be independent of the externally visible behavior
(trace). Our monotonicity results imply that trace equivalence is a congruence with
respect to parallel composition, action hiding, and action renaming.

Our results enable a refinement methodology for dynamic systems that is independent
of specific methods of establishing trace inclusion. Different automata in the system can
be refined using different methods, e.g., different simulation relations such as forward
simulations or backward simulations, or by using methods not based on simulation re-
lations. This provides more flexibility in refinement than a methodology which, for ex-
ample, shows that forward simulation is monotonic with respect to parallel composition,
since in the latter every automaton must be refined using forward simulation.

We defined the DIOA model initially to support the analysis of mobile agent systems ,
in a joint project with researchers at Nippon Telephone and Telegraph. Creation and
destruction of agents are modeled directly within the DIOA model. Other important
agent concepts such as changing locations and capabilities are described in terms of
changing signatures, using additional structure.

This paper is organized as follows. Section 2 presents signature I/O automata (SIOA),
which are I/O automata that also have the ability to change their signature, and also
defines parallel composition, action hiding, and action renaming operators for them.
Section 3 shows that parallel composition of SIOA is monotonic with respect to trace
inclusion. Section 4 establishes that action hiding and action renaming are monotonic
with respect to trace inclusion. It also shows that trace equivalence is a congruence
with respect to parallel composition, action hiding, and action renaming. Section 5
presents configuration automata (CA), which have the ability to dynamicallycreate SIOA
as execution proceeds. Section 5 also extends the parallel composition, action hiding,
and action renaming operators to configuration automata, and shows that configuration
automata inherit the trace monotonicity results of SIOA. Section 6 shows that SIOA
creation is monotonic with respect to trace inclusion, under certain technical conditions.
Section 7 discusses how mobility and locations can be modeled in DIOA. Section 8
presents an example: an agent whose purpose is to traverse a set of databases in search
of a satisfactory airline flight, and to purchase such a flight if it findsit. Section 9 discusses
related work. Section 10 discusses further research and presents our conclusions.

2. Signature I/O Automata

We introduce signature input-output automata (SIOA). We assume the existence of
a set Autids of unique SIOA identifiers, an underlying universal set Auts of SIOA, and
a mapping aut : Autids �→ Auts. aut(A) is the SIOA with identifier A. We use “the
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automaton A” to mean “the SIOA with identifier A”. We use the letters A,B , possibly
subscripted or primed, for SIOA identifiers.

Theexecutable actions of an SIOA A are drawn from a signature sig(A)(s) = 〈in(A)(s),
out(A)(s), int(A)(s)〉, called the state signature, which is a function of the current state
s. in(A)(s), out(A)(s), int(A)(s) are pairwise disjoint sets of input, output, and internal
actions, respectively. We define ext (A)(s), the external signature of A in state s, to be
ext(A)(s) = 〈in(A)(s), out (A)(s)〉.

For any signature component, generally, the ̂ operator yields the union of sets of
actions within the signature, e.g., ŝig(A)(s) = in(A)(s) ∪ out(A)(s) ∪ int(A)(s). Also
defineacts(A) =

⋃
s∈states(A) ŝig(A)(s), that is acts(A) is the “universal” set of all actions

that A could possibly execute, in any state.

Definition 1 (Signature input-output automaton, SIOA). An SIOA aut (A) con-
sists of the fol lowing components

1. A set states(A) of states.
2. A nonempty set start(A) ⊆ states(A) of start states.
3. A signature mapping sig(A) where for each s ∈ states(A), sig(A)(s) = 〈in (A)(s), out (A)(s), int (A)(s)〉,

where in (A)(s), out (A)(s), int(A)(s) are sets of actions.
4. A transition relation steps(A) ⊆ states(A) × acts(A) × states(A)

and satisfies the fol lowing constraints on those components:

1. ∀(s, a, s′ ) ∈ steps(A) : a ∈ ŝig(A)(s).
2. ∀s ∈ states(A) : ∀a ∈ in(A)(s),∃s′ : (s, a, s′ ) ∈ steps(A).
3. ∀s ∈ states(A) : in(A)(s) ∩ out(A)(s) = in(A)(s) ∩ int(A)(s) = out(A)(s) ∩

int(A)(s) = ∅.
Constraint 1 requires that any executed action be in the signature of the initial state

of the transition. Constraint 2 extends the input enabling requirement of I/O automata
to SIOA. Constraint 3 requires that in any state, an action cannot be both an input and
an output, etc. However, the same action can be an input in one state and an output
in another. This is in contrast to ordinary I/O automata, where the signature of an
automaton is fixed once and for all, and cannot vary with the state. Thus, an action is
either always an input, always an output, or always an internal.

If (s, a, s′ ) ∈ steps(A), we also write s
a−→A s′ . For the sake of brevity, we write

states(A) instead of states(aut(A)), i.e., the components of an automaton are identified
by applying the appropriate selector function to the automaton identifier, rather than
the automaton itself.

Definition 2 (Execution, trace of SIOA). An execution fragment α of an SIOA A
is a nonempty (finite or infinite) sequence s0a1s1a2 . . . of alternating states and actions
such that (si−1, ai , si) ∈ steps(A) for each triple (si−1 , ai, si) occurring in α. Also, α
ends in a state if it is finite. An execution of A is an execution fragment of A whose
first state is in start(A). execs (A) denotes the set of executions of SIOA A.

Given an execution fragment α = s0a1s1a2 . . . of A, the trace of α in A (denoted
traceA(α)) is the sequence that results from

1. remove al l ai such that ai �∈ êxt (A)(si−1), i.e., ai is an internal action of A in
state si−1, and then
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2. replace each si by its external signature ext(A)(si ), and then
3. replace each maximal block ext (A)(si), . . . , ext (A)(si+k) such that

(∀j : 0 ≤ j ≤ k : ext (A)(si+j ) = ext (A)(si)) by ext(A)(si ), i.e., replace each
maximal block of identical external signatures by a single representative. (Note:
also applies to an infinite suffix of identical signatures, i.e., k = ω.)

Thus, a trace is a sequence of external actions and external signatures that starts with
an external signature. Also, if the trace is finite, then it ends with an external signature.
When the automaton A is understood from context, we write simply trace (α). We
need to indicate the automaton, since it is possible for two automata to have the same
executions, but difference traces, e.g., when one results from the other by action hiding
(see Section 2.2 below).

Traces are our notion of externally visible behavior. A trace β of an execution α
exposes the external actions along α, and the external signatures of states along α,
except that repeated identical external signatures along α do not show up in β . Thus,
the external signature of the first state of α, and then all subsequent changes to the
external signature, are made visible in β . This includes signature changes caused by
internal actions, i.e., these signature changes are also made visible. traces(A), the set of
traces of an SIOA A, is the set {β | ∃α ∈ execs (A) : β = trace(α)}.

Notation.. We write s
α−→A s′ iff there exists an execution fragment α of A starting

in s and ending in s′. If a state s lies along some execution, then we say that s is
reachable. Otherwise, s is unreachable. The length |α| of a finite execution fragment α
is the number of transitions along α. The length of an infinite execution fragment is
infinite (ω). If |α| = 0, then α consists of a single state. When we write, for example,
0 ≤ i ≤ |α|, it is understood that when α is infinite, that i = |α| does not arise, i.e.,
we consider only finite indices for states and actions along an execution. If execution
fragment α = s0a1s1a2 . . ., then for 0 ≤ i ≤ |α|, define α|i = s0a1s1a2 . . . aisi, and for
0 ≤ i, j ≤ |α| ∧ j < i, define j |α|i = sj aj+1 . . . aisi . We define a concatenation operator
� for execution fragments as follows. If α′ = s0a1s1a2 . . . aisi is a finite execution
fragment and α′′ = t0b1t1b2 . . . is an execution fragment, then α′ � α′′ is defined to
be the execution fragment s0a1s1a2 . . . ait0b1t1b2 . . . only when si = t0. If si �= t0 ,
then α′ � α′′ is undefined. We also use α′ � (a, s) to mean s0a1s1a2 . . . aisias, i.e., we
concatenate a transition to the end of α′. Let α,α′ be execution fragments. Then α is a
proper prefix of α′ iff there exists an execution fragment α′′ such that α = α′ � α′′. We
write α < α′ in this case. If α < α′ or α = α′, then we write α ≤ α′, and say that α is a
prefix of α′. We also overload � and use it for concatenating traces and parts of traces
(i.e., single signatures and actions), in the obvious manner.

Throughout the paper, we will use a superscript, i.e., sj , to mean the j ’th state along
an execution, and we will use a subscript, i.e., si , to mean the state of SIOA Ai (e.g.,
in a parallel composition A = A1 ‖ · · · ‖ Ai ‖ · · · ‖ An). When we require both usages,
we will use s

j
i , which means the Ai-component of the j ’th state along an execution. For

consistency of notation, we also use a superscript, i.e., aj , to mean the j ’th action along
an execution.

Let [k : �] df== {i | k ≤ i ≤ �}. We use (Qi, r(i) : e(i)) to indicate quantification
with quantifier Q, bound variable i, range r(i), and quantified expression e(i). For
compactness, we sometimes give the bound variable and range as a subscript.
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2.1. Paral lel Composition of Signature I/O Automata
The operation of composing a finite number n of SIOA together gives the technical

definition of the idea of n SIOA executing concurrently. As with ordinary I/O automata,
we require that the signatures of the SIOA be compatible, in the usual sense that there
are no common outputs, and no internal action of one automaton is an action of another.

Definition 3 (Compatible signatures). Let S be a set of signatures. Then S is com-
patible iff, for al l sig ∈ S, sig′ ∈ S, where sig = 〈in, out, int〉, sig′ = 〈in′ , out′, int′〉 and
sig �= sig′, we have:

1. (in ∪ out ∪ int) ∩ int′ = ∅, and
2. out ∩ out′ = ∅.

Since the signatures of SIOA vary with the state, we require compatibility for all
possible combinations of states of the automata being composed. Our definition is “con-
servative” in that it requires compatibility for all combinations of states, not just those
that are reachable in the execution of the composed automaton. This results in signifi-
cantly simpler and cleaner definitions, and does not detract from the applicability of the
theory.

Definition 4 (Compatible SIOA). Let A1 , . . . , An, be SIOA. A1 , . . . , An are compat-
ible if and only if for every 〈s1 , . . . , sn〉 ∈ states(A1)×· · ·×states(An ), {sig(A1)(s1), . . . , sig(An)(sn )}
is a compatible set of signatures.

Definition 5 (Composition of Signatures). Let Σ = (in, out, int) and Σ′ = (in′, out′, int′)
be compatible signatures. Then we define their composition Σ × Σ′ = (in ∪ in′ − (out ∪
out′), out∪ out′, int ∪ int′).

Signature composition is clearly commutative and associative. We therefore use
∏

for the
n-ary version of×. As with I/O automata, SIOA synchronize on same-named actions. To
devise a theory that accommodates the hierarchical construction of systems, we ensure
that the composition of n SIOA is itself an SIOA.

Definition 6 (Composition of SIOA). Let A1 , . . . , An, be compatible SIOA. Then
A = A1 ‖ · · · ‖ An is the state-machine consisting of the fol lowing components:

1. A set of states states(A) = states(A1) × · · · × states(An).
2. A set of start states start(A) = start(A1)× · · · × start(An ).
3. A signature mapping sig(A) as fol lows. For each s = 〈s1 , . . . , sn〉 ∈ states(A),

sig(A)(s) = sig(A1)(s1 )× · · · × sig(An)(sn ).
4. A transition relation steps(A) ⊆ states(A) × acts(A) × states(A) which is the set

of al l (〈s1 , . . . , sn〉, a, 〈t1 , . . . , tn〉) such that
(a) a ∈ ŝig(A1)(s1)∪ . . . ∪ ŝig(An)(sn ), and
(b) for al l i ∈ [1 : n] : if a ∈ ŝig(Ai)(si), then (si, a, ti) ∈ steps(Ai), otherwise

si = ti.
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If s = 〈s1 , . . . , sn〉 ∈ states(A), then define s�Ai = si, for i ∈ [1 : n].
Since our goal is to deal with dynamic systems, we must define the composition of

a variable number of SIOA at some point. We do this below in Section 5, where we
deal with creation and destruction of SIOA. Roughly speaking, parallel composition is
intended to model the composition of a finite number of large systems, for example a
local-area network together with all of the attached hosts. Within each system however,
an unbounded number of new components, for example processes, threads, or software
agents, can be created. Thus, at any time, there is a finite but unbounded number of
components in each system, and a finite, fixed, number of “top level” systems.

Proposition 1. Let A1 , . . . , An, be compatible SIOA. Then A = A1 ‖ · · · ‖ An is an
SIOA.

Proof: We must show that A satisfies the constraints of Definition 1. We deal with each
constraint in turn.

Constraint 1: Let (s, a, s′ ) ∈ steps(A). Then, s can be written as 〈s1 , . . . , sn〉. From
Definition 6, clause 4, a ∈ ŝig(A1)(s1) ∪ . . . ∪ ŝig(An )(sn) From Definition 6, clause 3,
ŝig(A1)(s1 )∪ . . . ∪ ŝig(An )(sn ) = ŝig(A)(s). Hence a ∈ ŝig(A)(s).

Constraint 2: Let s ∈ states(A), a ∈ in(A)(s). Then, s can be written as 〈s1 , . . . , sn〉.
From Definition 6, clause 3, a ∈ (

⋃
1≤i≤n in(Ai)(si)) − out (A)(s). Hence, there exists

ϕ ⊆ [1 :n] such that ∀i ∈ ϕ : a ∈ in(Ai )(si ), and ∀i ∈ [1 :n] − ϕ : a �∈ ŝig(Ai )(si ). Since
each Ai satisfies Constraint 2 of Definition 1, we have:

∀i ∈ ϕ : ∃ti : (si , a, ti) ∈ steps(Ai)

By Definition 6, Clause 4,
∃t : (s, a, t) ∈ steps(A), where ∀i ∈ ϕ : t�i = ti, and ∀i ∈ [1 :n]− ϕ : t�i = si.

Hence Constraint 2 is satisfied.

Constraint 3: From Definitions 5 and 6, it follows that the sets of input and output
actions of A in any state are disjoint. Each Ai is an SIOA and so satisfies Constraint 3
of Definition 1. From this and Definitions 3, 4, 5, and 6, it follows that the set of internal
actions of A in any state has no action in common with either the input actions or the
output actions. Hence A satisfies Constraint 3.

2.2. Action Hiding for Signature I/O Automata
The operation of action hiding allows us to convert output actions into internal ac-

tions, and is useful in specifying the set of actions that are to be visible at the interface
of a system.

Definition 7 (Action hiding for SIOA). Let A be an SIOA and Σ a set of actions.
Then A \ Σ is the state-machine given by:

1. A set of states states(A \ Σ) = states(A).
2. A set of start states start(A \ Σ) = start(A).
3. A signature mapping sig (A) as fol lows. For each s ∈ states(A),

sig(A \ Σ)(s) = 〈in(A \ Σ)(s), out (A \ Σ)(s), int (A \ Σ)(s)〉, where
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(a) out(A \ Σ)(s) = out (A)(s) − Σ,
(b) in(A \ Σ)(s) = in(A)(s), and
(c) int(A \ Σ)(s) = int(A)(s) ∪ (out (A)(s) ∩Σ).

4. A transition relation steps(A \ Σ) = steps(A).

Proposition 2. Let A be an SIOA and Σ a set of actions. Then A \ Σ is an SIOA.

Proof: We must show that A \ Σ satisfies the constraints of Definition 1. We deal with
each constraint in turn.

Constraint 1: From Definition 7, we have, for any s ∈ states(A \ Σ): ŝig(A \ Σ)(s) =
(out (A)(s)−Σ)∪in(A)(s)∪(int(A)(s)∪(out (A)(s)∩Σ)) = ((out (A)(s)−Σ)∪(out (A)(s)∩
Σ)) ∪ in(A)(s) ∪ int(A)(s) = out (A)(s) ∪ in(A)(s) ∪ int(A)(s) = ŝig(A)(s).

Since A is an SIOA, we have ∀(s, a, s′ ) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 7,
steps(A \ Σ) = steps(A). Hence, ∀(s, a, s′ ) ∈ steps(A \ Σ) : a ∈ ŝig(A \ Σ)(s). Thus,
Constraint 1 holds for A \ Σ.

Constraint 2: From Definition 7, states(A \ Σ) = states(A), steps(A \ Σ) = steps(A),
and for all s ∈ states(A \ Σ), in(A \ Σ)(s) = in(A)(s).

Since A is an SIOA, we have Constraint 2 for A:
∀s ∈ states(A),∀a ∈ in(A)(s),∃s′ : (s, a, s′ ) ∈ steps(A).

Hence, we also have
∀s ∈ states(A \ Σ),∀a ∈ in(A \ Σ)(s),∃s′ : (s, a, s′ ) ∈ steps(A \ Σ).

Hence Constraint 2 holds for A \ Σ.

Constraint 3: A is an SIOA and so satisfies Constraint 3 of Definition 1. Definition 7
states that, in every state s, some actions are removed from the output action set and
added to the internal action set. Hence the sets of input, output, and internal actions
remain disjoint. So A \ Σ also satisfies Constraint 3.

2.3. Action Renaming for Signature I/O Automata
The operation of action renaming allows us to rename actions uniformly, that is, all

occurrences of an action name are replaced by another action name, and the mapping is
also one-to-one, so that different actions are not identified (mapped to the same action).
This is useful in defining “parameterized” systems, in which there are many instances of
a “generic” component, all of which have similar functionality. Examples of this include
the servers in a client-server system, the components of a distributed database system,
and hosts in a network.

Definition 8 (Action renaming for SIOA). Let A be an SIOA and let ρ be an in-
jective mapping from actions to actions whose domain includes acts(A). Then ρ(A) is
the state machine given by:

1. start(ρ(A)) = start(A).
2. states(ρ(A)) = states(A).
3. for each s ∈ states(A), sig(ρ(A))(s) = 〈in(ρ(A) )(s), out (ρ(A) )(s), int(ρ(A))(s)〉,

where
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(a) out(ρ(A))(s) = ρ(out (A)(s)) ,
(b) in(ρ(A) )(s) = ρ(in(A)(s)), and
(c) int(ρ(A))(s) = ρ(int(A)(s)) .

4. A transition relation steps(ρ(A) ) = {(s, ρ(a) , t) | (s, a, t) ∈ steps(A)}.
Here we write ρ(Σ) = {ρ(a) | a ∈ Σ}, i.e., we extend ρ to sets of actions element-wise.

Proposition 3. Let A be an SIOA and let ρ be an injective mapping from actions to
actions whose domain includes acts(A). Then, ρ(A) is an SIOA.

Proof: We must show that ρ(A) satisfies the constraints of Definition 1. We deal with
each constraint in turn.

Constraint 1: From Definition 8, we have, for any s ∈ states(ρ(A) ): ŝig(ρ(A) )(s) =
out(ρ(A) )(s) ∪ in(ρ(A))(s)∪ int(ρ(A) )(s) = ρ(out (A)(s)) ∪ ρ(in(A)(s))∪ ρ(int(A)(s)) =
ρ(ŝig(A)(s)) .

Since A is an SIOA, we have ∀(s, a, s′ ) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 8,
steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}

Hence, if (s, ρ(a), t) is an arbitrary element of steps(ρ(A)), then (s, a, t) ∈ steps(A),
and so a ∈ ŝig(A)(s). Hence ρ(a) ∈ ρ(ŝig(A)(s)). Since ρ(ŝig(A)(s)) = ŝig(ρ(A))(s), we
conclude ρ(a) ∈ ŝig(ρ(A))(s). Hence, ∀(s, ρ(a) , s′) ∈ steps(ρ(A)) : ρ(a) ∈ ŝig(ρ(A) )(s).
Thus, Constraint 1 holds for ρ(A).

Constraint 2: From Definition 8, states(ρ(A)) = states(A), steps(ρ(A) ) = {(s, ρ(a) , t) | (s, a, t) ∈
steps(A)}, and for all s ∈ states(ρ(A)), in(ρ(A))(s) = ρ(in (A)(s)).

Let s be any state of ρ(A) , and let b ∈ in(ρ(A) )(s). Then b = ρ(a) for some
a ∈ in(A)(s). We have (s, a, t) ∈ steps(A) for some t, by Constraint 2 for A. Hence
(s, ρ(a), t) ∈ steps(ρ(A)). Hence (s, b, t) ∈ steps(ρ(A) ). Hence Constraint 2 holds for
ρ(A).

Constraint 3: A is an SIOA and so satisfies Constraint 3 of Definition 1. From this and
Definition 8 and the requirement that ρ be injective, it is easy to see that ρ(A) also
satisfies Constraint 3.

2.4. Example: mobile phones
We illustrate SIOA using the mobile phone example from Milner [27, chapter 8].

There are four SIOA:

1. Car : a car containing a mobile phone
2. Trans1 ,Trans2: two transmitter stations
3. Control : a control station

Control, Trans1 , and Car are given in Figures 1, 2, and 3 respectively. Trans2 results by
applying renaming to Trans1 , and changing the initial state appropriately, since initially
Car is communicating with Trans1.

We use the usual I/O automata “precondition effect” pseudocode [25], augmented by
additional constructs to describe signature changes and SIOA creation, as follows. We
use “state variables” in , out , and int to denote the current sets of input, output, and
internal actions in the SIOA state signature. The Signature section of the pseudocode
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Control

Signature
Input:

∅
constant

Output:
lose1, gain1, lose2, gain2
constant

Internal:
∅
constant

State
assigned ∈ {1, 2}, transmitter that Car is assigned to, initially 1

transferring ∈ {true, false}, true iff in the middle of a transfer of Car from one transmitter to another,
initially false

Actions
Output lose 1
Pre: assigned = 1 ∧ ¬transferring
Eff: assigned ← 2;

transferring ← true

Output gain2
Pre: assigned = 1 ∧ transferring
Eff: transferring ← false

Output lose2
Pre: assigned = 2 ∧ ¬transferring
Eff: assigned ← 1;

transferring ← true

Output gain1
Pre: assigned = 1 ∧ transferring
Eff: transferring ← false

Figure 1: The Control SIOA

for each SIOA describes acts(A), i.e., the “universal” set of all actions that A could
possibly execute, in any state. We partition this description into the input, output,
and internal components of the signature. We indicate the signature components in
every start state using an “initially” keyword at the end of the “Input,” “Output,” and
“Internal” sections, followed by the actions present in the signature of every start state.
This convention restricts all start states to have the same signature. We emphasize
that this is a restriction of the pseudocode only, and not of the underlying SIOA model.
When a signature component does not change, we replace the keyword “initially” by the
keyword “constant” as a convenient reminder of this.

At any time, Car is connected to either Trans1 or Trans2 . Normal conversation is
conducted using a talk action. Under direction of Control (via lose and gain actions)
the transmitters transfer Car between them, using switch actions. Upon receiving a lose
input from Control, a transmitter goes on to send a switch to Car , and also removes the
talk and switch actions from its signature. Upon receiving a switch from a transmitter,
Car will remove the talk and switch actions for that transmitter from its signature, and
add the talk and switch actions for the other transmitter to its signature.

12



Trans1

Signature
Input:

lose1, gain1, talk1 initially: lose1, gain1, talk1

Output:

switch1 initially: switch1

Internal:
∅
constant

State
transferring ∈ {true, false}, true iff in the middle of a transfer of Car to the other controller

active ∈ {true, false}, true iff this transmitter is currently handling the Car , initially false

Actions
Input lose1
Eff: if active then

transferring ← true;
active ← false

Input gain1
Eff: in ← in ∪ {talk1};

out ← out ∪ {switch1};
active ← true

Output switch1
Pre: transferring
Eff: transferring ← false;

in ← in − {talk1};
out ← out − {switch1}

Input talk1
Eff: skip

Figure 2: The Trans1 SIOA

Car

Signature
Input:

switch1, switch2 initially: switch1

Output:
talk1, talk2 initially: talk1

Internal:

∅
constant

State
transmitter ∈ {1, 2}, the identity of the transmitter that Car is currently connected to

Actions
Output talk1
Pre: transmitter = 1
Eff: skip

Input switch1
Eff: in ← in − {switch1} ∪ {switch2};

out ← out − {talk1} ∪ {talk2};

Output talk2
Pre: transmitter = 2
Eff: skip

Input switch2
Eff: in ← in − {switch2} ∪ {switch1};

out ← out − {talk2} ∪ {talk1};

Figure 3: The Car SIOA
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3. Compositional Reasoning for Signature I/O Automata

To confirm that our model provides a reasonable notion of concurrent composition,
which has expected properties, and to enable compositional reasoning, we establish exe-
cution “projection” and “pasting” results for compositions. We deal with both execution
projection/pasting and with trace pasting. The main goal is to establish that paral lel
composition is monotonic with respect to trace inclusion : if an SIOA in a parallel compo-
sition is replaced by one with less traces, then the overall composition cannot have more
traces than before, i.e., no new behaviors are added.

3.1. Execution Projection and Pasting for SIOA
Given a parallel composition A = A1 ‖ · · · ‖ An of n SIOA, we define the projection

of an alternating sequence of states and actions of A onto one of the Ai, i ∈ [1 : n], in
the usual way: the state components for all SIOA other than Ai are removed, and so are
all actions in which Ai does not participate.

Definition 9 (Execution projection for SIOA). Let A = A1 ‖ · · · ‖ An be an
SIOA. Let α be a sequence s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj

1 , . . . , sj
n〉 ∈

states(A) and ∀j > 0, aj ∈ ŝig(A)(sj−1). Then, for i ∈ [1 : n], define α�Ai to be the
sequence resulting from:

1. replacing each sj by its i’th component sj
i , and then

2. removing al l ajs
j
i such that aj �∈ ŝig(Ai)(s

j−1
i ).

s
j
i is the component of sj which gives the state of Ai. sig(Ai)(s

j−1
i ) is the signature

of Ai when in state s
j−1
i . Thus, if aj �∈ ŝig(Ai)(s

j−1
i ), then the action aj does not occur

in the signature sig(Ai )(s
j−1
i ), and Ai does not participate in the execution of aj . In

this case, aj and the following state are removed from the projection, since the idea
behind execution projection is to retain only the state of Ai, and only the actions which
Ai participates in. Note that we do not require α to actually be an execution of A,
since this is unnecessary for the definition, and also facilitates the statement of execution
pasting below.

Our execution projection result states that the projection of an execution of a com-
posed SIOA A = A1 ‖ · · · ‖ An onto a component Ai, is an execution of Ai.

Theorem 4 (Execution projection for SIOA). Let A = A1 ‖ · · · ‖ An be an SIOA,
and let i ∈ [1 :n]. If α ∈ execs (A) then α�Ai ∈ execs(Ai ) for al l i ∈ [1 :n].

Proof: Let α = u0a1u1a2u2 . . . ∈ execs (A), and let s0 = u0�Ai. Then, by Definition 9,
s0 ∈ start(Ai ) and α�Ai = s0b1s1b2s2 . . . for some b1s1b2s2 . . ., where sj ∈ states(Ai) for
j ≥ 1.

Consider an arbitrary step (sj−1, bj , sj) of α�Ai. Since bjsj was not removed in
Clause 2 of Definition 9, we have

(1) sj = uk�Ai for some k > 0 and such that ak ∈ ŝig(Ai )(uk−1�Ai)
(2) bj = ak, and
(3) sj−1 = u��Ai for the smallest � such that

� < k and ∀m : � + 1 ≤ m < k : am �∈ ŝig(Ai )(um−1�Ai)
14



From (3) and Definitions 6 and 9, u��Ai = uk−1�Ai. Hence sj−1 = uk−1�Ai. From

uk−1 ak−→A uk, ak ∈ ŝig(Ai )(uk−1�Ai), and Definition 6, we have uk−1�Ai
ak−→Ai uk�Ai.

