
Time Optimal Self-Stabilizing Spanning Tree AlgorithmsbySudhanshu Madan AggarwalSubmitted to the Department of Electrical Engineering and Computer Sciencein partial ful�llment of the requirements for the degrees ofBachelor of ScienceandMaster of Science in Electrical Engineering and Computer Scienceat theMASSACHUSETTS INSTITUTE OF TECHNOLOGYMay 1994c
 Sudhanshu Madan Aggarwal, MCMXCIV. All rights reserved.The author hereby grants to MIT permission to reproduce and distribute publiclypaper and electronic copies of this thesis document in whole or in part, and to grantothers the right to do so.Author :Department of Electrical Engineering and Computer ScienceMay 20, 1994Certi�ed by :Dr. Shay KuttenManager { Distributed Computing, IBM T. J. Watson Research CenterThesis SupervisorCerti�ed by :Nancy A. LynchProfessor of Computer ScienceThesis SupervisorCerti�ed by :Roberto SegalaResearch Associate, MIT Laboratory for Computer ScienceThesis SupervisorAccepted by: :Frederic R. MorgenthalerChairman, Departmental Committee on Graduate Students

2

Time Optimal Self-Stabilizing Spanning Tree AlgorithmsbySudhanshu Madan AggarwalSubmitted to the Department of Electrical Engineering and Computer Scienceon May 20, 1994, in partial ful�llment of therequirements for the degrees ofBachelor of ScienceandMaster of Science in Electrical Engineering and Computer ScienceAbstractThis thesis presents time-optimal self-stabilizing algorithms for distributed spanning tree com-putation in asynchronous networks. We present both a randomized algorithm for anonymousnetworks as well as a deterministic version for ID-based networks. Our protocols are the �rstto be time-optimal (i.e. stabilize in time O(diameter)) without any prior knowledge of thenetwork size or diameter. Both results are achieved through a technique of symmetry breakingthat may be of independent interest.Executions of randomized distributed algorithms contain a combination of nondetermin-istic and probabilistic choices; these choices often involve subtle interactions that often makesuch algorithms di�cult to verify and analyze. Segala and Lynch have recently developed theProbabilistic Automata model to aid in reasoning about randomized distributed algorithms;their model is related to the earlier work of Lynch and Vaandrager. We use the ProbabilisticAutomata formalism to analyze the correctness and time complexity of our randomized algo-rithm for anonymous networks; in doing so, we demonstrate the e�ectiveness of the formalismin reasoning about randomized algorithms.Thesis Supervisor: Dr. Shay KuttenTitle: Manager-Distributed Computing, IBM T.J.Watson Research CenterThesis Supervisor: Nancy A. LynchTitle: Professor of Computer ScienceThesis Supervisor: Roberto SegalaTitle: Research Associate, MIT Laboratory for Computer Science

AcknowledgmentsI would like to thank my mentors and colleagues who have guided me through the course ofthis long project.I would like to thank Shay Kutten for suggesting this research topic in the �rst place. Shayhas been instrumental in guiding me through the earlier phases of this work; he has also beena most e�ective mentor and friend. I also thank IBM for going to great lengths to provide mewith an opportunity to work with Shay.I would like to thank Nancy Lynch for her exemplary patience and encouragement through-out the course of this work. Through Nancy I have been exposed to the notions of scholarshipand rigor; I am also grateful for her willingness to read numerous drafts at long intervals.This thesis owes much to Roberto Segala. Roberto provided the motivation for formalizingthe randomized algorithm; he also suggested the state set C1 which plays a crucial role in theproof. Roberto also \showed me the ropes" around LCS.I would also like to thank Boaz Patt-Shamir, Amir Herzberg, Baruch Awerbuch and AlainMayer for the helpful discussions I have had with them in connection with this work. It wasBoaz who �rst suggested using the Afek-Matias probability distribution, which provided abasis for attacking the initial problem.Finally, I would like to thank my parents, without whose sacri�ce and love this thesis wouldnot have been possible.

6

Contents1 Introduction 132 The Model 172.1 Probabilistic Automata : 182.1.1 Automata : 182.1.2 Executions : 192.1.3 Adversaries : 202.1.4 Execution Automata : 202.1.5 Events : 212.1.6 Timing : 212.1.7 Adversary Schemas : 222.2 Composability : 222.3 Networks as Probabilistic Automata : 232.3.1 Fairness : 243 General Approaches to Spanning Tree Construction 277

4 A Key Approach to Representing IDs 314.1 The Afek-Matias Probability Distribution : 314.2 ID Representation : 334.3 Motivation behind our ID Representation : 345 Speci�cation of the Randomized Algorithm 375.1 The Tree Detection Algorithm : 446 Correctness and Complexity Proof for the Randomized Algorithm: Part 1 496.1 Spanning Trees : 496.2 Overview of the Proof : 506.3 Stabilization of Forest Structure, Candidate Root Properties : : : : : : : : : : 546.3.1 Forest Structure - Establishment and Preservation : : : : : : : : : : : : 546.3.2 ID Overrunning Properties : 586.3.3 Candidate Root Properties : 606.4 The ID-forcing Proposition : 647 Correctness and Complexity Proof: Part 2 { The Coloring Algorithm 737.1 Forest Stability : 767.2 Self-Stabilization of the Coloring Algorithm : 787.2.1 The \Monocoloring" Result : 827.2.2 The \Blocking" Result : 937.2.3 Self-stabilization of the Coloring Algorithm: Main Result : : : : : : : : 1007.3 Tree Detection : 1018

7.3.1 The \Order" Results : 1037.3.2 The Tree Detection Proposition : 1048 The Deterministic Version 1079 Conclusions and Discussion 109A Properties of the Afek-Matias Probability Distribution 111

9

10

List of Figures5-1 Set s[u] | State components of node u : 385-2 Actions of node u : 395-3 Action COPYuv : 415-4 Action MAXIMIZE-PRIORITYu : 425-5 Action DETECT-TREESu : 455-6 Action NEXT-COLORu : 455-7 Action EXTEND-IDu : 465-8 Macros : 476-1 Proof Phases : 52
11

12

Chapter 1IntroductionThe task of spanning tree construction is a basic primitive in communication networks. Manycrucial network tasks, such as network reset (and thus any input/output task), leader election,broadcast, topology update, and distributed database maintenance, can be e�ciently carriedout in the presence of a tree de�ned on the network nodes spanning the entire network. Im-proving the e�ciency of the underlying spanning tree algorithm usually also correspondinglyimproves the e�ciency of the particular task at hand.In practice, computation in asynchronous distributed networks is made much more di�cultbecause of the possibility of numerous kinds of faults. Nodes may crash or get corrupted;links may fail or deliver erroneous messages. Further, nodes or links may enter or leave thenetwork at any time. A very important concept in the context of this problem is that of self-stabilization, �rst introduced by Dijkstra [Dij74]. Self-stabilization implies the ability of thesystem to recover from any transient fault that changes the state of the system. Dijkstra gavethe example of a token-ring network which is always supposed to have exactly one token. If,through some error, the network were to have zero or two tokens, a self-stabilizing token ringprotocol would be able to automatically recover or \stabilize" to a state where the networkhas exactly one token.More precisely, a self-stabilizing algorithm on a system S (e.g. the network) reaching a set13

of legal states P is eventually able to bring S to a state in P when started in any arbitraryinitial state. In Dijkstra's token-ring example, P is the set of states in which the ring hasexactly one token. For a self-stabilizing spanning tree algorithm, P would be the set of stateshaving a spanning tree de�ned on the network nodes. As we can consider the state of thesystem after a transient error to be an arbitrary state, a self-stabilizing system will eventually\recover" from any non-repeating error. Thus self-stabilization is a very strong and highlydesirable fault-tolerance property.We would therefore like to have an e�cient self-stabilizing algorithm for spanning treeconstruction in asynchronous networks.A key measure of e�ciency is the stabilization time, which is the maximum time taken forthe algorithm to converge to a \spanning tree" state, starting from an arbitrary state. Let �be the diameter of the network, and let n be the network size { the number of nodes in thenetwork. Then that the optimal stabilization time must necessarily be
(�).Several factors in
uence the \di�culty" of the protocol. The protocol can be designed fornetworks that are either ID-based (each node has a unique \hard-wired" ID), or for networksthat are anonymous (in which nodes lack unique IDs, so there is no a priori way of distinguish-ing them). The protocol may either \know" the network size n, or it may \know" some upperbound on n, or it may \know" nothing whatsoever. Similarly, it may or may not \know" inadvance a bound on the diameter �. Of course, the more \knowledge" a protocol \is given"about the network, the easier it becomes to achieve its objectives.Previous WorkFollowing the pioneering work of [Dij74], there has been considerable work in this area. [Ang80] showed that no deterministic algorithm can construct a spanning tree in an anonymoussymmetric network. [AKY90] gave an ID-based self-stabilizing spanning tree protocol with astabilization time of O(n2) and a randomized protocol for anonymous networks that runs inO(n logn) time. They presented the technique of \local checking" and \local detection," used in14

many subsequent papers. [AG90] gave an ID-based self-stabilizing spanning tree protocol withtime complexity O(N2), where N is a pre-speci�ed bound on the network size n. [APV91] gavean ID-based self-stabilizing spanning tree protocol (based on a reset protocol) that stabilizesin O(n) time.[DIM91] gave a self-stabilizing spanning tree algorithm for anonymous networks that runsin expected O(� logn) time. [AM89] gave a Monte-Carlo spanning tree protocol for anonymousnetworks that works in O(�) time; however, their protocol is not self-stabilizing. (A Monte-Carlo algorithm terminates in bounded time but succeeds with probability p < 1; a Las-Vegasalgorithm may not terminate in bounded time but always succeeds.) With the exception of[AG90], all the other works mentioned above do not assume any prior knowledge of the networksize n or the diameter �.[DIM91] also mentioned a self-stabilizing spanning tree protocol for anonymous networksthat requires O(�) time (and is thus time-optimal), but requires prior knowledge of a boundN on the network size. Recently, [AKMPV93] have developed a time-optimal self-stabilizingspanning tree protocol for ID-based networks; they, too, require prior knowledge of a boundD on the diameter of the network.Our ResultsWe present the �rst time-optimal self-stabilizing spanning tree algorithms that do not needany prior knowledge of the network size or diameter. We present both a randomized Las-Vegasalgorithm for anonymous networks and a deterministic version for ID-based networks. Bothour protocols stabilize in expected O(�) time.Thus, with respect to the O(� log n)-time protocol of [DIM91], we decrease the time com-plexity to O(�), and compared to their O(�)-time protocol, we do not need a bound N on thenetwork size. Unlike [AKMPV93], we do not need a bound D on the diameter.Note that for random graphs, the expected diameter � is comparable to log n. For realnetworks, such as the Internet, the diameter is usually less than logn. Thus, decreasing the15

time complexity from O(� logn) (as in [DIM91]) to O(�) represents an improvement in thetime required to less than the square root of that required earlier.Both of our protocols employ a novel technique in self-stabilization. A major concernin self-stabilizing systems has been contending with \wrong information". For example, animportant problem that arises in spanning tree algorithms is the ghost root phenomenon|some nodes in the network may \believe" the existence of a root node that doesn't really exist.Most previous approaches to the problem have relied on costly non-local operations such asroot veri�cation, network reset, or tree dismantling to eliminate the ghost root. Our technique,on the other hand, is to modify incorrect information instead of perform the expensive processof eliminating it. (A similar idea to that of \correcting information" was implicitly used by[DIM91].) The modi�cation is done locally but in a careful manner: local modi�cations ofwrong information have important desirable global consequences. We do it without incurringthe large overhead of global operations such as reset etc. Compared to [DIM91], we do strongercorrections (but still without causing global overhead). The stronger local corrections enableus to have a better running time.

16

Chapter 2The ModelWe assume that the network is represented by an undirected graph G = (V;E);G consists of aset of processors denoted by V = fv1; v2; : : : ; vng and a set of links denoted by E = fE1; E2; : : :gwhere each Ei 2 E = (vj; vk) for some j; k. In an ID-based network, each processor is assigneda unique ID that is \hard-wired" in its memory. In an anonymous or uniform network, allprocessors of the same degree are identical; they do not have unique IDs assigned to them. Werefer to the number of processors n as the size of the network. The distance between any twoprocessors u and v is the lowest number of links on any path connecting u and v in G. (In ananonymous network, the labels u and v are used for convenience|they are not the IDs of thenodes referred to.) The diameter of the network is the maximum distance between any twonodes in V ; we denote the diameter by �. The set of neighbors of node u, denoted Nbrs(u), isthe set fv 2 V j (u; v) 2 Eg.The degree of a node v is the number of links incident upon node v. We assume that eachprocessor maintains a total order on its neighbors.The network is asynchronous; processors perform computation steps independently of eachother and at arbitrary rates.We assume that processors communicate by shared memory. In the shared memory model,each processor is associated with a set of registers, possibly partitioned into a set of local17

registers and a set of shared registers. Processors communicate by performing write operationson their registers and read operations on the shared registers of their neighbors. All reads andwrites are atomic|reads/writes behave as though they occur instantaneously.A network communicating through shared memory, as described above, can be modeled asa probabilistic automaton ([SL94], [LSS94]).2.1 Probabilistic AutomataIn this section we give only a simpli�ed version of the model of [SL94] which is su�cient forour purposes.2.1.1 AutomataDe�nition 2.1 A probabilistic automaton M consists of four components:� a set states(M) of states.� a nonempty set start(M) � states(M) of start states.� a set acts(M) of actions.� a transition relation steps(M) � states(M)�acts(M)�Probs(states(M)), where the setProbs(states(M)) is the set of probability spaces (
;�; P) such that
 � states(M) and� = 2
.Thus, a probabilistic automaton is a state machine with a labeled transition relation suchthat the state reached during a step is determined by some probability distribution. Forexample, the process of choosing a random color from f0, 1, 2g is represented by a step labeledwith an action NEXT-COLOR where the next state contains the random color choice andis determined by a probability distribution over the three possible outcomes. A probabilistic18

automaton also allows nondeterministic choices over steps. A key instance of nondeterminismis the choice of which processor in a network takes the next step.Given a state s, let D(s), the Dirac distribution on s, denote the probability space thatassigns probability 1 to s. Speci�cally, D(s) = (fsg; 2fsg; P) such that P [fsg] = 1. As anotational convention we write (s; a; s0) 2 steps(M) whenever (s; a;D(s0)) 2 steps(M).2.1.2 ExecutionsAn execution fragment � of a probabilistic automaton M is a (�nite or in�nite) sequence ofalternating states and actions starting with a state and, if the execution fragment is �nite,ending in a state; � = s0a1s1a2s2 � � �, where for each i there exists a probability space (
;�; P)such that (si; ai+1; (
;�; P)) 2 steps(M) and si+1 2
. I� i < j, we say \si precedes sj in�," or \sj follows si in �." Denote by fstate(�) the �rst state of � and, if � is �nite, denoteby lstate(�) the last state of �. Furthermore, denote by frag�(M) and frag(M) the sets of�nite and all execution fragments of M , respectively. An execution is an execution fragmentwhose �rst state is a start state. Denote by exec�(M) and exec(M) the sets of �nite and allexecutions of M , respectively. A state s of M is reachable if there exists a �nite execution ofM that ends in s. Denote by rstates(M) the set of reachable states of M .A �nite execution fragment �1 = s0a1s1 � � �ansn of M and an execution fragment �2 =snan+1sn+1 � � � of M can be concatenated . In this case the concatenation, written �1a�2, isthe execution fragment s0a1s1 � � �ansnan+1sn+1 � � �. An execution fragment �1 of M is a pre�xof an execution fragment �2 of M , written �1 � �2, if either �1 = �2 or �1 is �nite and thereexists an execution fragment �01 of M such that �2 = �1a�01. If � = �1a�2, then we denote�2 with �3�1 (read � after �1).Let U be a subset of states(M). Set U is closed, written U �! U�, if for any s 2 U andany step (s; a; (
;�; P)),
 � U . Thus if U �! U�, once an execution reaches a state in U,it remains in U. We say that an execution fragment � is in U if every state in � is in U.19

