
The Impossibility of Boosting Distributed Service Resilience ∗

Paul Attie1 Rachid Guerraoui2 Petr Kuznetsov3 Nancy Lynch4 Sergio Rajsbaum5

(1) Department of Computer Science and Center for Advanced Mathematical Studies, American University of Beirut

(2) Distributed Programming Laboratory, EPFL

(3) Technische Universität Berlin/Deutsche Telekom Laboratories

(4) MIT Computer Science and Artificial Intelligence Laboratory

(5) Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM)

March 17, 2010

Abstract

We study f -resilient services, which are guaranteed to operate as long as no more than f of
the associated processes fail. We prove three theorems asserting the impossibility of boosting the
resilience of such services. Our first theorem allows any connection pattern between processes
and services but assumes these services to be atomic (linearizable) objects. This theorem says
that no distributed system in which processes coordinate using f -resilient atomic objects and
reliable registers can solve the consensus problem in the presence of f + 1 undetectable process
stopping failures. In contrast, we show that it is possible to boost the resilience of some systems
solving problems easier than consensus: for example, the 2-set consensus problem is solvable for
2n processes and 2n − 1 failures (i.e., wait-free) using n-process consensus services resilient to
n− 1 failures (wait-free). Our proof is short and self-contained.

We then introduce the larger class of failure-oblivious services. These are services that cannot
use information about failures, although they may behave more flexibly than atomic objects.
An example of such a service is totally ordered broadcast. Our second theorem generalizes the
first theorem and its proof to failure-oblivious services.

Our third theorem allows the system to contain failure-aware services, such as failure de-
tectors, in addition to failure-oblivious services. This theorem requires that each failure-aware
service be connected to all processes; thus, f+1 process failures overall can disable all the failure-
aware services. In contrast, it is possible to boost the resilience of a system solving consensus
using failure-aware services if arbitrary connection patterns between processes and services are
allowed: consensus is solvable for any number of failures using only 1-resilient 2-process perfect
failure detectors.

As far as we know, this is the first time a unified framework has been used to describe both
atomic and non-atomic objects, and the first time boosting analysis has been performed for
services more general than atomic objects.

∗The first author was supported by the National Science Foundation under Grant No. 0204432. The fourth author
was supported by the National Science Foundation under Grants NSF CNS-0121277 and NSF CCF-0726514 and by
the Air Force Office of Scientific Research under Contracts USAF, AFRL Award No. FA9550-04-1-0121, FA9550-08-
1-0159. The basic results appeared initially in a 2002 technical report [2]. An extended abstract [1] containing some
of the results of this paper was presented at the 25’th International Conference on Distributed Computing Systems,
June 2005, Columbus, Ohio. Part of this work was done while the third author was at the School of Computer and
Communication Sciences, EPFL, and Max Planck Institute for Software Systems.

1

Keywords: distributed services, resilience, boosting, consensus, atomic objects, failure detectors,
I/O automata.

1 Introduction

We consider distributed systems consisting of asynchronously operating processes that coordinate
using shared services and reliable multi-writer multi-reader registers. A service is a distributed
computing mechanism that interacts with distributed processes, accepting invocations, performing
internal computation steps, and delivering responses. Examples of services include:

• Shared atomic (linearizable) objects, defined by sequential type specifications [11,12], for example,
atomic read-modify-write, queue, counter, test&set, compare&swap and consensus objects.

• Concurrently-accessible data structures such as balanced trees.

• Broadcast services such as totally ordered broadcast and atomic broadcast [10].

• Failure detectors, which provide processes with information about the failure of other pro-
cesses [5]. 1

Thus, our notion of a service is quite general. We define three successively more general classes of
service—atomic objects, failure-oblivious services, and general (possibly failure-aware) services—in
Sections 2.1, 5, and 6. We define our services to tolerate a certain number f of failures: a service
is f -resilient if it is guaranteed to operate as long as no more than f of the processes connected to
the service fail.

This paper considers the question of what level of resilience can be achieved by distributed
systems containing certain kinds of services. In particular, we prove results saying that the resilience
of a system cannot be “boosted” above that of its individual services. More specifically, we prove
three theorems saying that no distributed system in which processes coordinate using reliable
registers and f -resilient services can solve the consensus problem in the presence of f + 1 process-
stopping failures.

We focus on the consensus problem because it is fundamental to the study of resilience in
distributed systems. For example, consensus has been shown to be universal [11], in the sense
that an atomic object of any sequential type can be implemented in a wait-free manner (i.e.,
tolerating any number of failures), using (an infinite number of) wait-free consensus objects. In
fact, the choice of consensus is crucial because our results do not apply to some problems that are
weaker than consensus, such as k-set-consensus.

Our contribution. Our first main theorem, Theorem 2, assumes that the given services are
atomic objects and allows any connection pattern between processes and services. This theorem
is a strict generalization of the classical impossibility result of Fischer et al. [8] for fault-tolerant
consensus. The proof is short and self-contained. It uses a bivalence argument inspired by (though
somewhat more elaborate than) the one in [8]. The proof involves showing that decisions can be
made in a particular way, described by a hook pattern of executions.

In contrast to the impossibility of boosting for consensus, we show that it is possible to boost the
resilience of systems solving problems easier than consensus. In particular, we show that the 2-set

1Our notion of service allows us to model some of the failure detectors defined by Chandra et al. [4]. See Section 6.2
for examples.

2

consensus problem is solvable for 2n processes and 2n − 1 failures (i.e., wait-free) using n-process
consensus services resilient to n− 1 failures (i.e., wait-free).

Theorem 2 and its proof assume that the given services are atomic objects; however, they extend
to a larger class of failure-oblivious services. A failure-oblivious service generalizes an atomic object
by allowing an invocation to trigger any number of responses, to any number of processes. The
service may also perform spontaneous steps, not triggered by an invocation. The key constraint is
that no step may depend on explicit knowledge of the occurrence of failure events. We define the
class of failure-oblivious services, give an example (totally-ordered broadcast), and prove a second
theorem, Theorem 9, which extends Theorem 2 to failure-oblivious services.

Our third theorem, Theorem 10, addresses the case where the system may contain general (pos-
sibly failure-aware) services, such as failure detectors or atomic broadcast services, in addition to
failure-oblivious services and reliable registers. This result also says that boosting is impossible.
However, it requires the additional assumption that each general service is connected to all pro-
cesses; thus, f +1 process failures overall can disable all the general services. The proof is a variant
of our second proof, again using a “hook” construction. We also show that the stronger connectivity
assumption is necessary, by demonstrating that it is possible to boost the resilience of a system
solving consensus if arbitrary connection patterns between processes and general services are al-
lowed: specifically, consensus is solvable for any number of failures using only 1-resilient 2-process
perfect failure detectors.

In addition to the three main theorems, our paper presents (as far as we know) the first unified
framework for expressing both atomic and non-atomic objects. Our models for failure-oblivious
services and general services are new. Moreover, this is the first time boosting analysis has been
performed for services more general than atomic objects.

Related work. Our Theorem 2 asserting the impossibility of boosting the resilience of atomic
objects appeared initially in a 2002 technical report [2]. Subsequently, it was observed in [9,13] that
a variant of Theorem 2 can be derived by combining several earlier theorems, including Herlihy’s
result on universality of consensus [11], observations on implementability of consensus by Jayanti
and Toueg [14], and results of Chandra et al. on f -resilience vs. wait-freedom [3]. However, the
models differ in some technical aspects. Some of the differences between the models are:

1. Jayanti and Toueg [14] and Herlihy [11] assume that an access to a wait-free object takes
place instantaneously, while Chandra et al. [3] and our paper assume that an access to every
service (even wait-free) incurs a delay. Also, Chandra et al. [3] and our paper allow a process
to access multiple services concurrently.

2. In our definition of an f -resilient atomic object, a connected process Pi that does not apply
an invocation is considered alive until a fail i action arrives. The corresponding definition of
a weakly f -resilient object in Chandra et al. [3] counts such a process as faulty.

3. We assume that an implementation can use only finitely many services. Chandra et al. [3]
does not make this assumtion.

We suspect, however, that it should not be difficult to address the points above and derive
our result on atomic objects from [3, 11, 14]. Nevertheless, some of the proofs upon which such
an indirect derivation (sketched in [9]) may rest are more complex than our direct proof. Also,
unlike our proof, the indirect arguments do not extend to prove the impossibility of boosting for
failure-oblivious and failure-aware services.

3

Organization. The rest of the paper is organized as follows. Section 2.1 presents definitions for
the underlying model of distributed computation and for atomic objects. Section 2.2 presents our
model for a system whose services are atomic objects. Section 3 presents the first impossibility
result. Section 4 shows that boosting is possible for set consensus. Section 5 defines failure-
oblivious services, gives an example, and proves our second impossibility result, which extends
the first impossibility result to systems with failure-oblivious services. Section 6 defines general
services, gives examples, and presents our third impossibility result. Section 7 concludes the paper.
Appendix A provides the complete proofs for the main lemmas in the second impossibility result,
for failure-oblivious services.

2 Mathematical Preliminaries

2.1 Model of distributed computation

In this section, we review definitions for basic notions used in this paper: I/O automata and
sequential types. We also give new definitions for resilient atomic objects, in terms of I/O automata.

2.1.1 I/O Automata

We use the I/O automaton model of Lynch and Tuttle [16,18], as presented in [17, Chapter 8], as
our underlying model for concurrent computation. An I/O automaton is a state machine where
each transition is labelled with an action name, i.e., transitions are triples (s, a, s′) where s, s′ are
states and a is an action name. A distinguished subset of the states are start states. An execution is
an alternating sequence s0a1s1a2s2 . . . of states and actions that s0 is a start state and every triple
si−1aisi along the execution is an actual transition. Each action of an I/O automaton is either an
input action, output action, or internal action. These three sets of actions constitute the signature
of the I/O automaton. In a concurrent composition of several I/O automata, all I/O automata
with an action a in their signature must execute a concurrently for a to occur. Concurrency is thus
modelled as the nondeterministic interleaving of action executions. In a concurrent composition,
an action a can be an output action of at most one automaton, and if a is an internal action of
some I/O automaton, then it cannot be an action of any other I/O automaton. I/O automata are
input-enabled, that is, from every state there is at least one transition for every input action. So,
an I/O automaton has no control over the occurrence of its input actions, but does have control
over the occurrence of its output and internal actions, which are collectively referred to as locally-
controlled actions. The locally controlled actions of an I/O automaton are partitioned into tasks.
We use associated terminology from [17, Chapter 8] as needed.

We say that an I/O automaton A is deterministic if and only if, for each task e of A, and each
state s of A, there is at most one transition (s, a, s′) such that a ∈ e.

An execution α of A is fair iff for each task e of A: (1) if α is finite, then e is not enabled in
the final state of α, and (2) if α is infinite, then α contains either infinitely many actions of e,
or infinitely many occurrences of states in which e is not enabled. A trace of A is a sequence of
external actions of A obtained by removing the states and internal actions from an execution of A.
A trace of a fair execution is called a fair trace.

If α and α′ are execution fragments of A, with α finite, such that α′ starts in the last state of α,
then the concatenation α · α′ is defined, and is called an extension of α.

An I/O automaton A implements an I/O automaton B iff all of the following hold:

1. A and B have the same input actions and the same output actions.

4

2. Any (finite or infinite) trace of A is also a trace of B.

3. Any fair trace of A is also a fair trace of B.

2.1.2 Sequential types

We define the notion of a “sequential type,” in order to describe allowable sequential behavior of
atomic objects. The definition used here generalizes the one in [17, Chapter 9]: here, we allow
nondeterminism in the choice of the initial state and the next state. Namely, sequential type
T = 〈V, V0, invs, resps, δ〉 consists of:

• V , a nonempty set of values,

• V0 ⊆ V , a nonempty set of initial values,

• invs, a set of invocations,

• resps, a set of responses, and

• δ, a binary relation from invs× V to resps × V that is total, in the sense that, for every (a, v) ∈
invs×V , there is at least one (b, v′) ∈ resps×V such that ((a, v), (b, v′)) ∈ δ.2 Relation δ specifies,
for each invocation and each value of the type, a response and a new value.