Hence sj−1 bj−→Ai sj from sj−1 = uk−1�Ai established above and (1), (2). Now sj−1, sj ∈
states(Ai), and so (sj−1, bj , sj) ∈ steps(Ai).

Since (sj−1, bj , sj ) was arbitrarily chosen, we conclude that every step of α�Ai is a
step of Ai. Since the first state of α�Ai is s0 , and s0 ∈ start(Ai), we have established
that α�Ai is an execution of Ai.

Execution pasting is, roughly, an “inverse” of projection. If α is an alternating se-
quence of states and actions of a composed SIOA A = A1 ‖ · · · ‖ An such that (1) the
projection of α onto each Ai is an actual execution of Ai, and (2) every action of α not
involving Ai does not change the state of Ai, then α will be an actual execution of A.
Condition (1) is the “inverse” of execution projection. Condition (2) is a consistency
condition which requires that Ai cannot “spuriously” change its state when an action
not in the current signature of Ai is executed.

Theorem 5 (Execution pasting for SIOA). Let A = A1 ‖ · · · ‖ An be an SIOA. Let
α be a sequence s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj

1 , . . . , sj
n〉 ∈ states(A)

and ∀j > 0, aj ∈ ŝig(A)(sj−1). Furthermore, suppose that, for al l i ∈ [1 :n]:

1. α�Ai ∈ execs (Ai), and
2. ∀j > 0 : if aj �∈ ŝig(Ai)(sj−1

i ) then sj−1
i = sj

i .

Then, α ∈ execs (A).

Proof: We shall establish, by induction on j :
∀j ≥ 0 : α|j ∈ execs(A). (*)

From which we can conclude s0 ∈ start(A) and ∀j ≥ 0 : (sj−1, aj , sj) ∈ steps(A).
Definition 2 then implies the desired conclusion, α ∈ execs(A).

Base case: j = 0. So α|j = s0 . Now s0 = 〈s0
1 , . . . , s0

n〉 by assumption. By Definition 9,
s0
i is the first state of α�Ai, for 1 ≤ i ≤ n. By clause 1, α�Ai ∈ execs (Ai ), and so

s0
i ∈ start(Ai ), for 1 ≤ i ≤ n. Thus, by Definition 6, s0 ∈ start(A).

Induction step: j > 0. Assume the induction hypothesis:
α|j−1 ∈ execs (A) (ind. hyp.)

and establish α|j ∈ execs(A). By Definition 2, it is clearly sufficient to establish

sj−1 a
j−→A sj .

By assumption, aj ∈ ŝig(A)(sj−1). Let ϕ ⊆ [1 : n] be the unique set such that
∀i ∈ ϕ : aj ∈ ŝig(Ai)(sj−1�Ai) and ∀i ∈ [1 : n] − ϕ : aj �∈ ŝig(Ai )(sj−1�Ai). Thus, by
Definition 9:

∀i ∈ ϕ : (sj−1�Ai, a
j , sj�Ai) lies along α�Ai.

Since ∀i ∈ [1 :n] : α�Ai ∈ execs (Ai) and Ai is an SIOA,

∀i ∈ ϕ : sj−1�Ai
aj−→Ai sj�Ai.

Also, by clause 2,
15



∀i ∈ [1 :n]− ϕ : sj−1�Ai = sj�Ai.

By Definition 6

〈sj−1�A1 , . . . , sj−1�An〉 aj−→A 〈sj �A1 , . . . , sj�An〉
Hence

sj−1 aj−→A sj .

From the induction hypothesis (α|j−1 ∈ execs(A)), sj−1 aj−→A sj , and Definition 2, we
have α|j ∈ execs (A).

3.2. Trace Pasting for SIOA
We deal only with trace pasting, and not trace projection. Trace projection is not

well-defined since a trace of A = A1 ‖ · · · ‖ An does not contain information about
the Ai, i ∈ [1 : n]. Since the external signatures of each Ai vary, there is no way
of determining, from a trace β , which Ai participate in each action along β . Thus,
the projection of β onto some Ai cannot be recovered from β itself, but only from an
execution α whose trace is β . Since there are in general, several such executions, the
projection of β onto Ai can be different, depending on which execution we select. Hence,
the projection of β onto Ai is not well-defined as a single trace. It could be defined as
the set β�Ai = {βi | (∃α ∈ execs (A) : trace (α) = β ∧ βi = trace (α�Ai))}, i.e., all traces
of Ai that can be generated by taking all executions α whose trace is β , projecting those
executions onto Ai, and then taking the trace. We do not pursue this avenue here.

We find it sufficient to deal only with trace pasting, since we are able to establish
our main result, trace substitutivity, which states that replacing an SIOA in a parallel
composition by one whose traces are a subset of the former’s, results in a parallel com-
position whose traces are a subset of the original parallel composition’s. In other words,
trace-containment is monotonic with respect to parallel composition.

Let Σ = (in, out, int) and Σ′ = (in′ , out′, int′) be signatures. We define Σ̂ = in ∪
out∪ int, and Σ ⊆ Σ′ to mean in ⊆ in′ and out ⊆ out′ and int ⊆ int′.

Definition 10 (Pretrace). A pretrace γ = γ(1)γ(2) . . . is a nonempty sequence such
that

1. For al l i ≥ 1, γ(i) is an external signature or an action
2. γ(1) is an external signature
3. No two successive elements of γ are actions
4. For al l i > 1, if γ(i) is an action a, then γ(i−1) is an external signature containing

a (a∈ γ̂(i − 1))
5. If γ is finite, then it ends in an external signature

The notion of a pretrace is similar to that of a trace, but it permits “stuttering”: the
(possibly infinite) repetition of the same external signature. This simplifies the subse-
quent proofs, since it allows us to “stretch” and “compress” pretraces corresponding to
different SIOA so that they “line up” nicely. Our definition of a pretrace does not depend
on a particular SIOA, i.e, we have not defined “a pretrace of an SIOA A,” but rather
just a pretrace in general. We define “pretrace of an SIOA A” below.
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Definition 11 (Reduction of pretrace to a trace). Let γ be a pretrace. Then r(γ)
is the result of replacing al l maximal blocks of identical external signatures in γ by a
single representative. In particular, if γ has an infinite suffix consisting of repetitions of
an external signature, then that is replaced by a single representative.

If γ = r(γ ), then we say that γ is a trace. This defines a notion of trace in general,
as opposed to “trace of an SIOA A.” We now define stuttering-equivalence (≈) for
pre-traces. Essentially, if one pretrace can be obtained from another by adding and/or
removing repeated external signatures, then they are stuttering equivalent.

Definition 12 (≈). Let γ, γ′ be pretraces. Then γ ≈ γ′ iff r(γ) = r(γ′ ).

It is obvious that≈ is an equivalence relation. Note that every trace is also a pretrace, but
not necessarily vice-versa, since repeated external signatures (stuttering) are disallowed
in traces. The length |γ| of a finite pretrace γ is the number of occurrences of external
signatures and actions in γ. The length of an infinite pretrace is ω. Let pretrace γ =
γ(1)γ(2) . . .. Then for 1 ≤ i ≤ |γ|, define γ|i = γ(1)γ(2) . . . γ(i). We define concatenation
for pretraces as simply sequence concatenation, and will usually use juxtaposition to
denote pretrace concatenation, but will sometimes use the � operator for clarity. The
concatenation of two pretraces is always a pretrace (note that this is not true of traces,
since concatenating two traces can result in a repeated external signature). We use <,≤
for proper prefix, prefix, respectively, of a pretrace: γ < γ′ iff there exists a pretrace γ′′

such that γ = γ′γ′′, and γ ≤ γ′ iff γ = γ′ or γ < γ′. If γ′ is a pretrace and γ < γ′, then γ
satisfies clauses 1–4 of Definition 10, but may not satisfy clause 5. For a finite sequence
γ that does satisfy clauses 1–4 of Definition 10, define the predicate ispretrace (γ) df==
(last(γ) is an external signature), where last(γ) is the last element of γ.

We now define a predicate zips(γ, γ1 , . . . , γn) which takes n + 1 pretraces and holds
when γ is a possible result of “zipping” up γ1 , . . . , γn , as would result when γ1, . . . , γn

are pretraces of compatible SIOA A1 , . . . , An respectively, and γ is the corresponding
pretrace of A = A1 ‖ · · · ‖ An .

Definition 13 (zip of pretraces). Let γ, γ1, . . . , γn be pretraces (n ≥ 1). The predi-
cate zips(γ, γ1 , . . . , γn) holds iff al l the fol lowing hold:

1. |γ| = |γ1 | = · · · = |γn|.
2. For al l i > 1: if γ(i) is an action a, then there exists nonempty ϕi ⊆ [1 : n] such

that
(a) ∀k ∈ ϕi : γk(i) = a, and
(b) ∀� ∈ [1 : n] − ϕi: γ�(i − 1) = γ�(i) = γ�(i + 1), γ�(i) is an external signature

Γ�, and a �∈ Γ̂�.
3. For al l i > 0: if γ(i) is an external signature Γ, then for al l j ∈ [1 : n], γj(i) is an

external signature Γj, and Γ =
∏

j∈[1:n]Γj .
4. For al l i > 0, if γ(i − 1) and γ(i) are both external signatures, then there exists

k ∈ [1 : n] such that ∀� ∈ [1 : n] − k : γ�(i − 1) = γ�(i).

Clause 1 requires that γ, γ1, . . . , γn all have the same length, so that they “line up” nicely.
Clause 2 requires that external actions a appearing in γ are executed by a nonempty
subset of the corresponding SIOA, and that the γj corresponding to automata that do
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not execute a are unchanged in the corresponding positions. Clause 3 requires that an
external signature appearing in γ is the product of the external signatures in the same
position in all the γj , which moreover cannot have an external action at that position.
Clause 4 requires that, whenever there are two consecutive external signatures in γ, that
this corresponds to the execution of an internal action by one particular SIOA k, so that
the γ� for all � �= k are unchanged in the corresponding positions.

Proposition 6. Let γ, γ1, . . . , γn al l be pretraces (n ≥ 1). Suppose, zips(γ, γ1 , . . . , γn).
Then, for al l i such that 1 ≤ i ≤ |γ| and ispretrace (γ|i) (i.e., γ(i) is an external signa-
ture): (1) (∀j ∈ [1 :n] : ispretrace (γj |i)), and (2) zips(γ|i, γ1|i, . . . , γn |i).
Proof: Immediate from Definition 13.

We use the zips predicate on pretraces together with the ≈ relation on pretraces to
define a “zipping” predicate for traces: the trace β is a possible result of “zipping up”
the traces β1, . . . , βn if there exist pretraces γ, γ1 , . . . , γn that are stuttering-equivalent
to β , β1, . . . , βn respectively, and for which the zips predicate holds. The predicate so
defined is named zip. Thus, zips is “zipping with stuttering,” as applied to pretraces,
and zip is “zipping without stuttering,” as applied to traces.

Definition 14 (zip of traces). Let β, β1 , . . . , βn be traces (n ≥ 1). The predicate
zip(β, β1, . . . , βn) holds iff there exist pretraces γ, γ1, . . . , γn such that γ ≈ β, (∀j ∈
[1 : n] : γj ≈ βj), and zips(γ, γ1 , . . . , γn).

Define pretraces (A) = {γ | ∃β ∈ traces(A) : β ≈ γ}. That is, pretraces (A) is the set
of pretraces which are stuttering-equivalent to some trace of A. An equivalent definition
which is sometimes more convenient is pretraces(A) = {γ | ∃α ∈ execs (A) : trace (α) ≈ γ}.
We also define pretraces∗(A) = {γ | γ ∈ pretraces (A) and γ is finite }.

Given γ ∈ pretraces(A), we define texecs (A)(γ ) = {α | α ∈ execs (A) ∧ trace (α) ≈ γ}.
In other words, texecs (A)(γ) is the set of executions (possibly empty) of A whose trace
is stuttering-equivalent to γ. Also, execs∗(A)(γ) = {α | α ∈ execs∗(A) ∧ trace (α) ≈ γ},
i.e., the set of finite executions (possibly empty) of A whose trace is stuttering-equivalent
to γ.

Theorem 7 states that if a set of finite pretraces consisting of one γj ∈ pretraces(Aj )
for each j ∈ [1 : n], can be “zipped up” to generate a finite pretrace γ, then γ is a
pretrace of A1 ‖ · · · ‖ An , and furthermore, any set of executions corresponding to the
γj can be pasted together to generate an execution of A1 ‖ · · · ‖ An corresponding to
γ. Theorem 7 is established by induction on the length of γ, and the explicit use of
executions corresponding to the pretraces γ, γ1 , . . . , γn , is needed to make the induction
go through.

Theorem 7 (Finite-pretrace pasting for SIOA). Let A1, . . . , An be compatible SIOA,
and let A = A1 ‖ · · · ‖ An. Let γ be a finite pretrace. If, for al l j ∈ [1 : n], a finite
pretrace γj ∈ pretraces∗ (Aj) can be chosen so that zips(γ, γ1 , . . . , γn) holds, then

∀α1 ∈ execs∗(A1)(γ1), . . . ,∀αn ∈ execs∗(An)(γn ),
∃α ∈ execs∗(A)(γ) : (∀j ∈ [1 :n] : α�Aj = αj).

Proof: Let γj ∈ pretraces∗(Aj ) for j ∈ [1 : n] be the pretraces given by the antecedent
of the theorem. Also let γ be the finite pretrace such that zips(γ, γ1 , . . . , γn). Hence
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execs∗(Aj)(γj ) �= ∅ for all j ∈ [1 : n]. Fix αj to be an arbitrary element of execs∗(Aj)(γj ),
for all j ∈ [1 : n]. The theorem is established if we prove

∃α ∈ execs∗ (A)(γ) : (∀j ∈ [1 :n] : α�Aj = αj). (*)

The proof is by induction on |γ|, the length of γ. We assume the induction hypothesis
for all prefixes of γ that are pretraces.

Base case: |γ| = 1. Hence γ consists of a single external signature Γ. For the rest of the
base case, let j range over [1 : n]. By zips(γ, γ1 , . . . , γn) and Definition 13, we have that
each γj consists of a single external signature Γj , and Γ =

∏
j∈[1:n] Γj. Since γ1, . . . , γn

contain no actions, α1, . . . , αn must contain only internal actions (if any). Furthermore,
all the states along αj , j ∈ [1 : n], must have the same external signature, namely Γj.

By Definition 6, we can construct an execution α of A by first executing all the
internal actions in α1 (in the sequence in which they occur in α1), and then executing
all the internal actions in α2, etc. until we have executed all the actions of αn , in
sequence. It immediately follows, by Definition 9, that ∀j ∈ [1 : n] : α�Aj = αj . The
external signature of every state alongα is

∏
j∈[1:n] Γj, i.e., Γ, since the external signature

component contributed by each Aj is always Γj . Hence, by Definition 2, trace (α) ≈ Γ.
Thus, trace(α) ≈ γ. We have thus established trace (α) ≈ γ and (

∧
j∈[1:n] α�Aj = αj).

Hence (*) is established.

Induction step: |γ| > 1. There are two cases to consider, according to Definition 13.

Case 1: γ = γ′aΓ, γ′ is a pretrace, a is an action, and Γ is an external signature.
Hence, by Definition 13, we have

∃ϕ : ∅ �= ϕ ∧ ϕ ⊆ [1 : n] ∧
(∀k ∈ ϕ : γk = γ′

kaΓk ∧ a ∈ l̂ast(γ′
k )) ∧

(∀� ∈ [1 : n] −ϕ : γ� = γ′
�Γ�Γ� ∧ Γ� = last(γ′

�) ∧ a �∈ Γ̂�) ∧
zips(γ′, γ′

1 , . . . , γ′
n) ∧

Γ = (
∏

k∈ϕ Γk) × (
∏

�∈[1:n]−ϕ Γ�). (a)

For the rest of this case, let j range over [1 : n], k range over ϕ, and � range over
[1 : n] − ϕ. Figure 4 gives a diagram of the relevant executions, pretraces, and external
signatures for this case. Horizontal solid lines indicate executions and pretraces, and
vertical dashed ones indicate the zips relation. Bullets indicate particular states that are
used in the proof.

In (a), we have that γ′
j ∈ pretraces∗(Aj ) for all j , since γ′

j < γj and γj ∈ pretraces∗(Aj )
for all j , Since we also have γ′ < γ and zips(γ′, γ′

1 , . . . , γ′
n), we can apply the inductive

hypothesis for γ′ to obtain
∀α′

1 ∈ execs∗(A1)(γ′
1), . . . ,∀α′

n ∈ execs∗(An)(γ′
n ) :

∃α′ ∈ execs∗(A)(γ′) : (∀j ∈ [1 :n] : α′�Aj = α′
j) (b)

By assumption, αk ∈ execs∗(Ak )(γk ). Hence, we can find a finite execution α′
k, and finite

execution fragment α′′
k such that αk = α′

k � (sk
a−→Ak tk) � α′′

k, where sk = last(α′
k),

ext(Ak )(tk ) = Γk, and tk = first(α′′
k ). Furthermore, α′

k ∈ execs∗(Ak )(γ′
k ), since αk ∈

execs∗(Ak)(γk ), γk = γ′
kaΓk, and ext (Ak)(tk ) = Γk. Also, α′′

k consists entirely of internal
actions, and trace (α′′

k ) ≈ Γk, i.e., every state along α′′
k has external signature Γk.

By assumption, α� ∈ execs∗(A�)(γ�). For all �, let α′
� = α�, and let s� = t� = last(α′

�).
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Hence α′
� ∈ execs∗(A�)(γ′

�), since γ′
� ≈ γ� (from γ� = γ′

�Γ�Γ� ∧ Γ� = last(γ′
�) in (a)).

Instantiating (b) for these choices of α′
k, α′

�, we obtain, that some α′ exists such that:
(∀j ∈ [1 :n] : α′�Aj = α′

j) ∧
α′ ∈ execs∗(A)(γ′) ∧
(∀k ∈ ϕ : (sk, a, tk ) ∈ steps(Ak) ∧ ext (Ak)(tk ) = Γk). (c)

By α′
� ∈ execs∗(A�)(γ′

�) and s� = last(α′
�), we have ext (A�)(s�) = last(γ′). Hence, by

(a), we have ext (A�)(s� ) = Γ�. Also, by (a), a �∈ Γ̂�. Thus,
(∀� ∈ [1 :n]− ϕ : a �∈ êxt (A�)(s�)∧ ext(A�)(s�) = Γ�). (d)

Also, since A1, . . . , An are compatible SIOA, we have (∀� ∈ [1 :n]− ϕ : a �∈ int(A�)(s� )).
Hence (∀� ∈ [1 :n]−ϕ : a �∈ ŝig(A�)(s� )). Now let s = 〈s1 , . . . , sn〉, and let t = 〈t1 , . . . , tn〉.
By (b) and Definition 9, we have s = last(α′). By (b), (∀� ∈ [1 :n]−ϕ : a �∈ int(A�)(s� )),
and Definition 6, we have (s, a, t) ∈ steps(A). Now let α′′ be a finite execution fragment
of A constructed as follows. Let t be the first state of α′′. Starting from t, execute
in sequence first all the (internal) transitions along αk1 , where k1 is some element of
ϕ, and then all the (internal) transitions along αk2 , where k1 is another element of ϕ,
etc. until all elements of ϕ have been exhausted. Since all the transitions are internal,
Definition 6 shows that α′′ is indeed an execution fragment of A. Furthermore, since
no external signatures change along any of the α′′

k, it follows that the external signature
does not change along α′′, and hence must equal ext (A)(t) at all states along α′′. Hence
trace (α′′) ≈ ext (A)(t). Finally, by its construction, we have α′′�Ak = α′′

k for all k.
Let α = α′ � (s a−→A t) �α′′. By the above, α is well defined, and is an execution of

A.
We now have

ext (A)(t)
= (

∏
k
ext (Ak)(tk )) × (

∏
�
ext(A�)(t�)) definition of t

= (
∏

k Γk) × (
∏

� ext(A� )(t�)) (c)
= (

∏
k Γk) × (

∏
� Γ�) (d)

= Γ (a)

Also,

trace (α)
≈ trace (α′) � a � trace (α′′) definition of α
≈ trace (α′) � a � ext (A)(t) trace (α′′) ≈ ext(A)(t)
≈ trace (α′) � a � Γ ext (A)(t) = Γ established above
≈ γ′aΓ α′ ∈ execs∗(A)(γ′), hence trace (α′) ≈ γ′

≈ γ case condition

For all k ∈ ϕ,

α�Ak

= (α′ �Ak) � (sk
a−→Ak tk) � (α′′�Ak) Definition 9 and definition of α

= α′
k � (sk

a−→Ak tk) � (α′′�Ak) by (c), α′�Ak = α′
k

= α′
k � (sk

a−→Ak tk) � α′′
k by the preceding remarks, α′′�Ak = α′′

k

= αk by definition of α′
k, α′′

k: αk = α′
k � (sk

a−→Ak tk) � α′′
k
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For all � ∈ [1 : n] − ϕ,

α�A�

= α′�A� Definition 9 and definition of α
= α′

� by (c), α′�A� = α′
�

= α� by our choice of α′
�, α� = α′

�

We have just established α ∈ execs∗ (A), α�j = αj for all j ∈ [1 : n], and trace(α) ≈ γ.
Hence (*) is established for case 1.

Case 2: γ = γ′Γ, γ′ is a pretrace, and Γ is an external signature.
Hence, by Definition 13, we have

∃k ∈ [1 : n] :
γk = γ′

kΓk ∧ last(γ′
k) is an external signature ∧

(∀� ∈ [1 :n]− k : γ� = γ′
�Γ� ∧ last(γ′

�) = Γ�) ∧
zips(γ′, γ′

1 , . . . , γ′
n) ∧

Γ = Γk × (
∏

�∈[1:n]−k Γ�). (a)

For the rest of this case, let j range over [1 : n], and � range over [1 : n] − k. In (a), we
have that γ′

j ∈ pretraces∗(Aj ) for all j , since γ′
j < γj and γj ∈ pretraces∗(Aj) for all j .

Since we also have γ′ < γ and zips(γ′, γ′
1, . . . , γ′

n), we can apply the inductive hypothesis
for γ′ to obtain

∀α′
1 ∈ execs∗ (A1)(γ′

1 ), . . . ,∀α′
n ∈ execs∗(An)(γ′

n ) :
∃α′ ∈ execs∗(A)(γ′ ) : (∀j ∈ [1 : n] : α′�Aj = α′

j) (b)

By assumption, α� ∈ execs∗(A� )(γ�). For all �, let α′
� = α�, and let s� = t� = last(α′

�).
Hence α′

� ∈ texecs (A�)(γ′
� ), since γ′

� ≈ γ� .
We now have two subcases.

Subcase 2.1: Γk = last(γ′
k).

Let α′
k = αk. Since α′

� = α� for all � ∈ [1 : n] − k, we get α′
j = αj for all j ∈

[1 : n]. Instantiating (b) for these α′
j , we have the existence of an α′ such that α′ ∈

execs∗(A)(γ′ )∧ (∀j ∈ [1 :n] : α′�Aj = α′
j). Now let α = α′. Hence trace (α) = trace (α′) ≈

γ′ since α′ ∈ execs∗(A)(γ ′). Figure 5 gives a diagram of the relevant executions, pretraces,
and external signatures for this case.

By the case 2 assumption, γ′ is a pretrace, and so last(γ′) is an external signature.
So, we have

last(γ′)
= last(γ′

k)× (
∏

� last(γ′
�)) zips(γ′, γ′

1 , . . . , γ′
n) and Definition 13

= last(γ′
k)× (

∏
� Γ�) (a)

= Γk × (
∏

�
Γ�) subcase assumption

= Γ (a)

By the case assumption, γ = γ′Γ. Hence γ ≈ γ′. So, trace (α) ≈ γ. We have just
established α ∈ execs (A), α�Aj = αj for all j ∈ [1 : n], and trace (α) ≈ γ. Hence (*) is
established for subcase 2.1.

Subcase 2.2: Γk �= last(γ′
k).

In this case, we can find a finite execution α′
k, and finite execution fragment α′′

k such that
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αk = α′
k�(sk

τ−→Ak tk)�α′′
k, where sk = last(α′

k), ext(Ak )(tk ) = Γk, and tk = first(α′′
k).

Figure 6 gives a diagram of the relevant executions, pretraces, and external signatures
for this case. The transition sk

τ−→Ak tk must exist, since the external signature of Ak

changed along γk. Also, α′′
k consists entirely of internal actions, and trace (α′′

k) ≈ Γk, i.e.,
every state along α′′

k has external signature Γk.
Hence αk = α′

k � (sk
τ−→Ak tk) �α′′

k, where sk = last(α′
k) and ext(Ak )(tk) = Γk and

τ ∈ int(Ak )(sk ).
Now let s = 〈s1 , . . . , sn〉, and let t = 〈t1, . . . , tn〉. For all � ∈ [1 :n] − k, let α′

� = α� .
Instantiating (b) for α′

k and the α′
�, we have the existence of an α′ such that α′ ∈

execs∗(A)(γ′ ) ∧ (∀� ∈ [1 :n] − k : α′�A� = α′
�)∧ (α′�Ak = α′

k). By (b) and Definition 9,
we have s = last(α′ ). By Definition 6, we have (s, τ, t) ∈ steps(A). Let α = α′ �

(s τ−→A t) � α′′, where α′′ is the finite-execution fragment of A with first state t, and
whose transitions are exactly those of α′′

k, with no other SIOA making any transitions.
Since all the transitions of α′′

k are internal, Definition 6 shows that α′′ is indeed an
execution fragment of A. Furthermore, since the external signature does not change
along α′′

k, it follows that the external signature does not change along α′′, and hence
must equal ext (A)(t) at all states along α′′. Hence trace (α′′) ≈ ext(A)(t). Finally, by its
construction, we have α′′�Ak = α′′

k.
By the above, α is well defined, and is an execution of A.

We now have

ext (A)(t)
= ext (Ak )(tk) × (

∏
� ext(A�)(t�)) definition of t

= Γk × (
∏

� ext (A�)(t�)) definition of tk
= Γk × (

∏
�
Γ�) t� = last(α′

�), (a)
= Γ (a)

And so,

trace (α)
≈ trace (α′) � trace (α′′) definition of α
≈ trace (α′) � ext(A)(t) trace (α′′) ≈ ext(A)(t)
≈ trace (α′) � Γ ext (A)(t) = Γ established above
≈ γ′Γ α′ ∈ execs∗(A)(γ′), hence trace (α′) ≈ γ′

≈ γ case condition

For k,

α�Ak

= (α′ �Ak) � (sk
τ−→Ak tk) � (α′′�Ak) Definition 9 and definition of α

= α′
k � (sk

τ−→Ak tk) � (α′′�Ak) by (c), α′�Ak = α′
k

= α′
k � (sk

τ−→Ak tk) � α′′
k by the preceding remarks, α′′�Ak = α′′

k

= αk by definition of α′
k, α′′

k: αk = α′
k � (sk

τ−→Ak tk) � α′′
k

For all � ∈ [1 : n] − k,

α�A�

= α′�A� Definition 9 and definition of α
= α′

� by (c), α′�A� = α′
�

= α� by our choice of α′
�, α� = α′

�
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We have just established α ∈ execs∗(A), α�Aj = αj for all j ∈ [1 : n], and trace (α) ≈
γ. Hence (*) is established for subcase 2.2. Hence Case 2 of the inductive step is
established.