2.1.3 AdversariesIn order to study the probabilistic behavior of a probabilistic automaton, some mechanism toremove nondeterminism is necessary. The mechanism that removes the nondeterminism canbe viewed as an adversary. In distributed systems the adversary is often called the scheduler ,because its main job may be to decide which process should take the next step.De�nition 2.2 An adversary for a probabilistic automaton M is a function A taking a �niteexecution fragment of M and giving back either nothing or one of the enabled steps of M ifthere are any. Denote the set of adversaries for M by AdvsM .2.1.4 Execution AutomataOnce an adversary is chosen, a probabilistic automaton can run under the control of the chosenadversary. The result of the interaction is called an execution automaton. Note that there areno nondeterministic choices left in an execution automaton.De�nition 2.3 An execution automaton H of a probabilistic automaton M is a fully proba-bilistic automaton such that1. states(H) � frag�(M).2. for each step (�; a; (
;�; P)) of H there is a step (lstate(�); a; (
0;�0; P 0)) of M , calledthe corresponding step, such that
 = f�asjs 2
0g and P [�as] = P 0[s] for each s 2
0.3. each state of H is reachable, i.e., for each � 2 states(H) there exists an execution of Hleading to state �.De�nition 2.4 Given a probabilistic automaton M , an adversary A 2 AdvsM , and an execu-tion fragment � 2 frag�(M), the execution H(M ;A; �) of M under adversary A with startingfragment � is the execution automaton ofM whose start state is � and such that for each step(�0; a; (
;�; P)) 2 steps(H(M ;A; �)), its corresponding step is the step A(�0).20

To ease the notation, we de�ne an operator �" that takes an execution of M and givesback the corresponding execution of H, and �# that takes an execution of H and gives backthe corresponding execution of M.2.1.5 EventsGiven an execution automatonH , an event is expressed by means of a set of maximal executionsof H , where a maximal execution of H is either in�nite, or it is �nite and its last state doesnot enable any step in H . For example, the event \eventually action a occurs" is the set ofmaximal executions of H where action a does occur. A more formal de�nition follows. Thesample space
H is the set of maximal executions of H . The �-algebra �H is the smallest�-algebra that contains the set of rectangles R�, consisting of the executions of
H having �as a pre�x. The probability measure PH is the unique extension of the probability measurede�ned on rectangles as follows: PH [R�] is the product of the probabilities of each step of Hgenerating �.De�nition 2.5 An event schema e for a probabilistic automaton M is a function associatingan event of �H with each execution automaton H of M .2.1.6 TimingTo mark the passage of time, we include in each state s a real component s:now, and includea special time passage action � in acts(M), which increments s:now . For all s 2 start(M),s:now = 0.De�nition 2.6 (Duration of an execution fragment) The duration of an execution frag-ment � is de�ned as (lstate(�):now � fstate(�):now).A statement of the form \within time t in execution �, property P holds" means thatproperty P holds for some state s in � such that s:now � fstate(�):now + t. The statement21

\after time t, property P holds" implies that property P holds for all states s in � such thats:now > fstate(�):now + t.2.1.7 Adversary SchemasWe close this section with one �nal de�nition. The time bound for our randomized protocolstates that starting from any state, no matter how the steps of the system are scheduled, thenetwork forms a spanning tree within expected O(diameter) time. However, this claim canonly be valid if the adversary is fair (as de�ned above). Thus, we need a way to restrict theset of adversaries for a probabilistic automaton. The following de�nition provides a generalway of doing this.De�nition 2.7 An adversary schema for a probabilistic automaton M , denoted by Advs, isa subset of AdvsM .2.2 ComposabilityIn this section, we introduce a key theorem of [SL94], the composability theorem.The statement U t�!p Advs U 0 means that, starting from any state of U and under anyadversary A of Advs, the probability of reaching a state of U 0 within time t is at least p. Thesu�x Advs is omitted whenever we think it is clear from the context.De�nition 2.8 Let eU 0;t be the event schema that, applied to an execution automaton H ,returns the set of maximal executions � of H where a state from U 0 is reached in somestate of � within time t. Then U t�!p Advs U 0 i� for each s 2 U and each A 2 Advs,PH(M ;A;s)[eU 0;t(H(M ;A; s))] � p.Proposition 2.9 Let U ;U 0;U 00 be sets of states of a probabilistic automaton M .If U t�!p U 0, then U [U 00 t�!p U 0 [U 00. 22

In order to compose time bound statements, we need a restriction for adversary schemasstating that the power of the adversary schema is not reduced if a pre�x of the past history ofthe execution is not known. Most adversary schemas that appear in the literature satisfy thisrestriction.De�nition 2.10 An adversary schema Advs for a probabilistic automaton M is executionclosed if, for each A 2 Advs and each �nite execution fragment � 2 frag�(M), there exists anadversary A0 2 Advs such that for each execution fragment �0 2 frag�(M) with lstate(�) =fstate(�0), A0(�0) = A(�a�0).Theorem 2.11 (Composability theorem) Let Advs be an execution closed adversary schemafor a probabilistic timed automaton M , and let U ;U 0;U 00 be sets of states of M .If U t1�!p1 Advs U 0 and U 0 t2�!p2 Advs U 00, then U t1+t2�!p1p2Advs U 00.Corollary 2.12 Let Advs be an execution closed adversary schema for a probabilistic timedautomaton M , and let U ;U1;U2; : : : ;Un;U � be sets of states of M .If U t�!1 Advs U1 [U2;[: : :[Un, and if Ui ti�!pi Advs U � for all i, thenU t+max(t1;t2;:::;ti)�!min(p1;p2 ;:::;pi) Advs U �2.3 Networks as Probabilistic AutomataIn this section we brie
y describe how self-stabilizing protocols running on networks withshared-memory links can be modeled using probabilistic automata.Self-stabilizing network protocols operate on networks that are dynamic|the set of pro-cessors or links may change during the execution. A change in the status of a processor or linkis communicated to the processors it connects by a low level self-stabilizing protocol. Further,23

the state of a processor may change arbitrarily (not by an algorithmic step, but by \memorycorruption"). We assume that the sequence of topological changes and non-algorithmic statechanges is �nite and that eventually such events cease. This allows us to ignore topological andstate changes during an execution � of our protocol, as the last such change can be consideredto change the network state to an arbitrary start state s of a new change-free execution. Thetime complexity measures the time taken for the protocol to succeed after the last such change.The network G(V;E) can be represented by a \global" probabilistic automaton M whosestate contains a vector of states of all its processors. We assume that the state s[i] of a processori fully describes its internal state and the values written in all its registers. Thus the globalstate s contains fs[1]; s[2]; : : : ; s[n]g; in addition, it also contains timing information (e.g. now).The local computation at each processor consists of a sequence of atomic actions; the setacts(M) of actions of the global network includes the set of actions of each of its nodes, andthe time passage action �.2.3.1 FairnessLet vis(M) denote the non-time-passage actions of acts(M). For the time complexity analysis,our protocols require that each action of vis(M) be executed in every unit of time. To thisend, for each action a in vis(M), we include in state s a (real) \deadline" for that action,s:deadline(a); this deadline represents the latest time by which action a must be performedagain. For all s 2 start(M), s:deadline(a) = 1. A time passage step (s; �; s0) of M must satisfythe following condition: s0:now � mina2vis(M)fdeadline(a)g. For a non-time-passage action(s; a; s0), s0:now = s:now, and s0:deadline(a) = s:now +1. Note that this construction guaran-tees that in any execution fragment � = s0a1s1a2 : : : ofM if lstate(�):now � fstate(�):now+1,then for every action a in vis there exists a step (s; a; s0) in �.For stating time bounds, we will need to assume fair adversaries. A is said to be fair i� thetime advances without bound in every in�nite execution fragment generated by A. (Note thatthis rules out \Zeno executions.") Let Fairadvs(M) denote the adversary schema consisting24

of fair adversaries of M . From the de�nitions, it can be seen that any in�nite execution � =s0a1s1a2 : : : of M generated by a fair adversary A can be partitioned into an in�nite numberof \rounds," such that each processor performs each one of its enabled actions at least once inevery round.Also, note that the adversary schema Fairadvs(M) is execution-closed (cf. De�nition 2.10).

25

26

Chapter 3General Approaches to SpanningTree ConstructionSpanning tree algorithms usually utilize variants of a common overall scheme. We �rst describethe basic scheme which assumes the existence of unique node IDs. Each node is associated witha \priority," which could initially be the node's ID, for instance. At any instant during thealgorithm's progress, the network is logically partitioned into a spanning forest, which is de�nedby parent pointers maintained by the nodes. Initially (unless initialized by the adversary), thisforest consists of the single-node trees de�ned by the network nodes themselves (i.e. parent =nil at all nodes, so each node is a root). Starting from this con�guration, the nodes graduallycoalesce into larger trees. Each node keeps track of the priority of the root of its tree. Thegoal is to produce a spanning tree rooted at the node with the highest priority. Nodes inthe forest keep on exchanging root priorities with their neighbors. When a node u noticesa neighbor v with a higher root priority, it attaches itself to v's tree by making v its parent(parentu v). Thus, trees with higher root priorities overrun trees with lower ones. Since thepriorities are totally ordered, eventually all nodes in the network form a single tree rooted atthe node with the highest priority. This simple ID-based scheme is not self-stabilizing, sinceif we allow \corrupted" initial states, nodes may \believe in" a highest priority that is not27

actually possessed by any root.To adapt the ID-based scheme to an anonymous network (i.e. with no pre-assigned IDs),we need randomization to break symmetry between the processors. Each node in the network
ips coins to arrive at a random ID, and participates in the tree construction process describedabove. Since IDs (and hence priorities) are chosen randomly, it is possible that the nodewith the highest priority in the network is not unique; there could be several such nodes withhighest priority p. In such a situation, the above algorithm would halt when the network formsa spanning forest, with each tree rooted at one of the nodes with priority p. In this �nal state,all nodes would have the same ID; thus coalescing would cease at this point.To detect such \multiple highest priorities," [AKY90] and [DIM 91] proposed the method ofrecoloring trees. In typical recoloring schemes, each tree is associated with a randomly chosencolor. The root chooses a color at random from a small set of \colors" C of constant size (e.g.C =f0, 1, 2, 3g). This color is propagated through the entire tree rooted at that root. Whenthe root receives con�rmation that the entire tree has been colored with its color (through asimple acknowledgement mechanism), it chooses a new color. The process is repeated forever.If there are several neighboring trees with priority p, there must exist nodes that are linkedto neighbors not in their own tree. Since tree colors are chosen randomly, neighboring nodesthat belong to di�erent trees will assume di�erent sequences of colors over time; this fact canbe exploited to let such neighbors detect their a�liation to di�erent trees.In the scheme proposed by [AKY90], the sequence of colors chosen by a root to color its treeis \alternating" - of the form (c1, cs, c2, cs, c3, cs, : : :), where cs is a special color, \no-color,"and ci 6= no-color for all i. We can represent \no-color" by the color 0; then ci 6= 0 for all i.Thus when a root receives acknowledgement about its entire tree being colored with a non-zerocolor, it colors its tree with color 0. When its tree is entirely colored with color 0, it againrecolors its tree with a non-zero color. In this scheme, if the node's own color ci is non-zero,then if it notices a neighbor with a non-zero color di�erent from its own color, it can correctlyconclude that that neighbor belongs to a di�erent tree. Since the scheduler is assumed to beadversarial, additional constraints are imposed on the acknowledgement mechanism; details28

are presented in Section 5.If a node v detects another tree, its root is informed of the condition. When a root learnsof the existence of another tree rooted at the same ID, in the [AKY90] and [DIM91] schemesthe root extends its ID by a randomly chosen bit and continues the protocol. Extending IDsis a way of breaking symmetry; eventually the roots in the network have appended enoughrandom bits to their IDs so that there is a unique root with the highest ID, and subsequentlya unique tree spanning the entire network.Our technical contribution in this paper is twofold. First, we develop a framework for IDextension and generalize the concept. Our generalization enables us to reduce the time com-plexity of the randomized protocol to O(d), without prior knowledge of the size or diameter ofthe network. Our second main contribution is to use the concept of extension to e�ciently con-fer the property of self-stabilization upon the basic deterministic scheme for ID-based networks,thus enabling us to give the �rst deterministic spanning tree protocol that is time-optimal (i.e.O(d) time) without prior knowledge of bounds on the network size or diameter.Intuitively, the logn factor in the previous randomized result came from the need to initiatea new competition every time two trees \collided." Every time a tree T noticed another treeT with the same root ID, T would randomly extend its ID to try to \win" over T . Our newmethod usually needs just O(1) ID extensions per node to converge to a spanning tree, asopposed to O(logn) extensions in the previous scheme. To achieve this the extension needs tobe done in a careful way. When several IDs are independently extended, only one extended IDought to \win," in order to prevent the need for additional competition. Further, independentextensions must attempt to preserve existing order: they must not make a previously \beaten"tree become the maximum, since this will prevent progress by possibly necessitating newcompetition(s).Previous approaches to the deterministic version attempt to form a spanning tree at thenode vl with the highest (or lowest) \hard-wired" ID. In doing so, they have to contend with theghost root problem|eliminating all \belief" in the ghost root usually necessitates an \extra"
(d) addition to the time complexity. We exploit our intuitive results about ID extension to29

modify belief in the ghost root. In our scheme, as opposed to previous schemes, the node withthe \distinguished" hardwired ID IDl need not be the root of the spanning tree. The �nal rootis determined by the state s set by the adversary at the start of the algorithm|the root is oneof the nodes that believes in the highest ID.