We sometimes use “dot” notation, writing T .V,T .V0,T .invs, etc. for the components of T .
We say that T is deterministic if V0 is a singleton set {v0}, and δ is a mapping, that is, for every

(a, v) ∈ invs× V , there is exactly one (b, v′) ∈ resps × V such that ((a, v), (b, v′)) ∈ δ.
We allow nondeterminism in our definition of a sequential type in order to make our notion of

“service” as general as possible. In particular, the problem of k-set-consensus can be specified using
a nondeterministic sequential type, but not a deterministic sequential type.

Example. Read/write sequential type: Here, V is a set of “values”, V0 = {v0}, where v0 is
a distinguished element of V , invs = {read} ∪ {write(v) : v ∈ V }, resps = V ∪ {ack}, and
δ = {((read, v), (v, v)) : v ∈ V } ∪ {((write(v), v′), (ack, v)) : v, v′ ∈ V }. This is a deterministic
sequential type.

Example. Binary consensus sequential type: Here, V = {{0}, {1}, ∅}, V0 = {∅}, invs = {init(v)) :
v ∈ {0, 1}}, resps = {decide(v) : v ∈ {0, 1}}, and δ = {((init(v), ∅), (decide(v), {v})) : v ∈ {0, 1}} ∪
{((init(v), {v′}), (decide(v′), {v′})) : v, v′ ∈ {0, 1}}. Thus, the first value is remembered, and is
returned by every operation. This is also a deterministic sequential type.

Example. k-set-consensus sequential type, 0 < k < n: Now V is the set of subsets of {0, 1, . . . , n−
1} having at most k elements, V0 = {∅}, invs = {init(v) : v ∈ {0, 1, . . . , n−1}}, resps = {decide(v) :
v ∈ {0, 1, . . . , n − 1}}, and δ = {((init(v),W), (decide(v′),W ∪ {v})) : |W | < k, v′ ∈ W ∪ {v}} ∪
{((init(v),W), (decide(v′),W)) : |W | = k, v′ ∈ W}. Thus, the first k values are remembered, and
every operation returns one of these values. This is a nondeterministic sequential type.

2.1.3 Canonical f -resilient atomic objects

Next, we define f -resilient atomic objects. For our impossibility proofs, it is convenient to model
such objects as automata, and to express the f -resilience condition within the automata themselves,
rather than treating it as a separate constraint.

A “canonical” f -resilient atomic object is an I/O automaton that exhibits all the allowable
behavior, including concurrent behavior, that is permitted for an f -resilient atomic object. Namely,
we define the canonical f -resilient atomic object of type T for endpoint set J and index k, where

2We also write δ((a, v), (b, v′)) for ((a, v), (b, v′)) ∈ δ.

5

• T is a sequential type,

• J is a nonempty finite set of endpoints at which invocations and responses may occur, (an endpoint
is just a process index, i.e., the endpoints define the processes that can invoke operations on the
atomic object)

• f ∈N is the level of resilience, and

• k is a unique index for the service.

The object is described as an I/O automaton, in precondition/effect notation, in Figure 1.
We will use the parameter J to specify which processes are connected to the object; see Sec-

tion 2.2. The parameter J allows different objects to be connected to the same set or different
sets of processes. A process at endpoint i ∈ J can issue any invocation specified by the underly-
ing sequential type T and can (potentially) receive any allowable response. We allow concurrent
(overlapping) operations, at the same or different endpoints. The object preserves the order of
concurrent invocations at the same endpoint i by keeping the invocations and responses in internal
FIFO buffers, two per endpoint (one for invocations from the endpoint, the other for responses to
the endpoint). The object chooses the result of an operation nondeterministically, from the set of
results allowed by the transition relation T .δ applied to the invocation and the current value of val.
The object can exhibit nondeterminism due to nondeterminism of the sequential type T , and due
to interleavings of steps for different process invocations.

We model a failure at an endpoint i by an explicit input action fail i. We use the task structure of
I/O automata and the basic definition of fair executions to specify the required resilience. Namely,
for every process i ∈ J , we assume the object has two tasks, which we call the i-perform task and i-
output task. The i-perform task includes the perform i,k action, which carries out operations invoked
at endpoint i. The i-output task includes all the bi,k actions giving responses at endpoint i. In
addition, every i-perform or i-output task contains a special dummy perform i,k or dummy output i,k

action, which is enabled when either process i has failed or strictly more than f processes in J have
failed. The dummy perform i,k and dummy output i,k actions are intended to allow, but not force,
the object to stop performing steps on behalf of process i after i fails or after the resilience level
has been exceeded.

The definition of fairness for I/O automata says that each task must get infinitely many turns
to take steps. In this context, this implies that, for every i ∈ J , the object eventually responds
to an outstanding invocation at i, unless either i fails or more than f processes in J fail. If
i does fail or more than f processes in J fail, the fairness definition allows the object to per-
form the dummy perform i,k action every time the i-perform task gets a turn, and to perform the
dummy output i,k action every time the i-output task gets a turn, thereby avoiding responding to
i. In particular, if more than f processes fail, the object may avoid responding to any process in
J , since dummy output i,k is enabled for every i ∈ J . Also, if all processes connected to the object
(i.e., all processes in J) fail, the object may avoid responding to any process.

Thus, the basic fairness definition for I/O automata, applied to a canonical f -resilient atomic
object automaton, expresses the idea that the object is f -resilient: Once more than f of the
processes connected to the object fail, the object itself may “fail” by becoming silent. However,
although the object may stop responding, it never violates its safety guarantees, that is, it never
returns values inconsistent with the underlying sequential type specification.

We say that a canonical f -resilient atomic object automaton A is wait-free (or, reliable), if it is
(|J | − 1)-resilient. This is equivalent to saying that (a) A is |J |-resilient, or (b) A is f -resilient for
some f ≥ |J | − 1, or (c) A is f -resilient for every f ≥ |J | − 1.

6

CanonicalAtomicObject(T , J, f, k), where T = 〈V, V0, invs, resps, δ〉

Signature:

Inputs:

ai,k , a ∈ invs, i ∈ J , the invocations at endpoint i

fail i, i ∈ J

Outputs:

bi,k, b ∈ resps, i ∈ J , the responses at endpoint i

Internals:

performi,k, i ∈ J

dummy performi,k, i ∈ J

dummy output i,k, i ∈ J

Tasks:

For every i ∈ J :
i-perform: {performi,k, dummy performi,k}
i-output: {bi,k : b ∈ resps} ∪ {dummy output i,k}

State components:
val ∈ V , initially an element of V0

inv−buffer , a mapping from J to finite sequences of invs, initially identically empty
resp−buffer , a mapping from J to finite sequences of resps, initially identically empty
failed ⊆ J , initially ∅

Transitions:

Input: ai,k

Effect:
add a to end of inv−buffer(i)

Internal: performi,k

Precondition:
a = head(inv−buffer(i))
δ((a, val), (b, v))

Effect:
remove head of inv−buffer(i)
val← v

add b to end of resp−buffer(i)

Output: bi,k

Precondition:
b = head(resp−buffer(i))

Effect:
remove head of resp−buffer(i)

Input: fail i
Effect:

failed← failed ∪ {i}

Internal: dummy performi,k

Precondition:
i ∈ failed ∨ |failed| > f

Effect:
none

Internal: dummy output i,k

Precondition:
i ∈ failed ∨ |failed| > f

Effect:
none

Figure 1: A canonical atomic object.

A canonical atomic object whose sequential type is read/write is called a canonical register. In
this paper, we will assume canonical reliable (wait-free) registers.

2.1.4 f -resilient atomic objects

An I/O automaton A is an f -resilient atomic object of type T for nonempty endpoint set J and
index k, provided that it implements the canonical f -resilient atomic object S of type T for J
and k. Here, “implements” is defined as in Section 2.1.1, in terms of the same external interface,
inclusion of trace sets, and inclusion of fair trace sets. Note that clause 2 (any trace of A is also a
trace of S) guarantees the atomicity of A, and clause 3 (any fair trace of A is also a fair trace of
S) guarantees the f -resilience of A.

7

We say that A is wait-free (or, reliable), if it is (|J | − 1)-resilient. An atomic object whose
sequential type is read/write is called a register.

The notion of an f -resilient atomic object is useful when we talk about a distributed system
implementing a specific canonical service. In this case, we can say that the system is the service.
This enables composition of implementations: an implemented service can be seen as a canonical
service in a higher-level implementation.

2.2 System Model with Atomic Objects

Our system model consists of a collection of process automata, canonical resilient atomic objects,
and canonical reliable registers. For this section, we fix I, R, and K, (disjoint) finite index sets
for processes, registers, and resilient atomic objects, respectively, and T , a sequential type, rep-
resenting the problem the system is intended to solve. A distributed system for I, R, K, and T
is the composition of the following I/O automata (see [17, Chapter 8] for the formal definition of
composition):

1. Processes Pi, i ∈ I,

2. Resilient atomic objects Sk, k ∈ K. We let Tk denote the sequential type, and Jk ⊆ I the set of
endpoints, of object Sk. We let fk denote the level of resilience. We assume k itself is the index
for the object, as in the definition of a canonical atomic object.

3. Reliable registers Sr, r ∈ R. We let Vr denote the value set and (v0)r the initial value for register
Sr. We let Jr ⊆ I denote the set of endpoints of register Sr. We assume r is the index for the
register.

We assume that processes interact only via registers and resilient atomic objects. Process Pi can
invoke an operation on resilient atomic object Sk provided that i ∈ Jk. Process Pi can also invoke
a read or write operation on register Sr provided that i ∈ Jr. Services (resilient atomic objects and
registers) do not communicate directly with one another, but may interact indirectly via processes.
In the remainder of this section, we describe the components in more detail and define terminology
needed for the results and proofs.

2.2.1 Processes

We assume that process Pi, i ∈ I has the following interface (inputs and outputs):

• Inputs ai, a ∈ T .invs, and outputs bi, b ∈ T .resps. These represent Pi’s interactions with the
external world.

• For every resilient atomic object Sk such that i ∈ Jk, outputs ai,k, where a ∈ invsk, and inputs
bi,k, where b ∈ respsk.

• For every reliable register Sr such that i ∈ Jr, outputs ai,r, where a is a (read or write) invocation
of Sr, and inputs bi,r, where b is a response of Sr.

• Input fail i. This represents the failure of process Pi.

Pi may issue several invocations, on the same or different registers or resilient atomic objects,
without waiting for responses to previous invocations. The external world at Pi may also issue
several invocations to Pi without waiting for responses.

In the special case where Pi is part of an implementation of consensus or k-set-consensus, we
assume, as a technicality for the proofs, that when Pi performs a decide(v)i output action, it records

8

the decision value v in a special state component (see Section 2.2.4 for the formal definition of the
consensus problem).

We assume that Pi has only a single task, which therefore consists of all the locally controlled
actions of Pi. We assume that in every state, some action in that single task is enabled. This action
might be a “dummy” action, as in the canonical resilient atomic objects defined in Section 2.1.3.
We assume that the fail i input action affects Pi in such a way that, from the point of the failure
onward, no output actions of Pi are enabled. However, other locally controlled actions may be
enabled—in fact, by the restriction just above, some such action must be enabled.

We do not make any other restrictions on when Pi may perform actions, for example, we do not
insist that Pi take “non-dummy” steps only during certain intervals defined by external invocations
and responses. Our impossibility proofs do not depend on this assumption. On the other hand,
when devising implementations of atomic objects, we will typically prefer algorithms in which
processes are active only during intervals between invocations and responses.

2.2.2 Resilient atomic objects and registers

We assume that resilient atomic object Sk is the canonical fk-resilient atomic object of type Tk =
〈Vk, (V0)k, invsk, respsk, δk〉 for Jk and k.

We assume that register Sr is the canonical wait-free atomic read/write object with value set Vr

and initial value (v0)r, for Jr and r. We write invsr, respsr, and δr for the invocations, responses,
and transition relation of Sr.

2.2.3 The complete system

The complete system C is constructed by composing the Pi, Sr, and Sk automata in parallel and
then hiding the actions used to communicate among these automata. Our parallel composition and
hiding operations are the standard I/O automata operations defined in [17, Chapter 8].

When we compose the automata, invocation outputs of process Pi of the form ai,c, c ∈ K ∪ R,
“match up” with corresponding invocation inputs of service Sc, and similarly for responses. Also,
a fail i input is both an input to process Pi and an input to every service Sc for which i is an
endpoint, i ∈ Jc. Thus, fail i both causes Pi to fail and allows each service Sc for which i ∈ Jc to
stop processing on behalf of Pi. It also adds to the tally of failures recorded by Sc.