Since both cases of the inductive step have been established, the theorem follows.

α, γ
Γ

aα′ , γ′

αk , γk
α′

k , γ′
k

α′
�, γ

′
�

α� , γ� Γ�

sk a

t α′′

α′′
ktk

s� = t�

Γk

s

Figure 4: Proof of Theorem 7: illustration of case one

α′, γ′
last(γ′)

αk , γk
α′

k = αk, γ′
k

α′
� = α�, γ′

�

Γ

Γk
Γk

Γ� Γ�
α� , γ�

α, γ

Figure 5: Proof of Theorem 7: illustration of subcase 2.1

We use Theorem 7 and the definition of zip (Definition 14) to establish a similar
result for traces.

Corollary 8 (Finite-trace pasting for SIOA). Let A1 , . . . , An be compatible SIOA,
and let A = A1 ‖ · · · ‖ An. Let β be a finite trace and assume that there exist β1, . . . , βn

such that (1) (∀j ∈ [1 : n] : βj ∈ traces∗(Aj )), and (2) zip(β, β1, . . . , βn). Then β ∈
traces∗(A).
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α, γ τα′ , γ′

αk , γk
α′

k , γ′
k

α′
� = α�, γ′

�

α� , γ�

Γk

τ
ΓkΓk

Γl

s

sk tk

α′′

α′′
k

t

s� = t�

Γ

Figure 6: Proof of Theorem 7: illustration of subcase 2.2

Proof: By Definition 14, there exist finite pretraces γ, γ1 , . . . , γn such that γ ≈ β ,
(
∧

j∈[1:n]γj ≈ βj), and zips(γ, γ1, . . . , γn). By Theorem 7, ∃α ∈ execs∗(A) : trace(α) ≈ γ.
Hence trace (α) ≈ β . Since β is a trace, we obtain trace (α) = β . Since β is finite,
β ∈ traces∗(A).

Theorem 9 extends theorem 7 to infinite pretraces. That is, if a set of pretraces γj of
Aj , for all j ∈ [1 : n], can be “zipped up” to generate a pretrace γ, then γ is a pretrace
of A = A1 ‖ · · · ‖ An . The proof uses the result of Theorem 7 to construct an infinite
family of finite executions, each of which is a prefix of the next, and such that the trace
of each finite execution is stuttering-equivalent to a prefix of γ. Taking the limit of these
executions under the prefix ordering then yields an infinite execution α of A whose trace
is stuttering-equivalent to γ, as desired.

Theorem 9 (Pretrace pasting for SIOA). Let A1, . . . , An be compatible SIOA, and
let A = A1 ‖ · · · ‖ An. Let γ be a pretrace. If, for al l j ∈ [1 : n], γj ∈ pretraces (Aj) can
be chosen so that zips(γ, γ1 , . . . , γn) holds, then ∃α ∈ execs (A) : trace (α) ≈ γ.

Proof: If γ is finite, then the result follows from Theorem 7. Hence assume that γ is
infinite for the remainder of the proof. By Proposition 6, we have

∀i, i > 0 ∧ ispretrace (γ|i) : (∀j ∈ [1 :n] : ispretrace (γj |i)) ∧ zips(γ|i, γ1 |i, . . . , γn |i). (a)

Hence, by γj ∈ pretraces (Aj ) and Definition 10, we have
∀i, i > 0 ∧ ispretrace (γ|i),∀j ∈ [1 :n] : γj |i ∈ pretraces (Aj) (b)

By (a,b) and Theorem 7, we have
∀i, i > 0 ∧ ispretrace (γ|i),∃αi ∈ execs (A) : trace (αi) ≈ γ|i (c)

Now let i′, i′′ be such that i′ < i′′, ispretrace (γ|i′ ), ispretrace (γ|i′′), and there is no
i′ < i < i′′ such that ispretrace (γ|i). By Definition 10, we have that either γ|i′′ = (γ|i′ )aΓ
or γ|i′′ = (γ|i′)Γ, for some action a and external signature Γ. We can show that there exist
αi′ ∈ execs (A), αi′′ ∈ execs (A) such that αi′ < αi′′ , trace (αi′ ) ≈ γ|i′ , trace (αi′′ ) ≈ γ|i′′ .
This is established by the same argument as used for the inductive step in the proof of
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Theorem 7. In essence, αi′′ is obtained inductively as an extension of αi′. We omit the
(repetitive) details.

Let prefixes (γ) = {i | i > 0 ∧ ispretrace (γ|i)}. By (c), we have
there exists a set {αi | i ∈ prefixes (γ)} such that

∀i ∈ prefixes (γ) : αi ∈ execs(A) ∧ trace (αi) ≈ γ|i
∀i′, i′′ ∈ prefixes (γ), i′ < i′′ : αi′ ≤ αi′′ (d)

Now let α be the unique minimum sequence that satisfies ∀i ∈ prefixes (γ) : αi < α. α
exists by (d). Since every triple (s, a, s′ ) along α occurs in some αi, it must be a step of
A. Hence α is an execution of A.

We nowshow, by contradiction, that trace (α) ≈ γ. Suppose not, and let β = trace (α).
Then β �= r(γ) by Definition 12. Since β and r(γ) are sequences, they must differ
at some position. Let i0 be the smallest number such that β(i0) �= r(γ)(i0). Hence
β |i0 �= r(γ)|i0 . Now the trace of a prefix of α is a prefix of β , by Definition 2. Hence
there can be no prefix of α whose trace is r(γ)|i0 , i.e., ¬(∃i ≥ 0 : trace(α|i) = r(γ)|i0 ).
Let i1 be such that r(γ|i1 ) = r(γ)|i0 . Hence ¬(∃i ≥ 0 : trace (α|i) = r(γ|i1 )). And so
¬(∃i ≥ 0 : trace (α|i) ≈ γ|i1). But this contradicts (d), and so we are done.

We use Theorem 9 and the definition of zip (Definition 14) to establish Corollary 10,
which extends corollary 8 to infinite traces. Corollary 10 gives our main trace pasting
result, and is also used to establish trace substitutivity, Theorem 17, below.

Corollary 10 (Trace pasting for SIOA). Let A1, . . . , An be compatible SIOA, and
let A = A1 ‖ · · · ‖ An. Let β be a trace and assume that there exist β1, . . . , βn such that
(1) (∀j ∈ [1 :n] : βj ∈ traces(Aj )), and (2) zip(β, β1, . . . , βn). Then β ∈ traces(A).

Proof: By Definition 14, there exist pretraces γ, γ1 , . . . , γn such that γ ≈ β ,
∧

j∈[1:n] γj ≈
βj, and zips(γ, γ1 , . . . , γn). By Theorem 9, ∃α ∈ execs (A) : trace (α) ≈ γ. Hence
trace (α) ≈ β . Since β is a trace, we obtain trace (α) = β . Hence β ∈ traces (A).

3.3. Trace Substitutivity for SIOA
To establish trace substitutivity, we first need some preliminary technical results.

These establish that for an execution α of A = A1 ‖ · · · ‖ An and its projections
α�A1 , . . . , α�An , that there exist corresponding (in the sense of being stuttering equiva-
lent to the trace of) pretraces γ, γ1, . . . , γn respectively which “zip up,” i.e., zips(γ, γ1 , . . . , γn)
holds. Our first proposition establishes this result for finite executions.

Proposition 11. Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α
be any finite execution of A. Then, there exist finite pretraces γ, γ1, . . . , γn such that (1)
γ ≈ trace (α), (2) (∀j ∈ [1 :n] : γj ≈ trace(α�Aj )), and (3) zips(γ, γ1 , . . . , γn).

Proof: By induction on |α|. For the rest of the proof, fix α to be an arbitrary finite
execution of A.

Base case: |α| = 0. Then α consists of a single state s. By Definition 6, we have
ext(A)(s) =

∏
j∈[1:n] ext(Aj )(s�Aj). Let γ consist of the single element ext(A)(s) and for

all j ∈ [1 : n], let γj consist of the single element ext (Aj )(s�Aj). Hence γ =
∏

j∈[1:n]γj .
By Definition 13, zips(γ, γ1 , . . . , γn) holds.
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Induction step: |α| > 0. There are two cases to consider, according to whether the
last transition of α is an external or internal action of A.

Case 1: α = α′at for some action a and state t, where a ∈ êxt (A)(last (α′)).
We apply the induction hypothesis to α′ to obtain

there exist pretraces γ′, γ′
1 , . . . , γ′

n such that
γ′ ≈ trace (α′), (∀j ∈ [1 :n] : γ′

j ≈ trace (α′�Aj)), and zips(γ′ , γ′
1, . . . , γ′

n). (a)

Let s = last(α′), and for all j ∈ [1 : n], let sj = s�Aj , and tj = t�Aj . Let ϕ = {j | a ∈
êxt(Aj )(sj )}. Let k range over ϕ and � range over [1 : n]−ϕ. Hence,

∧
� a �∈ ŝig(A� )(s�).

Hence, by Definition 6,
∧

� s� = t� .
By Definition 9, for all k, we have α�Ak = (α′�Ak)atk . Hence trace (α�Ak) =

trace (α′�Ak) � a � ext (Ak )(tk). For all k, we have γ′
k ≈ trace (α′�Ak) by (a). Let

γk = γ′
k � a � ext (Ak )(tk). Hence γk ≈ trace (α�Ak).

By Definition 9, for all �, we have α�A� = α′�A� . Hence trace (α��) = trace (α′��). Let
γ� = γ′

� � ext (A�)(s�) � ext (A�)(s�). By (a), we have γ′
� ≈ trace (α′�A�) for all �. From

s = last(α′), we get last(γ′
�) = ext (A�)(last(α′��)) = ext(A� )(s�). Hence γ� ≈ γ′

� . Hence
γ� ≈ γ′

� ≈ trace (α′�A�) = trace (α�A�). Thus, γ� ≈ trace (α�A�).
Let γ = γ′ �a� ext (A)(t). Now trace (α) = trace (α′at) = trace (α′ )�a� ext (A)(t).

From (a), γ′ ≈ trace(α′ ). Hence γ = γ′ � a � ext (A)(t) ≈ trace (α′) � a � ext (A)(t) =
trace (α). So, γ ≈ trace (α).

From the previous three paragraphs, we have
γ ≈ trace (α) ∧∧

j∈[1:n] γj ≈ trace (α�Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satis-
fied for γ, γ1 , . . . , γn . By (a), zips(γ′, γ′

1, . . . , γ′
n). We will use this repeatedly below.

By zips(γ′, γ′
1 , . . . , γ′

n), we have |γ′| = |γ′
1| = · · · = |γ′

n|. By construction |γ| = |γ′|+2,
and for all j ∈ [1 : n], |γj | = |γ′

j |+2. Hence |γ| = |γ1| = · · · = |γn |. So clause 1 is satisfied.
By definition of �, we have

∧
� a �∈ ext (A�)(s� ). By construction, the last three

elements of γ� (for all �) are all ext (A�)(s� ). By this and zips(γ′, γ′
1, . . . , γ′

n), we conclude
that clause 2 is satisfied.

By Definition 6, we have ext (A)(t) =
∏

j∈[1:n]
ext (Aj )(tj). By construction, we have

last(γ) = ext (A)(t),
∧

k last(γk) = ext (Ak)(tk ), and
∧

� last(γ�) = ext (A�)(s� ). From∧
�
s� = t� (established above), we get

∧
�
last(γ�) = ext(A�)(t�). Hence last(γ) =∏

j∈[1:n] last(γj ). By this and zips(γ′, γ′
1, . . . , γ′

n), we conclude that clause 3 is satisfied.
By zips(γ′, γ′

1 , . . . , γ′
n) and the construction of γ, γ1, . . . , γn (specifically, that a is an

external action), we conclude that clause 4 is satisfied.
Hence, we have established zips(γ, γ1 , . . . , γn). Together with (b), this establishes the

inductive step in this case.

Case 2: α = α′at for some action a and state t, where a ∈ int(A)(last(α′)).
We can apply the induction hypothesis to α′ to obtain

there exist pretraces γ′, γ′
1 , . . . , γ′

n such that
γ′ ≈ trace (α′), (∀j ∈ [1 :n] : γ′

j ≈ trace (α′�Aj)), and zips(γ′ , γ′
1, . . . , γ′

n). (a)

Let s = last(α′), and for all j ∈ [1 : n], let sj = s�Aj , and tj = t�Aj . Since a is an
internal action of A, it is executed by exactly one of the A1 , . . . , An . Thus, there is some
k ∈ [1 : n] such that a ∈ int(Ak)(sk ), and for all � ∈ [1 : n] − k, a �∈ ŝig(A�)(s� ). Let �
range over [1 : n] − k for the rest of this case. Hence

∧
� s� = t�, by Definition 6.
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By Definition 9, we have α�Ak = (α′�Ak)atk . Hence trace (α�Ak) = trace (α′�Ak) �
ext(Ak )(tk ). We have γ′

k ≈ trace (α′�Ak) by (a). Let γk = γ′
k � ext(Ak )(tk). Hence

γk ≈ trace (α�Ak).
By Definition 9, for all �, we have α�A� = α′�A� . Hence trace (α��) = trace(α′ ��).

Let γ� = γ′
� � ext (A�)(s� ). By (a), γ′

� ≈ trace (α′�A�) for all �. From s = last(α′),
we get last(γ′

�) = ext (A�)(last(α′��)) = ext(A�)(s�). Hence γ� ≈ γ′
� . Hence γ� ≈ γ′

� ≈
trace (α′�A�) = trace (α�A�). Thus, γ� ≈ trace (α�A�).

Let γ = γ′ � ext (A)(t). Now trace (α) = trace (α′at) = trace (α′) � ext (A)(t). From
(a), γ′ ≈ trace (α′). Hence γ = γ′ � ext (A)(t) ≈ trace (α′) � ext(A)(t) = trace (α). So,
γ ≈ trace (α).

From the previous three paragraphs, we have
γ ≈ trace (α) ∧∧

j∈[1:n] γj ≈ trace (α�Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satis-
fied for γ, γ1 , . . . , γn . By (a), zips(γ′, γ′

1, . . . , γ′
n). We will use this repeatedly below.

By zips(γ′, γ′
1 , . . . , γ′

n), we have |γ′| = |γ′
1| = · · · = |γ′

n|. By construction |γ| = |γ′|+1,
and for all j ∈ [1 : n], |γj | = |γ′

j |+1. Hence |γ| = |γ1| = · · · = |γn |. So clause 1 is satisfied.
By zips(γ′, γ′

1 , . . . , γ′
n) and the construction of γ, γ1, . . . , γn (specifically, that a is an

internal action), we conclude that clause 2 is satisfied.
By Definition 6, we have ext (A)(t) =

∏
j∈[1:n]ext (Aj )(tj). By construction, we have

last(γ) = ext (A)(t), last(γk) = ext (Ak )(tk), and
∧

� last(γ�) = ext(A�)(s�). From∧
� s� = t� (established above), we get

∧
� last(γ�) = ext(A�)(t�). Hence last(γ) =∏

j∈[1:n] last(γj ). By this and
zips(γ′, γ′

1, . . . , γ′
n), we conclude that clause 3 is satisfied.

By construction, the last two elements of γ� (for all �) are both ext (A�)(s� ). By this
and zips(γ′ , γ′

1, . . . , γ′
n), we conclude that clause 4 is satisfied.

Hence, we have established zips(γ, γ1 , . . . , γn). Together with (b), this establishes the
inductive step in this case.

Having established both possible cases, we conclude that the inductive step holds.

Proposition 12. Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let
β be any finite trace of A. Then, there exist β1, . . . , βn such that (1) (∀j ∈ [1 :n] : βj ∈
traces∗(Aj)), and (2) zip(β, β1 , . . . , βn).

Proof: Since β ∈ traces∗(A), there exists α ∈ execs∗(A) such that trace (α) = β . Apply-
ing Proposition 11 to α, we have that there exist finite pretraces γ, γ1, . . . , γn such that
γ ≈ trace (α), (∀j ∈ [1 :n] : γj ≈ trace (α�Aj )), and zips(γ, γ1, . . . , γn).

For all j ∈ [1 : n], let βj = trace (α�Aj). By Theorem 4, α�Aj ∈ execs (Aj). Hence
α�Aj ∈ execs∗ (Aj) since α is finite. Hence βj ∈ traces∗(Aj ). Thus, (1) is established.

From γj ≈ trace(α�Aj) and βj = trace (α�Aj), we have βj ≈ γj , for all j ∈ [1 : n].
From γ ≈ trace (α) and β = trace (α), we have γ ≈ β . Hence, by Definition 14 and
zips(γ, γ1, . . . , γn), we conclude zip(β, β1, . . . , βn). Hence (2) is established.

Theorem 13 (Finite-trace Substitutivity for SIOA). Let A1 , . . . , An be compati-
ble SIOA, and let A = A1 ‖ · · · ‖ An. For some k ∈ [1 :n], let A1 , . . . , Ak−1, A

′
k, Ak+1 , . . . , An
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be compatible SIOA, and let A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′
k ‖ Ak+1 ‖ · · · ‖ An. Assume also

that traces∗(Ak ) ⊆ traces∗(A′
k ). Then traces∗(A) ⊆ traces∗(A′).

Proof: Let β be an arbitrary finite trace of A. Then, by Proposition 12, there exist
β1, . . . , βn such that zip(β, β1, . . . , βn), and (∀j ∈ [1 : n] : βj ∈ traces∗(Aj )). By as-
sumption, traces∗(Ak ) ⊆ traces∗(A′

k ). Hence βk ∈ traces∗(A′
k). Thus, we have βk ∈

traces∗(A′
k), (∀� ∈ [1 :n]− k : β� ∈ traces∗(A�)), and zip(β, β1, . . . , βn). Hence, by Corol-

lary 8, β ∈ traces∗(A′ ). Since β was chosen arbitrarily, we have traces∗(A) ⊆ traces∗(A′ ).

To extend Theorem 13 to infinite traces, we start with Proposition 14, which extends
the result of Proposition 11 to the (infinite set of) finite prefixes of an infinite execution.
That is, for every finite prefix α|i of an infinite execution α of A = A1 ‖ · · · ‖ An , and
its projections (α|i)�A1, . . . , (α|i)�An , there exist corresponding (in the sense of being
stuttering equivalent to the trace of) pretraces γi and γi

1, . . . , γi
n respectively which “zip

up,” i.e., zips(γi, γi
1 , . . . , γi

n) holds. Furthermore, the pretraces γi−1, γi−1
1 , . . . , γi−1

n cor-
responding to α|i−1, (α|i−1)�A1 , . . . , (α|i−1)�An, respectively are prefixes of the pretraces
γi, γi

1 , . . . , γi
n , respectively.

Proposition 14. Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let
α be any execution of A. Then, there exists a countably infinite set of tuples of finite
pretraces {〈γi, γi

1, . . . , γi
n〉 | 0 ≤ i ≤ |α| ∧ i �= ω} such that:

1. ∀i, 0 ≤ i ≤ |α| ∧ i �= ω : γi ≈ trace (α|i) ∧ (
∧

j∈[1:n]γ
i
j ≈ trace((α|i )�Aj)),

2. ∀i, 0 ≤ i ≤ |α| ∧ i �= ω : zips(γi, γi
1 , . . . , γi

n), and
3. ∀i, 0 < i ≤ |α| ∧ i �= ω : γi−1 < γi ∧ (

∧
j∈[1:n] γ

i−1
j < γi

j).

Proof: By induction on i.

Base case: i = 0. Then, α|0 consists of a single state s. The proof then parallels the
base case of the proof of Proposition 11. We omit the repetitive details.

Induction step: i > 0. Assume the inductive hypothesis for 0 ≤ i < m, and establish
it for i = m. By the inductive hypothesis, we obtain

there exists a set of tuples of finite pretraces {〈γi, γi
1 , . . . , γi

n〉 | 0 ≤ i < m} such
that:

1. ∀i, 0 ≤ i < m : γi ≈ trace(α|i) ∧ (
∧

j∈[1:n]γ
i
j ≈ trace ((α|i)�Aj)),

2. ∀i, 0 ≤ i < m : zips(γi, γi
1 , . . . , γi

n), and
3. ∀i, 0 < i < m : γi−1 < γi ∧ (

∧
j∈[1:n]γ

i−1
j < γi

j).

(a)

We now establish the inductive hypothesis for i = m, that is:

there exists a tuple of pretraces 〈γm , γm
1 , . . . , γm

n 〉 such that

1. γm ≈ trace(α|m) ∧ (
∧

j∈[1:n]γ
m
j ≈ trace ((α|m)�Aj)),

2. zips(γm , γm
1 , . . . , γm

n ), and
3. γm−1 < γm ∧ (

∧
j∈[1:n]γ

m−1
j < γm

j ).

(*)
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There are two cases.

Case 1: α|m = (α|m−1)at for some action a and state t, where a ∈ êxt (A)(last(α|m−1)).

Case 2: α|m = (α|m−1)at for some action a and state t, where a ∈ int(A)(last(α|m−1)).

To establish Clauses 1 and 2 of (*), the proofs for these cases proceed in exactly the same
way as the proofs for cases 1 and 2 in the proof of Proposition 11, with α|m−1 playing
the role of α′, and α|m playing the role of α.

To establish Clause 3 of (*), we note that, in both cases 1 and 2 in the proof of
Proposition 11, γ, γ1, . . . , γn are constructed as extensions of γ′, γ′

1 , . . . , γ′
n , respectively.

Our proof here proceeds in exactly the same way, with γm−1, γm−1
1 , . . . , γm−1

n playing the
role of γ′, γ′

1 , . . . , γ′
n , respectively, and γm, γm

1 , . . . , γm
n playing the role of γ, γ1, . . . , γn ,

respectively. We omit the details.

Note that we include i �= ω in the range of i to emphasize that, for infinite executions
α, the range 0 ≤ i ≤ |α| does not include i = ω.

Proposition 15 establishes the result of Proposition 11 for infinite executions. The
proof uses Proposition 14 and constructs the required pretraces γ, γ1 , . . . , γn by taking
the limit under the prefix ordering of the γi, γi

1 , . . . , γi
n given in Proposition 14, as i tends

to ω.

Proposition 15. Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α
be any execution of A. Then, there exist pretraces γ, γ1, . . . , γn such that (1) γ ≈ trace(α),
(2) (∀j ∈ [1 :n] : γj ≈ trace (α�Aj )), and (3) zips(γ, γ1, . . . , γn).

Proof: If α is finite, then the result follows from Proposition 11. Hence, assume that α
is infinite in the rest of the proof. By Proposition 14, we have

there exists a countably infinite set of tuples of finite pretraces
{〈γi, γi

1, . . . , γi
n〉 | 0 ≤ i} such that:

1. ∀i, 0 ≤ i : γi ≈ trace (α|i)∧ (
∧

j∈[1:n] γ
i
j ≈ trace ((α|i)�Aj)),

2. ∀i, 0 ≤ i : zips(γi, γi
1, . . . , γi

n), and
3. ∀i, 0 < i : γi−1 < γi ∧ (

∧
j∈[1:n]

γi−1
j < γi

j).

(a)

Since the set of tuples {〈γi, γi
1 , . . . , γi

n〉 | 0 ≤ i} is countably infinite, and γi−1 is a
proper prefix of γi for all i > 0, we can define γ to be the unique sequence such that
∀i, 0 ≤ i : γi < γ. Likewise, for all j ∈ [1 :n], we can define γj to be the unique sequence
such that ∀i, 0 ≤ i : γi

j < γj . From clause 2 of (a) and Definition 13, we conclude
zips(γ, γ1, . . . , γn).

We nowshow, by contradiction, that trace (α) ≈ γ. Suppose not, and let β = trace (α).
Then β �= r(γ) by Definition 12. Since β and r(γ) are sequences, they must differ
at some position. Let i0 be the smallest number such that β(i0) �= r(γ)(i0). Hence
β |i0 �= r(γ)|i0 . Now the trace of a prefix of α is a prefix of β , by Definition 2. Hence
there can be no prefix of α whose trace is r(γ)|i0 , i.e., ¬(∃i ≥ 0 : trace(α|i) = r(γ)|i0 ).
Let i1 be such that r(γ|i1) = r(γ)|i0 . Hence ¬(∃i ≥ 0 : trace (α|i) = r(γ|i1 )). And
so ¬(∃i ≥ 0 : trace (α|i) ≈ γ|i1). But this contradicts (a), and so we are done. In a
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similar manner, we show γj ≈ trace (α�Aj )) for all j ∈ [1 :n]. Hence, the proposition is
established.

Proposition 16 “lifts” the result of Proposition 15 from executions to traces; it shows
that if β is a trace of A = A1 ‖ · · · ‖ An then there exist traces β1, . . . , βn of A1 , . . . , An

respectively which zip up to β , that is zip(β, β1, . . . , βn) holds. The proof is a straight-
forward application of Proposition 15.

Proposition 16. Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let β
be an arbitrary element of traces (A). Then, there exist β1, . . . , βn such that (1) for al l
j ∈ [1 : n] : βj ∈ traces(Aj ), and (2) zip(β, β1, . . . , βn).

Proof: Since β ∈ traces(A), there exists α ∈ execs (A) such that trace(α) = β . Applying
Proposition 15 to α, we have that there exist pretraces γ, γ1, . . . , γn such that γ ≈
trace (α), (

∧
j ∈ [1 : n] : γj ≈ trace (α�Aj)), and zips(γ, γ1 , . . . , γn).

For all j ∈ [1 : n], let βj = trace (α�Aj). By Theorem 4, α�Aj ∈ execs (Aj). Hence
βj ∈ traces (Aj ). Thus, (1) is established.

From γj ≈ trace(α�Aj) and βj = trace (α�Aj), we have βj ≈ γj , for all j ∈ [1 : n].
From γ ≈ trace (α) and β = trace (α), we have γ ≈ β . Hence, by Definition 14 and
zips(γ, γ1, . . . , γn), we conclude zip(β, β1, . . . , βn). Hence (2) is established.

Theorem 17 gives one of our main results: trace substitutivity. This states that, in
a composition of n SIOA, if one of the SIOA is replaced by another whose traces are a
subset of those of the SIOA that was replaced, then this cannot increase the set of traces
of the entire composition.

Theorem 17 (Trace substitutivity for SIOA). Let A1 , . . . , An be compatible SIOA,
and let A = A1 ‖ · · · ‖ An. For some k ∈ [1 : n], let A1, . . . , Ak−1, A

′
k , Ak+1 , . . . , An be

compatible SIOA, and let A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′
k ‖ Ak+1 ‖ · · · ‖ An. Assume also

that traces (Ak) ⊆ traces (A′
k). Then traces (A) ⊆ traces(A′ ).

Proof: Let β be an arbitrary trace of A. Then, by Proposition 16, there exist β1, . . . , βn

such that zip(β, β1, . . . , βn), and (∀j ∈ [1 : n] : βj ∈ traces(Aj )). By assumption,
traces(Ak ) ⊆ traces (A′

k). Hence βk ∈ traces (A′
k). Thus, we have βk ∈ traces (A′

k),
(∀� ∈ [1 : n] − k : β� ∈ traces (A�)), and zip(β, β1, . . . , βn). Hence, by Corollary 10,
β ∈ traces (A′ ). Since β was chosen arbitrarily, we have traces(A) ⊆ traces (A′).