30

Chapter 4A Key Approach to RepresentingIDs4.1 The Afek-Matias Probability DistributionIn [AM89], Afek and Matias proposed a probability distribution which can be used to breaksymmetry in sets of unknown size. Let p be a pair (s; t) of integers, and let pairs be orderedlexicographically. [AM89] proposed a probability distribution on s and t, such that if several(say k) pairs (si; ti) are randomly computed, there is a unique highest pair with probability atleast �, where � is a constant independent of k. The number si is randomly selected accordingto the probability distribution P (si = y) = 12yand the number ti is randomly uniformly selected from the range [1, 20 ln(4r)] where r = 1=�(� = 1 - �). � is the probability of error we are prepared to tolerate for a given collection ofrandomly chosen values of ti|with probability � �, such a collection will not have a uniquemaximum). The purpose of ti is to break symmetry between pairs that have the same si, sincea small constant number of pairs are expected to have the same highest si. For our purposes,we choose � = � = 1=2, so si is chosen from the range [1, 20 ln 8]. The choice of � a�ects the31

running time of our randomized algorithm by only a constant factor; we have not attempted tocompute the optimal value. Our choice of � implies that if k pairs are
ipped, there is exactlyone highest pair with probability � 1=2.Since the protocols and the time complexity analysis do not need to access the individualcomponents of a pair, to ease the notation, we will henceforth assume that a pair (s; t) isuniquely represented as a single integer x. The mapping must preserve the order on (s; t);since the range of t is �nite, it is easy to construct such a mapping.We now formally describe the Afek-Matias probability spaces that we will use. Let �kAMdenote the probability space that represents the outcome of k independent pair
ips. LetX1; X2; : : : ; Xk be independent identically distributed random variables on this space repre-senting the k
ips. The distribution of each X is the AM distribution speci�ed earlier; letP (X = x) be denoted by P�(x) . A sample point p on this space is an outcome of k
ips,(p1; p2; : : : ; pk). The set of events on this space is the set 2O, where O is the set of integerk-tuples. Let P�k(E) be the probability of event E. Let Highest be the random variable thatreturns the highest coin
ip:Highest(p1; p2; : : : ; pk) 4= max(p1; p2; : : : ; pk)Also, we de�ne the event UNIQH to be the event that \there exists a unique highest coin
ip";thus UNIQH 4= fp j (9i j pi > pj8j 6= i)gWe now state some properties of �kAM . The �rst property is the main result of [AM89]:Theorem 4.1 For any k, P�k(UNIQH) � 1=2.The next two theorems are proved in appendix A:Theorem 4.2 For any k; i, P�k(UNIQH j (Highest > i)) � 1=2.Theorem 4.3 For any k; i, P�k(Highest 6= i) � (1� e�1=4) > 0:22.32

4.2 ID RepresentationIDs are represented as tuples of entries; each entry is an integer. In the randomized protocol,an entry may represent the result of a number randomly chosen according to the AM scheme(cf. Section 4.1).We impose a lexicographic order � on IDs; this order is a total order. Thus if X =(x1; : : : ; xj) and Y = (y1; : : : ; yk) are two IDs, thenX � Y () j < k and (x1; : : : ; xj) = (y1; : : : ; yj)OR9m � min(j; k) j (x1; : : : ; xm�1) = (y1; : : : ; ym�1) and xm < ymIf the �rst case holds, i.e. if X is a proper pre�x of Y , we de�ne the precedence to hold inthe weak sense, or X w� Y . In the second case, X is not a pre�x of Y ; we de�ne the precedenceto hold in the strong sense, or X s� Y . We de�ne the relations w� and s� similarly, but theyalso include equality (i.e. same IDs).The concatenation of two IDs X = (a1; : : : ; aj) and Y = (b1; : : : ; bj), written X : Y , isde�ned as the ID (a1; : : : ; aj; b1; : : : ; bj).For an ID X , let idlength(X) denote the number of entries in X , and let X [i] denote theith entry of X. Let X [1::i] denote the pre�x (X [1]; X [2]; : : : ; X [i]).We now state some basic properties of our ID representation:Proposition 4.4 For any IDs A, B, A0, B0, and C, the following properties hold:1. A w� A:B.2. (A w� B) ^ (B w� C) =) (A w� C).3. (A s� B) ^ (B � C) =) (A s� C). 33

4. (A s� B) ^ (A w� C) =) (C s� B).5. (A s� B) =) (A:A0 s� B:B0).4.3 Motivation behind our ID RepresentationAs mentioned earlier, nodes compete with one another for being the root of the eventualspanning tree. The competition is on the basis of IDs; a higher ID \beats" a lower one;correspondingly, a tree with a high root ID overruns a tree with a lower root ID. If twotrees with the same root ID detect each other's existence, their root nodes need to break thesymmetry so that only one of the two advances in the competition. A highly desirable modelto impose on this competition is the tournament model, to pick a unique winner starting withn competitors. As the tournament progresses, we have a shrinking pool of \candidates" for theeventual winner; once a player leaves the pool, it is out of the running.Our de�nition of IDs and the ordering de�ned on them captures the tournament model.A root can only change its ID by appending an entry to it. When two roots with equal IDsindependently extend their IDs in this manner, one of the new IDs is ordered higher than theother (if they are di�erent). Further, note that the �rst ID is now higher in the strong sense: ifthe roots perform further (possibly none) extensions, the �rst root ID will remain higher evenafter additional extensions (by Proposition 4.4(5)). The second root, with the lower ID, cannever compete with the �rst root after this extension. Hence there exists a shrinking pool of\candidate" roots. The fact that a root \beaten" in this manner cannot compete further forbeing the eventual root is crucial to the time complexity of our algorithm, since competitionsbetween non-candidate roots do not contribute to the overall time complexity.If, on the other hand, ID X is higher than ID Y in the weak sense, it is still possible for Y ,through some sequence of extensions, to eventually be higher than X in the strong sense. Thusa weak-sense relationship between two IDs implies that the roots possessing those IDs are not34

yet \di�erentiated" in the competition; either of them might eventually \beat" the other.

35

36

Chapter 5Speci�cation of the RandomizedAlgorithmSection 3 described the basic approach used by our randomized algorithm. This section statesthe algorithm. The deterministic version is very similar to the randomized one; we brie
ydescribe the deterministic version in Section 8.The network can be modeled as a probabilistic automaton RSST (for \Randomized Self-stabilizing Spanning Tree") whose state s contains a global time component s:now , a set ofdeadlines fs:deadline(a)g (cf. Section 2.3.1), and the states of the network nodes. The states[u] of each node u consists of a set of shared variables IDu; distanceu; parentu; coloru;modeu;other-treesu; and, for each neighbor v of u, nbr-coloruv. In addition, the state of each node ucontains a set of local variables IDuv; distanceuv; parentuv, coloruv;modeuv, other-treesuv andself-coloruv for each neighbor v of u; these are local copies of the corresponding variables at v(with the exception of self-coloruv, which is a local copy of colorvu) which node u maintainsand periodically updates by reading v's shared variables. These variables can be partitionedinto two categories: those associated with tree overrunning|ID, distance, parent; and thoseassociated with recoloring or the process of detecting \competing" trees|color, mode, other-trees, self-color, and nbr-color (cf. Section 3). The state variables and their types are listed in37

Shared variables:Variables for tree overrunning:IDu 2 ID-tuples (cf. Section 4), current IDdistanceu 2 f0, 1, 2...g, estimate of current distance from rootparentu 2 fnilg [Nbrs(u), pointer to parentVariables for tree recoloring:coloru 2 f0, 1, 2, 3g, current colormodeu 2 fbroadcast, echog, recoloring phaseother-treesu 2 ftrue, falseg, existence of other trees with same ID8v 2 Nbrs(u), nbr-coloruv 2 f1, 2, 3, unde�nedg, last \real" color of nbr vLocal variables:8v 2 Nbrs(u),/* local copy of corresponding shared variables at neighbor v */IDuv, parentuv, distanceuv, coloruv, modeuv, other-treesuv, self-coloruv(Note that coloruv, self-coloruv 2 f0, 1, 2, 3, unde�nedg)Figure 5-1: Set s[u] | State components of node uFigure 5-1.Nodes maintain IDs; these IDs are not \hard-wired" (since we are considering anonymousnetworks here), and are susceptible to change. The parentu variable at u points to a neighboringnode (or \nil"); the set of parentu variables at all nodes u 2 V de�ne a subset Eparent of theset of edges E. We attempt to make the parent subgraph Gparent = (V;Eparent) represent aforest; thus we attempt to make each node u belong to a tree Tu. The distanceu variable is anestimate of the distance from u to the root of its tree Tu (if such a tree exists).The priority of a node u is de�ned to be the tuple (IDu,distanceu). We de�ne a total order� on priorities: 38

/* copy neighbor variables into local memory */8v 2 Nbrs(u), COPYuv/* become child of neighbor with maximum priority, or become root */MAXIMIZE-PRIORITYu/* if local neighborhood \looks" stable, participate in recoloring etc.*/DETECT-TREESu/* if root's tree has acknowledged color, choose new color */NEXT-COLORu/* if root has detected other trees with same ID, extend ID */EXTEND-IDu Figure 5-2: Actions of node uDe�nition 5.1 (Order � on priorities) (IDu; distanceu) � (IDv; distancev) i� eitherIDu > IDv, or their IDs are equal and distanceu < distancev. The analogous relation �includes equality.The protocol at each node u is implemented through the atomic actions speci�ed in Figure5-2. Note that each action is always enabled; actions need not be performed in any particularorder. At each state of an execution � = s0a1s1a2s2:::, the adversary chooses the next processoru to perform an action, as well as the particular action of u that is performed.The action COPYuv (Fig. 5-3) reads the values of neighbor v's shared variables and copiesit into the corresponding local \opinions" at node u. Besides, it performs tasks related to thecoloring algorithm. The action MAXIMIZE-PRIORITYu (Fig. 5-4) makes u participate in theimportant task of tree overrunning; it sets the ID, distance and parent variables. (It makes nodeu maximize its priority by attaching to neighboring nodes, if possible.) The action DETECT-TREESu (Fig. 5-5) makes u participate in recoloring its tree to detect \competing" trees with39

the same ID. If u is a root whose tree has acknowledged being colored with a certain color,the action NEXT-COLORu (Fig. 5-6) makes u choose the next color to color its tree with.Finally, if u is a root node and the recoloring process has informed it of a \competitor" tree,the action EXTEND-IDu (Fig. 5-7) causes u to extend its ID randomly to break symmetry.De�nition 5.2 (RSST) The probabilistic automaton RSST is de�ned as follows:1. The set states(RSST) consists of all states s such that� The values of all variables in s[u] belong to their corresponding types (listed inFigure 5-1),� s:now � 0, and� for each a 2 acts(RSST), s:deadline(a) � 1.2. start(RSST) = fs j s:now = 0 ^ 8 a 2 acts(RSST); s:deadline(a) = 1g.3. acts(RSST) = � (time passage), and for all u and all v 2 Nbrs(u), fCOPYuv;MAXIMIZE-PRIORITYu, DETECT-TREESu, NEXT-COLORu, EXTEND-IDug.4. steps(RSST) is speci�ed by the code for the individual actions in acts(RSST), listed inFigures 5-3 { 5-7.Henceforth, the code is organized, for convenience, into statements labeled [A], [B], [C],etc.Statement [A] in action COPYuv (Figure 5-3) invoked by node u performs the task ofreading the shared variables of the neighbor v and copying them into local memory. Forexample, the value of IDu at node u is the value of u's current ID, and IDuv is intended tohold the latest \opinion" of the ID of neighbor v. Statements [B], [C] and [D] perform tasksrequired for the tree detection algorithm; they are described in Section 5.1.We want trees with high root IDs to \overrun" trees with lower root IDs. To this end,each node u tries to \optimize" its ID: if it notices a neighbor with an ID higher than itself, it40

COPYuv/* make local copies of neighbor variables */ [A]IDuv IDvdistanceuv distancevparentuv parentvcoloruv colorvmodeuv modevother-treesuv other-treesvself-coloruv colorvu/* perform coloring tasks if necessary */if (IDv = IDu and j(distancev � distanceu)j � 1) [B]then /* record color of neighbor if necessary */ [C]if (coloru 6= 0) and (colorv 6= 0)then nbr-coloruv colorvif colorv 6= coloru then other-trees true/* copy parent's color if necessary */ [D]if (parentu = v) and (coloru 6= colorv)then Reset-Coloru(colorv) Figure 5-3: Action COPYuv
41

MAXIMIZE-PRIORITYu/* let l be the \largest" of all neighbors that have max priority */Let l max fx j (IDux; distanceux) = max0v2Nbrs(u)(IDuv; distanceuv) g [E](where max0 is maximum over the relation �, cf. De�nition 5.1)/* force root to extend �rst, if about to be overrun by a su�x ID */if (parentu = nil) and IDu w� IDul then [F]while IDu w� IDulAppend-Entryu()/* if u can improve its priority, by becoming child of another *//* neighbor, do so, otherwise become root */if (IDul; distanceul)� (IDu; distanceu) /* see def. of � */then [G]IDu IDuldistanceu distanceul + 1parentu lelse /* no neighbor has a larger priority; become root */ [H]distanceu 0parentu nilFigure 5-4: Action MAXIMIZE-PRIORITYu
42

attaches to the neighbor with the highest ID, and changes its ID to the observed ID. Further,once it has optimized its ID, it also tries to optimize its distance: it prefers to attach to thenode with the smallest distance. The purpose of the distance counters is to \shrink" longbranches in trees so that no branch can exceed diameter length. Hence in [E] of MAXIMIZE-PRIORITY, we make u determine the neighbor l with the highest priority. Many neighborsmay all have the same highest priority; we break ties by choosing the highest-ordered neighbor(each processor is assumed to maintain a total order on its neighbors, so that such ties can beresolved in a consistent manner).The purpose of statement [F] is rather technical; it is not required for correctness but playsan important role in maintaining an overall O(�) time complexity for our algorithm. (Note that� is the network diameter.) As will be explained in the time complexity analysis of Section 6,statement [F] limits the power of an adversary to alter the probability distribution of existingroot IDs.Statement [G] determines whether node u can increase its priority by attaching to the\highest" neighbor l determined by [E]. If the priority cannot decrease, it then makes theneighbor l its parent, assumes its ID, and assumes its distance incremented by one.However, if node u can only decrease its priority by attaching to the neighbor l, [H] makesit become a root, keeping its ID unchanged and resetting its distance to zero. This is themechanism of handling the ghost root problem described earlier|if node u notices that it wasa nonroot node with a ID Ig that is not possessed by any of its neighbors and is higher thanall its neighbors IDs, it was erroneously \believing" in the existence of a root node with ID Ig.In this situation, node u simply becomes a root with ID Ig by setting its distance to zero, thusobviating the need to \correct" erroneous belief in that root elsewhere in the network. Hencestatement [H] plays an important role in self-stabilization.43