We now consider tasks in the composed system. As we specified earlier, each process Pi has a
single task, consisting of all the locally controlled actions of Pi. Each service Sc, c ∈ K ∪ R, has
two tasks for each i ∈ Jc: i-perform, consisting of {perform i,k, dummy perform i,k}, and i-output,
consisting of {bi,k : b ∈ respsk} ∪ {dummy output i,k}. These tasks define a partition of the set of
all actions in the system, except for the inputs of the process automata that are not outputs of
any other automata, namely, the invocations by the external world and the fail i actions. The I/O
automata fairness assumption says that each of these tasks gets infinitely many turns to execute.

We say that a task e is applicable to a finite execution α iff some action of e is enabled in the last
state of α. The following lemma says that any applicable task remains applicable until an action
in that task occurs.

Lemma 1 Let α be any finite failure-free execution of C, e be any task of C applicable to α, and α·β
be any finite failure-free extension of α such that β includes no actions of e. Then e is applicable
to α · β.

Proof: Task e is either a process task or service (resilient atomic object or register) task. If e
is a process task, then e is applicable to any finite execution, by our assumption that each process

9

always has some enabled locally controlled action.
If e is a service task, say of service Sc, c ∈ K ∪R, then applicability of e to α means that service

Sc has either a pending invocation in an inv−buffer or a pending response in a resp−buffer , imme-
diately after α. Since β does not include any actions of e, and the invocation or response remains
pending as long as e is not scheduled, e is also applicable to α · β. 2

For any action a of C and any automaton Pi, Sk, or Sr, we say that the automaton participates
in a if it has a in its signature. For any action a of C, we define the participants of a to be the set
of automata that participate in a. Note that no two distinct services (resilient atomic objects or
registers) participate in the same action, and similarly no two distinct processes participate in the
same action. Furthermore, for any action a (except fail i actions), the number of participants is at
most two. Thus, if an action a has two participants, they must be a process and a service.

2.2.4 Solving the f -resilient consensus problem

Now we can describe what it means for a distributed system to solve the f -resilient consensus
problem.

The traditional specification of f -resilient binary consensus is given in terms of a set {Pi, i ∈ I}
of processes, each of which starts with some value vi in {0, 1}. Processes are subject to stopping
failures, which prevent them from producing any further output.3 As a result of engaging in a
consensus algorithm, each nonfaulty process eventually “decides” on a value from {0, 1}. The
behavior of processes is required to satisfy the following conditions (see, e.g., [17, Chapter 6]):

Agreement No two processes decide on different values.

Validity Any value decided on is the initial value of some process.

Termination In every fair execution in which at most f processes fail, all nonfaulty processes
eventually decide.

In this paper, we specify the consensus problem differently, following a style similar to that of
Herlihy [11]. Namely, we identify the f -resilient binary consensus problem for a given endpoint set
I with the canonical f -resilient atomic object of type consensus, for endpoint set I. We say that
a distributed system C solves f -resilient consensus for I if and only if C is an f -resilient atomic
object (as defined in Section 2.1.4) of sequential type binary consensus,4 for endpoint set I, that is,
if C implements the canonical f -resilient atomic object of type consensus, for endpoint set I. This
definition formulates consensus as a special case of an atomic object, and thus fits consensus within
the framework of this paper. In [2], we showed that any system that satisfies our definition satisfies
a slight variant of the traditional one. In this variant, inputs arrive explicitly via init() actions,
not all nonfaulty processes need receive inputs, and only nonfaulty processes that do receive inputs
are guaranteed to eventually decide. Our agreement and validity conditions are the same as above.
Our modified termination condition is:

Modified Termination In every fair execution in which at most f processes fail, any nonfaulty
process that receives an input eventually decides.

3Stopping failures are usually defined as disabling the process from executing at all. However, the two definitions
are equivalent with respect to overall system behavior.

4We use consensus for binary consensus in the sequel.

10

Thus, although we have defined “solving consensus” formally in terms of canonical atomic objects,
we will use the agreement, validity, and modified termination conditions freely in our impossibility
proofs. Appendix B summarizes the proof from [2] that our “operational” definition implies this
variant of the usual traditional axiomatic definition.

3 Impossibility of Boosting for Atomic Objects

Our first theorem is:

Theorem 2 Let I be a set of endpoints, n = |I|, and let f be an integer such that 0 ≤ f < n− 1.
There is no distributed system using only canonical f -resilient atomic objects and canonical reliable
registers that solves (f + 1)-resilient binary consensus for I.

To prove Theorem 2, we assume that such an implementation exists and derive a contradiction.
Let C denote the complete system, that is, the composition of the processes Pi, i ∈ I, resilient atomic
objects Sk, k ∈ K, and reliable registers Sr, r ∈ R. Here I, K, and R are sets of indices that we
use to provide unique names for each process, service, and register, respectively. By assumption,
C implements an (f + 1)-resilient consensus atomic object. As described in Section 2.2.4, this
implies that C satisfies the traditional agreement and validity properties of consensus, and the new
termination property.

For each component index c ∈ K ∪ R and each i ∈ Jc (recall that Jc denotes the endpoints of
c), let inv−buffer(i)c denote the invocation buffer of c, which stores invocations from Pi, and let
resp−buffer(i)c denote the response buffer of c, which stores responses to Pi. Also let buffer(i)c
denote the pair 〈inv−buffer(i)c, resp−buffer (i)c〉.

The rest of this section provides the proof of Theorem 2, as follows. Section 3.1 presents and
justifies an assumption that processes and sequential types are deterministic. This assumption
simplies our proofs. Section 3.2 defines a class of executions of C, the finite failure-free input-first
executions, that we will use in the proof, and establishes some preliminary valence results for this
class of executions. Section 3.3 defines a graph G(C) that gives relationships among the finite
failure-free input-first executions of C. It can be regarded as a transition graph. Section 3.4 shows
that G(C) contains a “hook,” similarly to [8], with two endpoints of opposite valence (see Figure 2).
Section 3.5 defines two similarity notions for system states: states that are “similar” except for
one process, or except for one atomic service. It then presents two lemmas, one for each notion
of similarity, which state that univalent finite failure-free input-first executions that end in similar
states must have the same valence. Section 3.6 then uses these lemmas to show that G(C) cannot
contain a hook, which along with Section 3.4 provides the desired contradiction. The proof uses the
failure of the distinguished process or atomic service to show that the two endpoints of the hook
must have the same valence.

3.1 Determinism assumptions

To prove Theorem 2, we add determinism assumptions for processes and services. These are without
loss of generality. First, we require the processes to be deterministic:

(i) Each process Pi, i ∈ I, is a deterministic automaton, as defined in Section 2.1.1.

For resilient atomic objects, we assume a slightly weaker condition:

11

(ii) Each resilient atomic object Sk, k ∈ K, has a deterministic sequential type; that is, the sequential
type Tk has a unique initial value (v0)k and the transition relation δk is a mapping.

Note that the sequential type for each register is also deterministic, by definition. Assumptions
(i) and (ii) do not reduce the generality of our impossibility result, because any candidate system
could be restricted, by removing transitions, to satisfy these assumptions. If the impossibility result
holds for the restricted automaton, then it holds also for the original one.

Assumptions (i) and (ii) imply that, after a finite failure-free execution α, an applicable task e
determines a unique transition, arising from running task e from the final state s of α. We denote
this transition using the function notation transition(e, α), or alternatively, transition(e, s), since
it is uniquely determined by the final state s of α. Note that transition(e, α) is defined iff e is
applicable to α iff (some action in) e is enabled in s. As a result, any failure-free execution can be
generated by applying a sequence of applicable tasks, one after the other, to the initial state of C.
The task sequence is enough to uniquely specify the execution.

If transition(e, α) = (s, a, s′), then we write action(e, s) to denote a, and e(s) to denote s′. We
write e(α) to denote α extended by transition(e, α), that is, e(α) = α · (s, a, s′).

Let s be any state of C arising after a finite failure-free execution α of C, and let e be a task
that is applicable to α (equivalently, enabled in s). Then we write participants(e, s) for the set of
participants of action action(e, s). Note that, for any task e and any state s, |participants(e, s)| ≤ 2.
Also, if |participants(e, s)| = 2, then participants(e, s) is of the form {Pi, Sc}, for some i ∈ I and
c ∈ K ∪R.

3.2 Initializations and valence

Our proof follows a general strategy inspired by, though somewhat more elaborate than, the one
in [8] and [15]. As in [8,15], the first step of the proof is to produce a bivalent initial configuration.

We consider executions of C in which consensus inputs arrive from the external world at the
beginning of the execution. Thus, we define an initialization of C to be a finite execution of C
containing exactly one init()i action for each i ∈ I, and no other actions. An execution α of C is
input-first if it has an initialization as a prefix, and contains no other init() actions. A finite failure-
free input-first execution α is defined to be 0-valent if (1) some failure-free extension of α contains a
decide(0)i action, for some i ∈ I, and (2) no failure-free extension of α contains a decide(1)i action,
for any i ∈ I. The definition of a 1-valent execution is symmetric. A finite failure-free input-first
execution α is univalent if it is either 0-valent or 1-valent. A finite failure-free input-first execution
α is bivalent if (1) some failure-free extension of α contains a decide(0)i action, for some i, and (2)
some failure-free extension of α contains a decide(1)i action, for some i. These definitions, and the
termination requirements for consensus, immediately imply the following result:

Lemma 3 Every finite failure-free input-first execution of C is either bivalent or univalent.

The following lemma provides the first step of the impossibility proof:

Lemma 4 C has a bivalent initialization.

Proof: Write I = {1, . . . , n}. For each i ∈ {0, . . . , n}, let αi be an initialization of C in which
processes P1, . . . , Pi receive initial value 1 and processes Pi+1, . . . , Pn receive 0. By the validity
property of C and Lemma 3, α0 is 0-valent, αn is 1-valent, and every αj (j ∈ {0, . . . , n}) is either
univalent or bivalent.

Then there must be some index i ∈ {0, . . . , n − 1} such that αi is 0-valent and αi+1 is either 1-
valent or bivalent. The only difference between the initializations in αi and αi+1 is the initial value

12

e′

αb

e

e

α1 (1-valent)

α

α′

α0 (0-valent)

Figure 2: A hook starting in α.

of Pi. So consider a failure-free extension of αi that is fair, except that Pi takes no steps. Since this
execution looks to the rest of the system like an execution in which Pi has failed, the termination
condition requires that the other processes must eventually decide, as C is (f + 1)-resilient, f ≥ 0.
Since the finite execution up to the point where the processes decide is in fact failure-free, and αi

is 0-valent, the decision must be 0.
Now, an analogous failure-free extension may be constructed for αi+1, also leading to a decision

of 0. Since, by assumption, αi+1 is either 1-valent or bivalent, it must be bivalent. 2

For the rest of Section 3, fix αb to be any particular bivalent initialization of C.

3.3 The graph G(C)

Next, we define an edge-labeled directed acyclic graph (actually, a directed tree) G(C) to represent
relationships among finite failure-free input-first executions of C:

(1) The vertices of G(C) are the finite failure-free input-first extensions of the bivalent initialization
αb.

(2) G(C) contains an edge labeled with task e from α to α′ provided that α′ = e(α); that is, e is
applicable to α and α′ is the resulting extended execution.

By assumptions (i) and (ii) of Section 3.1, any task triggers at most one transition after a failure-
free execution α. Therefore, for any vertex α of G(C) and any task e, G(C) contains at most one
edge labeled with e outgoing from α.

3.4 The existence of a hook

As in [8], we show that decisions in C can be made in a particular way, described by a hook pattern
of executions. Similarly to [4], we define a hook to be a subgraph of G(C) of the form depicted in
Figure 2. That is, from a particular finite failure-free input-first execution α, one applicable task e
leads to a 0-valent extension α0, whereas a second applicable task e′ leads to an extension α′, from
which the first task e leads to a 1-valent extension α1.

Lemma 5 G(C) contains a hook.

Proof: The proof is derived from the corresponding one in [8], with significant modifications
reflecting the applicability of tasks in C.

Starting from the bivalent vertex αb of G(C), we generate a path π in G(C) that passes through
bivalent vertices only, as follows. We consider all tasks in a round-robin fashion. Suppose we have

13

reached a bivalent execution α so far, and task e is the next task in the round-robin list that is
applicable to α. (We know such a task exists because the process tasks are always applicable.)