4. Trace Substitutivity under Hiding and Renaming

We now proceed to show that action hiding and renaming are monotonic with respect
to trace inclusion.

Theorem 18 (Trace substitutivity for SIOA w.r.t. action hiding). Let A,A′ be
SIOA such that traces (A) ⊆ traces (A′). Let Σ a set of actions. Then traces(A \ Σ) ⊆
traces(A′ \ Σ).
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Proof: From traces(A) ⊆ traces(A′ ), we have
∀α ∈ execs (A) : ∃α′ ∈ execs(A′ ) : traceA(α) = traceA(α′).

By Definition 7, start(A \ Σ) = start(A) and steps(A \ Σ) = steps(A), and so execs (A) =
execs(A \ Σ). Likewise execs (A′) = execs (A′ \ Σ). Hence

∀α ∈ execs (A \ Σ) : ∃α′ ∈ execs(A′ \ Σ) : traceA(α) = traceA′ (α′).

Choose arbitrarily α ∈ execs (A \ Σ) and α′ ∈ execs (A′ \ Σ) such that traceA(α) =
traceA′(α′ ). Let β = traceA(α) = traceA′ (α′). Let β \ Σ be the trace obtained from
β by removing all actions in Σ, and then replacing each maximal block of identical
external signatures by a single representative. From Definition 2, we see that β \ Σ =
traceA\Σ(α) = traceA′\Σ(α′). Since α,α′ were chosen arbitrarily, we have

∀α ∈ execs (A \ Σ) : ∃α′ ∈ execs (A′ \ Σ) : traceA\Σ(α) = traceA′\Σ(α′ ).

This implies traces (A \ Σ) ⊆ traces(A′ \ Σ), and we are done.

Theorem 19 (Trace substitutivity for SIOA w.r.t. action renaming). Let A,A′

be SIOA such that traces(A) ⊆ traces (A′). Let ρ be an injective mapping from actions
to actions whose domain includes acts(A). Then traces (ρ(A)) ⊆ traces (ρ(A′ )).

Proof: For α ∈ execs (A), define ρ(α) to result from α by replacing each action a along
α by ρ(a). Since ρ is an injective mapping from actions to actions, its extension to
executions is also injective. For β ∈ traces(A), define ρ(β) to result from β by replacing
each action a along β by ρ(a), and each external signature Γ along β by ρ(Γ), where
ρ(Γ) results from Γ by replacing each action a by ρ(a). Since ρ is an injective mapping
from actions to actions, its extension to executions and traces is also injective. We
also extend ρ to the set of executions and traces of A element-wise: ρ(execs (A)) =
{ρ(α) : α ∈ execs(A)}, ρ(traces (A)) = {ρ(β) : β ∈ traces(A)}.

By Definition 8, start(ρ(A) ) = start(A), and steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈
steps(A)}. Hence

execs (ρ(A) ) = ρ(execs (A)) and traces(ρ(A)) = ρ(traces (A)) .

From traces(A) ⊆ traces(A′ ), we have ρ(traces (A)) ⊆ ρ(traces (A′ )), since ρ is monotonic
with respect to a set of traces. Hence traces(ρ(A) ) ⊆ traces(ρ(A′ )), and we are done.

4.1. Trace Equivalence as a Congruence
SIOA A and A′ are trace equivalent iff traces (A) = traces(A′ ). A straightforward

corollary of our monotonicity results is that trace equivalence is a congruence relation
with respect to parallel composition, action hiding, and action renaming.

Theorem 20 (Trace equivalence is a congruence). Let A1, . . . , An be compatible SIOA,
and let A = A1 ‖ · · · ‖ An. For some k ∈ [1 : n], let A1, . . . , Ak−1, A

′
k , Ak+1 , . . . , An be

compatible SIOA, and let A′ = A1 ‖ · · · ‖ Ak−1 ‖ A′
k ‖ Ak+1 ‖ · · · ‖ An.

1. If traces (Ak) = traces (A′
k), then traces(A) = traces(A′ ).

2. If traces (Ak) = traces (A′
k), then traces(Ak \ Σ) = traces(A′

k \ Σ).
3. If traces (Ak) = traces (A′

k), then traces(ρ(Ak )) = traces (ρ(A′
k )).

Proof: Clauses 1, 2, and 3 follow from Theorems 17, 18, and 19 respectively, by appli-
cation with respect to both directions of trace inclusion.
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5. Configurations and Configuration Automata

Suppose that a is an action of SIOA A whose execution has the side-effect of creating
another SIOA B . To model this, we keep track of the set of “alive” SIOA, i.e., those
that have been created but not destroyed (we consider the automata that are initially
present to be “created at time zero”). Thus, we require a transition relation over sets
of SIOA. We also keep track of the current global state, i.e., the tuple of local states of
every SIOA that is alive. Thus, we replace the notion of global state with the notion of
“configuration,” i.e., the set A of alive SIOA, and a mapping S with domainA such that
S(A) is the current local state of A, for each SIOA A ∈ A.

A configuration contains within it a set of SIOA, each of which embodies a transition
relation. Thus, the possible transitions out of a configuration cannot be given arbitrarily,
as when defining a transition relation over “unstructured” states. Rather, these transi-
tions should be “intrinsically” determined by the SIOA in the configuration. Below we
define the intrinsic transitions between configurations, and then define a “configuration
automaton” as an SIOA whose transition relation respects these intrinsic transitions.
Configuration automata are our principal semantic objects.

Definition 15 (Configuration, Compatible configuration). A configuration is a pair
〈A,S〉 where

• A is a finite set of signature I/O automaton identifiers, and

• S maps each A ∈ A to an s ∈ states(A).

A configuration 〈A,S〉 is compatible iff, for al l A ∈ A, B ∈ A, A �= B :

1. ŝig(A)(S(A))∩ int(B)(S(B)) = ∅, and
2. out (A)(S(A) )∩ out(B)(S(B)) = ∅.

The compatibility condition is the usual I/O automaton compatibility condition [24],
applied to a configuration. If C = 〈A,S〉 is a configuration, then we use (A, s) ∈ C as
shorthand for A ∈ A ∧ S(A) = s, and we also qualify A and S with the notation C.A,
C.S, where needed.

A configuration is a “flat” structure in that it consists of a set of SIOA (identifier,
local-state) pairs, with no grouping information. Such grouping could arise, for example,
by the composition of subsystems into larger subsystems. This grouping will be reflected
in the states of configuration automata, rather than the configurations themselves, which
are not states, but are the semantic denotations of states. We defined a configuration
to be a set of SIOA identifiers together with a mapping from identifiers to SIOA states.
Hence, every SIOA is uniquely distinguished by its identifier. Thus our formalism does
not a priori admit the existence of clones, as discussed in the introduction.

Definition 16 (Intrinsic attributes of a configuration). Let C = 〈A,S〉 be a com-
patible configuration. Then we define

• auts(C) = A.

• map (C) = S.
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• out (C) =
⋃

A∈A out (A)(S(A) ).

• in(C) = (
⋃

A∈A in(A)(S(A))) − out(C).

• int(C) =
⋃

A∈A int(A)(S(A) ).

• ext (C) = 〈in (C), out (C)〉.
• sig(C) = 〈in(C), out (C), int(C)〉.
We call sig(C) the intrinsic signature of C, since it is determined solely by C. Define

reduce (C) = 〈A′,S�A′〉, where A′ = {A | A ∈ A and ŝig(A)(S(A)) �= ∅}. C is a reduced
configuration iff C = reduce (C).

A consequence of this definition is that an empty configuration cannot execute any
transitions. Also, we do not define transitions from a non-compatible configuration.
Thus, the initial configuration of a transition is guaranteed to be compatible. However,
the final configuration of a transition maynot be compatible. This mayarise, for example,
when two SIOA are involved in executing an action a, and their signatures in their final
local states may contain output actions in common. Another possibility is when a new
SIOA is created, and its signature in its initial state violates the compatibility condition
(Definition 15) with respect to an already existing SIOA.

We now define the intrinsic transitions a=⇒ϕ that can be taken from a given con-
figuration 〈A,S〉. Our definition is parametrized by a set ϕ of SIOA identifiers which
represents SIOA which are to be “created” by the execution of the transition. This set is
not determined by the transition itself, but rather by the configuration automaton which
has 〈A,S〉 as the semantic denotation of one of its states. Thus, it has to be supplied to
the definition as a parameter.

Definition 17 (Intrinsic transition, a=⇒ϕ ). Let 〈A,S〉, 〈A′ ,S′〉 be arbitrary reduced
compatible configurations, and let ϕ ⊆ Autids. Then 〈A,S〉 a=⇒ϕ 〈A′,S′ 〉 iff there exists
a compatible configuration 〈A′′ ,S′′〉 such that al l of the fol lowing hold:

1. a ∈ ŝig(〈A,S〉).
2. A′′ = A∪ ϕ.
3. For al l A ∈ A′′ −A : S′′(A) ∈ start(A).
4. For al l A ∈ A: if a ∈ ŝig(A)(S(A) ) then S(A) a−→A S′′ (A), otherwise S(A) =

S′′ (A).
5. 〈A′ ,S′〉 = reduce (〈A′′ ,S′′ 〉).
All the SIOA with identifiers in ϕ −A (= A′′ −A) are “created” in some start state

(Clause 3). The SIOA identifiers in ϕ∩A have no effect, since the SIOA with these iden-
tifiers are already alive. We apply the reduce operator to the intermediate configuration
〈A′′,S′′ 〉 to obtain the final configuration 〈A′,S′〉 resulting from the transition. This
removes all SIOA which have an empty signature, and is our mechanism for destroying
SIOA. An SIOA with an empty signature cannot execute any transition, and so cannot
change its state. Thus it will remain forever in its current state, and will be unable to
interact with any other SIOA. Thus, an SIOA “self-destructs” by moving to a state with
an empty signature. This is the only mechanism for SIOA destruction. In particular,
we do not permit one SIOA to destroy another, although an SIOA can certainly send a
“please destroy yourself” request to another SIOA.
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Definition 18 (Configuration Automaton). A configuration automaton X consists
of the fol lowing components

1. A signature I/O automaton sioa (X).
For brevity, we define states(X) = states(sioa (X)), start(X) = start(sioa(X) ),
sig(X) = sig(sioa (X) ), steps(X) = steps(sioa (X)), and likewise for al l other
(sub)components and attributes of sioa(X).

2. A configuration mapping config (X) with domain states(X) and such that config (X)(x)
is a reduced compatible configuration for al l x ∈ states(X).

3. For each x ∈ states(X), a mapping created (X)(x) with domain ŝig(X)(x) and such
that created (X)(x)(a) ⊆ Autids for al l a ∈ ŝig(X)(x).

and satisfies the fol lowing constraints

1. If x ∈ start(X) and (A, s) ∈ config (X)(x), then s ∈ start(A).
2. If (x, a, y) ∈ steps(X) then config (X)(x) a=⇒ϕ config (X)(y), where ϕ = created (X)(x)(a).
3. If x ∈ states(X) and config (X)(x) a=⇒ϕ D for some action a, ϕ = created (X)(x)(a),

and reduced compatible configuration D, then ∃y ∈ states(X) : config (X)(y) = D
and (x, a, y) ∈ steps(X).

4. For al l x ∈ states(X)
(a) out(X)(x) ⊆ out(config (X)(x)),
(b) in(X)(x) = in(config (X)(x) ),
(c) int(X)(x) ⊇ int(config (X)(x)), and
(d) out(X)(x) ∪ int(X)(x) = out(config (X)(x) )∪ int(config (X)(x) ).

The above constraints are needed to properly reflect the connection between the
behavior of a configuration automaton and the configurations in each state. Constraint 1
requires that configurations corresponding to start states of X must map their constituent
SIOA to start states. Constraint 2 admits as transitions of X only transitions that can
be generated as intrinsic transitions of the corresponding configurations. Constraint 3
requires that all the intrinsic transitions a=⇒ϕ that a configuration is capable of must
be represented in X: all the successor configurations generated by such transitions must
be represented in the states and transitions of X. Constraint 4 states that the signature
of a state x of X must be the same as the signature of its corresponding configuration
config (X)(x), except for the possible effects of hiding operators, so that some outputs of
config (X)(x) may be internal actions of X in state x.

These constraints represent a significant difference with the basic I/O automaton
model: there, states are either “atomic” entities, or tuples of tuples of . . . of atomic
entities. Thus, states, in and of themselves, embody no information about their possible
successor states. That information is given by the transition relation, and there are no
constraints on the transition relation itself: any set of triples (state, action, state) which
respects the input enabling requirement can be a transition relation.

Since an SIOA that is created “within” a configuration automaton always remains
within that automaton, we see that configuration automata serve as a natural encap-
sulation boundary for component creation. Even if an SIOA migrates and changes its
location, it always remains a part of the same configuration automaton. Migration and
location are not primitive notions in our model, in contrast with, for example, the Ambi-
ent Calculus [8], but are built on top of configuration automata and variable signatures,
see Section 7 below.
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In the sequel, we write config (X)(x) a=⇒X,x config(X)(y) as an abbreviation for
“config (X)(x) a=⇒ϕ config (X)(y) where ϕ = created (X)(x)(a).”

Definition 19. Let X be a configuration automaton. For each x ∈ states(X), define the
abbreviations auts(X)(x) = auts(config (X)(x) ) and map(X)(x) = map(config (X)(x)).

Definition 20 (Execution, trace of configuration automaton). A configuration au-
tomaton X inherits the notions of execution fragment and execution from sioa(X). Thus,
α is an execution fragment (execution) of X iff it is an execution fragment (execution)
of sioa(X). execs (X) denotes the set of executions of configuration automaton X. X
also inherits the notion of trace from sioa(X). Thus, β is a trace of x iff it is a trace of
sioa(X). traces (X) denotes the set of traces of configuration automaton X.

5.1. Paral lel Composition of Configuration I/O Automata
We now deal with the composition of configuration automata.

Definition 21 (Union of configurations). Let C1 = 〈A1,S1〉 and C2 = 〈A2,S2〉 be
configurations such that A1 ∩A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪C2,
is the configuration C = 〈A,S〉 where A = A1 ∪A2 , and S agrees with S1 on A1 , and
with S2 on A2.

It is clear that configuration union is commutative and associative. Hence, we will
freely use the n-ary notation C1∪· · ·∪Cn (for anyn ≥ 1) whenever

∧
i,j∈[1:n],i 	=j auts(Ci)∩

auts(Cj) = ∅.
Definition 22 (Compatible configuration automata). Let X1 , . . . ,Xn, be configu-
ration automata. X1 , . . . ,Xn are compatible iff, for every 〈x1 , . . . , xn〉 ∈ states(X1) ×
· · · × states(Xn), al l of the fol lowing hold:

1. ∀i, j ∈ [1 : n], i �= j : auts(config (Xi)(xi))∩ auts(config (Xj)(xj )) = ∅.
2. config (X1)(x1) ∪ · · · ∪ config (Xn )(xn) is a reduced compatible configuration.
3. {sig(X1)(x1), . . . , sig(Xn )(xn)} is a set of compatible signatures.
4. ∀i, j ∈ [1 : n], i �= j : ∀a ∈ ŝig(Xi)(xi) ∩ ŝig(Xj )(xj) : created (Xi )(xi)(a) ∩

created (Xj )(xj )(a) = ∅.
Definition 23 (Composition of configuration automata). Let X1 , . . . ,Xn, be com-
patible configuration automata. Then X = X1 ‖ · · · ‖ Xn is the state machine consisting
of the fol lowing components:

1. sioa (X) = sioa(X1) ‖ · · · ‖ sioa(Xn ).
2. A configuration mapping config(X) given as fol lows. For each x = 〈x1, . . . , xn〉 ∈

states(X), config (X)(x) = config (X1)(x1) ∪ · · · ∪ config (Xn )(xn).
3. For each x = 〈x1, . . . , xn〉 ∈ states(X), a mapping created (X)(x) with domain

ŝig(X)(x) and given as fol lows. For each a ∈ ŝig(X)(x), created (X)(x)(a) =⋃
a∈̂sig(Xi )(xi ),i∈[1:n] created (Xi)(xi)(a).

As in Definition 18, we define states(X) = states(sioa (X)), start(X) = start(sioa (X)),
sig(X) = sig(sioa(X) ), steps(X) = steps(sioa (X)), and likewise for all other (sub)components
and attributes of sioa (X).
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Proposition 21. Let X1, . . . ,Xn, be compatible configuration automata. Then X =
X1 ‖ · · · ‖ Xn is a configuration automaton.

Proof: We must show that X satisfies the constraints of Definition 18. Since X1 , . . . ,Xn

are configuration automata, they already satisfy the constraints. The argument for each
constraint then uses this together with Definition 23 to show that X itself satisfies the
constraint. The details are as follows, for each constraint in turn.

Constraint 1. Let x ∈ start(X) and (A, s) ∈ config (X)(x). Then, x = 〈x1 , . . . , xn〉
where xi ∈ start(Xi) for 1 ≤ i ≤ n. By Definition 23, config (X)(x) = config(X1 )(x1) ∪
· · · ∪ config (Xn)(xn). Hence (A, s) ∈ config (Xj)(xj ) for some j ∈ [1 : n]. Also, xj ∈
start(Xj ). Since Xj is a configuration automaton, we apply Constraint 1 to Xj to
conclude s ∈ start(A). Hence, Constraint 1 holds for X.

Constraint 2. Let (x, a, y) be an arbitrary element of steps(X). We will establish
config (X)(x) a=⇒X,x config (X)(y).

For brevity, let Ai = sioa(Xi ) for i ∈ [1 : n]. Now (x, a, y) ∈ steps(X). So
(x, a, y) ∈ steps(sioa (X)) by Definition 23. Also by Definition 23, sioa (X) = sioa(X1) ‖
· · · ‖ sioa(Xn ) = A1 ‖ · · · ‖ An . So, (x, a, y) ∈ steps(A1 ‖ · · · ‖ An). Since x, y ∈
states(A1 ‖ · · · ‖ An), we can write x, y as 〈x1 , . . . , xn〉, 〈y1, . . . , yn〉 respectively, where
xi, yi ∈ states(Ai ) for i ∈ [1 : n]. From Definition 6, there exists a nonempty ϕ ⊆ [1 : n]
such that

(
∧

i∈ϕ a ∈ ŝig(Ai )(xi) ∧ (xi, a, yi) ∈ steps(Ai)) ∧
(
∧

i∈[1:n]−ϕ a �∈ ŝig(Ai)(xi )∧ xi = yi). (a)

Each Xi, i ∈ [1 : n], is a configuration automaton. Hence, by (a) and constraint 2 applied
to each Xi, i ∈ ϕ, ∧

i∈ϕ

(
config(Xi )(xi)

a=⇒Xi ,xi config(Xi )(yi)
)
. (b)

Also by (a), ∧
i∈[1:n]−ϕ

(
config (Xi)(xi ) = config(Xi )(yi)

)
. (c)

SinceX1 , . . . ,Xn are compatible,we have, by Definition 22, that config (X1)(x1)∪· · ·∪
config (Xn)(xn) and config (X1)(y1) ∪ · · · ∪ config (Xn )(yn) are both reduced compatible
configurations.

By Definition 23, created (X)(x)(a) =
⋃

a∈̂sig(Xi)(xi ),i∈[1:n]
created (Xi )(xi)(a). By

this, (a,b,c), and Definition 17, we obtain(⋃
i∈[1:n] config (Xi)(xi )

) a=⇒X,x

(⋃
i∈[1:n] config (Xi)(yi )

)
. (d)

By Definition 23, config (X)(x) =
⋃

i∈[1:n]
config (Xi)(xi ) and config (X)(y) =

⋃
i∈[1:n]

config (Xi)(yi).
Hence

config (X)(x) a=⇒X,x config (X)(y),

and we are done.

Constraint 3. Let x be an arbitrary state in states(X) and D an arbitrary reduced com-
patible configuration such that config (X)(x) a=⇒X,x D. We must show ∃y ∈ states(X) :
(x, a, y) ∈ steps(X) and config(X)(y) = D.

We can write x as 〈x1, . . . , xn〉 where xi ∈ states(Xi) for i ∈ [1 : n]. Since X1 , . . . ,Xn

are compatible, we have, by Definition 22, that auts(config (Xi )(xi)) ∩ auts(config (Xj )(xj )) =
36



∅ for all i, j ∈ [1 : n], i �= j , (thus, all SIOA in these configurations are unique) and that
config (X1)(x1)∪ · · · ∪ config (Xn)(xn ) is a reduced compatible configuration. Also, from
Definition 23, config (X)(x) =

⋃
i∈[1:n] config (Xi)(xi). Hence from config (X)(x) a=⇒X,x D,

( ⋃
i∈[1:n] config (Xi)(xi)

) a=⇒X,x D. (a)

Hence, from Definition 17, there exists a nonempty ϕ ⊆ [1 : n] such that( ∧
i∈ϕ a ∈ ŝig(Xi)(xi)

) ∧ ( ∧
i∈[1:n]−ϕ a �∈ ŝig(Xi )(xi)

)
. (b)

We now define Di, 1 ≤ i ≤ n, as follows. For i ∈ [1 : n]−ϕ, Di = config (Xi )(xi). For i ∈
ϕ, Di = 〈DAi ,map(D)�DAi〉, where DAi = {A : A ∈ D and [A ∈ auts(config (Xi)(xi )) or A ∈
created (Xi)(xi)(a)]}. Hence, by definition of Di, Definition 17, (a), and the compatibility
of X1, . . . ,Xn , we have ∧

i∈ϕ(config (Xi)(xi)
a=⇒Xi ,xi Di). (c)

Now each Xi, i ∈ [1 : n], is a configuration automaton. Hence, from (c) and constraint 3
applied to Xi, i ∈ ϕ,∧

i∈ϕ ,∃yi ∈ states(Xi ) : config (Xi )(yi) = Di and (xi, a, yi) ∈ steps(Xi ). (d)

Let y = 〈y1 , . . . , yn〉 where, for i ∈ ϕ, yi is given by (d), and for i ∈ [1 : n]−ϕ, yi = xi.
Hence, for i ∈ [1 : n], yi ∈ states(Xi). Since X1 , . . . ,Xn are compatible configuration
automata, we get, by Definitions 18 and 22,∧

i,j∈[1:n],i 	=j auts(config (Xi)(yi))∩ auts(config (Xj)(yj )) = ∅ and
config (X1)(y1) ∪ · · · ∪ config (Xn )(yn) is reduced and compatible. (e)

Thus, in particular, all SIOA in the configurations config (X1)(y1), . . . , config (Xn)(yn) are
unique. From (d), for i ∈ ϕ, config (Xi )(yi) = Di. By definition of Di, for i ∈ [1 : n] −ϕ,
config (Xi)(xi) = Di. By definition of yi, for i ∈ [1 : n] − ϕ, yi = xi. Hence, for
i ∈ [1 : n] − ϕ, config (Xi )(yi) = Di. Combining these, we get∧

i∈[1:n] config (Xi)(yi ) = Di. (f)

From the definition of Di and Definition 17, we have that D = D1 ∪ · · · ∪ Dn . Also, by
Definition 23, config(X)(y) =

⋃
i∈[1:n]

config (Xi )(yi). By this, (f), and D = D1∪· · ·∪Dn ,

config (X)(y) = D. (g)

By definition of yi, for i ∈ [1 : n] − ϕ, yi = xi. By (d), for i ∈ ϕ, (xi, a, yi) ∈ steps(Xi).
From these and (b), we get∧

i∈ϕ a ∈ ŝig(Xi )(xi)∧ (xi, a, yi) ∈ steps(Xi)∧
i∈[1:n]−ϕ a �∈ ŝig(Xi)(xi) ∧ yi = xi.

From this, x = 〈x1 , . . . , xn〉, y = 〈y1, . . . , yn〉, and Definitions 6 and 23, we conclude
(x, a, y) ∈ steps(X). From this and (g), we have

(x, a, y) ∈ steps(X) and config (X)(y) = D,

and we are done.

Constraint 4. We treat each subconstraint in turn.
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Constraint 4a: out(X)(x) ⊆ out(config (X)(x)).
By Definitions 6 and 23,

out (X)(x) =
⋃

i∈[1:n] out(Xi )(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4a. Hence∧
i∈[1:n]

out(Xi )(xi) ⊆ out(config (Xi )(xi)).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain( ⋃
i∈[1:n] out (Xi)(xi )

) ⊆ (⋃
i∈[1:n] out (config (Xi)(xi ))

)
. (b)

By Definition 23, config (X)(x) =
⋃

i∈[1:n] config (Xi )(xi). By assumption, X1 , . . . ,Xn ,
are compatible configuration automata. Hence, by Definition 22,

⋃
i∈[1:n] config (Xi )(xi)

is a reduced compatible configuration. So, from Definition 16, we obtain
out(config (X)(x)) =

⋃
i∈[1:n] out(config (Xi)(xi)). (c)

From (a,b,c), we obtain out (X)(x) =
⋃

i∈[1:n] out (Xi)(xi )⊆ (
⋃

i∈[1:n] out(config (Xi)(xi)))
=
out(config (X)(x)), as desired.

Constraint 4b: in(X)(x) = in(config (X)(x)). By Definitions 6 and 23,
in(X)(x) = (

⋃
i∈[1:n] in(Xi )(xi)) − (

⋃
i∈[1:n] out(Xi)(xi )). (a)

Since the Xi are configuration automata, they all satisfy constraints 4a and 4b. Hence∧
i∈[1:n] in(Xi)(xi) = in(config (Xi)(xi)),∧
i∈[1:n] out(Xi )(xi) ⊆ out(config (Xi )(xi)). (b)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence∧
i∈[1:n] out(Xi )(xi)∪ int(Xi)(xi) = out (config (Xi)(xi )) ∪ int(config (Xi )(xi)). (c)

And so, ∧
i∈[1:n] out(config (Xi)(xi)) ⊆ out(Xi)(xi )∪ int(Xi )(xi). (d)

Since out(Xi )(xi) ∩ int(Xi)(xi ) = ∅ for all i ∈ [1 : n], by the partitioning of actions into
input, output, and internal, we have, by (b,d)∧

i∈[1:n] out (Xi)(xi) = out (config (Xi)(xi ))− int(Xi )(xi). (e)

Taking the unions of both sides, over all i ∈ [1 : n], in (b) and (e), we obtain(⋃
i∈[1:n]

in(Xi )(xi)
)

=
( ⋃

i∈[1:n]
in(config (Xi)(xi))

)
,(⋃

i∈[1:n] out(Xi )(xi)
)

=
( ⋃

i∈[1:n] out(config (Xi )(xi)) − int(Xi)(xi)
)
. (f)

From (a,f), we obtain
in(X)(x) =

(⋃
i∈[1:n] in(config (Xi )(xi))

) −(⋃
i∈[1:n] out (config (Xi)(xi ))− int(Xi )(xi)

)
. (g)

From (c), ∧
i∈[1:n] int(Xi)(xi ) ⊆ out (config (Xi )(xi)) ∪ int(config (Xi )(xi)). (h)

Now (out (config (Xi)(xi ))∪int (config (Xi)(xi )))∩in(config (Xi)(xi)) = ∅, for all i ∈ [1 : n],
by the partitioning of actions into input, output, and internal. Hence, by (h),∧

i∈[1:n] int(Xi )(xi) ∩ in(config (Xi )(xi)) = ∅. (i)
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From (b,i), and the compatibility of X1 , . . . ,Xn , we get( ⋃
i∈[1:n] int(Xi )(xi)

) ∩ ( ⋃
i∈[1:n] in(config (Xi)(xi))

)
= ∅. (j)

From (g,j)
in (X)(x) =

( ⋃
i∈[1:n] in(config (Xi)(xi))

) − ( ⋃
i∈[1:n] out(config (Xi)(xi))

)
. (k)

By Definition 23, config (X)(x) =
⋃

i∈[1:n] config (Xi )(xi). By assumption, X1 , . . . ,Xn ,
are compatible configuration automata. Hence, by Definition 22,

⋃
i∈[1:n]

config (Xi )(xi)
is a reduced compatible configuration. So, from Definition 16, we obtain

in(config (X)(x) ) =
( ⋃

i∈[1:n]
in(config (Xi )(xi))

) − (⋃
i∈[1:n]

out (config (Xi)(xi ))
)
. (l)

Finally, from (k,l), we obtain in(X)(x) =
( ⋃

i∈[1:n] in(config (Xi)(xi))
)−( ⋃

i∈[1:n] out(config (Xi )(xi))
)

= in(config (X)(x)), as desired.