5.1 The Tree Detection AlgorithmThe Tree Detection Algorithm has the following purpose: if two or more neighboring treeshave the same root ID, we want their roots to detect this condition, so that they can thenextend their IDs to break symmetry and advance in the competition. The complexity in thecode arises from having to contend with faults, asynchrony, and the fact that we regard thescheduler as an adversary capable of altering the schedule to thwart our intentions. The TreeDetection Algorithm is implemented through statements [B], [C] and [D] in action COPY,and through actions DETECT-TREES, NEXT-COLOR and EXTEND-ID.Statements [B] and [I] test for a \stability condition"; the rest of the tree detection code inactions COPY and DETECT-TREES is only executed if the neighborhood of node u appearsto \believe in" only one ID. If this is not the case, tree overrunning is still in progress in theneighborhood of u, and so tree detection can not be performed.Let node u belong to a tree T de�ned on the parent subgraph. (As will be shown in theproof, the action MAXIMIZE-PRIORITY guarantees that u eventually belongs to some tree.)Let the root of T be node ru. The tree detection algorithm colors the tree T with an alternatingsequence of colors f c1; 0; c2; 0; c3; 0; ::: g, where ci 6= 0 for all i. The color variable of a noderepresents its current color.Let the color of the root ru at some instant be c. Nodes in the tree propagate color cto their children, so that eventually all nodes in tree T will set their color to c. When theentire tree is colored with c, nodes acknowledge this fact to the root. This propagation andacknowledgement is done through a standard \broadcast-echo" mechanism: the mode �eld ofa node is set to either broadcast or echo, depending on which phase of the recoloring is inprogress at that node.When a node notices that its own color is di�erent from that of its parent (in statement[D]), it calls the subroutine Reset-Coloru (Fig. 5-8), which \resets" its coloring variables,and causes it to broadcast its parent's color (by setting its mode to broadcast and copying itsparent's color). In this manner, when a root r chooses a new color, its descendants successively44

DETECT-TREESuif 8v 2 Nbrs(u) , (IDuv = IDu and j(distanceuv � distanceu)j � 1) [I]then/* check for echo */if [J]f (modeu = broadcast)/* and if all children echo v's color */and (8v 2 Childrenu, modeuv = echo and coloruv = coloru)/* and if \mirror technique" is applicable : see text. If node u has *//* some color (6= 0), it should have observed neighbors' colors, and *//* neighbors should have observed u's color, detected by self-coloruv */and (coloru 6= 0 =) 8v 2 Nbrs(u) ,nbr-coloruv 6= unde�ned and self-coloruv = coloru)gthen [K]modeu echoif (9v 2 Childrenu j other-treesuv = true) then other-treesu trueFigure 5-5: Action DETECT-TREESuNEXT-COLORu/* If root, choose new color if necessary */if (parentu = nil and modeu = echo and other-treesu = false)thenReset-Coloru(New-Coloru())Figure 5-6: Action NEXT-COLORu45

EXTEND-IDuif (parentu = nil and modeu = echo and other-treesu = true)thenAppend-Entryu()Reset-Coloru(New-Coloru())Figure 5-7: Action EXTEND-IDucopy that color, and a \broadcast wave" propagates throughout T .In a simple echoing scheme that does not need to take into account an adversarial scheduler,each node u sets its direction to \echo" when all its children are echoing the same color (i.e.all children have the same color c as node u and have their mode set to echo). This is alsopart of our condition for echoing, which is tested in [J]. In this manner, an \echo wave" travelsupwards from the leaves to the root.When the root ru notices that all its children are echoing its color c, it concludes that itsentire tree is colored with c, and then changes its color (through action NEXT-COLOR, inFig. 5-6). Its new color is a function of the previous color c: it alternates between 0 and acolor randomly chosen from f1, 2, 3g. The rationale for the coloring sequence was describedin Section 3.When a node is broadcasting some color (i.e., modeu = broadcast), it checks for the ex-istence of competing trees with the same ID. This check is performed in [C]. In the schemefor a non-adversarial scheduler, if a node observes that some neighbor is colored with a colordi�erent from its own (provided neither color is 0), it can correctly conclude that that neigh-bor belongs to a tree di�erent from itself. If node u detects such a competing tree, it sets itsother-trees to true; the echoing mechanism conveys this information to the root of the tree(through statement [K]). If a root is thus informed of the existence of a competing tree (i.e.another tree with the same root ID), it attempts to break symmetry by extending its ID (action46

Append-Entryu()IDu IDu:xwhere x is an entry chosen by the Afek-Matias [AM89] schemeNew-Coloru()if coloru = 0then return color randomly chosen from f1, 2, 3gelse return 0Reset-Coloru(color) /* reset local recoloring-related variables */coloru colormodeu broadcastother-treesu false8v 2 Nbrs(u) ,nbr-coloruv unde�nedself-coloruv unde�ned8v 2 Childrenu , coloruv unde�nedChildrenu : f v j parentuv = u gFigure 5-8: Macros
47

EXTEND-ID, Fig. 5-7). After extending its ID the root participates in the overrunning andrecoloring processes all over again.However, this scheme of detecting duplicate IDs (i.e. u is colored with a non-zero colordi�erent from that of some neighbor v implies that v is in a di�erent tree) is not su�cient if thescheduler is adversarial. Consider the recoloring process operating on two neighboring trees Tand T having the same root ID, containing two neighboring nodes u and v respectively. Wewant our tree detection process to eventually let at least one of the trees detect this situation.However, the schedule could be manipulated by the adversary such that the two trees are neverboth colored with a non-zero color; the adversary could schedule steps such that always exactlyone of the trees is colored 0 and the other is colored with a non-zero color. In such a schedule,the trees can continue the recoloring process inde�nitely without ever detecting each other.An idea proposed in [AKY90] modi�es the scheme so that it can accomodate an adversarialscheduler. The idea is that when a node u is colored with a non-zero color, it waits for eachneighboring node to be colored with a non-zero color, and records this color individually foreach neighbor v as soon as available, in the variable nbr-coloruv (in [C]). Correspondingly, itwaits till it observes that each neighbor v has observed its own color, by examining the variableself-coloruv, which it copied from its neighbor. The test for this mirror-like scheme is part ofthe condition [J] for echoing. Section 7 shows that this scheme succeeds for the adversarialscenario described earlier.
48

Chapter 6Correctness and Complexity Prooffor the Randomized Algorithm:Part 1The probabilistic automaton RSST implementing our randomized protocol was de�ned in Def-inition 5.2. We prove that RSST constructs a spanning tree within expected O(�) time, where� is the network diameter. In this section we give some basic de�nitions and an overview ofthe proof.6.1 Spanning TreesWe �rst de�ne the states of RSST that de�ne a spanning tree.De�nition 6.1 For any s 2 states(RSST),� �(s) is the multiset of the node ids in s, i.e.�(s) 4= s:fIDv1 ; IDv2 ; IDv3 ; : : : ; IDvng49

� Node u is a root in state s if s:parentu = nil.� The set �(s) is the set of root nodes in s, i.e.�(s) 4= fu 2 V j s:parentu = nilg� Node u is an ancestor of node v (u 6= v) in s if there exists a sequence of nodesfu; u1; u2; : : : ; uj; vg such that parentu1 = u; parentu2 = u1; : : : ; parentuj = uj�1; parentv =uj.� State s contains a cycle if there exists a node that is an ancestor of itself.� State s de�nes a forest if it does not contain a cycle.� State s de�nes a spanning tree if it de�nes a forest and j�(s)j = 1.Let the set S 4= start(RSST)denote the set of start states of RSST. The set ST is de�ned as the set of states de�ning aspanning tree. Thus,ST 4= fs 2 states(RSST) j s de�nes a spanning treeg6.2 Overview of the ProofIn this section we give an outline of the proof. We need to prove that departing from a stateof S, the expected time to reach a state of ST is O(�).Our proof is divided into several phases, each one of which proves a property of makinga partial time bounded progress toward a \success state", i.e., a state of ST . The state sets50

associated with the di�erent phases are S, F 0, F , C=, C1, G, and ST . Here,F 0 4= fs j s de�nes a forestgis the set of forest-de�ning states, andF 4= 8><>:s j 8u; v;264 1: v = s:parentu =) s:(IDu; distanceu)� s:(IDuv; distanceuv)2: v 2 Nbrs(u) =) s:(IDuv; distanceuv)� s:(IDv; distancev) 3759>=>;is a subset of the set of closed forest-de�ning states (this property will be shown in Section6.3). Thus, once a state of F is reached, the global state always de�nes a forest.To motivate the de�nitions of C=, C1, and G, we introduce the set�(s) 4= fu 2 �(s) j :(9v 2 �(s) j IDu s� IDv)gof \candidate" roots in state s. This set plays a crucial role in maintaining progress of ouralgorithm. As mentioned in the description of the algorithm, root nodes compete for being theroot of the eventual spanning tree. We show that the root of the eventual spanning tree mustalways be present in � after time 2, and moreover, that � can only shrink with time (and thusj�j can never increase). These properties imply that if a state is in the set of \good" statesG 4= fs 2 F j (j�(s)j = 1)gthen the root of the �nal spanning tree is uniquely determined. Let s be a state in F such thats 62 G. Since j�(s)j > 1, for achieving progress we need to show that starting from a state inF , j�j is reduced to 1 (i.e., a state in G is reached) in expected O(�) time. We do so usingthe intermediate state sets C= and C1. C= is de�ned as the set of statesC= 4= fs 2 F j 8u; v 2 �(s); IDu = IDvg51

S 3�! F (Proposition 6.11)F �! F� (Proposition 6.12)F 2��! C= [C1 (Proposition 6.24)C= 77�+36�!2=9 C1 (Proposition 7.80)C1 2��!0:11 G (Proposition 6.49)G 2��! ST (Proposition 6.23)Figure 6-1: Proof Phasesin which the IDs of all candidate roots are equal. To de�ne C1, we �rst de�ne subsets �i(s) of� as follows: �i(s) 4= fu 2 �(s) j idlength(IDu) = ig�i(s) is de�ned as that subset of �(s) whose elements have IDs of a particular length i. (Theset �>i(s) contains elements having IDs of length greater than i; �<i(s) is de�ned similarly.)We de�ne the special subset �lmax (s) 4= fmaxi (�i j �i 6= �)gas that subset of � whose elements have IDs of maximal length. Finally, we are in a positionto de�ne C1 as C1 4= fs 2 F j j�lmax (s)j = 1gi.e., C1 is the set of states in which there is just one element in � whose ID is of maximallength.Having de�ned the relevant state sets, we now formally describe the phases of our proof;they are summarized in Figure 6-1.The �rst statement states that starting from a start state, a forest-de�ning state is reachedwithin time 3; the second statement states that once a forest-de�ning state is reached, the52

state always de�nes a forest. The last statement states that once a \good" state is reached,within time 2� the state de�nes a spanning tree.By combining the statements above using Theorem 2.11 and Corollary 2.12, we obtainF 81�+36�!0:025 Gand consequently S 83�+39�!0:025 STUsing the results of the proof summary above, we can derive an upper bound ofO(diameter)on the expected time required to reach a state of ST starting from a state of S.Theorem 6.2 Under any fair adversary, starting from any start state, the automaton RSSTthat implements our randomized self-stabilizing spanning tree algorithm reaches a state de�ninga spanning tree within expected O(�) time.Proof. Departing from a state in F , RSST reaches a state in G in time (at most) 81�+36with probability at least 0.025. Consider an execution of RSST starting from a state s inF , and consider successive epochs of duration 81�+36. In the �rst epoch, the probability ofattaining membership in G (\success in the �rst epoch") is at least 0.025. Since F is closed,the probability of success in every such epoch is at least 0.025. Hence, the expected number ofepochs needed to attain success has an upper bound of d1=0:025e, or 40. Hence, starting from astate in F , the expected time taken to reach a state in G has an upper bound of 40� (81�+36),which is O(�). Since S 3�! F and G 2��! ST , the expected time to reach a state in ST startingfrom a state in S is O(�).We now proceed with the details of the proof, i.e. the proofs of the probabilistic statementsgiven above. Let A 2 Fairadvs be a fair adversary for RSST. Let z 2 S be an arbitrary startingstate. Let Ĥ denote the execution automaton H (RSST;A; z). Let �0 denote an execution ofĤ, and let � be the corresponding execution �0# of RSST.53

In Section 6.3, we prove the statements S 3�! F , F �! F�, F 2��! C=[C1, and G 2��! ST .The statement C= 77�+36�!2=9 C1 is proved in Section 7, and the statement C1 2��!0:11 G is proved inSection 6.4.6.3 Stabilization of Forest Structure, Candidate Root Proper-tiesIn this section we prove the statements S 3�! F , F �! F�, F 2��! C= [C1, and G 2��! ST .6.3.1 Forest Structure - Establishment and PreservationEach node v maintains an \opinion" of the values of the shared variables of its neighbors inits own local variables. Claim 6.3 states that after time 1, this \opinion" must have actuallybeen read from the neighbors, i.e. it is no longer arbitrarily set in the start state.Claim 6.3 For any s such that s:now > 1, s:VARuv = s0:VARv for some s0 preceding s in �,where VAR is one of fID ; distance; parentg.Proof. Within time 1, node u will have performed COPY-NBRSuv for all neighbors v, andhence will have read the local variables of all its neighbors at least once.Claim 6.4 and Lemma 6.5 show that the priority (de�ned as the tuple (ID,distance)) of anode cannot decrease (in terms of the order � de�ned on priorities; cf. De�nition 5.1); if itchanges, it can only increase.Claim 6.4 For any step (s; EXTEND-IDu; (
;�; P)) of RSST, for any state s0 2
,s:IDu w� s0:IDu.Proof. Follows directly from Proposition 4.4(1).54

Lemma 6.5 For any step (s; a; (
;�; P)) of RSST, for any s0 2
,s:(IDu; distanceu)� s0:(IDu; distanceu).Proof. The only actions which change (IDu; distanceu) are MAXIMIZE-PRIORITYu andEXTEND-IDu. If MAXIMIZE-PRIORITYu is executed, only statements [F], [G] and [H]are capable of changing (IDu; distanceu). Let the \intermediate" value of IDu after executingstatement [F] be I ; then s:IDu � I . If [G] is executed, the value of (IDu; distanceu) cannotdecrease, because of the direction of the precedence test. [H] leaves IDu intact and setsdistanceu to 0; thus s:IDu � I = s0:IDu and s:distanceu � s0:distanceu, and so the priority(IDu; distanceu) cannot decrease. By Claim 6.4, EXTEND-IDu increases IDu, and thereforeincreases the priority (IDu; distanceu).Corollary 6.6 For all s and s0 such that s precedes s0 in �,s:(IDu; distanceu)� s0:(IDu; distanceu).Since priorities do not decrease, then, by Claim 6.3, priorities as observed by neighbors donot decrease:Corollary 6.7 For any node u, any v, the value of (IDuv; distanceuv) cannot decrease aftertime 1.We now establish that in any execution, any state after time 2 belongs to the set F , andthus de�nes a forest.Lemma 6.8 For all s such that s:now > 2, each node u obeys the priority invariant:(parentu = v) =) (IDu; distanceu)� (IDuv; distanceuv).Proof. Consider any node u which is a child of node v in some state s such that s:now > 2;thus s:parentu = v. Node u last executed the statement (parentu v) in [G] at some step(s1,MAXIMIZE-PRIORITYu,s2), where (s:now � 1) � s2:now � s:now . By [G], we haves2:(IDu; distanceu) = s1:(IDuv; distanceuv + 1). Since s1 precedes s in � and s1:now > 1, byCorollary 6.7, s1:(IDuv; distanceuv) � s:(IDuv; distanceuv). Hence, we have:55

s:(IDu; distanceu) = s2:(IDu; distanceu)= s1:(IDuv; (distanceuv + 1))� s1:(IDuv; distanceuv)� s:(IDuv; distanceuv)Hence s:(IDu; distanceu)� s:(IDuv; distanceuv).Corollary 6.9 For all s such that s:now > 1, for any node u and any v 2 Nbrs(u),s.(IDuv; distanceuv) � s.(IDv; distancev).Proof. Let the last COPYuv step executed by u be (s1;COPYuv; s2). Then s:(IDuv; distanceuv) =s2:(IDuv; distanceuv) = s1:(IDv; distancev). Since s1 precedes s in �, by Corollary 6.6,s1:(IDv; distancev) � s:(IDv; distancev). Hence s:(IDuv; distanceuv) � s:(IDv; distancev).Corollary 6.10 F � F 0.Proof. Let s 2 F . By the de�nition of F , for any u; v such that v = parentu, s:(IDu; distanceu)� s:(IDv; distancev). Since each node must have a strictly lower priority than its parent, scannot contain a cycle.Proposition 6.11 S 3�! F.Proof. Immediate from Lemma 6.8 and Corollary 6.9.Proposition 6.12 F �! F�.Proof. Let (s; a; (
;�; P)) be a step of RSST. Let s 2 F , and let s0 2
. We need to showthat s0 2 F . Recall the de�nition of F :F 4= 8><>:s j 8u; v;264 1: v = s:parentu =) s:(IDu; distanceu)� s:(IDuv; distanceuv)2: v 2 Nbrs(u) =) s:(IDuv; distanceuv)� s:(IDv; distancev) 3759>=>;56