Lemma 1 implies that, for any finite failure-free extension α′ of α such that e is not executed in
the suffix of α′ starting in the last state of α, e is applicable to α′, and hence e(α′) is defined. In
other words, e is applicable to α′ for any vertex α′ of G(C) that is reachable from α in G(C) via
a path that contains no edge labeled with e. We seek such a vertex α′ such that e(α′) is bivalent.
If no such vertex α′ exists, the path construction terminates. Otherwise, we proceed to e(α′) and
continue by processing the next task in the round-robin order. This construction is presented in
Figure 3. Each completed iteration of the loop extends the path by at least one edge. Let π be the
path generated by this construction.

1: α← αb;
2: while true do
3: let e be the next task (in round-robin order) applicable to α;
4: if α has a descendant α′ in G(C) such that the path from α to α′ includes no e labels

and e(α′) is bivalent then
5: choose some such α′;
6: α← e(α′)
7: else
8: exit

Figure 3: Hook location in G(C).

First, suppose that π is infinite. Then π corresponds to a fair failure-free input-first execution
α of C. Moreover, every finite input-first prefix of α is bivalent. Thus, no process can decide in α
(for otherwise, the agreement property of C would be violated). This contradicts the termination
requirement for consensus. So π must be finite.

Let α be the last vertex of π. By construction, α is bivalent. The fact that the path construction
terminated in α means that there must be some particular task e (the next one in the round robin
order that is applicable to α) satisfying the following condition: For any descendant α′ of α in G(C)
such that the path from α to α′ includes no e labels, e(α′) is univalent. Without loss of generality,
assume that e(α) is 0-valent.

Since α is bivalent, there is a descendant α′ of α in which some process decides 1. Let σ0, . . . , σm

be the sequence of vertices of G(C) on the path from α to α′, where σ0 = α and σm = α′. For each
j, 0 ≤ j ≤ m− 1, let ej be the label of the edge on this path from σj to σj+1. Thus, σj+1 = ej(σj).
Note that it is possible that e occurs as a label on the path from α to α′; that is, one or more of
the ej labels may be equal to e.

We consider two cases. First, suppose that e does not occur on the path from α to α′. Then e is
applicable to every σj , 0 ≤ j ≤ m, by Lemma 1. By construction, e(σ0) is 0-valent, e(σm) is 1-valent,
and every e(σj), j ∈ {1, . . . ,m − 1}, is univalent. Thus, there exists an index j ∈ {0, . . . ,m − 1}
such that e(σj) is 0-valent and e(σj+1) is 1-valent. As a result, we obtain a hook (Figure 2) with e
in the hook equal to e in this proof, α = σj , α′ = σj+1, α0 = e(σj), α1 = e(σj+1), and e′ = ej .

Second, suppose that e does occur on the path from α to α′. By our determinism assumptions
(Section 3.1), the task e0 labeling the first edge on this path is not e. Choose k to be the smallest
index such that ek = e; then 1 ≤ k ≤ m − 1. Then e is applicable to every σj , 0 ≤ j ≤ k, again

14

by Lemma 1. We know that e(σ0) is 0-valent and every e(σj), j ∈ {1, . . . , k}, is univalent. Fur-
thermore, e(σk) = σk+1 must be 1-valent, because α′, in which someone decides 1, is a descendant
of σk+1. Thus, there exists an index j ∈ {0, . . . , k − 1} such that e(σj) is 0-valent and e(σj+1) is
1-valent. From this, we can construct a hook as in the first case. 2

3.5 Similarity

In this section, we define some notions of similarity between system states. These will be used in
obtaining a contradiction to the existence of a hook, which will yield our impossibility result.

Our similarity definitions capture what it means for system states to “look the same” to all system
components except for one particular process j, or to all components except for one resilient atomic
object k. The first of these notions was present implicitly in the proof of [8], but not extracted
formally; the second is new here. We prove two lemmas about our similarity definitions, showing
that similar states must lead to the same decision value. Our lemmas about similarity encapsulate
reasoning about executions and valence, so that the main proof can focus exclusively on what
happens in a few individual steps.

First, we define j-similar system states, for a process index j. Let j ∈ I and let s0 and s1 be
states of C. Then s0 and s1 are j-similar if the following hold:

(1) For every i ∈ I − {j}, the state of Pi is the same in s0 and s1.

(2) For every c ∈ K ∪R:

1. The value of valc is the same in s0 and s1.

2. For every i ∈ Jc − {j}, the value of buffer(i)c is the same in s0 and s1.

That is, the state of every process except for Pj is the same in s0 and s1, and the state of every
service is also the same, except possibly for the portions of the services devoted to invocations and
responses of j. The following key lemma says that, if two univalent executions end in j-similar
states, for any particular j, then they must have the same valence.

Lemma 6 Let j ∈ I. Let α0 and α1 be finite failure-free input-first executions, s0 and s1 the
respective final states of α0 and α1. Suppose that s0 and s1 are j-similar. If α0 and α1 are
univalent, then they have the same valence.

Proof: We proceed by contradiction. Fix j, α0, α1, s0, and s1 as in the hypotheses of the
lemma, and suppose (without loss of generality) that α0 is 0-valent and α1 is 1-valent. Let J ⊆ I
be any set of indices such that j ∈ J and |J | = f + 1 (recall that f is the resilience of the services
in the system, as defined in the statement of Theorem 2). Since f < n− 1 by assumption, we have
|J | < n, and so I − J is nonempty.5

Consider a fair extension of α0, α0 · β, in which the first f + 1 actions of β are fail i, i ∈ J , and
no other fail actions occur in β. Note that, for every i ∈ J , β contains no output actions of Pi.
Assume that in β, no perform i,c or bi,c (b ∈ respsc) action for any i ∈ J , occurs at any component
c ∈ K ∪ R; we may assume this because, for each i ∈ J , action fail i enables a dummy action in
every i-perform and i-output task of every service.

Since α0 is a failure-free input-first execution, the resulting extension α0 · β is a fair input-first
execution containing f + 1 fail actions. Therefore, by the termination property for (f + 1)-resilient

5The choice of J could be slightly simpler in this proof; we chose it in this way to facilitate the extension to the
failure-aware case.

15

consensus and the fact that I − J is nonempty, there is a finite prefix of α0 · β, which we denote
by α0 · γ, that includes decide(v)l for some l /∈ J and v ∈ {0, 1}. Construct α0 · γ

′, where γ′ is
obtained from γ by removing the fail i action and all subsequent internal actions of Pi, for every
i ∈ J , plus all dummy actions. Thus, α0 ·γ

′ is a failure-free extension of α0 that includes decide(v)l

(it is failure-free since all the fail i actions have been removed). Since α0 is 0-valent, v must be
equal to 0.

Next, we claim that decide(0)l occurs in the suffix γ′, rather than in the prefix α0. Suppose for
contradiction that the decide(0)l action occurs in the prefix α0. Then by our technical assumption
about processes, the decision value 0 is recorded in the state of Pl. Since s0 and s1 are j-similar
and l 6= j, the same decision value 0 appears in the state s1. But this contradicts the assumption
that α1, which ends in s1, is 1-valent. So, it must be that the decide(0)l occurs in the suffix γ′.

Now we show how to append “essentially” the same γ′ after α1. The definition of j-similarity
and the fact that j ∈ J imply that:

(a) For every i /∈ J , the state of Pi is the same in s0 and s1.

(b) For every c ∈ K ∪R,

1. The value of valc is the same in s0 and s1 (that is, in the final states of α0 and α1).

2. For every i ∈ Jc − J , the value of buffer(i)c is the same in s0 and s1.

We know that, for every i ∈ J , γ′ contains no locally controlled actions of Pi, and contains no
perform i,c or bi,c actions (b ∈ respsc), for any c ∈ K ∪R. Therefore:

(c) If γ′ contains any locally controlled actions of a process Pi, then the state of Pi is the same in
s0 and s1 (since i /∈ J in this case).

(d) For every c ∈ K ∪R,

1. The value of valc is the same in s0 and s1.

2. For every i ∈ Jc, if γ′ contains any perform i,c or bi,c (b ∈ resps) actions, then the value of
buffer(i)c is the same in s0 and s1 (since i /∈ J in this case).

It follows that it is possible to append “essentially” the same γ′ after α1, resulting in a failure-free
extension of α1 that includes decide(0)l. Since α1 is 1-valent, this is a contradiction.6

2

Similarly, we define the notion of k-similar states, for a resilient atomic object k. Let k ∈ K,
and let s0 and s1 be states of C. Then s0 and s1 are k-similar if the following hold:

(1) For every i ∈ I, the state of Pi is the same in s0 and s1.

(2) For every c ∈ (K − {k}) ∪R, the state of Sc is the same in s0 and s1.

That is, the state of every process is the same in s0 and s1, and the state of every service except
for Sk is also the same. The following lemma says that, if two univalent executions end in k-similar
states, for any particular k, then they must have the same valence.

6More precisely, we append another execution fragment γ′′ after α1—the one that is generated by applying, after
α1, the same sequence ρ of tasks that generates γ′. We can prove, by induction on the number of tasks, that when
ρ is applied after α0 and α1, in each pair of corresponding states: (a) for each i ∈ I for which the unique task of Pi

occurs in ρ, the states of Pi are the same, (b) for each c ∈ K ∪ R, the values of valc are the same, and (c) for each
c ∈ K ∪ R and each i ∈ Jc such that an i-perform or i-output task of Sc occurs in ρ, the values of buffer(i)c are the
same. This correspondence is enough to imply that γ′′ also includes the required decide(0)

l
action.

16

Lemma 7 Let k ∈ K. Let α0 and α1 be finite failure-free input-first executions, s0 and s1 the
respective final states of α0 and α1. Suppose that s0 and s1 are k-similar. If α0 and α1 are
univalent, then they have the same valence.

Proof: We proceed by contradiction. Fix k, α0, α1, s0, and s1 as in the hypotheses of the
lemma, and suppose (without loss of generality) that α0 is 0-valent and α1 is 1-valent. Let J ⊆ I
be any set of indices such that |J | = f +1, and, if |Jk| ≤ f +1, then Jk ⊆ J , whereas if |Jk| > f +1,
then J ⊆ Jk.

Consider a fair extension of α0, α0 · β, in which the first f + 1 actions of β are fail i, i ∈ J ,
and no other fail actions occur in β. Note that, for every i ∈ J , β contains no output actions of
Pi. Assume that in β, no perform i,k or bi,k action (b ∈ respsc) of Sk occurs; we may assume this
because the f + 1 fail actions enable dummy actions in the i-perform and i-output tasks of Sk.

To see this enabling property, we consider the two cases in our choice of J . First, if |Jk| ≤ f + 1,
then Jk ⊆ J ; that is, the f + 1 fail actions fail all the endpoints of Sk. This implies that the
i ∈ failed clauses in the preconditions for dummy perform i,k and dummy output i,k are satisfied,
for every i. On the other hand, if |Jk| > f + 1, then J ⊆ Jk; that is, all of the f + 1 failed
indices are endpoints of Sk. This implies that the |failed| > f clauses in the preconditions for
dummy perform i,k and dummy output i,k are satisfied, for every i.

Since α0 is a failure-free input-first execution, the resulting extension α0 · β is a fair input-first
execution containing f + 1 fail actions. Therefore, by the termination property for f + 1-resilient
consensus and the fact that I − J is nonempty, there is a finite prefix of α0 · β, which we denote by
α0 ·γ, that includes decide(v)l for some l /∈ J and v ∈ {0, 1}. Construct α0 ·γ

′, where γ′ is obtained
from γ by removing the fail i action and subsequent internal actions of Pi, for every i ∈ J , plus all
dummy actions. Thus, α0 · γ

′ is a failure-free extension of α0 that includes decide(v)l. Since α0 is
0-valent, v must be equal to 0.

We know that decide(0)l occurs in the suffix γ′, rather than in the prefix α0, by the same
argument as in the proof of Lemma 6.

Now we show how to append essentially the same γ′ after α1. The definition of k-similarity
implies that:

(a) For every i ∈ I, the state of Pi is the same in s0 and s1.

(b) For every c ∈ (K − {k}) ∪R, the state of Sc is the same in s0 and s1.