Constraint 4c: int(X)(x) ⊇ int(config (X)(x) ).
By Definitions 6 and 23,

int(X)(x) =
⋃

i∈[1:n] int(Xi)(xi ). (a)

Since the Xi are configuration automata, they all satisfy constraint 4c. Hence∧
i∈[1:n] int(Xi )(xi) ⊇ int(config (Xi)(xi )).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain(⋃
i∈[1:n] int(Xi)(xi )

) ⊇ (⋃
i∈[1:n] int(config (Xi )(xi))

)
. (b)

By Definition 23, config (X)(x) =
⋃

i∈[1:n] config (Xi )(xi). By assumption, X1 , . . . ,Xn ,
are compatible configuration automata. Hence, by Definition 22,

⋃
i∈[1:n] config (Xi )(xi)

is a reduced compatible configuration. So, from Definition 16, we obtain
int(config (X)(x)) =

⋃
i∈[1:n] int(config (Xi )(xi)). (c)

From (a,b,c), we obtain int(X)(x) =
⋃

i∈[1:n] int(Xi )(xi) ⊇ (
⋃

i∈[1:n] int(config (Xi )(xi)))
=
int(config (X)(x)), as desired.

Constraint 4d: out(X)(x) ∪ int(X)(x) = out(config (X)(x) )∪ int(config (X)(x) ).
By Definitions 6 and 23,

out (X)(x) =
⋃

i∈[1:n]
out(Xi )(xi),

int(X)(x) =
⋃

i∈[1:n] int(Xi )(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence∧
i∈[1:n](out (Xi)(xi) ∪ int(Xi )(xi)) = (out (config (Xi )(xi)) ∪ int(config (Xi )(xi))).

Taking the unions of both sides, over all i ∈ [1 : n], we obtain
(
⋃

i∈[1:n] out(Xi )(xi) ∪ int(Xi)(xi )) = (
⋃

i∈[1:n] out(config (Xi)(xi))∪ int(config (Xi)(xi))).
(b)

By Definition 23, config (X)(x) =
⋃

i∈[1:n] config (Xi )(xi). By assumption, X1 , . . . ,Xn ,
are compatible configuration automata. Hence, by Definition 22,

⋃
i∈[1:n] config (Xi )(xi)

is a reduced compatible configuration. So, from Definition 16, we obtain
out(config (X)(x)) =

⋃
i∈[1:n] out(config (Xi)(xi)),

int(config (X)(x)) =
⋃

i∈[1:n] int(config (Xi)(xi)). (c)
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From (a,b,c), we obtain (out (X)(x)∪ int (X)(x)) = (
⋃

i∈[1:n] out(Xi )(xi)∪int(Xi )(xi)) =
(
⋃

i∈[1:n] out(config (Xi )(xi))∪int(config (Xi )(xi))) = out (config (X)(x))∪int (config (X)(x)),
as desired.

Since we have established that X satisfies all the constraints, the proof is done.

5.2. Action Hiding for Configuration Automata
Definition 24 (Action hiding for configuration automata). Let X be a configura-
tion automaton and Σ a set of actions. Then X \ Σ is the state machine consisting of
the fol lowing components:

1. A signature I/O automaton sioa (X \ Σ) = sioa (X) \ Σ.
2. A configuration mapping config (X \ Σ) = config (X).
3. For each x ∈ states(X \ Σ), a mapping created (X \ Σ)(x) = created (X)(x).

As in Definition 18, we define states(X \ Σ) = states(sioa(X \ Σ)), start(X \ Σ) =
start(sioa (X \ Σ)), sig(X \ Σ) = sig(sioa (X \ Σ)), steps(X \ Σ) = steps(sioa (X \ Σ)),
and likewise for all other components and attributes of sioa(X).

Proposition 22. Let X be a configuration automaton and Σ a set of actions. Then
X \ Σ is a configuration automaton.

Proof: We must show that X \ Σ satisfies the constraints of Definition 18. Since X is
a configuration automaton, constraints 1, 2, and 3 hold for X. From Definitions 7 and
24, we see that the only components of X and X \Σ that differ are the signature and its
various subsets. Now constraints 1, 2, and 3 do not involve the signature. Hence, they
also hold for X \ Σ.

We deal with each subconstraint of Constraint 4 in turn.

Constraint 4a: out(X \ Σ)(x) ⊆ out(config (X \ Σ)(x)).
By Definition 24, out(X \ Σ)(x) = out (sioa(X \ Σ))(x) = out(sioa (X) \ Σ)(x). By Def-
inition 7, out(sioa (X) \ Σ)(x) = out(sioa (X))(x) − Σ. By Definition 18, which is ap-
plicable since X is a configuration automaton, out (sioa(X) )(x) = out(X)(x). Hence,
out(sioa (X))(x) −Σ = out(X)(x) −Σ. Putting the above equalities together, we obtain

out (X \ Σ)(x) = out (X)(x) − Σ. (a)

Since X is a configuration automaton, it satisfies constraint 4a. Hence
out(X)(x) ⊆ out(config (X)(x) ). (b)

By Definition 24, config (X \ Σ) = config (X). Hence,
out(config (X)(x) ) = out(config (X \ Σ)(x)). (c)

From (a,b,c), we obtain out (X \ Σ)(x) ⊆ out(X)(x) ⊆ out (config (X)(x)) = out (config (X \ Σ)(x)),
as desired.

Constraint 4b: in(X \ Σ)(x) = in(config (X \ Σ)(x)).
By Definition 24, in(X \ Σ)(x) = in(sioa (X \ Σ))(x) = in(sioa(X) \ Σ)(x). By Defini-
tion 7, in(sioa (X) \ Σ)(x) = in(sioa (X))(x). By Definition 18, which is applicable since
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X is a configuration automaton, in(sioa (X))(x) = in(X)(x). Putting the above equali-
ties together, we obtain

in(X \ Σ)(x) = in(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4b. Hence
in(X)(x) = in(config (X)(x)). (b)

By Definition 24, config (X \ Σ) = config (X). Hence,
in(config (X)(x) ) = in(config (X \ Σ)(x)). (c)

From (a,b,c), we obtain in(X \ Σ)(x) = in (X)(x) = in(config (X)(x)) = in(config (X \ Σ)(x)),
as desired.

Constraint 4c: int(X \ Σ)(x) ⊇ int(config (X \ Σ)(x)).
By Definition 24, int(X \ Σ)(x) = int(sioa (X \ Σ))(x) = int(sioa (X) \ Σ)(x). By Def-
inition 7, int(sioa (X) \ Σ)(x) = int(sioa (X))(x) ∪ (out (sioa (X))(x) ∩ Σ). By Defini-
tion 18, which is applicable since X is a configuration automaton, int(sioa (X))(x) =
int(X)(x) and out (sioa (X))(x) = out (X)(x). Hence, int(sioa (X) \ Σ)(x) = int(X)(x)∪
(out (X)(x) ∩Σ). Putting the above equalities together, we obtain

int(X \ Σ)(x) = int(X)(x) ∪ (out (X)(x) ∩Σ). (a)

Since X is a configuration automaton, it satisfies constraint 4c. Hence
int(X)(x) ⊇ int(config (X)(x)). (b)

By Definition 24, config (X \ Σ) = config (X). Hence,
int(config (X)(x) ) = int(config (X \ Σ)(x)). (c)

From (a,b,c), we obtain int(X \ Σ)(x) ⊇ int(X)(x) ⊇ int(config (X)(x)) = int(config (X \ Σ)(x)),
as desired.

Constraint 4d: out(X \ Σ)(x)∪int (X \ Σ)(x) = out(config (X \ Σ)(x))∪int (config (X \ Σ)(x)).
In the proofs for Constraints 4a and 4c above, we established (the equations marked
“(a)”)

out (X \ Σ)(x) = out (X)(x) − Σ,
int(X \ Σ)(x) = int(X)(x) ∪ (out (X)(x) ∩Σ).

Now (out (X)(x) − Σ)∪ (out (X)(x) ∩Σ) = out(X)(x), and so
out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out (X)(x) ∪ int(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4d. Hence
out (X)(x) ∪ int(X)(x) = out (config (X)(x)) ∪ int(config (X)(x)). (b)

By Definition 24, config (X \ Σ) = config (X). Hence,
out (config (X)(x))∪ int(config (X)(x)) =
out (config (X \ Σ)(x)) ∪ int(config (X \ Σ)(x)). (c)

From (a,b,c), we obtain out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(X)(x) ∪ int(X)(x) =
out(config (X)(x)) ∪ int(config (X)(x)) = out (config (X \ Σ)(x)) ∪ int(config (X \ Σ)(x)),
as desired.

Since we have established that X satisfies all the constraints, the proof is done.
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5.3. Action Renaming for Configuration Automata
Definition 25. Let C = 〈A,S〉 be a compatible configuration and let ρ be an injective
mapping from actions to actions whose domain includes

⋃
A∈A acts(A). Then we define

ρ(C) = 〈ρ(A), ρ(S)〉 where ρ(A) = {ρ(A) | A ∈ A}, and ρ(S)(ρ(A)) = S(A) for al l
A ∈ A.

Definition 26 (Action renaming for configuration automata). Let X be a con-
figuration automaton and let ρ be an injective mapping from actions to actions whose do-
main includes⋃

C∈states(X) ŝig(X)(C). Then ρ(X) consists of the fol lowing components:

1. A signature I/O automaton sioa (ρ(X)) = ρ(sioa (X)).
2. A configuration mapping config (ρ(X) ) with domain states(ρ(X) ) (= states(X))

and such that config (ρ(X) )(x) = ρ(config (X)(x)).
3. For each x ∈ states(ρ(X)), a mapping created (ρ(X) )(x) with domain ŝig(ρ(X))(x)

and such that created (ρ(X))(x)(ρ(a) ) = {ρ(A) | A ∈ created (X)(x)(a)} for al l
a ∈ ŝig(X)(x).

Proposition 23. Let X be a configuration automaton and let ρ be an injective mapping
from actions to actions whose domain includes

⋃
C∈states(X) ŝig(X)(C). Then ρ(X) is a

configuration automaton.

Proof: We must show that ρ(X) satisfies the constraints of Definition 18. Since X is a
configuration automaton, constraints 1, 2, and 3 hold for X. From Definitions 8 and 26,
we see that the states of ρ(X) and the configurations in config (ρ(X))(x) are unchanged by
applyingρ, with the exception of the signatures of the configurations. Hence constraint 1
also holds for ρ(X).

Constraints 2, and 3 hold since ρ is injective, so we can simply replace a by ρ(a) uni-
formly in the transition relation of both ρ(X) and the configurations in config (ρ(X))(x).
The constraints for ρ(X) then follow from the corresponding ones for X.

From Definitions 25 and 26, we have out(config (ρ(X) )(x)) = ρ(out (config (X)(x) ))
and
out(ρ(X))(x) = ρ(out (X)(x)). Since constraint 4a holds for X, we have out (X)(x) ⊆
out(config (X)(x)). Hence ρ(out (X)(x)) ⊆ ρ(out (config (X)(x))). We thus conclude
out(ρ(X))(x) ⊆ out(config (ρ(X))(x)). Hence constraint 4a holds for ρ(X).

The other subconstraints of constraint 4 can be established in a similar manner.

5.4. Multi-level Configuration Automata
Since a configuration automaton is an SIOA, it is possible for a configuration automa-

ton to create another configuration automaton. This leads to a notion of “multi-level,”
or “nested” configuration automata. The nesting structure is well-founded, that is, the
binary relation “X is created by Y ’ is well-founded in all global states.

This ability to nest entire configuration automata makes our model flexible. For ex-
ample, administrative domains can be modeled in a natural and straightforward manner.
It may also be possible to emulate the motion of ambients in the ambient calculus [8]. If
two configuration automata X,Y are such that neither is “included” in the other, then
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X can “move into” Y by first destroying itself, and then having Y re-create X. This
however would require some book-keeping to re-create X in the same state it was in
before it destroyed itself. Development of these ideas, including the precise notion of “is
included in,” is a topic for a subsequent paper.

5.5. Compositional Reasoning for Configuration Automata
We now establish compositionality results for configuration automata analogous to

those established previously for SIOA. The notions of execution and trace of a configu-
ration automaton X depend solely on the SIOA component sioa(X). Furthermore, the
SIOA component of a composition of configuration automata depends only on the SIOA
components of the individual configuration automata (see Definition 23). It follows that
the results of Sections 3 and 4 carry over for configuration automata with no modification.
We restate them for configuration automata solely for the sake of completeness.

5.5.1. Execution Projection and Pasting for Configuration Automata
Definition 27 (Execution projection for configuration automata). Let X = X1 ‖
· · · ‖ Xn be a configuration automaton. Let α be a sequence x0a1x1a2x2 . . . xj−1ajxj . . .

where ∀j ≥ 0, xj = 〈xj
1, . . . , xj

n〉 ∈ states(X) and ∀j > 0, aj ∈ ŝig(X)(xj−1). For
i ∈ [1 :n], define α�Xi to be the sequence resulting from:

1. replacing each xj by its i’th component x
j
i , and then

2. removing al l ajxj
i such that aj �∈ ŝig(Xi)(xj−1

i ).

Our execution projection result states that the projection of an execution (of a com-
posed configuration automaton X = X1 ‖ · · · ‖ Xn) onto a component Xi, is an execution
of Xi.

Theorem 24 (Execution projection for configuration automata). Let X = X1 ‖
· · · ‖ Xn be a configuration automaton. If α ∈ execs (X) then α�Xi ∈ execs (Xi) for al l
i ∈ [1 :n].

Our execution pasting result requires that a candidate execution α of a composed
automaton X = X1 ‖ · · · ‖ Xn must project onto an actual execution of every component
Xi, and also that every action of α not involving Xi does not change the configuration
of Xi. In this case, α will be an actual execution of X.

Theorem 25 (Execution pasting for configuration automata). Let X = X1 ‖ · · · ‖
Xn be a configuration automaton. Let α be a sequence x0a1x1a2x2 . . . xj−1ajxj . . . where
∀j ≥ 0, xj = 〈xj

1 , . . . , xj
n〉 ∈ states(X) and ∀j > 0, aj ∈ ŝig(X)(xj−1). Furthermore,

suppose that, for al l i ∈ [1 :n]:

1. α�Xi ∈ execs (Xi), and
2. ∀j > 0 : if aj �∈ ŝig(Xi)(xj−1

i ) then xj−1
i = xj

i .

Then, α ∈ execs (X).
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5.5.2. Trace Pasting for Configuration Automata
Corollary 26 (Trace pasting for configuration automata). Let X1 , . . . ,Xn be com-
patible configuration automata, and let X = X1 ‖ · · · ‖ Xn. Let β be a trace and as-
sume that there exist β1, . . . , βn such that (1) (∀j ∈ [1 : n] : βj ∈ traces (Xj)), and (2)
zip(β, β1, . . . , βn). Then β ∈ traces (X).

The definition of zip(β, β1, . . . , βn) remains unchanged for configuration automata,
since it does not refer to the internal structure of automata, only to external actions and
external signatures.

5.5.3. Trace Substitutivity and Equivalence for Configuration Automata
Theorem 27 (Trace substitutivity for configuration automata). Let X1 , . . . ,Xn

be compatible configuration automata, and let X = X1 ‖ · · · ‖ Xn. For some k ∈ [1 :n],
let X1, . . . ,Xk−1,X

′
k ,Xk+1 , . . . ,Xn be compatible configuration automata, and let X′ =

X1 ‖ · · · ‖ Xk−1 ‖ X′
k ‖ Xk+1 ‖ · · · ‖ Xn. Assume also that traces(Xk ) ⊆ traces (X′

k ).
Then traces(X) ⊆ traces (X′ ).

Theorem 28 (Trace substitutivity for configuration automata w.r.t. action hiding).
Let X,X ′ be configuration automata such that traces (X) ⊆ traces (X′). Let Σ a set of
actions. Then traces (X \ Σ) ⊆ traces(X′ \ Σ).

Theorem 29 (Trace substitutivity for configuration automata w.r.t. action renaming).
Let X,X′ be configuration automata such that traces (X) ⊆ traces (X′ ). Let ρ be an injec-
tive mapping from actions to actions whose domain includes acts(X). Then traces(ρ(X)) ⊆
traces(ρ(X ′ )).

Theorem 30 (Trace equivalence is a congruence). Let X1, . . . ,Xn be compatible con-
figuration automata, and let X = X1 ‖ · · · ‖ Xn. For some k ∈ [1 :n], let X1, . . . ,Xk−1 ,X′

k,Xk+1 , . . . ,Xn

be compatible configuration automata, and let X′ = X1 ‖ · · · ‖ Xk−1 ‖ X′
k ‖ Xk+1 ‖ · · · ‖

Xn.

1. If traces (Xk) = traces (X′
k), then traces(X) = traces (X′ ).

2. If traces (Xk) = traces (X′
k), then traces(Xk \ Σ) = traces (X′

k \ Σ).
3. If traces (Xk) = traces (X′

k), then traces(ρ(Xk )) = traces(ρ(X ′
k )).

6. Creation Substitutivity for Configuration Automata

We now show that trace inclusion is monotonic with respect to process creation,
under certain conditions. Our intention is that, if a configuration automaton Y creates
an SIOA B when executing some particular actions in some particular states, then, if
configuration automaton X results from modifying Y by making it create an SIOA A
instead, and if traces (A) ⊆ traces (B), then we can prove traces(X) ⊆ traces(Y ). In the
rest of this section, let X be a configuration automaton that creates SIOA A in some
actions, but never creates SIOA B . Also let Y be a configuration automaton that creates
SIOA B in some actions, but never creates SIOA A.
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Definition 28 ( [B/A],�AB ). Let ϕ ⊆ Autids, and A,B be SIOA identifiers. Then we
define ϕ[B/A] = (ϕ −{A}) ∪ {B} if A ∈ ϕ, and ϕ[B/A] = ϕ if A �∈ ϕ.

Let C,D be configurations. We define C �AB D iff (1) auts(D) = auts(C)[B/A],
(2) for every A′ ∈ auts(C) − {A}: map (D)(A′ ) = map(C)(A′ ), and (3) ext (A)(s) =
ext(B)(t) where s = map (C)(A), t = map(D)(B). That is, in �AB-corresponding con-
figurations, the SIOA other than A,B must be the same, and must be in the same state.
A and B must have the same external signature.

In the sequel, when we write ψ = ϕ[B/A], we always assume that B �∈ ϕ and A �∈ ψ.

Proposition 31. Let C,D be configurations such that C�ABD. Then ext (C) = ext(D).

Proof: If A �∈ C then C = D by Definition 28, and we are done. Now suppose that
A ∈ C, so that C = 〈A ∪ {A} ,S〉 for some set A of SIOA identifiers, and let s = S(A).
Then, by Definition 16, out(C) = (

⋃
A′∈A out(A′ )(S(A′))) ∪ out(A)(s).

From C �AB D and Definition 28, we have D = 〈A ∪ {B},S′ 〉, where S′ agrees with
S on all A′ ∈ A, and S′(B) = t such that ext (A)(s) = ext(B)(t). Hence out (A)(s) =
out(B)(t) and in(A)(s) = in(B)(t). By Definition 16, out(D) = (

⋃
A′∈A out(A′ )(S′ (A′)))∪

out(B)(t). Finally, (
⋃

A′∈A out (A′)(S ′ (A′))) ∪ out(B)(t) = (
⋃

A′∈A out(A′ )(S(A′ ))) ∪
out(A)(s), since S′ agrees with S on all A′ ∈ A, and out (A)(s) = out (B)(t).

Putting the above equalities together, we obtain out(C) = (
⋃

A′∈A out(A′ )(S(A′ )))∪
out(A)(s) = (

⋃
A′∈A out (A′)(S ′ (A′)))∪out (B)(t) = out(D). We establish in (C) = in(D)

in the same manner, and omit the repetitive details. Hence ext(C) = ext(D).

To obtain monotonicity, the start configurations of Y must include a configura-
tion corresponding to every configuration of X, i.e., ∀x ∈ start(X),∃y ∈ start(Y ) :
auts(config (Y )(y) ) = auts(config (X)(x))[B/A]. Together with traces(A) ⊆ traces (B),
we might expect to be able to establish traces(X) ⊆ traces(Y ). However, suppose that
X has an execution α in which A is created exactly once, terminates some time after it
is created, and after A’s termination, X executes an input action a. Let β = traceX (α)
and let βA be the trace that A generates during the execution of α by X. Since
traces(A) ⊆ traces(B), we can construct (by induction) using conditions 1, 2, and 3
of Definition 18, a corresponding execution α′ of Y , up to the point where A terminates.
Since traces (A) ⊆ traces (B), we have βA ∈ traces (B). Define B as follows. B emulates
A faithfully up to but not including the point at which A terminates (i.e., self-destructs).
Then, B sets it’s external signature to empty but keeps some internal actions enabled.
This allows B to export an empty signature at this point. After executing an internal
action, B permanently enters a state in which it’s signature has action a as an output,
but a is never actually enabled. Thus, no trace of Y from this point onwards can con-
tain action a. Hence, β cannot be a trace of Y , and so traces (X) �⊆ traces(Y ), since
β ∈ traces (X). This example is a consequence of the fact that an SIOA can prevent
an action a from occurring, if a is an output action of the SIOA which is not currently
enabled, and it shows that we also need to relate the traces of A that lead to termination
with those of B that lead to termination.

We therefore also require that the terminating traces of A (see formal definition
below) are a subset of the terminating traces of B . This however, is still insufficient,
since we have so far only required that X create A “whenever” Y creates B . We have
not prevented X from creating A in more situations than those in which Y creates B .
This can cause traces(X) �⊆ traces (Y ), as the following example shows.
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Figure 7: The Automata in Example 1

Example 1. Let A,B,C be the SIOA and X,Y be the configuration automata given in
Figure 7, as indicated by the automaton name fol lowed by “::”. Each node represents
a state and each directed edge represents a transition, and is labeled with the name of
the action executed. Al l the automata have a single start state. A,B,C, have start state
s0, t0 , u0 respectively, and out(A)(s0 ) = out (B)(t0) = {a, b}. Note that A has b in the
signature of s0 but does not enable b in s0. Al l the states of X,Y , except the terminating
states, are labeled with their corresponding configurations. The start states of X,Y are
the states with configuration {(C,u0)}.

By inspection, ∀x ∈ start(X),∃y ∈ start(Y ) : config (Y )(y) = config (X)(x)[B/A],
traces(A) ⊆ traces(B), and ttraces(A) ⊆ ttraces (B). Also by inspection, traces (X) =
{c, ca, cd, cad, cda} and traces(Y ) = {c, ca, cb, cd}, and so traces (X) �⊆ traces (Y ) (we
omit the external signatures in the traces). This is because X creates A along the tran-
sition which is generated by the (u0, c, u′′) transition of C (according to constraint 3 of
Definition 18), whereas Y does not.

We now impose a restriction which precludes scenarios such as in Example 1.

Definition 29 (Creation corresponding configuration automaton). Let X,Y be
configuration automata and A,B be SIOA. We say that X,Y are creation-corresponding
w.r.t. A,B iff

1. X never creates B and Y never creates A.
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2. Let β ∈ traces∗(X) ∩ traces∗(Y ), and let α ∈ execs∗(X), π ∈ execs∗(Y ) be such
that traceA(α) = traceB (π) = β. Let x = last(α), y = last(π), i.e., x, y are the last
states along α, π, respectively. Then

∀a ∈ ŝig(X)(x) ∩ ŝig(Y )(y) : created (Y )(y)(a) = created (X)(x)(a)[B/A].

Now, in addition to the requirements discussed above in Example 1, we require that the
configuration automata X,Y be creation-corresponding w.r.t. A,B , i.e., that from the
last states of executions (of X,Y , respectively) with the same trace, execution of the
same action, (by X,Y , respectively), creates the same SIOA, except that Y may create
B where X creates A. We also restrict A, B so that their internal actions do not create
SIOA, and do not lead to an empty signature, i.e., to self-destruction. Also B can have
only a single start state. We give results for finite trace inclusion and trace inclusion.

Let s0a1s1 . . . sn−1ansn be a finite execution of SIOA A such that ŝig(A)(sn) = ∅.
Then, without loss of generality, we assume that, for all t such that (sn−1 , an , t) ∈
steps(A), ŝig(A)(t) = ∅. That is, execution of an−1 per se, and not the choice of target
state, determines that A is destroyed. We also assume that hiding is not used, so that a
state and its configuration have the same signature, i.e., for every configuration automa-
ton X, ∀x ∈ states(X): out(X)(x) = out (config (X)(x)), in(X)(x) = in(config (X)(x)),
and int(X)(x) = int(config (X)(x)).

Definition 30 (Terminating execution, terminating trace). Let s0a1s1 . . . sn−1ansn

be a finite execution of SIOA A such that ŝig(A)(sn) = ∅, and let α = s0a1s1 . . . sn−1an,
i.e., remove the final statesn . Then we say that α is a terminating execution of A. Define
texecs (A) = {α | α is a terminating execution of A}. If β = trace (α), then we say that
β is a terminating trace of A. Define ttraces(A) = {β | β is a terminating trace of A}.
Note that we define a terminating execution to end in an action (which sets A’s signature
to empty), and not in a state. This is due to Definitions 16 and 18, which remove an SIOA
A when it has an empty signature, and hence the final state s, in which ŝig(A)(s) = ∅,
does not appear in any configuration of the containing configuration automaton X, i.e.,
there is no reachable state x of X and configuration C such that config (X)(x) = C and
map(C)(A) = s. Thus, to define a notion of projection of an execution of configuration
automaton X onto an SIOA A that is “inside” X, we have to define the terminating
executions of A so that they omit the final state. We also extend the concatenation
operator � so that it appends a single action: for a finite execution fragment α =
s0a1s1a2 . . . aisi we define α � a to be s0a1s1a2 . . . aisia, i.e., α followed by a.

Definition 31 (Projection of configuration automaton onto a contained SIOA, ��).
Let α = x0a1x1 . . . xiai+1xi+1 . . . be an execution of a configuration automaton X. Then
α��A is a sequence of executions of A, and results from the fol lowing steps:

1. insert a “delimiter” $ after an action ai whose execution causes A to set its sig-
nature to empty,

2. remove each xiai+1 such that A �∈ auts(X)(xi ),
3. remove each xiai+1 such that ai+1 �∈ ŝig(A)(map (config (X)(xi))(A)),
4. if α is finite, x = last(α), and A �∈ auts(X)(x), then remove x,
5. replace each xi by map (config (X)(xi))(A).
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α��A is, in general, a sequence of several (possibly an infinite number of) executions of
A, all of which are terminating except the last. That is, α��A = α1 $ · · · $αk where
(∀j, 1 ≤ j < k : αj ∈ texecs (A)) ∧ αk ∈ execs (A).