The only variables that determine membership in F are parent, ID, and distance (both localand shared copies). Thus the only actions that can change membership in F are COPY,MAXIMIZE-PRIORITY and EXTEND-ID.Case 1 a = COPYuv.The only relevant e�ect is that s0:(IDuv; distanceuv) = s0:(IDv; distancev); thus predicate2 of the de�nition of F holds for u. If v = parentu, thens0:(IDu; distanceu) = s:(IDu; distanceu)� s:(IDuv; distanceuv) (since s 2 F)� s0:(IDuv; distanceuv) (by Corollary 6.7)Hence s0:(IDu; distanceu)� s0:(IDuv; distanceuv), and predicate 1 holds. Since no othernode predicates are a�ected, s0 2 F .Case 2 a = MAXIMIZE-PRIORITYu .The only variables set are IDu, distanceu, and parentu, so we only need to check thatin state s0, u satis�es predicate 1, and that all neighbors of u satisfy predicate 2. Ei-ther statement [G] or [H] of MAXIMIZE-PRIORITYu must be executed. If [G] isexecuted, s0:(IDu; distanceu) = s0:(IDul; (distanceul+ 1)) � s0:(IDul; distanceul), wherel = s0:parentu. Hence u satis�es predicate 1. If [H] is executed, u trivially satis�espredicate 1 in s0. For any v 2 Nbrs(u),s0:(IDvu; distancevu) = s:(IDvu; distancevu)� s:(IDu; distanceu) (since s 2 F)� s0:(IDu; distanceu) (by Corollary 6.6)Thus any neighbor v satis�es predicate 2, and hence s0 2 F .Case 3 a = EXTEND-IDu.If IDu is extended, u 2 �(s0), so u trivially satis�es predicate 1 in state s0, and sinces 2 F , u satis�es predicate 2 in s0. By an argument identical to that for Case 2, allneighbors v of u also satisfy the predicates, and so s0 2 F .57

Henceforth in the proof, for all states mentioned we will assume that s 2 F.Thus each state under discussion de�nes a forest.We now show that the set of root nodes �(s) can only diminish with time|a root maybecome a nonroot, but not vice-versa.Lemma 6.13 �(s0) � �(s) for all s; s0 such that s0 follows s in �.Proof. Suppose not, i.e. suppose 9u such that u 2 �(s0) but u 62 �(s). Then s0:parentu = niland s:parentu 6= nil. Hence there must exist a step (s3,MAXIMIZE-PRIORITYu,s4) in �, suchthat s3:parentu 6= nil, s4:parentu = nil, and [H] was executed in MAXIMIZE-PRIORITYu.Let s3:parentu = v. From the test that causes [H] to be executed, s3:(IDuv; distanceuv)� s3:(IDu; distanceu). (Note that since s3:parentu 6= nil, [F] was not executed in this step.)But since s3:parentu = v, there must exist a preceding step (s1,MAXIMIZE-PRIORITYu,s2)in which (s2:(IDu; distanceu) = s3:(IDu; distanceu)) and parentu was set to v. Since [G] wasexecuted in this step, s2:(IDuv; distanceuv)� s2:(IDu; distanceu). By Corollary 6.7,s3:(IDuv; distanceuv) � s2:(IDuv; distanceuv).Hence s3:(IDuv; distanceuv)� s3:(IDu; distanceu), which contradicts the earlier assertion.6.3.2 ID Overrunning PropertiesWe now show that nodes must \learn" about \high" IDs existing in the network within 2�time|the smallest ID in the network after time t+ 2� is at least as large as the highest ID attime t. In this sense, high IDs \overrun" lower IDs.Lemma 6.14 Let Dist(u; v) = d. For any state s, there exists a state s0 following s such thats0:now � s:now + 2d and s0:(IDv; distancev) � s:(IDu; (distanceu + d)).Proof. By induction on d. 58

First, let d = 0. u is the only node a distance of 0 from itself. Substituting d = 0 in thestatement, it can be seen to be trivially true (s0 = s).Now for the inductive step, for any node v such that Dist(u; v)=k, assume that there existss0 such that s0:now � s:now +2k and s0:(IDv; distancev) � s:(IDu; (distanceu+k)). Considera node w such that Dist(u; w) = k + 1. We need to show that there exists s00 such thats00:now � s:now + 2(k + 1) and s00:(IDw; distancew) � s:(IDu; (distanceu + k + 1)).Node w must then have a neighbor v such that Dist(u; v)= k. By the inductive hypothesis,there exists a s0 such that s0:now�s:now + 2k and s0:(IDv; distancev) � s:(IDu; (distanceu +k)).Now there must exist a step (s1;COPYwv; s2) at some time after (s:now + 2k) and upto(s:now + 2k + 1), since our adversary must allow w to execute every action in every unit oftime. Since s1:now > s0:now , by Lemma 6.5, s1:(IDv; distancev) � s0:(IDv; distancev). Hences1:(IDv; distancev) � s:(IDu; distanceu + k). Hence s2:(IDwv; distancewv) �s:(IDu; (distanceu + k)).There must exist another step (s3;MAXIMIZE-PRIORITYw ; s00) at some time after (s:now+2k+1) and upto (s:now+2k+2). By Claim 6.7, s3:(IDwv; distancewv) � s2:(IDwv; distancewv).After statement [E] of MAXIMIZE-PRIORITYw , (IDwl; distancewl) � (IDwv; distancewv).Either statement [G] or [H] must be executed. If [G] is executed, s00:(IDw; distancew)= s3:(IDwl; (distancewl + 1)) � s3:(IDwv; (distancewv + 1)) � s2:(IDwv; (distancewv + 1)� s:(IDu; (distanceu+ k+1)): Hence there exists s00 such that s00:now�(s:now + 2k+2) ands00:(IDw; distancew) � s:(IDu; (distanceu + k + 1)).If [H] is executed, let the intermediate value of IDu after executing [F] be I . Then, since[H] is executed, s00:(IDw; distancew) = (I; 0) 59

� (I; s3:distancew)� s3:(IDwl; distancewl)� s3:(IDwv; distancewv)� s2:(IDwv; distancewv)� s:(IDu; distanceu + k)� s:(IDu; distanceu + k + 1):Corollary 6.15 Let Dist(u; v) = d. For any state s, for all states s0 such that s0:now �(s:now + 2d), s0:(IDv; distancev) � s:(IDu; distanceu + d).Proof. Immediate from Lemma 6.5 and Lemma 6.14.Corollary 6.16 Let Dist(u; v) = d. For any s, there exists s0 following s in � such thats0:now � s:now + 2d and s0:IDv � s:IDu.De�nition 6.17 (MAXID) Given a state s 2 C=, s:MAXID 4= max(�(s)).Corollary 6.18 For any s, there exists s0 following s in � such that s0:now � s:now +2� and8u 2 V, s0:IDu � s:MAXID. For all s00 such that s00:now > s:now + 2�, s00:IDu � s:MAXID.6.3.3 Candidate Root PropertiesWe �rst state a very important property of the set �(s). In e�ect, the ID of each root in �(s)is a pre�x of the highest such ID.Observation 6.19 For any s and any u; v 2 �(s),1. idlength(s:IDu) < idlength(s:IDv) =) s:IDu w� s:IDv.60

2. idlength(s:IDu) = idlength(s:IDv) =) s:IDu = s:IDv.Proof. If u; v 2 �(s), by the de�nition of �(s), it cannot be the case that IDu s� IDv orIDu s� IDv. Hence IDu = IDv, or IDu w� IDv, or IDu w� IDv. Hence idlength(s:IDu) <idlength(s:IDv) must imply IDu w� IDv, and idlength(s:IDu) = idlength(s:IDv) mustimply IDu = IDv.Consider any root node r. The following lemma states that as long as r stays a root, itsID can only change by extension (only by invoking the call Append-Entry() through actionsMAXIMIZE-PRIORITYr or EXTEND-IDr).Lemma 6.20 Let s; s0 be any states such that s0 follows s in �.If r 2 (�(s) \ �(s0)), s:IDr w� s0:IDr.Proof. Consider a node r 2 (�(s) \ �(s0)). Let �1 be the execution fragment sa1s1 : : :ais0. Ifthere exists a state si 2 �1 such that r 62 �(si), then r 62 �(s0) by Lemma 6.13. Hence r 2 �(si)for every state si in �1.Hence for every step (si; a; (
;�; P)) in �1, for every state sj in
, si:parentr = sj :parentr =nil. Thus in action a, statement [G] of MAXIMIZE-PRIORITYr could not have been executed.Hence the only way IDr can change is through the call to Append-Entry(), made by [F] ofMAXIMIZE-PRIORITYr or by EXTEND-IDr . By Proposition 4.4(1), for every such si andsj , si:IDr w� sj :IDr . By transitivity of w� , it follows that s:IDr w� s0:IDr .The following is a crucial property of our algorithm. To ensure fast progress, we wantto ensure that if a root r1 has an ID that is smaller than that of another root r2, then therelationship will stay that way, even if the two roots never communicate directly. We canensure this only if r2's ID is higher in the strong sense.Lemma 6.21 For all s; s0 such that s0 follows s in �,if r1; r2 2 (�(s) \ �(s0)), s:(IDr1 s� IDr2) =) s0:(IDr1 s� IDr2).61

Proof. Immediate from Lemma 6.20 and Proposition 4.4(5).We now show that the set � is the set of roots that have a chance of \surviving" - a rootnot in this set cannot be the root of the �nal spanning tree, and will de�nitely be overrun bysome other tree. We now have a \competition" between roots in the forest. The \winner" ofthe competition will be the root of the eventual spanning tree. The set � is the set of rootsstill in the fray; all other roots have \lost" and will be overrun. All roots change their IDs onlyby extension (unless they cease to be a root), and by changing their ID they may lose theirmembership in �.Lemma 6.22 For all s; s0 such that s0 follows s in �, �(s0) � �(s).Proof. Suppose not. Then there exists a node r such that r 2 �(s0) but r 62 �(s). Sincer 2 �(s0), by Lemma 6.13 r 2 �(s). By the de�nition of �(s), there exists some node q 2 �(s)such that s:IDr s� s:IDq. But by Corollary 6.6, s:IDq � s0:IDq. Hence by Proposition 4.4(3),s:IDr s� s0:IDq. By Lemma 6.20, s:IDr w� s0:IDr. Applying Proposition 4.4(4), s0:IDr s� s0:IDq.Thus r 62 �(s0), contradicting our earlier supposition.Proposition 6.23 states that if in some state s the set � has just one member, a state s0de�ning a spanning tree is reached within 2� time.Proposition 6.23 G 2��! STProof. Let s be a state in G. By Corollary 6.18, there exists a state s0 following s such thats0:now � s:now + 2� and for all u 2 V, s0:IDu � s:MAXID.We have j�(s)j = 1; therefore, a unique node r has the maximum ID in s. Consider anynode q 6= r in �(s). By de�nition of �(s), s:IDq s� s:ID r. Now if q 2 �(s0), by Lemma 6.20,s:IDq w� s0:IDq, which implies s0:IDq s� s:ID r by Proposition 4.4(4). But this contradicts ourchoice of s0, since s0 was chosen such that s0:IDq � s:IDr. Thus any node q 6= r in �(s) cannotbe in �(s0). Since �(s0) � �(s) by Lemma 6.13, it follows that �(s0) = frg, and so s0 2 ST .62

Proposition 6.24 F 2��! C= [C1Proof. Let s 2 F . Consider any execution � = sa1s1a2s2 : : :; let � = s:MAXID. By Corollary6.18, there exists a state sk following s in � such that sk:now � s:now + 2�, and for all u 2 V ,sk:IDu � �. Consider the execution pre�x �1 = sa1s1a2 : : :sk of �. We show that there mustexist some state s0 in �1 such that s0 2 C= [C1. For all u in �(sk), sk:IDu � �. Consider thefollowing mutually exhaustive possibilities for �(sk):Case 1 For all u 2 �(sk), sk:IDu = �.Then sk 2 C=, and we are done.Case 2 For some u 2 �(sk), sk:IDu s� �.Since �(sk) � �(s), by Lemma 6.22, sk:IDu s� � for some u 2 �(s). Since each step in� changes at most one ID, and since s:IDx � � for all x 2 �(s), there must exist somestate s0 in � such that there is exactly one node v 2 �(s) for which s0:IDv s� �. Since�(s0) � �(s) by Lemma 6.22, v is the only node in �(s0) such that s0:IDv s� �. HenceIDv = maxw2�(s0)(IDw), which implies that v 2 �lmax (s0). There cannot exist anothernode w 2 �lmax (s0), since that would imply that s0:IDw = s0:IDv, which would violate ourassumption that v is the only node in �(s0) such that s0:IDv s� �. Hence j�lmax (s0)j = 1,and so s0 2 C1.Case 3 IDu w� � for all u 2 �(sk), and there is at least one node u 2 �(sk) such thatsk:IDu w� �.Since �(sk) � �(s), by Lemma 6.22, there is at least one node u 2 �(s) such thatsk:IDu w� �. Since each step in � changes at most one ID, and since s:IDx � � for all x 2�(s), there must exist some state s0 in � such that there is exactly one node v 2 �(s) forwhich s0:IDv w� �. There cannot exist a node w 2 �(s) such that s0:IDw s� �, since thatwould imply by Corollary 6.6 that sk:IDw � s0:IDw and hence by Proposition 4.4(3) thatsk:IDw s� �, which contradicts our assumption that sk:IDu w� � for all u 2 �(sk). Thus63

for all u other than v in �(s), s0:IDu w� �. Thus �lmax (s0) = fug; hence j�lmax (s0)j = 1and s0 2 C1.6.4 The ID-forcing PropositionIn this section we prove the statement C1 2��!0:11 G, i.e., starting from a state in which thereis only one candidate of maximal ID length, within 2� time, with probability at least 0:11,we reach a \good" state|a state in which there is just one candidate. This is a substantialprogress property, since if a state is \good" then within 2� additional time we reach a statede�ning a spanning tree.Let s be a state in C1, and let H be the execution automaton H (RSST;A; s). Let �0 bea maximal execution of H, and let � = �0# = sa1s1a2s2 : : : be the corresponding executionof RSST. Let lmin denote minu2�(s)(idlength(s:IDu)), and let lmax be de�ned analogously.Thus all nodes in �(s) have ID lengths between lmin and lmax . Let � = s:MAXID, and let rbe the unique element of �(s) such that s:IDr = �. (Since s 2 C1, r is unique.) Thus r is theunique candidate root in s having the maximum ID length lmax .By the ID overrunning property, Corollary 6.18, there exists a state sk following s in �such that sk:now � s:now+ 2� and for all u 2 V , sk:IDu � �. Let sk be the �rst such state in�. Let �1 be the execution pre�x sa1s1a2s2 : : : sk.We will use these de�nitions of s, sk, �, �1, lmin , lmax , �, and r throughout the rest of thissection.We �rst give some basic de�nitions and observations related to these de�nitions.De�nition 6.25 (Competitive and dominant nodes) Let H, s, sk, �, � and �1 be asde�ned above, and let i � lmax . Then,� Node u is competitive at the ith position in �, if there exists s0 2 �1 such that u 2 �(s0)and s0:IDu[1::i] = �[1::i]. 64