We know that γ′ contains no locally controlled actions of service Sk. Therefore:

(c) For every c ∈ K ∪ R, if γ′ contains any perform i,c or bi,c actions of Sc, then the state of Sc is
the same in s0 and s1 (since c 6= k in this case).

By properties (a) and (c), it follows that it is possible to append “essentially” the same γ′ after α1

(differing only in the state of Sk) resulting in a failure-free extension of α1 that includes decide(0)l.
But α1 is 1-valent — a contradiction. 2

3.6 The non-existence of a hook

Using the similarity notions developed in Section 3.5, we can now obtain the contradiction that
proves our impossibility result. The contradiction comes in the form of a proof that G(C) cannot
contain any hooks; this directly contradicts Lemma 5.

Lemma 8 G(C) contains no hooks.

17

Proof: By contradiction. Assume that a hook, as depicted in Figure 2, exists. Let s, s′, s0,
and s1 be the respective final states of α, α′, α0, and α1, and let e and e′ be the two tasks involved
in the hook, as shown.

Since α0 and α1 are 0-valent and 1-valent, respectively, by Lemmas 6 and 7, s0 and s1 cannot
be j-similar for any j ∈ I, or k-similar for any k ∈ K. In particular, we cannot have s0 = s1. Also,
note that e′(α0) is 0-valent, since it is an extension of a 0-valent execution. Therefore, again, by
Lemmas 6 and 7, e′(s0) and s1 cannot be j-similar for any j ∈ I, or k-similar for any k ∈ K. In
particular, we cannot have e′(s0) = s1.

We establish the contradiction using a series of claims:

Claim 1: e 6= e′.
Suppose for contradiction that e = e′. Then by determinism (Assumptions (i) and (ii) in Sec-
tion 3.1), we have α0 = α′. However, α0 is 0-valent, whereas α′ has a 1-valent failure-free extension
α1 — a contradiction.

Claim 1 and Lemma 1 imply that e′ is enabled from e(s).

Claim 2: participants(e, s) ∩ participants(e′, s) 6= ∅.
Suppose for contradiction that participants(e, s) ∩ participants(e′, s) = ∅. Therefore, the two tasks
“commute”, that is, e′(e(s)) = e(e′(s)). In other words, e′(s0) = s1 — a contradiction.

Since participants(e, s) ∩ participants(e′, s) 6= ∅, a process, resilient atomic object, or register
must be in the intersection. We prove three claims showing that none of these possibilities can
hold, thus obtaining the needed contradiction.

Claim 3: There does not exist i ∈ I such that Pi ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Pi ∈ participants(e, s)∩ participants(e′, s), for some particular i ∈ I.
Then the two actions action(e, s) and action(e′, s) involve only Pi and the buffers buffer(i)c, c ∈
K ∪ R. Furthermore (since the same task e is used), the action action(e, s′) also involves only Pi

and the buffers buffer(i)c, c ∈ K ∪ R. But then the states s0 and s1 can differ only in the state
of Pi and in the values of buffer(i)c, c ∈ K ∪ R. This implies that s0 and s1 are i-similar — a
contradiction.

Claim 4: There does not exist k ∈ K such that Sk ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Sk ∈ participants(e, s)∩participants(e′, s), for some particular k ∈ K.
There are four possibilities:

1. participants(e, s) = participants(e′, s) = {Sk}.
Then e and e′ must be perform tasks of Sk, and so involve only the state of Sk. But then the
states s0 and s1 can differ only in the state of Sk. So s0 and s1 are k-similar — a contradiction.

2. For some i ∈ I, participants(e, s) = {Sk, Pi} and participants(e′, s) = {Sk}.
Then the two tasks commute, that is, e′(s0) = s1 — a contradiction.

3. For some i ∈ I, participants(e′, s) = {Sk, Pi} and participants(e, s) = {Sk}.
Again, the two tasks commute, that is, e′(s0) = s1 — a contradiction.

4. For some i, j ∈ I, participants(e, s) = {Sk, Pi} and participants(e′, s) = {Sk, Pj}.
By Claim 3, we know that i 6= j. Then again, the two tasks commute, so e′(s0) = s1 — a
contradiction.

Note that for cases 2 and 3 above, a situation may arise in which action(e, s) and action(e′, s)
access the same buffer. In this case, it must be that one action inserts an item and the other

18

removes a different item. Hence the tasks commute. Note that an action that removes an item
first checks that the buffer is nonempty, and so cannot be executed if the buffer is empty. Thus an
empty buffer does not destroy the commutativity of the two actions.

Claim 5: There does not exist r ∈ R such that Sr ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Sr ∈ participants(e, s)∩participants(e′, s), for some particular r ∈ R.
There are four possibilities:

1. participants(e, s) = participants(e′, s) = {Sr}.
Then e and e′ must be perform tasks of register Sr. Without loss of generality, suppose that
action(e, s) is perform i,r and action(e′, s) is performj,r. Since e 6= e′, we have i 6= j. We
consider subcases based on whether the two operations performed are reads or writes:

(a) action(e, s) and action(e′, s) both perform read operations.
Then the two tasks commute, so e′(s0) = s1 — a contradiction.

(b) action(e, s) performs a write operation.
Then states s0 and s1 can differ only in the value of inv−buffer(j)r and resp−buffer(j)r :
in s1, an invocation is missing from inv−buffer(j)r and an extra response appears at
the end of resp−buffer(j)r, with respect to inv−buffer(j)r and resp−buffer(j)r in s0.
So s0 and s1 are j-similar — a contradiction.

(c) action(e, s) performs a read operation and action(e′, s) performs write(v).
Then e′(s0) and s1 differ only in the value of resp−buffer(i)r (different read responses
may be appended at the end). So e′(s0) and s1 are i-similar — a contradiction.

2. For some i ∈ I, participants(e, s) = {Sr, Pi} and participants(e′, s) = {Sr}.
Then the two tasks commute, so e′(s0) = s1 — a contradiction.

3. For some i ∈ I, participants(e′, s) = {Sr, Pi} and participants(e, s) = {Sr}.
Again, the two tasks commute, so e′(s0) = s1 — a contradiction.

4. For some i, j ∈ I, participants(e, s) = {Sr, Pi} and participants(e′, s) = {Sr, Pj}.
By Claim 3, we know that i 6= j. Then the two tasks commute, so e′(s0) = s1 — a contra-
diction.

Now Claims 3, 4, and 5 together imply that participants(e, s)∩ participants(e′, s) = ∅. But this
directly contradicts Claim 2. 2

Proof: (Of Theorem 2)
Lemma 5 contradicts Lemma 8. So we have derived a contradiction by assuming the negation of
Theorem 2, and Theorem 2 is established. 2

4 k-Set-Consensus

Theorem 2 says that it is impossible to solve (f + 1)-resilient consensus for any endpoint set I,
using any (finite) number of canonical f -resilient objects, of any types, and any (finite) number
of reliable registers. This is so even if we allow arbitrary connection patterns between processes
and services, so that no single set of f + 1 failures can “silence” all of the services. Note that
Theorem 2 concerns solutions to the consensus problem only; the situation is different for some
other problems.

19

For example, consider the k-set-consensus problem [6], in which the processes must agree on at
most k ≥ 1 different values (k-set-consensus reduces to consensus when k = 1). Analogously to
our treatment of consensus, we specify the f -reslient k-set-consensus problem as the canonical f -
resilient atomic object of type k-set-consensus, for a given endpoint set I. We say that a distributed
system C solves f -resilient k-set-consensus for I if and only if C is an f -resilient atomic object (as
defined in Section 2.1.4) of type k-set-consensus, for endpoint set I, that is, if C implements the
canonical f -resilient atomic object of type k-set-consensus, for endpoint set I.

Here we describe a simple distributed system C that solves f -resilient k-set-consensus for endpoint
set I = {1, . . . , n}, using only f ′-resilient k′-set-consensus objects with n′ endpoints apiece, for some
particular choices of f , k, n, f ′, k′, and n′, with f ′ < f . Since f ′ < f , this boosts resilience, and
shows that Theorem 2 cannot be extended, in general, to implementations of k-set-consensus.

Namely, we assume that k′n = kn′, f = n − 1, and f ′ = n′ − 1. We divide the n endpoints
in I into g = k/k′ disjoint groups, I1, I2, . . . , Ig, each with exactly n′ endpoints. For each group
Ij, we use a single f ′-resilient k′-consensus service Sj whose endpoints are exactly Ij. Since each
k′-consensus service Sj is f ′-resilient and f ′ = n′ − 1, each Sj is in fact wait-free, and so, it always
returns a response. Each process Pi, i ∈ I, upon receiving an init(v) input, invokes the unique
k′-consensus service to which it is connected, with the same input v. It waits to receive a response,
and then returns the same response to its own environment, using a decide() output action. Since
the implementation uses only g = k/k′ k′-consensus services, this yields at most k distinct responses
overall. The implementation of n-endpoint k-set-consensus is wait-free, i.e., it tolerates up to n− 1
faults.

To be concrete, suppose that n is an arbitrary even number, n′ = n/2, k = 2, k′ = 1, f = n− 1,
and f ′ = n/2 − 1. Then this construction shows that wait-free n-endpoint 2-set consensus can be
implemented from wait-free n/2-endpoint consensus services.

5 Impossibility of Boosting for Failure-Oblivious Services

A failure-oblivious service is a generalization of an atomic object. It allows a perform step to depend
on which endpoint’s inv−buffer is being serviced. It allows a perform step to place any number
of responses in any subset of the resp−buffers, instead of just one response in the resp−buffer
corresponding to the endpoint of the invocation. It also allows spontaneous compute steps, not
triggered by a message in an inv−buffer ; these may also place any number of responses in any
resp−buffers. The key constraint is that no step may depend on explicit knowledge of failure
events.

In this section, we define the class of failure-oblivious services, give an example (totally ordered
broadcast), and show how Theorem 2 can be extended to failure-oblivious services.

5.1 f-resilient failure-oblivious services

As for atomic objects, we begin by defining a canonical f -resilient failure-oblivious service.
A canonical f -resilient failure-oblivious service is parameterized by J , f , and k, which have the

same meanings as in canonical atomic objects. However, in place of the sequential type parameter
T , the service has a service type parameter U , which is a tuple 〈V, V0, invs, resps, glob, δ1, δ2〉. Here,
V and V0 are as before, invs and resps are the respective sets of invocations and responses (which
can occur at any endpoint), glob is a set of global task names, and δ1 and δ2 are transition relations.
A global task is used to perform computation that involves invocations from and responses to
several processes. For example, in the totally ordered broadcast example presented in Section 5.2
below, the computeg,k internal action (see Figure 7) takes the first message in an internal queue

20

(msgs) and places it onto the response buffer of every process that is connected to the totally
ordered broadcast service. This cannot be done by a perform i,k action, which can only access the
invocation and response queues for a single process, namely Pi.

Letting ResponseMap denote the set of mappings from endpoint set J to the set of finite se-
quences of resps, we assume:

• δ1 is a total binary relation from invs× J × V to ResponseMap× V .
It is used in perform steps to map an invocation at the head of a particular inv−buffer , and
the current value for val, to a set of possible results, each of which consists of a new value for
val and finite sequences of responses to be added to the resp−buffers.

• δ2 is a total binary relation from glob × V to ResponseMap× V .
It is used in compute steps to map a value of val to a set of possible results, each of which
again consists of a new value for val and finite sequences of responses to be added to the
resp−buffers.

The code for a canonical failure-oblivious automaton, showing specifically how these parameters
are used, appears in Figure 4. Note (in the dummy compute transition definition) that global tasks
are allowed to stop performing steps when either the total number of failures exceeds f , or all of
the endpoints have failed.

Thus, a canonical f -resilient failure-oblivious service is allowed to perform rather flexible kinds
of processing, as long as processing decisions do not depend on knowledge of occurrence of failure
events.

Notice that the canonical atomic object CanonicalAtomicObject(T , J, f, k) is a special case of
the canonical failure-oblivious service CanonicalFailureObliviousService(U , J, f, k): In this spe-
cial case, the J , f , and k parameters are the same. For a given sequential type T = 〈V, V0, invs, resps, δ〉,
the corresponding service type U is defined as 〈V, V0, invs, resps, glob, δ1, δ2〉, where glob = ∅, δ2 is
the empty relation, and δ1 is defined as follows: δ1 is the set of pairs ((a, i, v), (B, v′)) for which
there exists b ∈ resps such that ((a, v), (b, v′)) ∈ δ, B(i) is the sequence consisting of a single b, and
B(j) is the empty sequence for every j 6= i.