Definition 32 (Prefix relation among sequences of executions, �,≺). Let α1 $ · · · $αk

and
δ1 $ · · · $ δ� be sequences of executions of some SIOA. Define α1 $ · · · $αk � δ1 $ · · · $ δ�

iff k ≤ � ∧ (∀j, 1 ≤ j < k : αj = δj) ∧ αk ≤ δk. If α1 $ · · · $αk � δ1 $ · · · $ δ� and
α1 $ · · · $αk �= δ1 $ . . . $ δ� then we write α1 $ · · · $αk ≺ δ1 $ · · · $ δ�.

Definition 33 (Trace of a sequence of executions, straceA(α1 $ · · · $αk)). Let α1 $ · · · $αk

be a sequence of executions of some SIOA A. Then straceA(α1 $ · · · $αk) is traceA(α1)$ · · · $ traceA(αk ),
i.e., a sequence of traces of A, corresponding to the sequence of executions α1 $ · · · $αk.

Note that we overload the delimiter $ , and use it also in sequences of traces. It follows
from Definition 31 that α′ ≤ α implies α′��A � α��A, where α′, α are executions of
some configuration automaton. If α = x0a1x1 . . . xiai+1xi+1 . . . is an execution of some
configuration automaton, then define trace(α, j, k) to be trace (xjaj+1 · · · akxk) if j ≤ k,
and to be λ (the empty sequence) if j > k.

Definition 34 (Execution correspondence relation, RAB). Let α, π be executions
of configuration automata X,Y respectively. Then αRAB π iff there exists a nondecreas-
ing mapping
m : {0, . . . , |α|} → {0, . . . , |π|} such that al l of the fol lowing hold:

1. m(0) = 0.
2. ∀j, 0 ≤ j ≤ |π| ∧ j �= ω,∃i, 0 ≤ i ≤ |α| ∧ i �= ω : m(i) ≥ j .
3. ∀i, 0 < i ≤ |α| ∧ i �= ω : traceY (m(i-1) |π|m(i )) = traceX (i-1 |α|i).
4. ∀i, 0 < i ≤ |α| ∧ i �= ω : traceB ((m(i-1) |π|m(i ))��B) = traceA((i-1 |α|i)��A).
5. ∀i, 0 ≤ i ≤ |α| ∧ i �= ω : config (X)(xi ) �AB config (Y )(ym(i) ).

Proposition 32. Let α, π be executions of configuration automata X,Y respectively. If
αRAB π, then traceX(α) = traceY (π).

Proof: For finite executions, by induction on the length of α, using Clause 3 of Defini-
tion 34 to establish the inductive step. For infinite executions, apply the finite case for
each prefix, and then take the limit with respect to prefix ordering.

Lemma 33 (Execution correspondence). Let X,Y be configuration automata, and
A,B be SIOA. Assume that,

1. B has a single start state, and A, B do not destroy themselves by executing an
internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,
3. ∀x ∈ start(X),∃y ∈ start(Y ) : config (X)(x) �AB config(Y )(y),
4. traces∗(A) ⊆ traces∗(B),
5. ttraces (A) ⊆ ttraces(B), and
6. X,Y are creation-corresponding w.r.t. A,B .
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Then
∀α ∈ execs∗(X),∃π ∈ execs∗(Y ) : αRAB π.

Proof: Fix α = x0a1x1a2x2 . . . x�a�+1x�+1 to be an arbitrary finite execution of X. Let
α��A = α1

A $ · · · $αk
A for some k ≥ 0, and where (∀j, 1 ≤ j < k : αj

A ∈ texecs (A)) and
αk

A ∈ execs∗(A). By Assumptions 4 and 5, each such α
j
A has at least one corresponding

execution πj
B

which has the same trace. Thus there exist executions π1
B, . . . , πk

B of B
such that

(∀j, 1 ≤ j ≤ k : traceA(αj
A ) = traceB (πj

B )),
(∀j, 1 ≤ j < k : πj

B ∈ texecs (B)), and
πk

B ∈ execs∗(B).
(AB)

For the rest of the proof, fix these π1
B, . . . , πk

B. Now define prefixes (α1
A $ · · · $αk

A) ={
ξ | ξ � α1

A $ · · · $αk
A

}
and prefixes (π1

B $ · · · $πk
B ) =

{
χ | χ � π1

B $ · · · $πk
B

}
. Then

it follows, from (AB), that there exists a mapping mAB : prefixes (α1
A $ · · · $αk

A) →
prefixes (π1

B $ · · · $πk
B ) such that, for ξ ∈ prefixes (α1

A $ · · · $αk
A ), mAB (ξ) = χ, where

1. straceA(ξ) = straceB (χ) and
2. for all χ′ ∈ prefixes (π1

B $ · · · $πk
B) such that straceA(ξ) = straceB (χ′), we have

χ � χ′. That is, χ is the least (with respect to the prefix ordering given by �) χ′

such that straceA(ξ) = straceB(χ′).

We now establish (*):

For every prefix α′ of α, there exists a π′ such that

1. π′ is a finite execution of Y ,
2. α′ RAB π′ , and
3. π′��B � π1

B $ · · · $πk
B and mAB (α′��A) = π′��B .

(*)

The proof is by induction on the length of α′.

Base case: α′ = x0 . Then π′ = y0 such that y0 ∈ start(Y ) and config (X)(x0 ) �AB

config (Y )(y0). y0 exists by Assumption 3. π′ is a finite (zero-length) execution of Y ,
since y0 ∈ start(Y ). We now establish α′ RAB π′, i.e., Definition 34. Let m(0) = 0. Then
clause 1 holds. Also clause 2 holds since α′, π′ both have length 0. Clauses 3 and 4 hold
vacuously, because the range 0 < i ≤ |α′| is empty: since α′ = x0, we have |α′| = 0, as
α′ contains zero transitions. Clause 5 holds since config (X)(x0) �AB config (Y )(y0) and
m(0) = 0.

Finally, π′��B is the (unique) start state of B , by Definition 31, and Assumption 1.
Hence π′��B � π1

B $ · · · $πk
B . Also, mAB (α′ ��A) = π′��B , by definition of mAB and

config (X)(x0) �AB config (Y )(y0).

Induction step: α′ = α′′ � (xiai+1xi+1) where α′′ = x0a1x1a2x2 . . . xi−1aixi. The
induction hypothesis is as follows.
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There exists a π′′ such that

1. π′′ is a finite execution of Y ,
2. α′′ RAB π′′, and
3. π′′��B � π1

B $ · · · $πk
B and mAB (α′′ ��A) = π′′ ��B .

(ind. hyp.)

We now extend π′′ to a finite π′ such that α′ RAB π′. The induction step splits into eight
cases, treated below. First, we establish some terminology and assertions that apply to
all the cases.

Let Ci = config (X)(xi ), Ci+1 = config (X)(xi+1 ). Also let π′′ = y0b1y1b2y2 . . . yj−1aj yj ,
and Dj = config (Y )(yj ). By Constraint 2 of Definition 18,

Ci
ai+1

=⇒ϕ Ci+1 where ϕ = created (X)(xi)(ai+1). (a)

Hence
ai+1 ∈ ŝig(X)(xi) and ai+1 ∈ ŝig(Ci), (b)

since ai+1 can be executed from xi, and Ci = config (X)(xi ). By α′′ RAB π′′ and Propo-
sition 32,

traceX (α′′) = traceY (π′′ ), (c)

and hence also
ext (X)(xi ) = ext(Y )(yj ), (d)

since xi, yj are the last states of α′′, π′′ , respectively. In the rest of the proof, let
β = traceX(α′′ ) = traceY (π′′ ). By α′′ RAB π′′ and Definition 34, we have

j = m(i) and Ci �AB Dj . (e)

Suppose that ai+1 ∈ ŝig(Y )(yj). Then, by (b, c), Assumption 6, and Definition 29, we
have

created (Y )(yj )(ai+1 ) = created (X)(xi )(ai+1)[B/A] if ai+1 ∈ ŝig(Y )(yj ). (f)

We now deal with each case of the induction step, in turn. Intuitively, in those cases
where A participates in ai+1 , we use Assumptions 2, 4, and 5 (i.e., internal actions of A, B
do not create SIOA, traces∗(A) ⊆ traces∗(B), and ttraces (A) ⊆ ttraces(B)) to construct
the extension of π′′ to π′. In those cases where A does not participate in ai+1 , we use
Assumption 6 (X,Y are creation-corresponding w.r.t. A,B) to construct a configuration

Dj+1 of Y such that Dj
ai+1

=⇒ψ Dj+1 for a suitable ψ. Constraint 3 of Definition 18 then
gives the needed transition of Y that extends π′′ to π′.

Case 1: A �∈ auts(Ci) and A �∈ auts(Ci+1).
By (e), Ci �AB Dj . Since A �∈ auts(Ci), we have, by Definition 34, that Ci = Dj .

Since A �∈ auts(Ci+1), if follows that A �∈ created (X)(xi)(ai+1) by Definitions 17 and

18. From (a), we have Ci
ai+1

=⇒ϕ Ci+1 , where ϕ = created (X)(xi )(ai+1). Let Dj+1 =

Ci+1. Then we have Dj
a

i+1

=⇒ϕ Dj+1. Hence ai+1 ∈ ŝig(Dj ), since ai+1 can be executed
from Dj . Hence ai+1 ∈ ŝig(Y )(yj ) by Definition 18. Hence created (Y )(yj )(ai+1) =
created (X)(xi )(ai+1 )[B/A] by(f). SinceA �∈ created (X)(xi )(ai+1 ), we have created (Y )(yj )(ai+1 ) =
created (X)(xi )(ai+1 ). So letting ψ = created (Y )(yj )(ai+1), we have ψ = ϕ, and so
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Dj
ai+1

=⇒ψ Dj+1 .

By ai+1 ∈ ŝig(Y )(yj ), ψ = created (Y )(yj )(ai+1), Dj
ai+1

=⇒ψ Dj+1, and Definition 18,
we have

∃yj+1 : yj a
i+1−→Y yj+1 and Dj+1 = config(Y )(yj+1).

Now let π′ = π′′ � (yjai+1yj+1). We now establish α′RABπ′, π′��B � π1
B $ · · · $πk

B , and
mAB (α′��A) = π′ ��B .

Proof of α′RABπ′: extend the mapping m by setting m(i +1) = j + 1. We deal with
each clause of Definition 34 in turn.

Clause 1: holds since m(0) = 0 remains true.
Clause 2: holds since |π| = j + 1.
Clause 3: from above, traceX (i |α|i+1) = ext(X)(xi ) � ai+1 � ext (X)(xi+1) and

traceY (m(i )|π|m(i+1) ) = ext (Y )(ym(i) )� ai+1 � ext (Y )(ym(i+1) ) = ext (Y )(yj )�ai+1 �
ext(Y )(yj+1). By (d), ext (X)(xi ) = ext (Y )(yj ). Also, ext (X)(xi+1) = ext (Ci+1) =
ext(Dj+1) = ext (Y )(yj+1), since Dj+1 = Ci+1. Hence traceX (i |α|i+1 ) = traceY (m(i )|π|m(i+1) ).
This and the induction hypothesis establishes Clause 3.

Clause 4: since A �∈ auts(Ci) and A �∈ auts(Ci+1), A is not a participant in ai+1 .
Likewise B �∈ auts(Dj ) and B �∈ auts(Dj+1), and so B is not a participant in ai+1 . Hence
by Definition 31, traceA((i |α|i+1)��A) is empty, and traceB((j |π|j+1 )��B) is also empty.
Since m(i) = j,m(i + 1) = j + 1, we have traceB ((m(i )|π|m(i+1) )��B) is empty. Clause 4
follows from this and the induction hypothesis.

Clause 5: we have, from above, Ci+1 = Dj+1, A �∈ auts(Ci+1), B �∈ auts(Dj+1).
Hence Ci+1 �AB Dj+1, by Definition 28. Since Ci+1 = config (X)(xi+1), Dj+1 =
config (Y )(yj+1), we have config (X)(xi+1) �AB config(Y )(yj+1). Since m(i + 1) = j + 1,
we have config (X)(xi+1) �AB config (Y )(ym(i+1) ). Clause 5 follows from this and the
induction hypothesis.

Proof of π′ ��B � π1
B $ · · · $πk

B: by the induction hypothesis, π′′��B � π1
B $ · · · $πk

B .
We showed above (proof of Clause 4 of α′RABπ′) that B is not a participant in ai+1 ,
and hence π′��B = π′′ ��B . Hence π′ ��B � π1

B $ · · · $πk
B .

Proof of mAB (α′��A) = π′��B : we showed above (proof of Clause 4 of α′RABπ′)
that A is not a participant in ai+1 and B is not a participant in ai+1 . Hence α′��A =
α′′��A, and π′��B = π′′��B . By the induction hypothesis, mAB (α′′��A) = π′′��B . Hence
mAB (α′��A) = π′ ��B .

Case 2: A �∈ auts(Ci) and A ∈ auts(Ci+1).
By (e), Ci �AB Dj . Since A �∈ auts(Ci), we have, by Definition 34, that Ci = Dj .

Since A �∈ auts(Ci) and A ∈ auts(Ci+1), if follows that A ∈ created (X)(xi)(ai+1) by Def-
initions 17 and 18. By (b), ai+1 ∈ ŝig(Ci). Hence ai+1 ∈ ŝig(Dj) since Ci = Dj . Hence
ai+1 ∈ ŝig(Y )(yj) by Definition 18. Hence created (Y )(yj )(ai+1 ) = created (X)(xi )(ai+1)[B/A]
by (f). So letting ψ = created (Y )(yj )(ai+1) and ϕ = created (X)(xi)(ai+1), we have
ψ = ϕ[B/A].

Let s = map (Ci+1)(A). Hence α′��A = α′′��A$ s by Definition 31, and so α′′��A ≺
α′��A. Also α′ ≤ α, and so α′′��A ≺ α′��A � α��A = α1

A $ · · · $αk
A. Hence α′′��A =

α1
A $ · · · $α�

A for some � < k, since A �∈ auts(Ci), and so the last execution in α′′��A must
be a terminating execution in α1

A $ · · · $αk
A, and not merely a prefix of an execution in

51



α1
A $ · · · $αk

A. It follows, by Definition 31, that s = first(α�+1
A ), since α�+1

A is the next
execution of A along α1

A $ · · · $αk
A. Also, from π′′ ��B = mAB (α′′��A) and definition of

mAB , it follows that π′′��B = π1
B $ · · · $π�

B .
Now define Dj+1 as follows. auts(Dj+1) = auts(Ci+1)[B/A], and for all A′ ∈

auts(Ci+1) − {A} : map(Dj+1)(A′ ) = map(Ci+1)(A′ ), and map(Dj+1)(B) = t where
t = first(π�+1

B ). It follows from (AB) that t ∈ start(B) and ext(B)(t) = ext (A)(s).
Hence by Definition 34, Ci+1 �AB Dj+1.

From (a), we have Ci
ai+1

=⇒ϕ Ci+1. Then we have Dj
ai+1

=⇒ψ Dj+1 , by Definition 17, ψ =
ϕ[B/A],A ∈ ϕ, and construction of Dj+1 . By ai+1 ∈ ŝig(Y )(yj ), ψ = created (Y )(yj )(ai+1),

Dj
ai+1

=⇒ψ Dj+1 , and Definition 18, we have

∃yj+1 : yj a
i+1−→Y yj+1 and Dj+1 = config(Y )(yj+1).

Now let π′ = π′′ � (yjai+1yj+1). We now establish α′RABπ′, π′ � π1
B $ · · · $πk

B , and
mAB (α′��A) = π′ ��B .

Proof of α′RABπ′: extend the mapping m by setting m(i +1) = j + 1. We deal with
each clause of Definition 34 in turn.

Clause 1: holds since m(0) = 0 remains true.
Clause 2: holds since |π′| = j + 1.
Clause 3: from above, traceX (i |α|i+1) = ext(X)(xi ) � ai+1 � ext (X)(xi+1) and

traceY (m(i )|π|m(i+1) ) = ext (Y )(ym(i) )� ai+1 � ext (Y )(ym(i+1) ) = ext (Y )(yj )�ai+1 �
ext(Y )(yj+1). By (d), ext (X)(xi ) = ext (Y )(yj ). Also, ext (X)(xi+1) = ext (Ci+1) =
ext(Dj+1) = ext (Y )(yj+1), since Ci+1�ABDj+1 . Hence traceX (i |α|i+1) = traceY (m(i )|π|m(i+1) ).
This and the induction hypothesis establishes Clause 3.

Clause 4: traceA((i |α|i+1)��A) = ext (A)(s), and traceB((j |π|j+1 )��B) = ext (B)(t),
by Definition 31. By choice of t, ext (A)(s) = ext (B)(t), and so traceA((i |α|i+1)��A) =
traceB((j |π|j+1 )��B). Clause 4 follows from this and the induction hypothesis.

Clause 5: we have, from above, Ci+1 �AB Dj+1 . Since Ci+1 = config (X)(xi+1),
Dj+1 = config(Y )(yj+1), we have config (X)(xi+1)�ABconfig (Y )(yj+1). Since m(i+1) =
j + 1, we have config (X)(xi+1) �AB config (Y )(ym(i+1) ). Clause 5 follows from this and
the induction hypothesis.

Proof of π′ ��B � π1
B $ · · · $πk

B : we showed above that π′′ ��B = π1
B $ · · · $π�

B, where
� < k. By Definition of ��, π′��B = π′′ ��B $ t, where t = first(π�+1

B ). Hence π′��B �
π1

B $ · · · $πk
B by Definition 32.

Proof of mAB (α′��A) = π′ ��B : by construction, α′��A = α′′��A$ s and π′ ��B =
π′′��B $ t. By the induction hypothesis, mAB (α′′��A) = π′′��B . We showed above that
ext(A)(s) = ext (B)(t). It follows, from Definition of mAB , that mAB (α′ ��A) = π′��B .

Case 3: A ∈ auts(Ci), A ∈ auts(Ci+1), and ai+1 �∈ ŝig(A)(s), where s = map(Ci)(A).

By (e), Ci �AB Dj . Hence B ∈ auts(Dj ). From (a), we have Ci
ai+1

=⇒ϕ Ci+1 , where ϕ =
created (X)(xi )(ai+1 ). By (b), ai+1 ∈ ŝig(Ci). Let t = map(Dj )(B). Then ext (A)(s) =
ext(B)(t), since Ci �AB Dj . By the case assumption, ai+1 �∈ ŝig(A)(s), and so ai+1 �∈
êxt(A)(s). Hence ai+1 �∈ êxt (B)(t), since ext(A)(s) = ext (B)(t).

Now assume ai+1 ∈ int(B)(t). By signature compatibility,ai+1 is not an action of the
current signature of any SIOA A′ in auts(Dj ) other than B . We have B �∈ auts(Ci), since
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we assume that X never creates B . So by Ci �AB Dj and ai+1 �∈ ŝig(A)(s), we conclude
that ai+1 �∈ ŝig(Ci), since Ci, Dj contain the same SIOA in the same states, apart from
A, B . This contradicts ai+1 ∈ ŝig(Ci) established above. Hence our assumption is false,
i.e., ai+1 �∈ int(B)(t). From this and ai+1 �∈ êxt(B)(t), we infer ai+1 �∈ ŝig(B)(t).

Now define Dj+1 as follows. auts(Dj+1) = auts(Ci+1)[B/A], for all A′ ∈ auts(Ci+1)−
{A} : map (Dj+1)(A′ ) = map(Ci+1)(A′ ), and map(Dj+1)(B) = map (Dj)(B) = t. That
is, Dj+1 consists of the same SIOA as Ci+1, except that A is replaced by B . SIOA other
than A,B have the same state in Dj+1 as in Ci+1 . B has the same state in Dj+1 as in
Dj . Hence Ci+1 �AB Dj+1 , by Definitions 17 and 28.

By (b), ai+1 ∈ ŝig(Ci). Since ai+1 �∈ ŝig(A)(s), it follows that ai+1 is in the
signature of some SIOA A′ of Ci. By Ci �AB Dj , A′ is also an SIOA of Dj , and
has the same state in Dj as in Ci, i.e., map(Dj )(A′ ) = map(Ci)(A′ ). Hence ai+1 ∈
ŝig(Dj ) by Definition 16. Hence ai+1 ∈ ŝig(Y )(yj ) by Dj = config (Y )(yj ) and Def-
inition 18. So created (Y )(yj )(ai+1) = created (X)(xi )(ai+1)[B/A] by (f). So letting
ψ = created (Y )(yj )(ai+1) and ϕ = created (X)(xi)(ai+1), we have ψ = ϕ[B/A].

Since A ∈ auts(Ci) and B ∈ auts(Dj), the presence of A in ϕ, B in ψ, makes no
difference to the execution of transitions from Ci, Dj , respectively, by Definition 17,

since A, B are already alive. Now Ci �AB Dj , Ci+1 �AB Dj+1, and Ci
ai+1

=⇒ϕ Ci+1 . Hence

Dj
ai+1

=⇒ψ Dj+1 , by these, ψ = ϕ[B/A], and Definition 17, since A,B do not participate in
the execution of ai+1 .

By ai+1 ∈ ŝig(Y )(yj ), ψ = created (Y )(yj )(ai+1), Dj
ai+1

=⇒ψ Dj+1, and Definition 18,
we have

∃yj+1 : yj ai+1−→Y yj+1 and Dj+1 = config(Y )(yj+1).

Now let π′ = π′′ � (yjai+1yj+1). We now establish α′RABπ′, π′��B � π1
B $ · · · $πk

B , and
mAB (α′��A) = π′ ��B .

Proof of α′RABπ′: extend the mapping m by setting m(i +1) = j + 1. We deal with
each clause of Definition 34 in turn.

Clause 1: holds since m(0) = 0 remains true.
Clause 2: holds since |π′| = j + 1.
Clause 3: from above, traceX (i |α|i+1) = ext(X)(xi ) � ai+1 � ext (X)(xi+1) and

traceY (m(i )|π|m(i+1) ) = ext (Y )(ym(i) )� ai+1 � ext (Y )(ym(i+1) ) = ext (Y )(yj )�ai+1 �
ext(Y )(yj+1). By (d), ext(X)(xi ) = ext (Y )(yj). Now config (X)(xi+1) = Ci+1 , config (Y )(yj+1) =
Dj+1. Also Ci+1 �AB Dj+1, and so ext(Ci+1) = ext (Dj+1). Hence ext(X)(xi+1 ) =
ext(Ci+1) = ext (Dj+1) = ext (Y )(yj+1). We finallyobtain ext(X)(xi )�ai+1�ext(X)(xi+1 ) =
ext(Y )(yj ) � ai+1 � ext(Y )(yj+1). Hence traceY (m(i )|π|m(i+1) ) = traceX (i |α|i+1 ). To-
gether with the induction hypothesis, this establishes Clause 3.

Clause 4: from above, traceA((i |α|i+1)��A) = ext(A)(s), and traceB ((j |π|j+1 )��B) =
ext(B)(t). By choiceof t, ext (A)(s) = ext (B)(t), and so traceA((i |α|i+1)��A) = traceB((j |π|j+1 )��B).
Clause 4 follows from this and the induction hypothesis.

Clause 5: from above, Ci+1 �AB Dj+1. Since Ci+1 = config (X)(xi+1 ), Dj+1 =
config (Y )(yj+1), we have config (X)(xi+1) �AB config(Y )(yj+1). Since m(i + 1) = j + 1,
we have config (X)(xi+1) �AB config (Y )(ym(i+1) ). Clause 5 follows from this and the
induction hypothesis.
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Proof of π′��B � π1
B $ · · · $πk

B: ai+1 �∈ ŝig(B)(t) was shown above, and so we have
π′��B = π′′��B by Definition 31. Now π′′��B � π1

B $ · · · $πk
B by the induction hypothesis,

and so we are done.

Proof of mAB (α′ ��A) = π′ ��B : ai+1 �∈ ŝig(A)(s) by assumption, and so we have
α′��A = α′′��A by Definition 31. Since ai+1 �∈ ŝig(B)(t), we have π′��B = π′′��B by
Definition 31. By the induction hypothesis, mAB (α′′ ��A) = π′′��B , and so we are done.

Case 4: A ∈ auts(Ci), A ∈ auts(Ci+1), and ai+1 ∈ êxt(A)(s), where s = map (Ci)(A).
By (e), Ci �AB Dj . Hence B ∈ auts(Dj ). Also, by Proposition 31, ext (Ci) =

ext(Dj ). By ai+1 ∈ êxt(A)(s), A ∈ auts(Ci), and Definition 16, ai+1 ∈ êxt (Ci). Hence
ai+1 ∈ êxt(Dj ) since ext (Ci) = ext(Dj ). Hence ai+1 ∈ ŝig(Y )(yj ) by Definition 18, since
Dj = config (Y )(yj). Hence created (Y )(yj )(ai+1) = created (X)(xi )(ai+1 )[B/A] by (f).
So letting ψ = created (Y )(yj )(ai+1) andϕ = created (X)(xi)(ai+1), we have ψ = ϕ[B/A].

Let s′ = map(Ci+1)(A). Hence α′��A = α′′��A � (s, ai+1 , s′ ) by Definition 31, and
so α′′��A ≺ α′��A. Also α′ ≤ α, and so α′′��A ≺ α′��A � α��A = α1

A $ · · · $αk
A. Hence

α′′��A = α1
A $ · · · $α�

A $ θ�+1
A for some � < k, where θ�+1

A < α�+1
A . Note that θ�+1

A ≤ α�+1
A

by construction, and that θ�+1
A �= α�+1

A , since θ�+1
A cannot be a terminating execution of

A, as A ∈ auts(Ci), and so A is still alive at the end of α′′.
From π′′ ��B = mAB (α′′��A) and definition of mAB , it follows that π′′��B = π1

B $ · · · $π�
B $κ�+1

B ,
where traceA(θ�+1

A ) = traceB(κ�+1
B ), and κ�+1

B ≤ π�+1
B . Recall that, by (AB), we have

traceA(α�+1
A ) = traceB(π�+1

B ). By definition of mAB , we have κ�+1
B < π�+1

B , since
θ�+1
A

< α�+1
A

.
Let t = map (Dj)(B). Then ext (A)(s) = ext (B)(t) since Ci �AB Dj . Now let δB

be the unique execution fragment of B such that κ�+1
B � δB ≤ π�+1

B (i.e., δB extends
κ�+1

B along π�+1
B ) and π′′��B � δB = mAB (α′��A) (i.e., δB is the unique extension that

corresponds to the image of α′��A under mAB—see definition of mAB ). It follows, from
the definition of mAB , that first(δB ) = t and that δB = δint

B � (ai+1 , t′), where δint
B

consists entirely of internal actions that do not change the external signature of B , and
so traceB(δint

B ) = ext(B)(t). Also, t′ is such that ext (A)(s′) = ext (B)(t′), by (AB).
Now extend π′′ by executing the actions along δint

B , starting from last(π′′ ). Let y′ be
the last state of the resulting execution. In y′, ai+1 can be executed by Y . This is because,
at this point, B can execute ai+1 , since δint

B � (ai+1 , t′) is an execution fragment of B . If
ai+1 has any other participant SIOA, then these have the same state in y′ as they do in Ci,
since Ci �AB Dj . So ai+1 can be executed from y′. Let the resulting execution, including
ai+1 , be π′. Let last(π′ ) = yj ′

, where j ′ = j + |δint
B | + 1. Let Dj ′ = config (Y )(yj ′

).
Hence, by construction of π′, map(Dj ′ )(B) = t′. We now show that Ci+1 �AB Dj ′ .
Let A′ ∈ auts(Ci) − {A}. Then A′ ∈ auts(Dj ), and map(Ci)(A′ ) = map(Dj )(A′ ),
since Ci �AB Dj . Also, in transitioning from Ci to Ci+1 , each A′ either does nothing,
and so remains in the same state, or it participates in the execution of ai+1 , possibly
destroying itself as a result. Likewise, in transitioning from Dj to Dj ′, each A′ either
does nothing, and so remains in the same state, or it participates in the execution of
ai+1 , since δint

B consists entirely of internal actions of B , and no A′ ∈ auts(Ci) − {A}
can be B , by construction. Hence, the local transitions of the A′ (when executing ai+1)
can be chosen to be the same in Y as in X, and so the same A′ destroy themselves
in Y as in X, and the surviving A′ have the same final states in Y as in X. Also,
δint
B creates no new SIOA, by Assumption 2, since its actions are all internal actions
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of B . We have ψ = ϕ[B/A] from above. Hence the same SIOA are created by the
transitions (xi, ai+1 , xi+1) and (y′ , ai+1 , yj ′

), since A, B are present in the configurations
of xi, y′, respectively, and executing the actions along δint

B does not change the trace,
so that ψ is still the set of SIOA created by ai+1 , according to Definition 29. Therefore
we can choose (y′ , ai+1 , yj ′

) so that it creates these new SIOA in the same start states
that (xi, ai+1 , xi+1) does. We conclude that (except for A, B) Ci+1 and Dj ′ end up
with the same SIOA in the same states, i.e., auts(Dj ′) = auts(Ci+1)[B/A] and for all
A′ ∈ auts(Ci+1) − {A} : map (Ci+1)(A′ ) = map (Dj ′)(A′ ). Finally, map(Ci+1)(A) = s′ ,
map(Dj ′ )(B) = t′, and ext(A)(s′ ) = ext (B)(t′) from above. Hence the conditions of
Definition 28 all hold, and so Ci+1 �AB Dj ′.