� Node u is dominant at the ith position in �, if there exists s0 2 �1 such that u 2 �(s0),s0:IDu[1::(i� 1)] = �[1::(i� 1)], and s0:IDu[i] > �[i]. Node u is dominant before the ithposition in �, if there exists a j < i such that u is dominant at the jth position.We now state some observations arising from the above de�nitions. The �rst propertystates that competitiveness and dominance of a node at a particular position are mutuallyexclusive:Claim 6.26 A node u cannot be both competitive and dominant at the ith position, for any i.Proof. Suppose u is competitive and dominant at the ith position in �. Since it is competitive,there exists s0 2 � such that u 2 �(s0) and s0:IDu[i] = �[i]. Since it is dominant, there existss00 2 � such that u 2 �(s00) and s00:IDu[i] > �[i]. Clearly, s0:IDu[i] 6= s00:IDu[i].Now s0 must either precede or follow s00 in �. If s0 precedes s00, Lemma 6.20 implies thats0:IDu w� s00:IDu, which implies s0:IDu[i] = s00:IDu[i], which is a contradiction. Similarly, theother case, s0 follows s00, leads to the same contradiction.Claim 6.27 If a node u is either competitive or dominant at the ith position in �, it is com-petitive at the jth position for all j < i.Proof. Straightforward from De�nition 6.25.Claim 6.28 If a node u dominant at the ith position in �, it cannot be competitive at the jthposition for any j � i.Proof. Follows directly from Claims 6.26 and 6.27.Claim 6.29 Any u 2 �(s) is competitive at the lthmin position in �.Proof. By the de�nition of �, and by Observation 6.19, s:IDu w� �, and further, idlength(s:IDu)> lmin . Hence s:IDu[1::lmin] = �[1::lmin]. 65

Corollary 6.30 No node u 2 �(s) is dominant before the (lmin + 1)th position in �.Proof. Follows directly from Claims 6.28 and 6.29.De�nition 6.31 (Competitive and dominant executions) Let H, s, sk, �, � and �1 beas de�ned above. Then,� Execution � is competitive at the ith position if no node is dominant before the (i+ 1)thposition.� Execution � is dominant at the ith position if no node is dominant before the ith positionand there exists u 2 �(s) such that u is dominant at the ith position.Claim 6.32 An execution � cannot be both competitive and dominant at the ith position, forany i.Proof. Follows directly from De�nition 6.31.Claim 6.33 Let i < lmax . If � is competitive at the ith position, it is either competitive ordominant at the (i+ 1)th position.Proof. Since � is competitive at the ith position, no node is dominant before the (i + 1)thposition. If some node is dominant at the (i+1)th position, � is dominant at the (i+1)th posi-tion. Otherwise, no node is dominant before the (i+ 2)th position, and hence � is competitiveat the (i+ 1)th position.Having described competitive and dominant executions, we now de�ne the correspondingevents of H.De�nition 6.34 (Competitive and dominant events) Let H , s, and sk, be as de�nedabove. Then,� The event e[i]C , \competitiveness at position i," is de�ned ase[i]C 4= f�" 2
H j � is competitive at the ith positiong66

� The event e[i;j]C consists of those executions in e[i]C in which exactly j nodes in �(s) arecompetitive at the ith position.� The event e[i]D , \dominance at position i," is de�ned ase[i]D 4= f�" 2
H j � is dominant at the ith positiong� The event eG is de�ned as a subset of the set of executions in which a state in G is reachedwithin time 2�; in particular,eG 4= f�" 2
H j sk(�) 2 GgWe now state some important properties of events.Claim 6.35 e[i]C = n[j=1e[i;j]C .Proof. From the de�nitions (recall that n is the size of the network).Claim 6.36 For any i � lmax, e[i]C \ e[i]D = �.Proof. Follows from Claim 6.32.Claim 6.37 For any i � (lmax � 1), e[i+1]C ; e[i+1]D � e[i]C .Proof. Follows from De�nitions 6.34 and 6.31.Claim 6.38 For any i < (lmax � 1), e[i]C = e[i+1]D [e[i+1]C .Proof. By Claim 6.37, e[i+1]D [e[i+1]C � e[i]C . By Claim 6.33, e[i]C � e[i+1]D [e[i+1]C . Hence follows.Claim 6.39
H = e[lmin]C . 67

Proof. Consider any execution �" 2
H . From Corollary 6.30, it follows that � is competitiveat the lthmin position.Claim 6.40
H = e[lmin+1]D [e[lmin+2]D [e[lmin+3]D [: : :[e[lmax�1]D [e[lmax�1]C .Proof. We have,
H = e[lmin]C (Claim 6.39)= e[lmin+1]D [e[lmin+1]C (Claim 6.38)= e[lmin+1]D [e[lmin+2]D [e[lmin+2]C (Applying Claim 6.38 again)= e[lmin+1]D [e[lmin+2]D [: : :[e[lmax�1]D [e[lmax�1]C (Inductively applying Claim 6.38)Note that Claim 6.40 de�nes a partition of
H .De�nition 6.41 Node u
ips at the ith position in �, if in �1 there exists a step (s0; a; s00) suchthat in a, u makes a call to Append-Entry which appends an entry to IDu at the ith position.Lemma 6.42 Let � 2 e[i]C . For any u 2 �(s), if idlength(s:IDu) � i, and if u is competitiveat the ith position in �, then u
ips at the (i+ 1)th position in �.Proof. Consider �1 = sa1s1a2 : : : sk. Since u is competitive at the ith position in �, thereexists a si 2 � such that u 2 �(si) and si:IDu[1::i] = �[1::i]. Also, by the de�nition of sk,sk:IDu � �. Now, by Lemma 6.20, IDu can only change by extension in sa1s1a2 : : : sk, so wecan choose si such that si:IDu = �[1::i].Consider the su�x of the execution that starts with si. The only way IDu can changebetween si and sk is by executing calls to Append-Entry or by executing statement [G]. IfAppend-Entry is performed �rst, an entry is appended at the (i+1)th position, so we are done.If [G] is executed, there exists a node l such that IDul � IDu. By Claim 6.3, IDul = ID l forsome preceding state. Since � 2 e[i]C , l is not dominant before the (i+ 1)th position, and henceID l[1::i] = �[1::i]. Hence IDu w� IDul, and so the call to Append-Entry in [F] must have beenexecuted �rst, in which case u would have
ipped at the (i+ 1)th position.68

Lemma 6.43 For any i � lmax , e[i;1]C � eG.Proof. If � 2 e[i;1]C , no node is dominant before the (i + 1)th position, so for any u 2 �(sk),sk:IDu[1::i] = �[1::i]. But then any such node is competitive at the ith position, and there isonly one such node, since � 2 e[i;1]C . Hence j�(sk)j = 1, and so sk 2 G.We now list, without proof, some basic results of conditional probability:Proposition 6.44 Let A, Ai, B, Bi, and X be events on a sample space. Then,1. If A = k[i=1Ai, then P (X j A) � mini P (X j Ai).2. If A � k[i=1Ai, then P (X j A) � mini P (X j A \Ai).3. Let k[i=1Ai � A. If P ((k[i=1Ai) j A) = p, and if P (X j Ai) = pi, thenP (X j A) � p�minifpig.Lemma 6.45 For any i such that (lmin + 1) � i � lmax and any j � 1, P (eG j e[i]D \ e[i�1;j]C) �1=2.Proof. Consider any execution � 2 e[i]D \ e[i�1;j]C . Since � 2 e[i�1;j]C , there are j nodes com-petitive at the (i � 1)th position. Of these j nodes, there are exactly j�>(i�1)(s)j nodes usuch that idlength(s:IDu) > (i� 1), and consequently k = j � j�>(i�1)(s)j nodes such thatidlength(s:IDu) � (i � 1). Thus by Lemma 6.42, each of these k nodes must
ip at the ithposition. Hence �kAM describes the sample space corresponding to these k
ips. If � 2 e[i]D ,there exists a
ip higher than �[i]. If exactly one of these
ips is the highest, then � 2 eG .Thus, P (eG j e[i]D \ e[i�1;j]C) � P�k(UNIQH j (Highest > �[i])) � 1=2;by Theorem 4.2.Theorem 6.46 For any i such that (lmin + 1) � i � lmax, P (eG j e[i]D) � 1=2:69

Proof. We have e[i]D � e[i�1]C by Claim 6.38. Thus by Claim 6.35,e[i]D � n[j=1e[i�1;j]Cwhich implies, by Proposition 6.44(2), thatP (eG j e[i]D) � minj P (eG j e[i]D \ e[i�1;j]C):Since by Lemma 6.45 P (eG j e[i]D \ e[i�1;j]C) � 1=2 for all j, it follows that P (eG j e[i]D) � 1=2.Lemma 6.47 For any j � 1, P ((e[lmax]D [e[lmax ;1]C) j e[lmax�1;j]C) � 0:22.Proof. Consider any � 2 e[lmax�1;j]C . There are j nodes competitive at the (lmax�1)th position;of these, idlength(s:IDr) > lmax � 1 for exactly one node r, and thus idlength(s:IDu) �lmax�1 for exactly (j�1) nodes u. Thus by Lemma 6.42 these (j�1) nodes must
ip at the lthmaxposition in �, and the sample space �j�1AM describes these
ips. The event e[lmax]D is equivalent tothe event (Highest > �[lmax]). The event e[lmax ;1]C is equivalent to the event (Highest < �[lmax]),since one node r is already known to be competitive at the lthmax position. Thus,P ((e[lmax]D [e[lmax ;1]C) j e[lmax�1;j]C) = P�j�1(Highest 6= �[lmax]) � 0:22by Theorem 4.3.Theorem 6.48 P (eG j e[lmax�1]C) � 0:11Proof. Consider the event e[lmax�1;j]C .By Lemma 6.47, P ((e[lmax]D [e[lmax ;1]C) j e[lmax�1;j]C) � 0:22. Thus, we haveP ((e[lmax]D \ e[lmax�1;j]C) [(e[lmax ;1]C \ e[lmax�1;j]C) j e[lmax�1;j]C) � 0:22Also, by Lemma 6.45, P (eG j e[lmax]D \ e[lmax�1;j]C) � 1=270

and by Lemma 6.43, P (eG j (e[lmax ;1]C \ e[lmax�1;j]C)) = 1:Hence applying Proposition 6.44(3), we haveP (eG j e[lmax�1;j]C) � (0:22)(1=2) = 0:11:Now by Claim 6.35, e[lmax�1]C = n[j=1 e[lmax�1;j]C . Thus by Proposition 6.44(1),P (eG j e[lmax�1]C) � minj P (eG j e[lmax�1;j]C) � 0:11:Proposition 6.49 P (eG j
H) � 0:11, or equivalently, C1 2��!0:11 G.Proof. By Claim 6.40,
H = e[lmin+1]D [e[lmin+2]D [e[lmin+3]D [: : :[e[lmax�1]D [e[lmax�1]C . By Theorem6.46, P (eG j e[i]D) � 1=2, and by Theorem 6.48, P (eG j e[lmax�1]C) � 0:11. Hence applyingProposition 6.44(1),P (eG j
H) = P (eG j e[lmin+1]D [e[lmin+2]D [: : : [e[lmax�1]D [e[lmax�1]C)� min(1=2; 1=2; : : : ; 1=2; 0:11)= 0:11
71

72

Chapter 7Correctness and Complexity Proof:Part 2 { The Coloring AlgorithmIn this section we prove the Tree Detection Proposition, C= 77�+36�!2=9 C1 (Proposition 7.80). Thus,starting from a state in C=, within time 77� + 36, with probability at least 2=9, we reach astate in which only one candidate has the maximal ID length. This is the \tree detection"property|if, in some state, all root nodes in the network have equal IDs, then, because of thecoloring, the competition makes \progress" within expected O(�) time.The overall strategy of the proof is as follows: We �rst show, in Lemma 7.1, that startingfrom a state s 2 C=, any execution fragment � must remain in C= until a state in C1 isreached. Thus, to show the partial progress properties of the coloring algorithm, we consideran execution fragment �1 in C=. Next, in Section 7.1, we show that within time 2�+1 in �1, astate de�ning a \stable forest" is reached. (We denote the set of states de�ning a stable forestby C=SF .) Let �2 be any execution fragment in C=SF . The graph of parent pointers remains�xed in C=SF ; the network can thus be visualized as a collection of \�xed" trees over which thecoloring algorithm runs.When a state in C=SF is reached, the coloring variables (i.e., color, mode) may be in aninconsistent state|normal \broadcast" and \echo" waves (cf. Section 5.1) may not be able to73

commence immediately. Section 7.2 shows that within time 17�+7 in �2, a state is reached inwhich the coloring variables become consistent. (C=WC is the state set consisting of such states.)The coloring algorithm can proceed normally in any execution fragment �3 in C=WC .Let �3 be a fragment in C=WC . For any tree Tr, �3 can be partitioned into coloring epochs forTr. In each coloring epoch
 in C=WC , the root color is propagated to all nodes in Tr (througha \broadcast wave"), and the root waits for all nodes in its tree to echo before choosing a newcolor and initiating the next coloring epoch. If a node with a non-zero color in some tree Tnotices that a neighbor has a non-zero color di�erent from its own color, it sets other-treesto true, and this information is propagated to its root. (It is \piggy-backed" on the \echowave"; its ancestors successively set their other-trees to true while echoing.) After a root setsother-trees to true, it extends its ID, thus reaching a state in C1.As discussed in Section 5.1, when a node receives a new non-zero color it waits until 1)it has observed a non-zero color for each of its neighbors, and 2) each neighbor has observedits own color. Section 7.2.2 and Lemma 7.61 show that a node cannot be \blocked" by itsneighbors in this fashion for more than 10� + 5 time. Based on this result, a coloring epochcannot last more than 13�+6 time. (Note that the individual node \waits" are not dependenton each other; they can overlap.)Each coloring epoch in C=WC gives a tree at least one \opportunity" to detect neighboringtrees, and each epoch lasts at most 13� + 6 time. Section 7.3 formalizes this notion. If T andT are neighboring trees, we show that starting from a state in C=WC , at least one of the twotrees must detect the existence of the other within time 58�+28, with probability at least 2=9.When this information is conveyed to the root of the \noticing" tree shortly thereafter, thatroot extends its ID, and a state in C1 is reached. Since the total time elapsed starting from astate in C= would then be 77�+36, the Tree Detection Proposition (Proposition 7.80) follows.We now proceed with the details of the proof.Lemma 7.1 Let � = s0a1s1 : : :sk be an execution fragment of RSST, and let s0 2 C=. Then,unless a state in C1 is reached in �, the following conditions hold for all states s in �:74