An I/O automaton A is an f -resilient failure-oblivious service of type U for endpoint set J and
index k, provided that it implements the canonical f -resilient failure oblivious service of type U for
J and k, where “implements” is defined as in Section 2.1.1. It follows that an f -resilient atomic
object of sequential type T for endpoint set J and index k is in fact an f -resilient failure-oblivious
service of service type U for endpoint set J and index k, where the type U is derived from the type
T as described just above.

5.2 Example: Totally Ordered Broadcast

Here we describe an f -resilient totally ordered broadcast service for a particular message alphabet
M , endpoint set J , and index k, as a special case of an f -resilient failure-oblivious service for J and
k. To do this, we need only specify the failure-oblivious service type U = 〈V, V0, invs, resps, glob, δ1, δ2〉.
Here, V consists of a single msgs queue, containing messages that have been totally ordered, to-
gether with their sources (Figure 5). V0 indicates that this queue is initially empty.

The invocation set invs is {bcast(m) : m ∈M}. The response set resps is {rcv(m, i) : m ∈M, i ∈
J}. Here, rcv(m, i) indicates the receipt of message m from sender i. This receipt can occur at any
endpoint. glob consists of one task name g, that is, glob = {g}.

δ1, the relation describing the transitions that process invocations from inv−buffers, is defined
implicitly in Figure 6. This code processes the first element of inv−buffer(i) by adding it to the

21

CanonicalFailureObliviousService(U ,J, f, k), where U = 〈V, V0, invs, resps, glob, δ1, δ2〉

Signature:

Inputs:

ai,k , a ∈ invs, i ∈ J

fail i, i ∈ J

Outputs:

bi,k, b ∈ resps, i ∈ J

Internals:

performi,k, i ∈ J

computeg,k, g ∈ glob

dummy performi,k, i ∈ J

dummy computeg,k, g ∈ glob

dummy output i,k, i ∈ J

Tasks:

For every i ∈ J :
i-perform: {performi,k, dummy performi,k}
i-output: {bi,k : b ∈ resps} ∪ {dummy output i,k}

For every g ∈ glob:
g-compute: {computeg,k, dummy computeg,k}

State components:
As for canonical atomic object.

Transitions:

Input: ai,k

As for canonical atomic object.

Internal: performi,k

Precondition:
a = head(inv−buffer(i))
δ1((a, i, val), (B, v))

Effect:
remove head of inv−buffer(i)
val← v

for j ∈ J do
add B(j) to end of resp−buffer(j)

Internal: computeg,k , g ∈ glob

Precondition:
δ2((g, val), (B, v))

Effect:
val← v

for j ∈ J do
add B(j) to end of resp−buffer(j)

Output: bi,k

As for canonical atomic object.

Input: fail i
As for canonical atomic object.

Internal: dummy performi,k, i ∈ J

As for canonical atomic object.

Internal: dummy computeg,k, g ∈ glob

Precondition:
|failed| > f ∨ failed = J

Effect:
none

Internal: dummy output i,k , i ∈ J

As for canonical atomic object.

Figure 4: A canonical failure-oblivious service.

Components of val:
msgs, a finite sequence of items in M × J , initially empty

Figure 5: Components of val in a totally ordered broadcast service.

22

end of the sequence stored in msgs . Formally, δ1((a, i, v), (B, v′)) holds if and only if a = bcast(m),
v′.msgs is the result of adding (m, i) to the end of v.msgs , and B(j) is empty for all j.

Internal: performi,k

Precondition:
bcast(m) = head(inv−buffer(i))

Effect:
remove head of inv−buffer(i)
add (m, i) to end of msgs

Figure 6: Relation δ1 in a totally ordered broadcast service.

Relation δ2 is defined implicitly in Figure 7. This code processes the first element of msgs by
removing it from msgs and adding it to the end of the sequence of messages stored in resp−buffer(j),
for every j. Formally, δ2((g, v), (B, v′)) holds if and only if either (a) v.msgs is nonempty, (m, i) =
head(v.msgs), v′.msgs = tail(v.msgs), and for every j ∈ J , B(j) is the sequence consisting of the
single element rcv(m, i), or (b) v.msgs is empty, v′ = v, and for every j, B(j) is the empty sequence.

Note that totally ordered broadcast cannot be implemented by an atomic object, since one
invocation requires many responses. Thus the notion of failure-oblivious service increases the range
of systems that our framework can express.

Internal: computeg,k

Precondition:
true

Effect:
if msgs is nonempty then

(m, i) := head(msgs)
remove head of msgs

for j ∈ J do
add rcv(m, i) to end of resp−buffer(j)

Figure 7: Relation δ2 in a totally ordered broadcast service.

5.3 Impossibility of Boosting

Now we show that Theorem 2 extends to the case of failure-oblivious services. The new theorem
is:

Theorem 9 Let I be a set of endpoints, n = |I|, and let f be an integer such that 0 ≤ f <
n− 1. There is no distributed system using only canonical f -resilient failure-oblivious services and
canonical reliable registers that solves (f + 1)-resilient binary consensus for I.

Proof: The proof follows the same outline as for Theorem 2. We sketch the modifications
here. First, the index set K is now the set of indices of all the f -resilient failure-oblivious
services in C. The f -resilient failure-oblivious service with index k has a service type Uk =
〈Vk, (V0)k, invsk, respsk, globk, (δ1)k, (δ2)k〉,

Lemma 1 extends to this case because the only relevant modification to the service is the addition
of the g-compute tasks. These are defined using the total transition relation δ2. Since these are
total relations, we see from Figure 4 that these tasks are always enabled. It follows that Lemma 1
still holds.

For determinism assumptions, we require the processes to be deterministic automata as before,
and also require the transition relations δ1 and δ2 to be (single-valued) functions. Lemmas 3, 4,

23

and 5 and their proofs carry over without change, since they do not depend on the definition of
a service. The similarity definitions are the same as before, except that the services Sk are now
failure-oblivious services instead of atomic objects.

For Lemmas 6, 7, and 8, we provide complete proofs in Appendix A. Here, we just sketch the
changes. For Lemma 6, the execution fragments γ′ and γ′′ now may contain computeg,k actions. We
argue that these do not invalidate the inductive argument that shows the correspondence between
γ′ and γ′′.

For Lemma 7, the proof requires very little change. Service Sk performs no locally controlled
actions, including computeg,k actions, in either γ′ or γ′′, and all other services and processes behave
the same in γ′ and γ′′. The changes to the definition of Sk do not affect the proof, since the original
proof of Lemma 7 does not depend on the detailed definitions of the services.

For Lemma 8, Claims 1, 2, 3, and 5 carry over with no change, since their proofs do not involve
the details of the definitions of atomic objects or failure-oblivious services. For Claim 4, the proof
of case 1 (participants(e, s) = participants(e′, s) = {Sk}) is modified by considering g-compute tasks
as well as i-perform tasks. The proofs of the other cases carry over directly. Hence the lemma as
a whole carries over. 2

6 Impossibility of Boosting for General (Failure-Aware) Services

A general, or (potentially) failure-aware service is a further generalization of a failure-oblivious
service. As for failure-oblivious services, a general service has both perform and compute steps.
The difference is that a general service does not have the failure-oblivious constraint: its decisions
may depend on knowledge of past failures of processes connected to the service.

In this section, we define the class of general services, give examples, and show how Theorems 2
and 9 can be extended to such services. The extension is weaker than the previous theorems, in
that it requires a constrained connection pattern: all processes must be connected to all general
services. We show by example that this constraint is needed: without it, boosting is sometimes
possible.

6.1 f-resilient general services

A canonical f -resilient general service is parameterized by J , f , and k, which have the same mean-
ings as for canonical atomic objects and canonical failure-oblivious services,
and by a service type parameter U , which is a tuple of the form
〈V, V0, invs, resps, glob, δ1, δ2〉, as for failure-oblivious services. This time, however:

• δ1 is a total binary relation from invs× J × V × 2I to ResponseMap× V .
As for failure-oblivious services, δ1 is used in perform steps. The final argument, of type 2I ,
is instantiated in the perform code with the current failed set.

• δ2 is a total binary relation from glob × V × 2I to ResponseMap× V .
As for failure-oblivious services, δ2 is used in compute steps. The final argument is again
instantiated in the compute code with the current failed set.

We call the new service CanonicalGeneralService(U , J, f, k). The only portions of its code
that differ from those for CanonicalFailureObliviousService(U , J, f, k) are the two transition
definitions that use δ1 and δ2; the new ones appear in Figure 8.

24

CanonicalGeneralService(U , J, f, k), where U = 〈V, V0, invs, resps, glob, δ1, δ2〉

Internal: performi,k

Precondition:
a = head(inv−buffer(i))
δ1((a, i, val, failed), (B, v))

Effect:
remove head of inv−buffer(i)
val← v

for j ∈ J do
add B(j) to end of resp−buffer(j)

Internal: computeg,k , g ∈ glob

Precondition:
δ2((g, val, failed), (B, v))

Effect:
val← v

for j ∈ J do
add B(j) to end of resp−buffer(j)

Figure 8: Relations δ1 and δ2 in a canonical f -resilient general service.

Notice that the canonical failure-oblivious service CanonicalFailureObliviousService(U , J, f, k)
is a special case of the canonical general service CanonicalGeneralService(U ′, J, f, k), with the
same J , f , and k parameters. For a given service type U = 〈V, V0, invs, resps, glob, δ1, δ2〉 for a
canonical failure-oblivious service, the corresponding service type U ′ for a canonical general service
is defined as 〈V, V0, invs, resps, glob, δ′1, δ

′
2〉, where δ′1 is the set of pairs ((a, i, v, F), (B, v′)) such that

((a, i, v), (B, v′)) ∈ δ1, and δ′2 is the set of pairs ((g, v, F), (B, v′)) such that ((g, v), (B, v′)) ∈ δ2,
An I/O automaton A is an f -resilient general service of type U for endpoint set J and index k,

provided that it implements the canonical f -resilient general service of type U for J and k.

6.2 Examples: Failure detectors

In this section, we describe how two well-known failure detectors [4, 5] can be modeled as general
services. Our failure detectors do not provide all the functionality of the standard model [4]; most
notably, because our failure detectors are modeled as automata, they cannot predict future input
actions and their output can only depend on the order in which failures take place, and not on the
timing of failures. We conjecture that our framework allows for describing the subset of realistic
failure detectors [7] that are “time-independent,” i.e., depend only on the relative order of failures.

All of our failure detector services have empty invs sets, that is, their only inputs are fail i actions.

6.2.1 Perfect Failure Detector P

A perfect failure detector is supposed to provide all its endpoints with recent, accurate information
about which endpoints have failed. We define an f -resilient perfect failure detector for J and k as
a canonical f -resilient general service of type U = 〈V, V0, invs, resps, glob, δ1, δ2〉. Here, V contains
only one (trivial) state v̄, that is, the service maintains no internal information other than the failed
set. As noted above, invs = ∅. Responses are of the form suspect(J ′), J ′ ⊆ J . The set glob of
global task names is simply J—that is, it contains exactly one task name for each endpoint in J .
Since there are no invocations, δ1 is trivial.

It remains to define δ2, which describes the generation of suspect responses for particular end-
points. δ2(i, v̄, failed) simply puts a suspect response containing the current failed set into i’s re-
sponse buffer. Formally, δ2((i, v̄, failed), (B, v̄) holds iff B(i) is the sequence consisting of the single

25

element suspect(failed) and for every j ∈ J − {i}, B(j) is the empty sequence. Figure 9 shows
compute code that uses δ2 implicitly.

Internal: computei,k

Precondition:
true

Effect:
add suspect(failed) to resp−buffer(i)

Figure 9: Relation δ2 in P .

6.2.2 Eventually Perfect Failure Detector 3P

An eventually perfect failure detector is supposed to provide all its endpoints with information
about which endpoints have failed. This information may be erroneous for some finite amount
of time, but eventually it is supposed to stabilize so that thereafter, it is recent and accurate.
We define an f -resilient eventually perfect failure detector for J and k, as a canonical f -resilient
general service of type U = 〈V, V0, invs, resps, glob, δ1, δ2〉. Here, V consists of valuations for a single
mode variable, which takes on values in {perfect , imperfect}. V0 assigns mode the value imperfect .
Figure 10 contains an implicit definition of V and V0.