We now establish α′RABπ′ , π′��B � π1
B $ · · · $πk

B , and mAB (α′ ��A) = π′��B .

Proof of α′RABπ′: extend the mapping m by setting m(i + 1) = j ′. We deal with
each clause of Definition 34 in turn.

Clause 1: holds since m(0) = 0 remains true.
Clause 2: holds since |π′| = j ′.
Clause 3: from above, traceY (m(i )|π|m(i+1) ) = ext (Y )(yj ) � ai+1 � ext (Y )(yj ′

),
since δint

B is an execution fragment consisting entirely of internal actions of B which
do not change the external signature of B . Also, traceX(i |α|i+1) = ext (X)(xi) �
ai+1 � ext (X)(xi+1). By (d), ext(X)(xi ) = ext(Y )(yj ). Now config (X)(xi+1) = Ci+1 ,
config (Y )(yj ′

) = Dj ′. Also, Ci+1 �AB Dj ′, and so ext (Ci+1) = ext (Dj ′). Hence
ext(X)(xi+1 ) = ext (Ci+1) = ext(Dj ′ ) = ext (Y )(yj ′

). We finally obtain ext (X)(xi) �

ai+1 � ext (X)(xi+1) = ext(Y )(yj )�ai+1 � ext (Y )(yj ′
). Hence traceY (m(i )|π|m(i+1)) =

traceX(i |α|i+1). Together with the induction hypothesis, this establishes Clause 3.
Clause 4: (i |α|i+1)��A = s, ai+1 , s′ , so traceA((i |α|i+1)��A) = ext (A)(s) � ai+1 �

ext(A)(s′ ). (j |π|j+1 )��B = δB = δint
B �(ai+1 , t′ ), so traceB ((j |π|j+1 )��B) = traceB (δint

B )�
ai+1 � ext(B)(t′ ) = ext (B)(t) �ai+1 � ext (B)(t′) since traceB (δint

B ) = ext (B)(t). From
above, ext (A)(s) = ext(B)(t) and ext (A)(s′ ) = ext(B)(t′ ). Hence traceA((i |α|i+1)��A) =
traceB((j |π|j+1 )��B). Clause 4 follows from this and the induction hypothesis.

Clause 5: we have, from above, Ci+1 �AB Dj ′. Since Ci+1 = config (X)(xi+1), Dj ′ =
config (Y )(yj ′

), we have config (X)(xi+1)�AB config (Y )(yj ′
). Since m(i+1) = j ′, we have

config (X)(xi+1) �AB config (Y )(ym(i+1) ). Clause 5 follows from this and the induction
hypothesis.

Proof of π′��B � π1
B $ · · · $πk

B: from above, π′ results by extending π′′ with the ac-
tions along δint

B , followed by the transition (y′ , ai+1 , yj ′
). Hence π′��B = π′′��B�δB , since

δB = δint
B �(ai+1 , t′). Also, π′′ ��B = π1

B $ · · · $π�
B $κ�+1

B
, so π′��B = π1

B $ · · · $π�
B $κ�+1

B
�

δB. We also have κ�+1
B � δB ≤ π�+1

B by our choice of δB . Hence π′ ��B � π1
B $ · · · $π�+1

B ,
and so π′��B � π1

B $ · · · $πk
B.

Proof of mAB (α′��A) = π′��B : from immediately above, π′��B = π′′��B � δB. Also
from above, π′′ ��B�δB = mAB (α′��A), by our choice of δB . Hence π′ ��B = π′′ ��B�δB =
mAB (α′��A).

Case 5: A ∈ auts(Ci), A ∈ auts(Ci+1), and ai+1 ∈ int(A)(s), where s = map(Ci)(A).
Let s′ = map(Ci+1)(A). Hence α′��A = α′′��A � (s, ai+1 , s′ ) by Definition 31, and

so α′′��A ≺ α′��A. Also α′ ≤ α, and so α′′��A ≺ α′��A � α��A = α1
A $ · · · $αk

A. Hence
α′′��A = α1

A $ · · · $α�
A $ θ�+1

A for some � < k, where θ�+1
A ≤ α�+1

A . Note that θ�+1
A �= α�+1

A ,
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since θ�+1
A cannot be a terminating execution of A, as A ∈ auts(Ci), and so A is still

alive at the end of α′′. Hence θ�+1
A < α�+1

A .
From π′′ ��B = mAB (α′′��A) and definition of mAB , it follows that π′′��B = π1

B $ · · · $π�
B $κ�+1

B ,
where traceA(θ�+1

A ) = traceB(κ�+1
B ), and κ�+1

B ≤ π�+1
B . Recall that, by (AB), we have

traceA(α�+1
A ) = traceB(π�+1

B ). By definition of mAB , we have κ�+1
B < π�+1

B , since
θ�+1
A < α�+1

A .
By (e), Ci �AB Dj . Hence B ∈ auts(Dj). Let t = map (Dj)(B). Then ext (A)(s) =

ext(B)(t) since Ci �AB Dj . Now let δB be the unique execution fragment of B such that
κ�+1

B � δB ≤ π�+1
B (i.e., δB extends κ�+1

B along π�+1
B ) and π′′ ��B � δB = mAB (α′��A)

(i.e., δB is the unique extension that corresponds to the image of α′��A under mAB—see
definition of mAB ). It follows, from the definition of mAB , that first(δB ) = t and that
δB consists entirely of internal actions of B , and that traceB (δB ) = traceA((s, ai+1 , s′ )).
Let t′ = last(δB ). Then it also follows by (AB) that ext(A)(s′ ) = ext (B)(t′).

Now extend π′′ by executing the actions along δB, starting from last(π′′ ). Let the
resulting execution be π′. Let last(π′ ) = yj ′

where j ′ = j+|δB|. Let Dj ′ = config (Y )(yj ′
).

Hence, by construction of π′, map (Dj ′)(B) = t′. We now show that Ci+1 �AB Dj ′. Let
A′ ∈ auts(Ci) − {A}. Then A′ ∈ auts(Dj), since Ci �AB Dj . Also, in transitioning
from Ci to Ci+1, each A′ does nothing, and so remains in the same state, since ai+1 is an
internal action of A. Likewise, in transitioning from Dj to Dj ′, each A′ does nothing, and
so remains in the same state, since δB consists entirely of internal actions of B . Hence, the
A′ have the same final states in Y as in X, By Assumption 2, no new SIOA are created by
executing ai+1 in X, nor by executing δB in Y , since ai+1 is an internal action of A, and δB

consists entirely of internal actions of B . We conclude that (except for A, B) Ci+1 andDj ′

end up with the same SIOA in the same states, i.e., auts(Dj ′ ) = auts(Ci+1)[B/A] and for
all A′ ∈ auts(Ci+1)−{A} : map (Ci+1)(A′ ) = map (Dj ′)(A′ ). Finally, map(Ci+1)(A) = s′ ,
map(Dj ′ )(B) = t′, and ext(A)(s′ ) = ext (B)(t′) from above. Hence the conditions of
Definition 28 all hold, and so Ci+1 �AB Dj ′.

We now establish α′RABπ′ , π′��B � π1
B $ · · · $πk

B , and mAB (α′ ��A) = π′��B .

Proof of α′RABπ′: extend the mapping m by setting m(i + 1) = j ′. We deal with
each clause of Definition 34 in turn.

Clause 1: holds since m(0) = 0 remains true.
Clause 2: holds since |π′| = j ′.
Clause 3: traceY (m(i )|π|m(i+1) ) = r(ext (Y )(yj ) � ext(Y )(yj ′

)), where r is given by
Definition 11. This is because δB is an execution fragment consisting entirely of internal
actions of B , and which is trace equal to (s, ai+1 , s′). Hence δB can be partitioned
into two parts, each of which has the same external signature along all its states. Also
traceX(i |α|i+1) = r(ext (X)(xi )�ext (X)(xi+1)). By (d), ext(X)(xi) = ext (Y )(yj). Now
config (X)(xi+1) = Ci+1, config (Y )(yj ′

) = Dj ′. Also, Ci+1 �AB Dj ′, and so ext(Ci+1) =
ext(Dj ′ ). Hence ext (X)(xi+1) = ext (Ci+1) = ext (Dj ′) = ext(Y )(yj ′

). We finally obtain
ext(X)(xi ) � ext (X)(xi+1) = ext (Y )(yj ) � ext(Y )(yj

′
). Hence traceY (m(i ) |π|m(i+1)) =

traceX(i |α|i+1). Together with the induction hypothesis, this establishes Clause 3.
Clause 4: from above, (i |α|i+1)��A = s, ai+1 , s′ and (j |π|j+1 )��B = δB . Also from

above, traceB (δB ) = traceA((s, ai+1 , s′ )). Hence traceA((i |α|i+1 )��A) = traceB ((j |π|j+1 )��B).
Clause 4 follows from this and the induction hypothesis.
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Clause 5: we have, from above, Ci+1 �AB Dj ′. Since Ci+1 = config (X)(xi+1), Dj ′ =
config (Y )(yj ′

), we have config (X)(xi+1)�AB config (Y )(yj ′
). Since m(i+1) = j ′, we have

config (X)(xi+1) �AB config (Y )(ym(i+1) ). Clause 5 follows from this and the induction
hypothesis.

Proof of π′��B � π1
B $ · · · $πk

B : from above, π′ results by extending π′′ with the
actions along δB. Hence π′��B = π′′ ��B �δB, since δB consists entirely of internal actions
of B . Also, π′′��B = π1

B $ · · · $π�
B $κ�+1

B . Hence π′��B = π1
B $ · · · $π�

B $κ�+1
B � δB . We

also have κ�+1
B � δB ≤ π�+1

B by our choice of δB . Hence π′��B � π1
B $ · · · $π�+1

B , and so
π′��B � π1

B $ · · · $πk
B .

Proof of mAB (α′��A) = π′��B : from immediately above, π′��B = π′′��B � δB. Also
from above, π′′ ��B�δB = mAB (α′��A), by our choice of δB . Hence π′ ��B = π′′ ��B�δB =
mAB (α′��A).

Case 6: A ∈ auts(Ci), A �∈ auts(Ci+1), and ai+1 �∈ ŝig(A)(map (Ci)(A) ).
Since A ∈ auts(Ci) and A �∈ auts(Ci+1), then in the execution of ai+1 , A must

set its signature to empty. Hence A must be a participant of ai+1 , so that ai+1 ∈
ŝig(A)(map (Ci)(A) ). Hence this case is not possible.

Case 7: A ∈ auts(Ci), A �∈ auts(Ci+1), and ai+1 ∈ êxt(A)(s), where s = map (Ci)(A).
By (e), Ci �AB Dj . Hence B ∈ auts(Dj ). Also, by Proposition 31, ext (Ci) =

ext(Dj ). By ai+1 ∈ êxt(A)(s), A ∈ auts(Ci), and Definition 16, ai+1 ∈ êxt (Ci). Hence
ai+1 ∈ êxt(Dj ) since ext (Ci) = ext(Dj ). Hence ai+1 ∈ ŝig(Y )(yj ) by Definition 18, since
Dj = config (Y )(yj). Hence created (Y )(yj )(ai+1) = created (X)(xi )(ai+1 )[B/A] by (f).
So letting ψ = created (Y )(yj )(ai+1) andϕ = created (X)(xi)(ai+1), we have ψ = ϕ[B/A].

Now α′��A = α′′��A�(s, ai+1) by Definition 31. Also α′ ≤ α, and so α′′��A � α′��A �
α��A = α1

A $ · · · $αk
A. Hence α′′��A = α1

A $ · · · $ θ�+1
A where θ�+1

A � (s, ai+1) = α�+1
A for

some � < k, since A is destroyed by the execution of ai+1 , and so the last execution in
α′��A must be a terminating execution.

From π′′ ��B = mAB (α′′��A) and definition of mAB , it follows that π′′��B = π1
B $ · · · $π�

B $κ�+1
B ,

where traceA(θ�+1
A

) = traceB(κ�+1
B

), and κ�+1
B

≤ π�+1
B

. Recall that, by (AB), we have
traceA(α�+1

A ) = traceB (π�+1
B ).

Let t = map (Dj)(B). Then ext (A)(s) = ext(B)(t) since Ci�ABDj . Now let δB be the
unique execution fragment of B such that κ�+1

B �δB ≤ π�+1
B (i.e., δB extends κ�+1

B along
π�+1

B ) and π′′��B � δB = mAB (α′��A) (i.e., δB is the unique extension that corresponds
to the image of α′��A under mAB—see definition of mAB ). It follows, from the definition
of mAB , that δB = δint

B � ai+1 , where δint
B consists entirely of internal actions that do

not change the external signature of B . This is because B must, by assumption, destroy
itself using an external action. Thus, by (AB), the destroying action must be ai+1 . Hence
also κ�+1

B � δB = π�+1
B , since B is destroyed at the end of δB. Also by construction of

δB and (AB), first(δB ) = t and traceB(δint
B ) = ext (B)(t).

Now extend π′′ by applying the actions along δB , starting in last(π′′ ). Let the re-
sulting execution be π′. Hence last(π′ ) = yj ′

where j ′ = j + |δint
B | + 1. Let Dj ′ =

config (Y )(yj ′
). We now show that Ci+1 �AB Dj ′. Let A′ ∈ auts(Ci) − {A}. Then

A′ ∈ auts(Dj), since Ci �AB Dj . Also, in transitioning from Ci to Ci+1 , each A′ either
does nothing, and so remains in the same state, or it participates in the execution of ai+1 ,
possibly destroying itself as a result. Likewise, in transitioning from Dj to Dj ′, each A′
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either does nothing, and so remains in the same state, or it participates in the execution
of ai+1, since δint

B consists entirely of internal actions of B , and no A′ ∈ auts(Ci)− {A}
can be B , by construction. Hence, the local transitions of the A′ (when executing ai+1)
can be chosen to be the same in Y as in X, and so the same A′ destroy themselves in
Y as in X, and the surviving A′ have the same final states in Y as in X. Also, δint

B

creates no new SIOA, by Assumption 2, since its actions are all internal actions of B .
We have ψ = ϕ[B/A] from above. Hence the same SIOA are created by the transi-
tions (xi, ai+1 , xi+1) and (y′ , ai+1 , yj ′

), since A,B are present in the configurations of
xi, y′, respectively, and executing the actions along δint

B does not change the trace, so
that ψ is still the set of SIOA created by ai+1 , according to Definition 29. Therefore
we can choose (y′ , ai+1 , yj ′

) so that it creates these new SIOA in the same start states
that (xi, ai+1 , xi+1) does. We conclude that (except for A, B) Ci+1 and Dj ′ end up
with the same SIOA in the same states, i.e., auts(Dj ′) = auts(Ci+1)[B/A] and for all
A′ ∈ auts(Ci+1)− {A} : map (Ci+1)(A′ ) = map (Dj ′)(A′ ). Finally, A �∈ auts(Ci+1) and
B �∈ auts(Dj ′). Hence the conditions of Definition 28 all hold, and so Ci+1 �AB Dj ′.

We now establish α′RABπ′ , π′��B � π1
B $ · · · $πk

B , and mAB (α′ ��A) = π′��B .

Proof of α′RABπ′: extend the mapping m by setting m(i + 1) = j ′. We deal with
each clause of Definition 34 in turn.

Clause 1: holds since m(0) = 0 remains true.
Clause 2: holds since |π′| = j ′.
Clause 3: traceY (m(i )|π|m(i+1)) = ext (Y )(yj) � ai+1 � ext (Y )(yj ′

). This is because
δint
B is an execution fragment consisting entirely of internal actions of B which do not

change the external signature. Also traceX (i |α|i+1 ) = ext (X)(xi)�ai+1 �ext (X)(xi+1).
By (d), ext (X)(xi ) = ext (Y )(yj ). Now config (X)(xi+1) = Ci+1 , config (Y )(yj ′

) = Dj ′ .
Also, Ci+1 �AB Dj ′, and so ext (Ci+1) = ext(Dj ′ ). Hence ext (X)(xi+1) = ext(Ci+1) =
ext(Dj ′ ) = ext(Y )(yj ′

). We finallyobtain ext(X)(xi )�ai+1�ext(X)(xi+1 ) = ext (Y )(yj)�
ai+1 � ext (Y )(yj ′

). Hence traceY (m(i )|π|m(i+1) ) = traceX(i |α|i+1). Together with the
induction hypothesis, this establishes Clause 3.

Clause 4: (i |α|i+1)��A = s, ai+1 , so traceA((i |α|i+1)��A) = ext (A)(s)�ai+1 since A �∈
auts(Ci+1). (j |π|j+1 )��B = δB , so traceB ((j |π|j+1 )��B) = traceB (δB ) = traceB (δint

B � ai+1) =
ext(B)(t) � ai+1, since B �∈ auts(Dj ′). From above, ext (A)(s) = ext (B)(t). Hence
traceA((i |α|i+1)��A) = traceB ((j |π|j+1 )��B). Clause 4 follows from this and the induc-
tion hypothesis.

Clause 5: we have, from above, Ci+1 �AB Dj ′. Since Ci+1 = config (X)(xi+1), Dj ′ =
config (Y )(yj ′

), we have config (X)(xi+1)�AB config (Y )(yj ′
). Since m(i+1) = j ′, we have

config (X)(xi+1) �AB config (Y )(ym(i+1) ). Clause 5 follows from this and the induction
hypothesis.

Proof of π′��B � π1
B $ · · · $πk

B : from above, π′ is π′′ extended by the actions along δB ,
and so π′��B = π′′��B � δB by construction of δB . Also, π′′��B = π1

B $ · · · $π�
B $κ�+1

B .
Hence π′��B = π1

B $ · · · $π�
B $κ�+1

B � δB We also have κ�+1
B � δB ≤ π�+1

B by our choice
of δB. Hence π′ ��B � π1

B $ · · · $π�+1
B

, and so π′��B � π1
B $ · · · $πk

B .

Proof of mAB (α′��A) = π′��B : from immediately above, π′��B = π′′��B � δB. Also
from above, π′′ ��B�δB = mAB (α′��A), by our choice of δB . Hence π′ ��B = π′′ ��B�δB =
mAB (α′��A).
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Case 8: A ∈ auts(Ci), A �∈ auts(Ci+1), and ai+1 ∈ int(A)(map (Ci)(A)), i.e., ai+1 is an
internal action of A.

By assumption, A does not destroy itself by executing an internal action. Hence this
case is not possible.

Having established the induction step in all cases, we conclude that (*) holds. Since
α′ is any prefix of α, we can instantiate α′ to α, which gives us that there exists π such
that αRAB π, and we are done.

Theorem 34 (Monotonicity of finite-trace inclusion w.r.t. SIOA creation). Let
X,Y be configuration automata, and A,B be SIOA. Assume that,

1. B has a single start state, and A, B do not destroy themselves by executing an
internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,
3. ∀x ∈ start(X),∃y ∈ start(Y ) : config (X)(x) �AB config(Y )(y),
4. traces∗(A) ⊆ traces∗(B),
5. ttraces (A) ⊆ ttraces(B), and
6. X,Y are creation-corresponding w.r.t. A,B .

Then
traces∗(X) ⊆ traces∗(Y ).

Proof: Immediate from Lemma 33 and Proposition 32.

Theorem 35 (Monotonicity of trace inclusion w.r.t. SIOA creation). Let X,Y
be configuration automata, and A,B be SIOA. Assume that,

1. B has a single start state, and A, B do not destroy themselves by executing an
internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,
3. ∀x ∈ start(X),∃y ∈ start(Y ) : config (X)(x) �AB config(Y )(y),
4. traces∗(A) ⊆ traces∗(B),
5. ttraces (A) ⊆ ttraces(B), and
6. X,Y are creation-corresponding w.r.t. A,B .

Then
traces (X) ⊆ traces(Y ).

Proof: Let α = x0a1x1a2x2 . . . be an arbitrary execution of X. We show that there
exists a “corresponding” execution π of Y such that αRAB π. Proposition 32 then
implies trace (α) = trace (α′), which yields the desired traces (X) ⊆ traces (Y ).

If α is finite, then the result follows from Lemma33. So, we assume that α is infinite.
Let α1 be an arbitrary prefix of α. Then, by Lemma 33 there exists a finite execution
π1 of Y such that α1 RAB π1 . Likewise, if α1 < α2 and α2 < α then there exists a finite
execution π2 of Y such that α2 RAB π2. Furthermore, we can show that π1 < π2 since
π2 can be chosen to be an extension of π1, as the proof of Lemma 33 constructs π1 and
then π2 by induction on their length.
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Since α is infinite, there exists an infinite set {αi | i ≥ 0} of finite executions of X
such that ∀i ≥ 0 : αi < αi+1 ∧ αi < α. Repeating the above argument for arbitrary
i ≥ 0, we obtain that there exists an infinite set {πi | i ≥ 0} of finite executions of Y
such that ∀i ≥ 0 : πi < πi+1 ∧αi RAB πi. Now let π be the unique infinite execution of Y
that satisfies ∀i ≥ 0 : πi < π. Then, by Definition 34, αRAB π, and so π is the required
execution of Y .

Corollary 36 (Trace equivalence w.r.t. SIOA creation). Let X,Y be configuration
automata, and A,B be SIOA. Assume that,

1. A, B have a single start state, and A, B do not destroy themselves by executing an
internal action,

2. internal actions of A,B do not create any SIOA, i.e., have empty create sets,
3. ∀x ∈ start(X),∃y ∈ start(Y ) : config (X)(x) �AB config(Y )(y) and

∀y ∈ start(Y ),∃x ∈ start(X) : config (Y )(y) �BA config (X)(x),
4. traces∗(A) = traces∗(B),
5. ttraces (A) = ttraces(B), and
6. X,Y are creation-corresponding w.r.t. A,B .

Then
traces (X) = traces(Y ).

Proof: Immediate by applying Theorem 35 in both directions of trace containment.
Note that we use �BA to mean �AB with the roles of A, B interchanged, and that
created (Y )(β) = created (X)(β)[B/A] iff created (Y )(β)[A/B ] = created (X)(β).

In Section 8 below, we present an example of a flight ticket purchase system. A client
submits requests to buy an airline ticket to a client agent. The client agent creates a
request agent for each request. The request agent searches through a set of appropriate
databases where the request might be satisfied. Upon booking a suitable flight, the
request agent returns confirmation to the client agent and self-destructs. A typical safety
property is that if a flight booking is returned to a client, then the price of the flight
is not greater than the maximum price specified by the client. The request agent in
this example searches through databases in any order. Suppose we replace it by a more
refined agent that searches through databases according to some rules or heuristics, so
that it looks first at the databases more likely to havea suitable flight. Then, Theorem 34
tells us that this refined system has all of the safety properties which the original system
has.

7. Modeling Dynamic Connection and Locations

We stated in the introduction that we model both the dynamic creation/moving of
connections, and the mobility of agents, by using dynamically changing external inter-
faces. The guiding principle here, adapted from [27], is that an agent should only interact
directly with either (1) another co-located agent, or (2) a channel one of whose ends is
co-located with the agent. Thus, we restrict interaction according to the current locations
of the agents.
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We adopt a logical notion of location: a location is simply a value drawn from the
domain of “all locations.” To codify our guiding principle, we partition the set of SIOA
into two subsets, namely the set of agent SIOA, and the set of channel SIOA. Agent
SIOA have a single location, and represent agents, and channel SIOA have two locations,
namely their current endpoints. We assume that all configurations are compatible, and
codify the guiding principle as follows: for any configuration, the following conditions
all hold, (1) two agent SIOA have a common external action only if they have the same
location, (2) an agent SIOA and a channel SIOA have a common external action only
if one of the channel endpoints has the same location as the agent SIOA, and (3) two
channel SIOA have no common external actions.

8. Extended Example: A Travel Agent System

Our example is a simple flight ticket purchase system. A client requests to buy an
airline ticket. The client gives some “flight information,” f , e.g., acceptable departure and
arrival times, departure city and destination city. The client also specifies a maximum
price f .mp they can pay. f contains all the client information, including mp, as well
as an identifier that is unique across all client requests. The request goes to a static
(always existing) “client agent,” who then creates a special “request agent” dedicated
to the particular request. That request agent then visits a (fixed) set of databases
where the request might be satisfied. If the request agent finds a satisfactory flight
in one of the databases, i.e., a flight that conforms to f and has price ≤ mp, then it
purchases some such flight, and returns a flight descriptor fd giving the flight and the
price paid (fd .p) to the client agent, who returns it to the client. The request agent
then terminates. To abstract away from the details of conforming to a clients flight
information, we assume a predicate conforms(fd , f ) that holds when the flight given by
fd satisfies the arrival/deprture times and cities of the client request f . We assume a set
F of flight descriptors, and a static set D of database agents. We also assume that both
the client flight information f , and the returned flight descriptor fd , are elements of F.

The agents in the system are:

1. ClientAgt , who receives all requests from the client,
2. ReqAgt (f ), responsible for handling request f , and
3. DBAgt d , d ∈ D, the agent (i.e., front-end) for database d, where D is the set of all

databases in the system.

We augment the pseudocode used in the mobile phone example by identifying SIOA
using a “type name” followed by some parameters. This is only a notational convenience,
and is not part of our model.

Figure 8 presents a specification automaton, Spec , which is a single SIOA that, to-
gether with the databases, specifies the set of correct traces. That is, can take the
specification to be Spec ‖ (‖d∈D DBAgt d). However, as we see below, it is simpler, and
just as effective, to take the specification to be Spec , i.e., to exclude the databases from
the specification.