1. s 2 C=2. �(s) = �(s0)3. s:MAXID = s0:MAXID.Proof. Consider any step (s; a; s0) such that s 2 C=. Since C= � F , by the de�nition of F ,s:IDuv � s:MAXID for every u,v. Let u be the node executing action a. Then there exist twopossibilities:Case 1 u 62 �(s).Then u 62 �(s0) by Lemma 6.22, and since all other IDs are unchanged, (1) s0 2 C=, (2)�(s0) = �(s), and (3) s0:MAXID = s:MAXID.Case 2 u 2 �(s).Then umust be in �(s0), since otherwise umust have executed statement [G] in MAXIMIZE-PRIORITYu, which would imply that there exists a node l such that s:IDul � s:IDu,which is impossible since s 2 F and s:IDu = s:MAXID. Thus by Lemma 6.20, s:IDu w� s0:IDu.If s:IDu = s0:IDu, (1) s0 2 C=, (2) �(s0) = �(s), and (3) s0:MAXID = s:MAXID. Ifs:IDu w� s0:IDu, then since the IDs of all other roots in � are unchanged, s0 2 C1.By induction on the steps in �, the Lemma follows.The following de�nition makes it convenient to describe progress properties of executionsstarting from a state in C=. By Lemma 7.1, such an execution must either reach a state in C1or remain in C=. Thus, progress towards a subset U 0 of C= can be described in terms of thefollowing notation:De�nition 7.2 If U and U 0 are state sets, thenU t=) U 0 4= U t�! U 0 [C175

Recall from Section 2 that set U is closed, written U �! U�, if for any s 2 U and anystep (s; a; (
;�; P)),
 � U . We now give an analogous de�nition for analyzing the coloringalgorithm:De�nition 7.3 U =) U�, if for any s 2 U and any step (s; a; (
;�; P)),
 � U [C1.Thus if U =) U�, any execution fragment beginning with a state in U remains in U untila state in C1 is reached.7.1 Forest StabilityWe now de�ne a very important notion, that of a \stable forest." In order for the recoloringalgorithm (used to detect other trees) to succeed in O(�) expected time, the forest structuremust be \stable" while the algorithm is operating, i.e., the parent pointers remain �xed. Wenow precisely de�ne the set C=SF of states de�ning a stable forest. We then show that startingfrom a state in C=, within time 2�+1, unless a state of C1 is reached, a state de�ning a stableforest is reached.De�nition 7.4 (C=SF) The set C=SF (\SF" for \Stable Forest") is the set of all states s 2 C=for which the following conditions hold for all nodes u:1. s:IDu = s:MAXID,2. u 2 �(s) =) distanceu = 0, and3. (parentu = v) =)� distanceuv = distancev,� distanceu = distancev + 1, and� v = maxx2Nbrs(u)fx j (IDx; distancex) = maxw2Nbrs(u) (IDw; distancew)gLemma 7.5 For any step (s; a; (
;�; P)) such that s 2 C=SF and for any s0 2
, for all u andv, s:(parentu = v) =) s0:(parentu = v). 76

Proof. Let s0 2
. The only action a that could change parentu is MAXIMIZE-PRIORITYu.Since s 2 C=SF , for any w 2 Nbrs(u) such that w 6= s:parentu, s:(IDuw; distanceuw)�s:(IDw; distancew) = (s:MAXID; s:distancew). Thus if v = s:parentu, (IDuv; distanceuv) =maxx2Nbrs(u) (IDux; distanceux). Hence l is set to v in [E], [F] does not change IDu, and [G]ensures that s0:parentu = v.Lemma 7.6 C=SF =) C=SF�.Proof. Let (s; a; (
;�; P)) be a step such that s 2 C=SF . Let s0 2
, and let a be performedby u. Since membership in C=SF is determined by the variables ID, distance and parent, theactions DETECT-TREES and NEXT-COLOR cannot change membership in C=SF . Considerthe following remaining possibilities for a:Case 1 a =COPYuv.The only statement of interest is [A]; by clause (3) of the de�nition of C=SF , distanceu�parentumust remain unchanged, and s0 2 C=SF .Case 2 a =MAXIMIZE-PRIORITYu .If u 2 �(s), [H] is executed, and s0 2 C=SF . If u 62 �(s), let v = s:parentu. Then [E] sets lto v, [F] has no e�ect, and [G] preserves the values of IDu, distanceu and parentu. Thuss0 2 C=SF .Case 3 a =EXTEND-IDu.If IDu is extended, then s0 2 C1.Lemma 7.7 C=2�+1=) C=SF .Proof. Let s0 2 C=, and consider any execution fragment � = s0a1s1a2 : : : aksk in C= ofduration � 2� + 1. Let the minimal distance of node u be de�ned asD(u) 4= minv2�(s0)Dist(u; v)77

We show by induction that for any i � �, there must exist a state s0 in � such that s0:now �s0:now +2i+1, and for each node u such that D(u) � i, u satis�es the conditions (1), (2) and(3) in De�nition 7.4, for membership in C=SF . (Let such a node be called locally stable.) SinceD(u) < � for all nodes, there must then exist a state s in � such that s:now < s0:now + 2�+1and all nodes are locally stable, which implies that s 2 C=SF .First, let i = 0. The only nodes u for which D(u) = 0 are those in the set �(s0); within 1time unit, each such node will have executed statement [H] of MAXIMIZE-PRIORITY andwill have set its distance to 0 and will have thus become locally stable.For the inductive step, let there exist a state s0 in � such that s0:now < s0:now + 2i+ 1,and each node u for which D(u) � i is locally stable. We show that there exists a state s00following s0 such that s00 < s0 + 2(i+ 1) + 1 and each node u such that D(u) � i+ 1 is locallystable.The conditions for local stability imply that in state s0, IDu = s0:MAXID and distanceu =D(u) for each node u such thatD(u) � i. Consider any node u for which D(u) = i+1. LetN (u)be the set of neighbors w of u for which D(w) = i; s0:IDw = s:MAXID and s0:distancew = i forall such w. There must then exist a state s000 following s0 in � such that s000:now < s0:now+1 and(IDuw; distanceuw) = (s0:MAXID; i) for all w 2 N (u). Since there must exist a MAXIMIZE-PRIORITYu step within time 1 after s000, there exists a s00 following s000 in � such that s00:now �s000:now + 1 and u is locally stable. Hence the inductive step follows.7.2 Self-Stabilization of the Coloring AlgorithmAs was stated in the previous section, the forest structure must be stable, i.e. the state mustbe in C=SF , while the algorithm is operating. Lemma 7.7 guarantees that starting from anystate in C=, a state in C=SF is reached within 2� + 1 time. However, when a state in C=SF isreached, the coloring variables may not be in a consistent state|they may be arbitrarily set,so the broadcast-echo mechanism may not commence immediately. In this section we show78

that within time 17� + 7, these variables become consistent, and the coloring algorithm canproceed correctly.In De�nition 7.9, we de�ne a \coloring predicate" L(u) on individual nodes; if all nodes ina tree Tr satisfy L(u) and if Tr satis�es another predicate L0, the coloring variables in that treeare consistent. Tr is then said to be \well-colored," and the state set GT r (\GT " for \GoodTree") is de�ned as the set of states in C=SF in which Tr is well-colored. C=WC is de�ned as theset of states in C=SF in which all trees are well-colored.We show that starting from a state s in C=SF , unless a state in C1 is reached, for any tree Tra state in GT r is reached within time 17� + 7 (Lemma 7.65). We do so using the intermediatestate set MT r|the set of states in which Tr is monocolored, i.e. all nodes in Tr possess thesame color. Section 7.2.1 shows that any tree must get monocolored within time 4�+1. Section7.2.2 shows that once a tree is monocolored, it must get well-colored within 13�+ 6 additionaltime.We �rst de�ne what it means for coloring variables to be \consistent."De�nition 7.8 (Tr, tree(v), leaf, root interval, branch, height, branches(Tr))� Let r 2 �(s). A tree rooted at node r is the setTr 4= fu j r is an ancestor of u.g� tree(v), the tree containing node v, is de�ned as the unique tree containing v.� A leaf is a node that is not an ancestor of any other node.� A sequence of nodes R = u1u2 : : :uk is a root interval of Tr if u1 = r and parentui = ui�1for every i > 1.� A root interval B = u1u2 : : :uk is a branch if it terminates in a leaf (i.e., uk is a leaf).� The height of a tree, written Height(Tr), is the maximal length of a branch in Tr.79

� branches(Tr) denotes the set of all branches in Tr.De�nition 7.9 (Coloring predicates) Let v = parentu. Then the following coloring predi-cates are de�ned for node u:� L1(u): (coloru 6= colorv) =) (modeu = echo) and (modev = broadcast).� L2(u): modeu = broadcast =){ modev = broadcast{ coloru = colorv{ If w 2 Childrenu,(modeuw = echo and coloruw = coloru) =) modew = echo and colorw = coloru.� L3(u): modeu = echo =) 8w 2 Childrenu;{ coloru = coloruw = colorw, and{ modeuw = modew = echo.� L(u) 4= L1(u) ^ L2(u) ^ L3(u).De�nition 7.10 (Well-coloredness) A tree Tr is well-colored in state s if it satis�es thefollowing conditions:1. All nodes u 2 Tr satisfy L(u) in s.2. (Predicate L0) At most two colors are contained in Tr, i.e.,j [u2Tr s:coloruj � 2De�nition 7.11 (GT r) GT r 4= fs 2 C=SF j Tr is well-coloredg80

The following Lemma shows that once a tree is well-colored, it stays well-colored:Lemma 7.12 GT r =) GT r�.Proof. Let (s; a; s0) be a step such that s 2 GT r . Note that the only variables that arereferenced by the coloring predicates are coloru, modeu, and for all v 2 Childrenu, coloruv andmodeuv. We consider each a 2 acts(RSST), in turn:Case 1 a = COPYuv.Since u can only copy a color from v, L0 must be true in s0. If v 6= parentu and v 62Childrenu, the coloring predicates remain unchanged. If v = parentu, then [D] may beexecuted. If s:coloru 6= s:colorv, then s0:coloru = s0:colorv, and s0:modeu = s0:modev =broadcast. Also, because L0 holds in s, for all w 2 Childrenu, s:colorw = s:coloru, whichimplies s0:colorw 6= s0:coloru. Thus L1(u), L2(u), and L3(u) are true in s0. Further,L2(v) holds in s0. Since s:modew = s0:modew = echo for any child w of u, w satis�es L1,L2 and L3 in s0.If v 2 Childrenu, L1(u), L2(u) and L3(u) continue to hold in s0.Case 2 a =MAXIMIZE-PRIORITYu .Since s 2 C=SF , all variables in s0 are identical to those in s.Case 3 a =DETECT-TREESu.If [K] is executed then s0:modeu = echo. L1 and L2 are trivially satis�ed, and L3 issatis�ed in s0 because of the conditions in [J] and the fact that L2 was satis�ed in s.Case 4 a =NEXT-COLORu.If the test in NEXT-COLOR is true, u 2 �(s), and L3 implies that all nodes v 2 tree(u)have the same color c in s. Hence L0 is satis�ed. The coloring predicates can be seen tohold. 81

Case 5 a =EXTEND-IDu.If the test is satis�ed, then s0 2 C1.De�nition 7.13 (C=WC) C=WC 4= fs 2 C=SF j s 2 GT r 8r 2 �(s)gCorollary 7.14 C=WC =) C=WC�.Proof. This is a direct consequence of Lemma 7.12 and De�nition 7.13.Once a state is in C=WC , the coloring algorithm can proceed \normally" over all trees in theforest. We show that starting from a state in C=SF , unless a state in C1 is reached, within time17�+7 each tree becomes well-colored, so within time 17�+7 a state in C=WC is reached. Thuswe show that C=SF 17�+7=) GT r for all roots r, which implies that C=SF 17�+7=) C=WC (this is shown inLemma 7.65).De�nition 7.15 (Monocolored, bicolored intervals and trees;MT r) A tree Tr ismono-colored in s 2 C=SF if it contains only one color, i.e. coloru = c for some color c and all u 2 Tr.(We say that Tr is monocolored with color c.) The setMT r is de�ned as the set of states inC=SF in which Tr is monocolored. Similarly, a root interval is monocolored if it contains onlyone color. Tr is bicolored if it contains two colors (cf. De�nition 7.10).The statement C=SF 17�+7=) GT r is proved using two main results: C=SF 4�+1=) MT r (the \Mono-coloring" Result) andMT r13�+6=) GT r (the \Blocking" Result).7.2.1 The \Monocoloring" ResultIn this section we establish the �rst of the two self-stabilization results, C=SF 4�+1=) MT r. Thus,starting from a state in C=SF de�ning a stable forest, any execution � reaches a state in whichtree Tr is monocolored, within time 4� + 1. 82