Components of val:
mode ∈ {perfect , imperfect}, initially imperfect

Figure 10: The components of val in 3P .

As before, invs = ∅. Responses are of the form suspect(J ′), J ′ ⊆ J . Since there are no invocations,
δ1 is trivial. Now glob = J ∪ {g}, so we have one global task name per endpoint plus one special
task name g. Global task i, i ∈ J , is responsible for generating suspect responses for endpoint i,
while global task g is a background task that is responsible for eventually switching mode to perfect .
While mode is imperfect , the service may generate arbitrary suspect responses; after mode becomes
perfect , the responses must be recent and accurate.

We define δ2 implicitly, in the compute transition definitions in Figure 11.

Internal: computei,k , i ∈ J

Precondition:
true

Effect:
if mode = perfect then

add suspect(failed) to resp−buffer(i)
else

choose J ′ where J ′ ⊆ J

add suspect(J ′) to resp−buffer(i)

Internal: computeg,k

Precondition:
true

Effect:
mode := perfect

Figure 11: Internal transitions in 3P .

26

6.3 Impossibility of Boosting

Our impossibility results for atomic objects and failure-oblivious services allow arbitrary connec-
tions between processes and services. However, it turns out that it is possible to boost the resilience
of systems containing failure-aware services, if we allow arbitrary connection patterns.

For example, consider an n-process system that uses wait-free registers and 1-resilient canonical
perfect failure detectors. Suppose that every pair of processes share a 1-resilient 2-process failure
detector. Such a system can implement a wait-free perfect failure detector for all n processes
as follows: Process i just listens to all failure detectors it is connected to and accumulates the
set of suspected processes in a dedicated register. Periodically, it reads these dedicated registers
and outputs the union of all sets of suspected processes. By the definition of 1-resilient 2-process
perfect failure detectors, the 2-process services continually provide each process with accurate failure
information about each other process. Therefore, the algorithm allows each process to continually
provide accurate failure information about all n processes, as required by the definition of a wait-
free n-process perfect failure detector. Using this construction, f -resilient consensus, for any f , can
be implemented using wait-free registers and 1-resilient failure detector services.

Boosting is, however, impossible if we assume a system in which f -resilient failure-aware services
must be connected to all processes, and so, any f +1 process failures can disable all the failure-aware
services.

We obtain the following theorem; notice that we allow f -resilient failure-oblivious services, each
connected to an arbitrary set of processes, in addition to general services connected to all processes.

Theorem 10 Let I be a set of endpoints, n = |I|, and let f be an integer such that 0 ≤ f < n− 1.
There is no distributed system using only (a) canonical f -resilient general services connected to all
processes, (b) canonical f -resilient failure-oblivious services (connected to arbitrary processes), and
(c) canonical reliable registers (connected to arbitrary processes) that solves (f + 1)-resilient binary
consensus for I.

Proof: The proof follows the same outline as for Theorem 9, based on similarity and the “hook”
construction. The key new fact is that, when we fail f + 1 processes in the proof of Lemma 6 or 7,
we can “silence” all the failure-aware services.

The index set K is now partitioned into K1∪K2, where K1 is the set of indices of all the f -resilient
failure-oblivious services and K2 is the set of indices of the f -resilient general services. Lemma 1
extends easily. For determinism assumptions, we require the processes to be deterministic automata,
and also require the transition relations δ1 and δ2 to be (single-valued) functions. Lemmas 3, 4,
and 5, and their proofs carry over without change from Section 5.3.

The similarity definitions now change so that they do not restrict the states of failure-aware
services, that is, failure-aware services can have arbitrary states in s0 and s1. More precisely, let
j ∈ I and let s0 and s1 be states of C. Then s0 and s1 are j-similar if the following hold:

(1) For every i ∈ I − {j}, the state of Pi is the same in s0 and s1.

(2) For every c ∈ K1 ∪R:

1. The value of valc is the same in s0 and s1.

2. For every i ∈ Jc − {j}, the value of buffer(i)c is the same in s0 and s1.

Note that we do not restrict the states for c ∈ K2, that is, for the general services.
Also, let k ∈ K, and let s0 and s1 be states of C. Then s0 and s1 are k-similar if the following

hold:

27

(1) For every i ∈ I, the state of Pi is the same in s0 and s1.

(2) For every c ∈ (K1 − {k}) ∪R, the state of Sc is the same in s0 and s1.

Again, we do not restrict the states for c ∈ K2, that is, general services. For k ∈ K1, this definition
implies that all failure-oblivious services except for k have the same state in s0 and s1. For k ∈ K2,
this definition implies that all failure-oblivious services have the same state in s0 and s1.

Lemma 6 is stated as before, and the proof requires only small modifications to the corresponding
proof for the failure-oblivious case. Now when we fail the f + 1 processes in J in β, in addition to
the other constraints on β, we require every failure-aware service to stop performing (non-dummy)
locally controlled steps; we can do this because the f +1 failed processes are all connected to every
failure-aware service. Then, following the strategy in the proof of Lemma 6 for the failure-oblivious
case, we construct a failure-free extension γ′ of α0, α0 · γ

′, such that: (1) γ′ includes no output
actions of process Pi, nor any perform i or output i actions for any service, for i ∈ J , (2) γ′ includes
no locally controlled actions of any failure-aware service, and (3) γ′ includes decide(v)l, for some
l ∈ I − J . Then we show that (essentially the same) γ′ can be appended to α1, which contradicts
the assumption that α0 and α1 have opposite valences. In showing that γ′ can be appended to α1,
we use arguments like those in proof of Lemma 6 for the failure-oblivious case. Since γ′ contains
no locally controlled actions of any failure-aware services, the new definitions for the perform and
compute steps, in particular, their ability to observe the set of failed processes, make no difference.

Lemma 7 is also stated as before, although now the set K mentioned in the lemma is the union
K = K1∪K2 of indices of failure-oblivious and general services. In the proof, when we fail the f +1
processes in J in β, we also require every failure-aware service to stop performing (non-dummy)
locally controlled steps. Then, following the strategy in the proof of Lemma 7 for the failure-
oblivious case, we construct a failure-free extension γ′ of α0, α0 · γ

′, such that: (1) γ′ includes no
locally controlled actions of service Sk, (2) γ′ includes no locally controlled actions of any failure-
aware service, and (3) γ′ includes decide(v)l, for some l ∈ I−J . Then we show that γ′ is essentially
applicable to α1, which contradicts the assumption that α0 and α1 have opposite valences. In
showing that γ′ is applicable to α1, we use arguments like those in the proof of Lemma 7 for the
failure-oblivious case. Again, since γ′ contains no locally controlled actions of any failure-aware
services, the new definitions for the perform and compute steps make no difference.

For Lemma 8, note that none of the executions comprising the hook contain any fail i actions.
Hence at all states in the hook, the set failed of failed processes is empty. Thus, the new definitions
for the perform and compute steps, in particular, their ability to observe the set of failed processes,
makes no difference. Hence the proof is unchanged from that for failure-oblivious services. 2

7 Conclusions

In this paper, we have presented a new framework for describing asynchronous distributed systems
that use resilient services to implement other resilient services. The framework is general enough
to describe atomic objects, other failure-oblivious services, and failure-aware services. To our
knowledge, this is the first framework that can describe all of these.

Within our framework, we have established the impossibility of boosting the resilience of ser-
vices. Specifically, we proved that f -resilient atomic objects, and more generally, f -resilient failure-
oblivious services, cannot be used to solve (f + 1)-resilient consensus. This is so even if processes
can be connected to services using an arbitrary connection pattern. We have also proved that
f -resilient failure-aware services cannot be used to solve (f + 1)-resilient consensus; however, this

28

proof, and in fact this result, require that all processes be connected to all failure-aware services.
Our results can be viewed as generalizations, to any number f of failures, of the impossibility result
of Fischer, Lynch, and Paterson [8] for the case f = 0. We emphasize that the result of Fischer,
Lynch, and Paterson [8] does not imply our results, since the model of distributed systems used
in [8] does not contain fault-tolerant services, and so the issue of boosting an existing nontrivial
(f > 0) degree of fault-tolerance cannot be directly addressed in the framework of [8].

Our proofs are short, simple, and self-contained. They use techniques inspired by those in [8],
in particular, bivalence and a “hook” construction. As a new addition to the proof method, we
extract notions of “similarity” for processes and services, which describe relationships between
states that ensure that they must lead to the same decision value. Our lemmas about similarity
encapsulate reasoning about executions and valence, so that the main proof can focus exclusively
on what happens in a few individual steps.

The consensus problem is a natural benchmark to use for measuring the resilience of services
because it has already been shown to be fundamental to the study of resilience in distributed
systems. In fact, this choice is crucial because our non-boosting results do not apply to some
problems that are weaker than consensus, such as k-set-consensus.

As observed in [9,13], a variant of Theorem 2, for atomic objects, can be derived indirectly, by a
chain of existing results in the literature [3, 11,14]. However, these models differ in some technical
aspects. Our self-contained proof is simpler than the indirect proof, if we take into account the
complexity of the proofs of the constituent pieces. Our proof also extends readily to more general
services than atomic objects. Our results for more general services are the first such results to
appear.

This paper suggests several directions for future work. First, we have classified services in a
hierarchy, as atomic objects, failure-oblivious services, and general (possibly failure-aware) services.
Are there interesting refinements to this hierarchy? In particular, are there any interesting service
classifications between failure-oblivious services and general services? If so, what boosting results
apply to these services?

Also, our framework can be used to address the general question of which services can be used
to implement which other services, with which levels of resilience. Thus, it could be used as the
foundation for a general theory of relative computability of resilient services. Some results that
would fit into such a theory already appear in the literature (e.g., [3, 11]). It remains to develop a
more complete theory.

References

[1] P. Attie, R. Guerraoui, P. Kouznetsov, N. A. Lynch, and S. Rajsbaum. The impossibility of boosting
distributed service resilience. In The 25’th International Conference on Distributed Computing Systems,
2005.

[2] P. C. Attie, N. A. Lynch, and S. Rajsbaum. Boosting fault-tolerance in asynchronous message passing
systems is impossible. Technical report, MIT Laboratory for Computer Science, MIT-LCS-TR-877,
2002. Available at http://theory.lcs.mit.edu/tds/reflist.html.

[3] T. Chandra, V. Hadzilacos, P. Jayanti, and S. Toueg. Generalized irreducibility of consensus and the
equivalence of t-resilient and wait-free implementations of consensus. SIAM Journal on Computing,
34(2):333–357, 2005. Conference version appears in PODC94.

[4] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector for solving consensus. Journal
of the ACM, 43(4):685–722, July 1996.

[5] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems. Journal of
the ACM, 43(2):225–267, March 1996.

29

[6] S. Chaudhuri. Agreement is harder than consensus: set consensus in totally asynchronous systems. In
Proceedings of the 19th Annual ACM Symposium on Principles of Distributed Computing (PODC’00),
pages 311–324, August 1990.

[7] C. Delporte-Gallet, H. Fauconnier, and R. Guerraoui. A realistic look at failure detectors. In IEEE
Symposium on Dependable Systems and Networks (DSN 2002), Washington DC, June 2002.

[8] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(3):374–382, April 1985.

[9] R. Guerraoui and P. Kouznetsov. Failure detectors as type boosters. Distributed Computing, 20(5):343–
358, 2008.

[10] V. Hadzilacos and S. Toueg. A modular approach to fault-tolerant broadcast and related problems.
Technical report, Cornell University, Computer Science, May 1994.

[11] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and Systems,
13(1):124–149, January 1991.

[12] M. Herlihy and J. M. Wing. Linearizability: a correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems, 12(3):463–492, June 1990.

[13] P. Jayanti. Private communication. 2003.

[14] P. Jayanti and S. Toueg. Some results on the impossibility, universability and decidability of consensus.
In Proceedings of the 6th International Workshop on Distributed Algorithms (WDAG’92), volume 647
of LNCS. Springer Verlag, 1992.

[15] M. C. Loui and H. H. Abu-Amara. Memory requirements for agreement among unreliable asynchronous
processes. Advances in Computing Research, pages 163–183, 1987.