Figures 9, 10, and 11 give the client agent, request agents, and database agent
of an implementation, respectively. When writing sets of actions, we make the con-
vention that all free variables are universally quantified over their domains, so, e.g.,
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{informd(f ,flts), confd(fd , ok?)} within action selectd(f ) below really denotes
{informd(f ,flts), confd(fd , ok?) | fd ∈ F,flts ⊆ F, ok? ∈ Bool}.

In the implementation, we enforce locality constraints by modifying the signature of
ReqAgt (f ) so that it can only query a database d if it is currently at location d (we
use the database names for their locations). We allow ReqAgt (f ) to communicate with
ClientAgt regardless of its location. A further refinement would insert a suitable channel
between ReqAgt (f ) and ClientAgt for this communication (one end of which would move
along with ReqAgt(f )), or would move ReqAgt (f ) back to the location of ClientAgt .

We now give the client agent and request agents of the implementation. The initial
configuration consists solely of the client agent ClientAgt . We also give the database
agents, which we can view as being “external” to the system, since we do not consider
their details in arguing trace inclusion. We provide the databases for sake of complete-
ness, and to demonstrate that we can reason even in the absence of major components,
i.e., we can reason about “open” systems.

ClientAgt receives requests from a client (not portrayed), via the request input action.
ClientAgt accumulates these requests in reqs , and creates a request agent ReqAgt (f ) for
each one, via the output action create. This is indicated by the pseudocode “creates
SIOA ReqAgt (f )”. Upon receiving a response from the request agent, via input action
req-agent-response, the client agent adds the response to the set resps , and subsequently
communicates the response to the client via the response output action. It also removes
all record of the request at this point.

ReqAgt (f ) handles the single request f , and then terminates itself. ReqAgt(f ) has ini-
tial location c (the location of ClientAgt) traverses the databases in the system, querying
each database d using queryd(f ). Database d returns a set of flights that match the
schedule information in f . Upon receiving this (informd(f ,flts)), ReqAgt (f ) searches for
a suitably cheap flight (the ∃fd ∈ flts : fd .p ≤ f .mp condition in informd(f ,flts)). If such
a flight exists, then ReqAgt (f ) attempts to buy it (buyd(f ,flts) and confd(f , fd , ok?)).
If successful, then ReqAgt (f ) returns a positive response to ClientAgt and terminates.
ReqAgt (f ) queries each database at most once, and attempts to buy a ticket from each
database at most once. ReqAgt (f ) can return a negative response if it has queried each
database once and failed to buy a ticket.

Formally, let Impl be the configuration automaton that is “generated” by ClientAgt
and all the ReqAgt (f ), i.e., the configuration automaton whose initial states correspond to
the initial states of ClientAgt , and whose transitions are those generated by the intrinsic
transitions of the configurations consisting of ClientAgt and all created ReqAgt (f ). That
is, Impl is our implementation. The implementation Impl refines the specification Spec
(provided that all actions except request(f ) and response(f , fd , ok?) are hidden) since the
implementation queries each database exactly once before returning a negative response,
whereas the specification queries each database some finite number of times before doing
so. Thus, the traces of the implementation are a subset of the traces of the specification:
traces(Impl ) ⊆ traces (Spec ).

We nowapply Theorem 17 to infer traces (Impl ‖ (‖d∈D DBAgt d)) ⊆ traces (Spec ‖ (‖d∈D DBAgt d)).
That is, including the databases in the specification and in the implementation does not
invalidate the trace inclusion. This simplifies our reasoning, and also demonstrates our
ability to handle “open” systems, in which a major component (i.e., the database) is left
unspecified.

Our results also enable the incremental verification of trace inclusion between speci-
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Specification: Spec

Signature
Input:

request(f), where f ∈ F
informd(f , flts), where d ∈ D, f ∈ F, and flts ⊆ F
confd(f , fd,ok?), where d ∈ D, f , fd ∈ F, and ok? ∈ Bool
selectd(f), where d ∈ D and f ∈ F
adjustsig(f ), where f ∈ F
initially: {request(f) : f ∈ F} ∪ {selectd(f ) : d ∈ D, f ∈ F}

Output:
queryd(f ), where d ∈ D and f ∈ F
buyd(f ,flts), where d ∈ D, f ∈ F, and flts ⊆ F
response(f , fd,ok?), where f , fd ∈ F and ok? ∈ Bool
initially: {response(f , fd,ok?) : f , fd ∈ F, ok? ∈ Bool }

Internal:

∅
constant

State
statusf ∈ {notsubmitted, submitted, computed, replied}, status of request f , initially notsubmitted

trans f ,d ∈ Bool , true iff the system is currently interacting with database d on behalf of request f , initially
false

okfltsf ,d ⊆ F , set of acceptable flights that has been found so far, initially empty

resps ⊆ F ×F × Bool , responses that have been calculated but not yet sent to client, initially empty

xf ,d ∈ N, bound on the number of times database d is queried on behalf of request f before a negative reply
is returned to the client, initially any natural number greater than zero

Actions
Input request(f )
Eff: statusf ← submitted

Input selectd(f )
Eff: in ←

(in ∪ {informd(f ,flts), confd(fd,ok?)}) −
{informd′(f , flts), confd′ (fd ,ok?) : d′ 	= d};

out ←
(out ∪ {queryd(f ), buyd(f , fd)}) −
{queryd′(f ), buyd′ (f , fd) : d

′ 	= d}

Output queryd(f )
Pre: statusf = submitted ∧ xf ,d > 0
Eff: xf ,d ← xf ,d − 1;

trans f ,d ← true

Input informd(f ,flts)
Eff: okfltsf ,d ← okfltsf ,d ∪

{fd : fd ∈ flts ∧ fd.p ≤ f .mp}

Output buyd(f ,flts)
Pre: statusf = submitted ∧

flts = okfltsf ,d 	= ∅ ∧ trans f ,d

Eff: skip

Input confd(f , fd ,ok?)
Eff: trans f ,d ← false;

if ok? then
resps ← resps ∪ {〈f , fd , true〉};
statusf ← computed

else
if ∀d : xf ,d = 0 then

resps ← resps ∪ {〈f , ⊥,false〉};
statusf ← computed

else
skip

Output response(f , fd,ok?)
Pre: 〈f , fd,ok?〉 ∈ resps ∧ statusf = computed
Eff: statusf ← replied

Input adjustsig(f )
Eff: in ← in−

{informd(f ,flts), confd(f , fd,ok?)};
out ← out−

{queryd(f ), buyd(f , fd)}

Figure 8: The specification automaton
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Client Agent: ClientAgt

Signature
Input:

request(f), where f ∈ F
req-agent-response(f , fd,ok?), where f , fd ∈ F, and ok? ∈ Bool
constant

Output:

response(f , fd,ok?), where f , fd ∈ F and ok? ∈ Bool
create(ClientAgt ,ReqAgt (f)), where f ∈ F
constant

Internal:
∅
constant

State
reqs ⊆F , outstanding requests, initially empty

created ⊆ F , outstanding requests for whom a request agent has been created, but the response has not yet
been returned to the client, initially empty

resps ⊆ F ×F × Bool , responses not yet returned to client, initially empty

Actions
Input request(f )
Eff: reqs ← reqs ∪ {〈f 〉}

Output create(ClientAgt ,ReqAgt(f ))
Pre: f ∈ reqs ∧ f 	∈ created
Eff: created ← created ∪ {f};

creates SIOA ReqAgt (f )

Input req-agent-response(f , fd,ok?)
Eff: resps ← resps ∪ {〈f , fd ,ok?〉};

done ← done ∪ {f }

Output response(f , fd,ok?)
Pre: 〈f , fd,ok?〉 ∈ resps
Eff: resps ← resps − {〈f , fd,ok?〉}

Figure 9: The client agent
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Request Agent: ReqAgt (f ) where f ∈ F
Signature
Input:

informd(f , flts), where d ∈ D and flts ⊆ F
confd(f , fd,ok?), where d ∈ D, fd ∈ F, and ok? ∈ Bool
terminate(ReqAgt (f))
initially: {movef (c, d), where d ∈ D}

Output:
queryd(f ), where d ∈ D
buyd(f ,flts), where d ∈ D and flts ⊆ F
req-agent-response(f , fd,ok?), where fd ∈ F and ok? ∈ Bool
initially: ∅

Internal:
movef (c, d), where d ∈ D
movef (d, d′), where d, d′ ∈ D and d �= d′
constant

State
location ∈ c ∪ D, location of the request agent, initially c, the location of ClientAgt

status ∈ {purchased, failed,unknown}, status of request f , initially notsubmitted

transd ∈ Bool , true iff ReqAgt (f ) is currently interacting with database d (on behalf of request f ), initially
false

D−remaining ⊆D, databases that have not yet been queried, initially the list of all databases D

tkt ∈ F , the flight ticket that ReqAgt (f ) purchases on behalf of the client, initially ⊥

okfltsd ⊆ F , set of acceptable flights that ReqAgt(f ) has found so far, initially empty

queriedd, boolean flag, true when database d has been queried, initially false.

ordered d, boolean flag, true when a purchase order for a ticket has been submitted to database d, initially
false.

Actions
Internal movef (c, d)
Pre: location = c
Eff: location ← d;

transd ← true;
D− remaining ← D− remaining − {d};
in ← {informd(f ,flts), confd(f , fd ,ok?)};
out ← {queryd(f ), buyd(f , fd),

req-agent-response(f , fd,ok?)};

Output queryd(f )
Pre: location = d ∧ d ∈ D− remaining ∧

¬queried d

Eff: queried d ← true;

Input informd(f ,flts)
Eff: okfltsd ← okfltsd ∪

{fd : fd ∈ flts ∧ fd .p ≤ f .mp};
if okfltsd = ∅ then

transd ← false;

Output buyd(f ,flts)
Pre: location = d ∧ flts = okfltsd 	= ∅ ∧

tkt = ⊥∧ transd ∧ ¬ordered d

Eff: ordered d ← true

Input confd(f , fd ,ok?)
Eff: transd ← false;

if ok? then
tkt ← fd;
status ← purchased

else
if D− remaining = ∅ then

status ← failed

Internal movef (d, d′)
Pre: location = d ∧ d′ ∈ D− remaining ∧

status = unknown
Eff: location ← d

′
;

in ← {informd′(f ,flts), confd′ (f , fd, ok?)};
out ← {queryd′(f ), buyd′ (f , fd),

req-agent-response(f , fd ,ok?)};

Output req-agent-response(f , fd,ok?)
Pre: (status = purchased ∧ fd = tkt 	= ⊥ ∧

ok?) ∨
(status = failed ∧ fd = ⊥∧ ¬ok?)

Eff: in ← ∅;
out ← ∅;
int ← ∅

Figure 10: The request agent
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Database: DBAgt d where d ∈ D
Signature
Input:

queryd(f ), where f ∈ F and d ∈ D
buyd(f ,flts), where d ∈ D, f ∈ F, and flts ⊆ F
constant

Output:
informd(f , flts), where d ∈ D, f ∈ F, and flts ⊆ F
confd(f , fd,ok?), where d ∈ D, f ∈ F, fd ∈ F, and ok? ∈ Bool
constant

Internal:

∅
constant

State
received d ⊆ F , set of received and pending queries, initially ∅

availd ⊆ F , set of available flights

ordersd ⊆ F × 2F, set of pending orders, initially ∅

Actions
Input queryd(f )
Eff: receivedd ← received d ∪ {f }

Output informd(f ,flts)
Pre: f ∈ received ∧ flts = {fd | conforms (fd , f )}
Eff: skip

Input buyd(f ,flts)
Eff: ordersd ← ordersd ∪ {〈f ,flts〉}

Output confd(f , fd,ok?)
Pre: 〈f ,flts〉 ∈ ordersd ∧

[ (fd ∈ flts ∩ availd ∧ ok?) ∨
(fd =⊥ ∧flts ∩ availd = ∅ ∧ ¬ok?) ]

Eff: availd ← availd − {fd}
ordersd ← ordersd − {〈f ,flts〉}

Figure 11: The databse agent
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fications and their implementations. For example, within the context of a larger system,
we replace Spec by Impl , and then we apply Theorem 17 to infer that the traces of the
resulting system are a subset of the traces of the initial system. For example, let Spec2
be a specification for another subsystem that provides hotel booking, and let Impl2 be
an implementation for Spec2 such that traces (Impl2 ) ⊆ traces(Spec2 ). We apply The-
orem 17 with antecedent traces(Impl ) ⊆ traces (Spec ) to infer traces (Impl ‖ Spec2 ) ⊆
traces(Spec ‖ Spec2 ). We again apply Theorem 17 with antecedent traces(Impl2 ) ⊆
traces(Spec2 ) to infer traces(Impl ‖ Impl2 ) ⊆ traces(Impl ‖ Spec2 ). Transitivity of ⊆
then yields traces (Impl ‖ Impl2 ) ⊆ traces (Spec ‖ Spec2 ), i.e., the overall implementation
is trace-contained in the overall specification. We can repeat this as often as we like,
e.g., if there is a third system Spec3 and its implementation Impl3 , say for booking
rental cars. Then traces (Impl3 ) ⊆ traces(Spec3 ), together with the above and Theo-
rem 17, gives us traces (Impl ‖ Impl2 ‖ Impl3 ) ⊆ traces (Spec ‖ Spec2 ‖ Spec3 ). Thus, we
can in turn replace each specification by its implementation, and have trace-containment
guaranteed.

Now suppose that we replace ReqAgt (f ) by another agent ReqAgt ′(f ) whose behavior
is more constrained in that ReqAgt ′(f ) does not move arbitrarily from one database d to
another d′, but selects the destination d′ according to a heuristic function next() that at-
tempts to maximize the probability of finding a suitable flight. In other words, the precon-
dition of movef (d, d′ ) action is changed from location = d∧d′ ∈ D−remaining∧ status =
unknown to location = d ∧ d′ ∈ D−remaining ∧ status = unknown∧ d′ = next(). This
change implies that traces (ReqAgt ′(f )) ⊆ traces (ReqAgt(f )) and ttraces(ReqAgt ′(f )) ⊆
ttraces(ReqAgt (f )), since the behaviors of ReqAgt ′(f ) are more constrained than ReqAgt (f ).

Let Impl ′ be the same as Impl , except that ReqAgt ′(f ) is created instead of ReqAgt (f ).
We show that all assumptions of Theorem 35 are satisfied. From the “initially” state-
ments in the I/O automaton pseudocode in Figure 10, we see that ReqAgt (f ) has a single
initial state. Also, ReqAgt (f ) and ReqAgt ′(f ) destroy themselves using the output ac-
tion req-agent-response. Hence Assumption 1 is satisfied. The only action that creates
SIOA is an action of ClientAgt , and so Assumption 2 is satisfied. Since the initial states
of Impl and Impl ′ correspond, Assumption 3 is satisfied. Since traces(ReqAgt ′(f )) ⊆
traces(ReqAgt (f )) and ttraces (ReqAgt ′(f )) ⊆ ttraces(ReqAgt (f )), we have that Assump-
tions 4 and 5 are satisfied. Since the SIOA created by create(ClientAgt ,ReqAgt (f )) de-
pend only on the inputs request(f ), we see that Impl and Impl ′ are creation-corresponding
w.r.t. request agents, and hence Assumption 6 is satisfied. Hence we apply Theorem 35
to conclude traces (Impl ′ ) ⊆ traces (Impl ). The above results together with Theorem 17
now yield, for example, traces (Impl ′ ‖ Impl2 ‖ Impl3 ) ⊆ traces (Spec ‖ Spec2 ‖ Spec3 ).

This example illustrates one way of satisfying the creation-correspondence require-
ment: the SIOA created depend on the sequence of inputs and outputs executed so far
(in the case of this example, it depends on only the inputs, i.e., the client requests).

9. Related Work

Formalisms for the modeling of dynamic systems can generally be classified as being
based on process algebras or on automata/state transition systems.

The π-calculus [27] is a process algebra that includes the ability to modify the channels
between processes: channels are referred to by names, and a name y can be sent along a
known channel to a recipient, which then acquires the ability to use the channel named
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by y. The π-calculus adopts the viewpoint that mobility of processes is modelled by
changing the links that a process can use to communicate, to quote from [27, page 78]:
“the location of a process in a virtual space of processes is determined by the links which
it has to other processes; in other words, your neighbors are those you can talk to.”
Process creation is given in the π-calculus by the ! operator: the process !P can create an
unlimited number of copies of P . We can emulate this feature by having a configuration
automaton which can create an unlimited number of copies of an SIOA.

The asynchronous π-calculus [17] is an asynchronous version of the π-calculus where
receipt of a name along a channel occurs after it is sent, rather than synchronously, as in
the original π-calculus. The higher-order π-calculus allows sending processes themselves
as messages along channels [26]. In terms of how mobility is modeled, DIOA is therefore
similar to the π-calculus in that we also model mobility in terms of signature change.

The distributed join-calculus [13] extends the π-calculus with notions of explicit lo-
cation, failure, and failure detection. Locations are hierarchical, and are modelled as
trees. Locations reside at a physical site and can move atomically to another physical
site, taking their entire subtree of locations with them. A failed location is tagged by a
marker. All sublocations of a failed location are also failed.

The Distributed π-calculus Dπ [30] is another extension of the π-calculus that deals
with distribution issues. Dπ provides tree-structured locations, and each basic process
(thread) is located at some location. Channels are also located, and a process can send
a value on a channel only if it is at the same location as the channel. Channel and
locations also have permissions associated with them, and which constrain their use.
These constraints are enforced by a type system.

The ambient calculus [8] takes as primitive notions agents, which execute actions, and
ambients. An ambient is a “space” which agents can enter, leave, and open. Ambients
may be nested, and are mobile. A process in the ambient calculus is either an agent or
an ambient. The ambient calculus is intended to model, e.g., administrative domains in
the world-wide web.

The above process algebras have a formal syntax for process expressions, and a fixed
set of reaction rules, which give the possible reductions between expressions. Reasoning
about behaviour is carried out usingnotions of equivalence and congruence: observational
equivalence, weak and strong bisimulation, barbed bisimulation, etc.

DIOA makes a different choice of primitive notion, it chooses actions and automata
as primitive, and does not include channels and their transmission as primitive. Our
approach is also different in that it is primarily a (set-theoretic) mathematical model,
rather than a formal language and calculus. We expect that notions such as channel
and location will be built upon the basic model using additional layers (as we do for
modeling mobility in terms of signature change). Also, we ignore issues (e.g., syntax)
that are important when designing a programming language. Note that the “precondition
effect” notation used in the travel agent example is informal, and used only for exposition.
Reasoning about behaviour is carried out using trace substitutivity: the monotonicity
of parallel composition, action hiding, action renaming, and SIOA creation (subject to
technical conditions) with respect to trace inclusion. A consequence of our results is that
trace equivalence is a congruence with respect to parallel composition, action hiding, and
action renaming.

In a joint study [2] with researchers from Nippon Telephone and Telegraph, we com-
pare DIOA with two languages defined and used at Nippon Telephone and Telegraph:
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Erdös is a knowledge based environment for agent programming, and Nepi extends the
π-calculus with data types. We construct a simplified version of the travel agent example
above, in all three formalisms. The version in DIOA appears cleaner and easier to read,
as it is devoid of language and implementation-specific detail. The versions in Nepi and
Erdös have the advantage of executability, and in addition Erdös supports CTL model
checking [9] in the finite-state case. Hence DIOA can be used for the initial specification
and implementation of a dynamic system, and our trace inclusion results used for verifica-
tion of conformance of the implementation to the specification. Subsequently, the DIOA
implementation can be translated into Nepi or Erdös, or indeed into any other concrete
executable programming notation for dynamic systems. Alternatively, the DIOA can be
compiled directly, as in the IOA project [15]. This approach provides the advantages of a
compositional approach to specification, design, and implementation of dynamic systems.

One key difference between DIOA and process algebras is that most behavioral equiv-
alence notions for process algebras are based on simulation/bisimulation relations, and
so entail examining the state transition structure of the two systems being compared.
DIOA on the other hand uses trace substitutivity and trace equivalence, which are based
only on the externally visible behavior. In practice one would use simulation relations to
establish trace inclusion, so this difference may not matter so much, but it does provide
room for methods of establishing trace inclusion apart from simulation relations.

Bigraphs [28] were introduced by Milner as a model for ubiquitous computing sys-
tems containing large numbers of mobile agents, and are founded on two main notions:
placing and linking [28, prologue]. A bigraph over a given set of nodes V consists of
two independent (and independently modifiable) components: a place graph, which is a
forest over V , and a link graph, which is a hypergraph over V . The place graph models
location: nodes in a place graph are similar to ambients, and can move inside other
nodes, and out of nodes that are ancestors in the place graph. The link graph models
connectivity: hyperedges in the link graph represent connectivity. Unlike the process
algebras discussed above, bigraphs do not come with a fixed set of reaction rules, and
their behavioral theory is given with respect to a set of unspecified reaction rules [18].

A rough analogy can be drawn between the structure of Bigraphs and DIOA: the place
graph is analogous to the nesting of a configuration automata inside the configuration
automaton which created it, and the hyperedges of the link graph are analogous to
actions, which can have several SIOA as participants. The input enabling condition
destroys this analogy to some extent, but we note that we did not use input enabling to
derive any of our results, and it can possibly be dispensed with. Detailed investigation
of the relation between Bigraphs and DIOA is a topic for future work.

Among state-based formalisms for dynamic models, we mention Dynamic BIP and
Dynamic Reactive Modules. Dynamic Reactive Modules [12] are a dynamic extension of
reactive modules [1]. New modules can be created as instances of module class definitions,
using a new command, as in object-oriented languages. The new command returns a
reference to the newly created instance, which can be stored in a reference variable,
and passed to other module instances as a parameter, upon their creation. A module
instance that has a reference to another module instance can then read the other modules
externally visible variables. The semantics of dynamic reactive modules are given by
dynamic discrete systems [12], which extend fair discrete systems [19] to model the
creation of module instances.

BIP [5] is a framework for constructing systems by superposing three layers of mod-
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eling: behavior, interaction, and priority (hence BIP). An atomic component is a labeled
transition system extended with ports, which label its transitions. A (multiparty) interac-
tion is a synchronous event which involves a fixed set of participating atomic components.
Syntactically, an interaction is specified as a set of ports, with at most one port from
each atomic component. Execution of a multiparty interaction involves the synchronous
execution of a transition labeled by the relevant port in each participating component.
BIP provides both syntax and semantics, and has been implemented in the BIP execution
Engine [6]. Dynamic BIP, or Dy-BIP, [7] extends BIP by allowing the set of interactions
to change dynamically with the current global state. The possible interactions in a state
are computed as maximal solutions of constraints. Dy-BIP does not include the dynamic
creation and destruction of component instances. This is for simplicity, and is not a fun-
damental limitation. Dy-BIP is thus similar to our SIOA, whose signatures are functions
of their state. However Dy-BIP provides a syntax for writing interaction constraints, and
these have been implemented in the BIP execution Engine.

In summary, our model is based on the I/O automaton model [24], which has been suc-
cessfully applied to the design of many difficult distributed algorithms, including ones for
resource allocation [25, 31], distributed data services [10], group communication services
[11], distributed shared memory [23, 21], and reliable multicast [20]. In our model, all
processes have unique identifiers, and the notion of a subsystem is well defined. Subsys-
tems can be built up hierarchically. Together with our results regarding the monotonicity
of trace inclusion, this provides a semantic foundation for compositional reasoning. In
contrast, process calculi tend to use a more syntactic approach, by showing that some
notion of simulation or bisimulation is preserved by the operators that are used to define
the syntax of processes (e.g., parallel composition, choice, action prefixing).

10. Conclusions and Further Research

We presented a model, DIOA, of dynamic computation based on I/O automata. The
features of dynamic computation that DIOA expresses directly are (1) modification of
communication and synchronization capabilities, i.e., SIOA signature change, and (2)
creation of new components, i.e., configuration automata and configuration mappings.
Other aspects of dynamic computation, such as location and migration, are modeled
indirectly using the above-mentioned features.

For SIOA, we established standard results of (1) monotonicityof trace inclusion (trace
substitutivity), and (2) trace equivalence as a congruence, both with respect to the oper-
ations of concurrent composition, action hiding, and action renaming. For configuration
automata and the operation of SIOA creation, we gave an example showing that trace
inclusion is not always monotonic with respect to SIOA creation. This is in contrast to
most process algebras, where the simulation relation used is shown to be a congruence
with respect to process creation. This somewhat surprising result stems from our use of
trace inclusion and trace equivalence for relating different systems. Trace inclusion and
trace equivalence abstract away from the internal branching structure of the transition
system, and this accounts for the violation of trace inclusion monotonicity.

We then presented some technical assumptions under which trace inclusion is mono-
tonic with respect to SIOA creation. In addition to trace inclusion of the substituted
SIOA A and B , we also assume inclusion of terminating traces (traces of terminating
executions), we prohibit internal actions of A, B from creating new SIOA, we require
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B to have a single start state, and we restrict when A and B can be created by their
containing configuration automata X and Y (creation-correspondence of X and Y w.r.t.
A and B).

Our model provides a very general framework for modeling process creation: creation
of an SIOA A is a function of the state of the “containing” configuration automaton,
i.e., the global state of the “encapsulated system” which creates A. This generality was
useful in enablingus to define a connection between SIOA creation and external behavior
that yielded Theorems 34 and 35.

For future work, the most pressing concern is to devise a notion of forward simulation
for DIOA, and to show that it implies trace inclusion. Clearly, the state correspondence
must match not only the outgoing transitions, but also the external signatures in the
corresponding states.

We intend to investigate the relationship between DIOA and π-calculus, and to look
into embedding the π-calculus into DIOA. This should provide insight into the impli-
cations of the choice of primitive notion; automata and actions for DIOA versus names
and channels for π-calculus. The work of [29], which provides a process-algebraic view of
I/O automata, could be a starting point for this investigation. We note that the use of
unique SIOA identifiers is crucial to our model: it enables the definition of the execution
projection operator, and the establishment of execution projection/pasting and trace
pasting results. This then yields our trace substitutivity result. The π-calculus does not
have such identifiers, and so the only compositionality results in the π-calculus are with
respect to simulation, rather than trace inclusion. Since simulation is incomplete with
respect to trace inclusion, our compositionality result has somewhat wider scope than
that of the π-calculus. When the traces of A are included in those of B , but there is
no simulation from A to B , our approach will still allow B to be replaced by A, and
we can automatically conclude that correctness is preserved, i.e., no new behaviors are
introduced into the overall system.

We will explore the use of DIOA as a semantic model for object-oriented program-
ming. Since we can express dynamic aspects of OOP, such as the creation of objects,
directly, we feel this is a promising direction. Embedding a model of objects into DIOA
would provide a foundation for the verification and refinement of OO programs.

Agent systems should be able to operate in a dynamic environment, with processor
failures, unreliable channels, and timing uncertainties. Thus, we need to extend our
model to deal with fault-tolerance and timing.

Pure liveness properties are given by a set of live traces. A live trace is the trace of
a live execution, and a live execution is one which meets a specified liveness condition
[4, 14]. Refinement with respect to liveness properties is dealt with by inclusion relations
amongst the sets of live traces only. In [4], a method is given for establishing live trace
inclusion, by using a notion of forward simulation that is sensitive to liveness properties.
Extending this method to DIOA will enable the refinement and verification of liveness
properties of dynamic systems.
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