[16] N. Lynch and M. Tuttle. An introduction to input/output automata. CWI-Quarterly, 2(3):219–246,
September 1989. Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands.

[17] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[18] N. A. Lynch and M. R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In PODC,
pages 137–151, 1987.

Appendix A Detailed proofs of main lemmas for failure-oblivious
services

We present the proof of Lemma 6 for f -resilient failure-oblivious services.

Lemma 6 Let j ∈ I. Let α0 and α1 be finite failure-free input-first executions, s0 and s1 the
respective final states of α0 and α1. Suppose that s0 and s1 are j-similar. If α0 and α1 are
univalent, then they have the same valence.

Proof: We proceed by contradiction. Fix j, α0, α1, s0, and s1 as in the hypotheses of the lemma,
and suppose (without loss of generality) that α0 is 0-valent and α1 is 1-valent. Let J ⊆ I be any
set of indices such that j ∈ J and |J | = f + 1. Since f < n − 1 by assumption, we have |J | < n,
and so I − J is nonempty.

Consider a fair extension of α0, α0 ·β, in which the first f +1 actions of β are fail i, i ∈ J , and no
other fail actions occur in β. Note that, for every i ∈ J , β contains no output actions of Pi. Assume
that in β, no perform i,c or bi,c action of any i ∈ J occurs at any component c ∈ K ∪ R; we may
assume this because, for each i ∈ J , action fail i enables a dummy action in every i-perform and
i-output task of every service and register. Note that computeg,k and dummy computeg,k actions
may occur in β, for k ∈ K.

30

Since α0 is a failure-free input-first execution, the resulting extension α0 · β is a fair input-first
execution containing f + 1 failures. Therefore, by the termination property for (f + 1)-resilient
consensus and the fact that I − J is nonempty, there is a finite prefix of α0 · β, which we denote by
α0 ·γ, that includes decide(v)l for some l /∈ J and v ∈ {0, 1}. Construct α0 ·γ

′, where γ′ is obtained
from γ by removing the fail i action and all subsequent internal actions of Pi, for every i ∈ J , plus
all dummy actions, The dummy actions removed include the dummy computeg,k actions, as well as
the dummy performi,k and dummy output i,k actions. Thus, α0 · γ

′ is a failure-free extension of α0

that includes decide(v)l. Since α0 is 0-valent, v must be equal to 0.
Note that computeg,k actions, but not dummy computeg,k actions, may occur in γ′, for k ∈ K.
Next, we claim that decide(0)l occurs in the suffix γ′, rather than in the prefix α0. The argument

is exactly as before.
Now we show how to append essentially the same γ′ after α1. The definition of j-similarity and

the fact that j ∈ J imply that:

(a) For every i /∈ J , the state of Pi is the same in s0 and s1.

(b) For every c ∈ K ∪R,

1. The value of valc is the same in s0 and s1 (that is, in the final states of α0 and α1).

2. For every i ∈ Jc − J , the value of buffer(i)c is the same in s0 and s1.

We know that, for every i ∈ J , γ′ contains no locally controlled actions of Pi, and contains no
perform i,c or bi,c actions, for any c ∈ K ∪R. Therefore:

(c) If γ′ contains any locally controlled actions of a process Pi, then the state of Pi is the same in
s0 and s1 (since i /∈ J in this case).

(d) For every c ∈ K ∪R,

1. The value of valc is the same in s0 and s1.

2. For every i ∈ Jc, if γ′ contains any perform i,c or bi,c (b ∈ respsc) actions, then the value of
buffer(i)c is the same in s0 and s1 (since i /∈ J in this case).

Then it is possible to append “essentially” the same γ′ after α1, resulting in a failure-free exten-
sion of α1 that includes decide(0)l. Since α1 is 1-valent, this is a contradiction.

More precisely, we append another execution fragment γ′′ after α1—the one that is generated by
applying, after α1, the same sequence ρ of tasks that generates γ′. We can prove, by induction on
the number of tasks, that when ρ is applied after α0 and α1, in each pair of corresponding states:
(a) for each i ∈ I for which the unique task of Pi occurs in ρ, the states of Pi are the same, (b) for
each c ∈ K ∪ R, the values of valc are the same, and (c) for each c ∈ K ∪ R and each i ∈ Jc such
that an i-perform or i-output task of Sc occurs in ρ, the values of buffer(i)c are the same. This
correspondence is enough to imply that γ′′ also includes the required decide(0)l action.

Notice that the possible presence of g-compute tasks in ρ does not invalidate the inductive argu-
ment. Since α1 · γ

′′ contains no failures, each g-compute task of each failure-oblivious service Sk is
always applicable, and its results (new valk and sequences to append to the resp−buffers) depend
only on valk. This is enough to preserve properties (a)-(c) above. 2

Next, we present the proof of Lemma 7 for failure-oblivious services.

Lemma 7 Let k ∈ K. Let α0 and α1 be finite failure-free input-first executions, s0 and s1 the
respective final states of α0 and α1. Suppose that s0 and s1 are k-similar. If α0 and α1 are univalent,
then they have the same valence.

31

Proof: We proceed by contradiction. Fix k, α0, α1, s0, and s1 as in the hypotheses of the lemma,
and suppose (without loss of generality) that α0 is 0-valent and α1 is 1-valent. Let J ⊆ I be any
set of indices such that |J | = f + 1, and, if |Jk| ≤ f + 1, then Jk ⊆ J , whereas if |Jk| > f + 1, then
J ⊆ Jk.

Consider a fair extension of α0, α0 · β, in which the first f + 1 actions of β are fail i, i ∈ J , and
no other fail actions occur in β. Note that, for every i ∈ J , β contains no output actions of Pi.
Assume that in β, no perform i,k action, or bi,k action (b ∈ respsk), or computeg,k (g ∈ globk) occurs;
we may assume this because the f + 1 fail actions enable dummy actions in all of the tasks of Sk.

Since α0 is a failure-free input-first execution, the resulting extension α0 · β is a fair input-first
execution containing f + 1 fail actions. Therefore, by the termination property for (f + 1)-resilient
consensus and the fact that I − J is nonempty, there is a finite prefix of α0 · β, which we denote by
α0 ·γ, that includes decide(v)l for some l /∈ J and v ∈ {0, 1}. Construct α0 ·γ

′, where γ′ is obtained
from γ by removing the fail i action and subsequent internal actions of Pi, for every i ∈ J , plus all
dummy actions. Thus, α0 · γ

′ is a failure-free extension of α0 that includes decide(v)l. Since α0 is
0-valent, v must be equal to 0.

Next, we claim that decide(0)l occurs in the suffix γ, rather than in the prefix α0. The argument
is exactly as before.

Now we show how to append essentially the same γ′ after α1. The definition of k-similarity
implies that:

(a) For every i ∈ I, the state of Pi is the same in s0 and s1.

(b) For every c ∈ (K − {k}) ∪R, the state of Sc is the same in s0 and s1.

We know that γ′ contains no locally controlled actions of service Sk. Therefore:

(c) For every c ∈ K ∪ R, if γ′ contains any perform i,c or bi,c or computeg,c actions of Sc, then the
state of Sc is the same in s0 and s1 (since c 6= k in this case).

By properties (a) and (c), it follows that it is possible to append “essentially” the same γ′ after α1

(differing only in the state of Sk) resulting in a failure-free extension of α1 that includes decide(0)l.
But α1 is 1-valent — a contradiction. 2

Finally, we present the proof of Lemma 8 for failure-oblivious services.

Lemma 8 G(C) contains no hooks.

Proof: We establish the same five claims as in the case of atomic objects, which establishes the
needed contradiction.

Claims 1, 2, and 5 do not refer to the definition of an atomic object or failure-oblivious service,
and so their proof remains unchanged from the atomic objects case.

The proof of Claim 3 is also unchanged, since the only actions considered here have as participants
either just a process Pi, or else both a process Pi and a service Sc, c ∈ K ∪ R. Thus, whenever
a failure-oblivious service Sk is a participant, the action must be an external action of Sk. Since
the external actions in the definitions of atomic object and failure-oblivious service have the same
effect, namely to add or remove a single item from a single buffer, it follows that the proof of Claim
3 for the atomic object case still applies.

We modify the proof of Claim 4 as follows:

Claim 4: There does not exist k ∈ K such that Sk ∈ participants(e, s) ∩ participants(e′, s).
Suppose for contradiction that Sk ∈ participants(e, s)∩ participants(e′, s). There are four possibili-
ties:

32

1. participants(e, s) = participants(e′, s) = {Sk}. Then e and e′ must be i-perform or g-compute
tasks of Sk, and so involve only the state of Sk. But then the states s0 and s1 can differ only
in the state of Sk. So s0 and s1 are k-similar — a contradiction.

2. For some i ∈ I, participants(e, s) = {Sk, Pi} and participants(e′, s) = {Sk}.
Then action(e, s) is either ai,k or bi,k, and action(e′, s) is either performj,k or computeg,k,
where j ∈ Jk and g ∈ globk. Inspection of the definition of a canonical failure-oblivious
service shows that the two tasks commute, that is, e′(s0) = s1 — a contradiction.

3. For some i ∈ I, participants(e′, s) = {Sk, Pi} and participants(e, s) = {Sk}.
Then action(e, s) is either performj,k or computeg,k, where j ∈ Jk, g ∈ globk, and action(e′, s)
is either ai,k or bi,k. Inspection of the definition of a canonical failure-oblivious service shows
that the two tasks commute, that is, e′(s0) = s1 — a contradiction.

4. For some i, j ∈ I, participants(e, s) = {Sk, Pi} and participants(e′, s) = {Sk, Pj}.
By Claim 3, we know that i 6= j. Then action(e, s) is either ai,k or bi,k, and action(e′, s) is
either aj,k or bj,k. Inspection of the definition of a canonical failure-oblivious service shows
that the two tasks commute, that is, e′(s0) = s1 — a contradiction.

2

Appendix B Proof that our definition of consensus implies the

axiomatic definition

We now show that any system that meets our definition of consensus also meets the variant of the
axiomatic definition given in Section 2.2.4. We argue that the f -fault-tolerant canonical consensus
object for endpoint set I satisfies the agreement, validity, and modified termination conditions given
in Section 2.2.4.

Theorem 11 Let S be an f -fault-tolerant canonical consensus object with endpoint set I. Then
every execution of S in which at most one input arrives at each endpoint satisfies the agreement,
validity, and modified termination conditions given in Section 2.2.4.

Proof: Consider an arbitrary execution α of S. We show that α satisfies each of the agreement,
validity, and modified termination conditions. Recall that an f -fault-tolerant canonical consensus
object has the sequential type binary consensus given in Section 2.1.2.

Agreement condition. From the definition of the binary consensus sequential type, each endpoint
in I has two invocations, init(0), init(1), and two responses, decide(0), decide(1). Also, the value of
the f -fault-tolerant canonical consensus object is initially ∅, and on invocation init(0) changes from
∅ to {0}, and on invocation init(1) changes from ∅ to {1}, and is stable once it is different from
∅. It is also clear that any decide(0) response is only issued by the consensus object when it has
value {0}, and any decide(1) response is only issued by the consensus object when it has value {1}.
Hence, after the first decide(0) response, all subsequent responses will be decide(0), and after the
first decide(1) response, all subsequent responses will be decide(1). So, α satisfies the agreement
condition.

Validity condition. If all invocations are init(0), then the only possible change of the consensus
object is from ∅ to {0}. Hence, all responses will be decide(0). Likewise if all invocations are init(1),
then all responses will be decide(1). Otherwise, there are both init(0) and init(1) invocations.

33

Hence, in all cases, the value decided on is the value occurring in some invocation. Hence, α
satisfies the validity condition.

Modified termination condition. Assume that at most f endpoints fail along α, and that the
scheduling along α is in accord with the I/O automata fairness assumption, as discussed in Sec-
tion 2.2.3. Consider any endpoint i that does not fail. If an input occurs at endpoint i, then
eventually a perform i,k occurs (where k is the index of S), followed by a decide(v)i,k at endpoint i.
Hence α satisfies the modified termination condition.

Since α is an arbitrary execution of S, we conclude that every execution of S satisfies the agree-
ment, validity, and modified termination conditions, as desired. 2

We remind the reader that the modified termination condition is different from the traditional
termination condition, which requires that all nonfaulty processes do have an initial value, and that
they all eventually decide. Here, only the nonfaulty processes that receive an input will make a
decision.

34