An overview of the proof follows. A coloring epoch of color c for Tr is de�ned as a maximalexecution fragment contained in � in which the root color colorr remains �xed at c; colorrchanges from one epoch to the next. As will be apparent from the code for COPY, if a nodenotices that it has a color di�erent from that of its parent, it copies its parent's color. A root-color interval for a branch in Tr is the maximal root interval in the branch that has the samecolor as the root. Since children copy their parents' color, in any coloring epoch the root-colorinterval for any branch can only increase. Thus, in the last state of a coloring epoch
, theroot-color intervals in a tree are of maximal length; the scope of
 is the depth upto which theroot color has propagated in epoch
. Thus in the last state of an epoch
, all root intervalsof length � Scope(
) are colored with the root color.Consider any branch B in Tr of scope m in some coloring epoch
 of color c. When theroot chooses a new color c0 and sets its mode to broadcast, thus initiating the next coloringepoch
0, all its descendants of depth � m are colored c. Because a root must echo before itcan choose the next color, all descendants of depth � m+1 must be colored with c0 in coloringepoch
0. Thus each coloring epoch has a higher scope than its predecessor (provided that thisis feasible, i.e., the scope of its predecessor was not Height(Tr)). If a coloring epoch of scopeHeight(Tr) is reached, there must exist some state in that epoch in which Tr is monocolored.A �ner analysis, in Lemmas 7.37 { 7.39, shows that if a coloring epoch
0 is of duration�, its scope is at least b�c higher than that of its predecessor
 (if feasible). Based on thisprogress property, Lemma 7.40 shows that the scope of a coloring epoch beginning after timet in � must be at least t=2. Thus we conclude, in Lemma 7.41, that within time 3� an epochof scope � Height(Tr) is reached, and therefore, in Lemma 7.42, that a monocolored state isreached in time � 4� + 1.De�nition 7.16 (Root-color interval) Let s 2 C=SF ; let Tr be a tree, and let B 2 branch-es(Tr). The root-color interval of B, denoted RC(B), is the maximal pre�x u0 : : :ui of B havingthe same color as the root u0, i.e., for which color(u) = color(u0) for every u 2 RC(B).83

De�nition 7.17 (Root-color extent) Let B 2 branches(Tr). The root-color extent of B,written Extent(B), is de�ned as:Extent(B) 4= 8><>: 1. jRC(B)j , if RC(B) 6= B (i.e., RC(B) is a proper pre�x of B).2. Height(Tr), if RC(B)= B.Thus the root-color extent of a branch is the length of the maximal pre�x that has thesame color as the root, unless the whole branch has the same color, in which case it is theheight of the tree.De�nition 7.18 (Root-color domain) The root-color domain of tree Tr, written Dom-ain(Tr), Domain(Tr) 4= minB2branches(Tr)Extent(B):Claim 7.19 Let (s; a; s0) be a step in C=SF . For any root r 2 �(s)\�(s0), if s:colorr 6= s0:color r,then a = NEXT-COLORr .Proof. From the code, the only statements that can change the color of r are [D] of COPYand the actions NEXT-COLORr and EXTEND-IDr . Since parentr = nil, [D] of COPY is notexecuted. If a =EXTEND-IDr and s:color r 6= s0:colorr, then s:IDr � s0:IDr, and so s0 62 C=SF .Hence the only possibility for a is NEXT-COLORr .De�nition 7.20 (Coloring epochs) Let � be an execution fragment in C=SF . A coloringepoch for tree Tr is a maximal execution fragment
 contained in � such that color r remainsconstant in
. Let Color(
) denote the color of epoch
, i.e. s:color r for any s 2
.Observation 7.21 From Claim 7.19, for any tree Tr, any execution � in C=SF contains coloringepochs
1,
2,
3,: : : for Tr, such that � =
1a
2a
3a : : :, where a = NEXT-COLORr .84

Claim 7.22 If
i and
i+1 are successive coloring epochs in some execution � then� Color(
i) = 0 =) Color(
i+1) 6= 0� Color(
i) 6= 0 =) Color(
i+1) = 0Proof. Follows from the code for NEXT-COLOR, New-Color() and Reset-Color().De�nition 7.23 (Scope) Let
 be a coloring epoch for Tr. The scope of a coloring epoch
for Tr is Scope(
) 4= maxs2
 s:Domain(Tr)The scope of
 for a branch B in Tr is de�ned similarly:ScopeB(
) 4= maxs2
 s:Extent(B)Lemma 7.24 Let u 62 �(s) and let � be an execution fragment in C=SF starting with s. Inany step (s0; a; s00) in � such that s00:coloru 6= s0:coloru, s00:coloru = s0:colorparentu, s00:modeu =broadcast, and for all v 2 Childrenu, s00:coloruv = unde�ned.Proof. From the code, a must be COPYu, and [D] must be executed.Lemma 7.25 In any step (s; a; s0) in some coloring epoch
 for Tr, s:coloru = s0:coloru forany u 2 s:RC(B), where B 2 branches(Tr).Proof. By induction on the depth of u in Tr. Let s:RC(B) = u1 : : :ui. Since s; s0 2
,s:coloru1 = s0:coloru1 . Suppose s:coloruk = s0:coloruk for some uk 2 u1 : : :ui�1. Since uk+1 2RC(B), s:coloruk+1 = s:coloruk . If s0:coloruk+1 6= s:coloruk+1 , then by Lemma 7.24 s0:coloruk+1 =s:coloruk , which is a contradiction since s:coloruk+1 = s:coloruk .85

Corollary 7.26 Let
 be a coloring epoch. If (s; a; s0) is a step in
, for any branch B 2branches(Tr), s:RC(B) is a pre�x of s0:RC(B).Proof. Let B 2 branches(Tr). From Lemma 7.25, for every u 2 RC(B), s0:coloru =s:coloru = s:color r . Hence the Corollary follows.Corollary 7.27 In any coloring epoch
, Domain(Tr) cannot decrease.Proof. Immediate from De�nition 7.17 (Extent), De�nition 7.18 (Domain), and Corollary7.26.Lemma 7.28 Let � be an execution fragment contained in some coloring epoch for Tr. Let t =(lstate(�):now� fstate(�):now). Then lstate(�):Domain(Tr) � min((fstate(�):Domain(Tr)+btc);Height(Tr)).Proof. We show that for anyB 2 branches(Tr), lstate(�):Extent(B) �min(fstate(�):Extent(B)+btc, Height(Tr)). The Lemma then follows from the de�nition of Domain(Tr) (De�nition7.18).Consider any branch B = u1 : : : ul in Tr, and an execution fragment � = s0a1s1a2 : : : akskcontained in some coloring epoch
 of color c for Tr. Let t = sk:now � s0:now , and let t0 = btc.Let R = s0:RC(B) = u1 : : : ui.We show that if l � i+ t0, i.e., the length of branch B is at least i+ t0, then u1 : : : ui+t0 isa pre�x of sk:RC(B). Otherwise, sk:RC(B)= B.If t0 = 0, then Corollary 7.26 implies that u1 : : :ui is a pre�x of sk:RC(B).If t0 � 1, and if l � i + 1, then there must exist a step (s;COPYui+1ui ; s0) in � such thats0:now � s0:now + 1. Corollary 7.26 implies that s:colorui = c; hence s0:colorui+1 = c, andu1 : : : ui+1 is a pre�x of s0:RC(B) and sk:RC(B).86

If t00 � 2 and l � i+ 2, then there must exist a step (s00;COPYui+2ui+1 ; s000) in � such thats000:now � s0:now+2 and s00 follows s0 in �. Again, Corollary 7.26 implies that s00:colorui+1 = c;therefore u1 : : : ui+2 is a pre�x of s00:RC(B).The Lemma follows by proceeding inductively as above.Lemma 7.29 Let u; v 2 Tr, and let parentu = v. Let (s0;COPYuv,s1) be a step in whichs0:coloru 6= s1:coloru, and let � = s0a1s1a2 : : : be an execution fragment starting with this step,contained in some coloring epoch for Tr. Let w be a child of u. If there exists si 2 � (i 6= 0)such that si:modeu = echo, then there exists s0 between s0 and si such that s0:coloru = s0:colorw.Proof. From the code, statement [D] in COPYuv must have been executed in the �rst step,so from the code for Reset-Color(), s1:modeu = broadcast, and s1:coloruw = unde�ned.Since si:modeu = echo, there must exist a step (s0; a; s00) between s1 and si such thats0:modeu = broadcast and s00:modeu = echo. From the code, the only possibility for a isDETECT-TREESu. From statement [J], it follows that s0:modeuw = echo and s0:coloruw =s0:coloru. Since s0:colorw = s0:coloruw, s0:coloru = s0:colorw.Let var be one of the state components for a node (e.g. mode, color), and let value be oneof the corresponding values that can be assumed by the state components (e.g. \broadcast,"for the mode component). Henceforth, to ease the notation, the expression var(u1u2 : : : uk) =value will be used to denote the relation varu1 = varu2 = : : := varuk = value.De�nition 7.30 (Broadcast and echo intervals) Let R = u1u2 : : : uk be a root interval.Then,� R is a broadcast interval if mode(u1u2 : : :uk) = broadcast, and L(u) is true for all u inR. (Note that the conditions of L imply that for such an interval, color(u1u2 : : :uk) =some color c, and for each uj in u1u2 : : : uk�1, :(modeujuj+1 = echo and colorujuj+1 = c).)A broadcast interval of color c is a broadcast interval in which every node has color c(coloru = c). 87

� R is an echo interval if mode(u1u2 : : :uk) = echo, and L(u) is true for all u in R. (Notethat the conditions of L imply that for such an interval, color(u1u2 : : :uk) = some colorc, and for each uj in u1u2 : : : uk, (modeujuj+1 = echo and colorujuj+1 = c).) An echointerval of color c is an echo interval in which every node has color c.Lemma 7.31 Let R = u1u2 : : :uk be a a broadcast interval of color c in s, and let � be anexecution fragment in C=SF starting with s. If there exists s0 in � such that s0:coloru 6= s:colorufor some u 2 R, then there exists s00 before s0 in � such that R is an echo interval of color cin �.Proof. The coloring epoch containing s0 must be di�erent from that containing s. A new col-oring epoch for R can only begin after a state s1 in which s1:modeu1 = echo. From the code forDETECT-TREES, s1 must follow a state s2 such that s2:modeu1u2 = echo and s2:coloru1u2 = c.Also, s2:modeu2 = echo and s2:coloru2 = c. Thus u1 satis�es L(u). Proceeding inductively, s2must follow some state sk in which sk:modeuk�1uk = sk:modeuk = echo, and sk:coloruk�1uk =sk:coloruk = c. Hence R is an echo interval of color c in s1.Lemma 7.32 Let
 be a coloring epoch for Tr, and let s be a state in
 such that in a branchB = u1u2 : : : uk of Tr, there exist i; j such that u1 : : : ui is a broadcast interval of color c, andcolor(ui+1 : : :uj) = c0 6= c. (Such an interval u1 : : :uj is called properly bicolored.) Then,� There exists s0 following s in
 such that u1 : : :uj is a broadcast interval of color c, and(therefore)� ScopeB(
) � j.Proof. u1 : : :ui is a broadcast interval of color c in state s. In any execution fragment �beginning with s, a new coloring epoch
0 can only begin after a state s1 such that s1:modeu1 =echo (from the code for NEXT-COLOR). But since s:modeu1 = broadcast and L2(u1) holdsin s, s1 must follow some state s2 in which coloru2 = c and modeu2 = echo. Continuing88

inductively, s1 must follow some state si+1 in which colorui+1 = c and modeui+1 = echo. Butsi+1 must follow some step (s0i+1;COPYui+1ui ; s00i+1) in which ui+1 \copies" color c from ui;u1 : : : ui+1 is a broadcast interval of color c in s00i+1. Proceeding inductively, there must exist s0in which u1 : : : uj is a broadcast interval of color c.Claim 7.33 Any pre�x of a monocolored root interval is monocolored, and a pre�x of a properlybicolored interval is monocolored or properly bicolored.Proof. Follows from the de�nitions.Claim 7.34 Let R = u1u2 : : : uk be a root interval in Tr. Let
 be a coloring epoch for Tr, andlet s 2
. Then,1. If R is monocolored in s, it is monocolored for all s0 following s in
.2. If R is properly bicolored (cf. Lemma 7.32) in s, it is monocolored or properly bicoloredfor all s0 following s in
.Proof. Follows from Lemma 7.24 and Corollary 7.26.Corollary 7.35 Let
1a
2 be an execution fragment in C=SF such that
1 and
2 are coloringepochs for Tr of colors c1 and c2 respectively. Let Scope(
1) = m. Then for any root intervalR = u1 : : : um in Tr of length m, there exists s 2
2 such that u1 : : : um is a broadcast intervalof color c2.Proof. Note that in fstate(
2), u1 : : :um is properly bicolored. The Corollary then followsfrom Lemma 7.32.Lemma 7.36 Let
1a
2a
3 be an execution fragment in C=SF such that
1,
2 and
3 arecoloring epochs for Tr. Then Scope(
2) � min(Scope(
1) + 1; Height(Tr)).89

Proof. Let
1 and
2 be of colors c1 and c2 respectively. Let Scope(
1) = m; note thatHeight(Tr) � m. Let B = u1 : : : uk be a branch in Tr of height � m, and let R = u1 : : :umbe a pre�x of B.From Corollary 7.35, there exists a s 2
2 such that R is a broadcast interval of colorc2. If k = m, then ScopeB(
2) = Height(Tr). If k > m, then s:colorum+1 = c1 orc2. If s:colorum+1 = c1, then u1 : : :um+1 is a properly bicolored interval, so by Lemma 7.32ScopeB(
2) � m+ 1. If s:colorum+1 = c2, then ScopeB(
2) � m+ 1 by de�nition.Lemma 7.37 Let
1a
2 be an execution fragment in C=SF such that
1 and
2 are coloringepochs for Tr, and let Scope(
1) = m.For any integer i, if (lstate(
2):now � fstate(
2):now) � i, then for any root interval R =u1 : : : uk of length � (m+ i), there exists a state s 2
2 such that s:now � fstate(
2):now + i,and R is either monocolored or properly bicolored in s.Proof. By induction on i.Base (i = 0): Clearly, in fstate(
2), any interval u1 : : : uk of length � m is monocolored ifk = 1, and is properly bicolored if k > 1.Now suppose the Lemma holds for i. We need to show that it must hold for i+ 1.Consider any root interval R = u1 : : : u(m+i+1). Since the Lemma holds for i, there existsa state s 2
2 such that s:now � fstate(
2):now + i, and u1 : : : um+i is either monocolored orproperly bicolored in s. There must exist a step (s1;COPYu(m+i+1)u(m+i) ; s2) in
2, such that s1follows s, and (s1:now � s:now + 1). Thus s2:now � (fstate(
2):now + i + 1). Consider thetwo cases:Case 1 u1 : : : um+i is monocolored in s.Then, by Claim 7.34, u1 : : : um+i must be monocolored in s1, and therefore it must bemonocolored in s2. Hence the Lemma follows.90

Case 2 u1 : : : um+i is properly bicolored in s.Then by Claim 7.34, u1 : : :um+i is either monocolored or properly bicolored in s1. Ifu1 : : :um+i is monocolored in s1, u1 : : : u(m+i+1) must be monocolored in s2. If u1 : : :um+iis properly bicolored in s1, u1 : : :u(m+i+1) must be properly bicolored in s2. Hence theLemma follows.Corollary 7.38 Let
1a
2 be an execution fragment in C=SF such that
1 and
2 are coloringepochs for Tr, and let Scope(
1) = m.For any integer i, if (lstate(
2):now � fstate(
2):now) � i, there exists a state s 2
2 suchthat s:now � fstate(
2):now + i, such that every root interval of length � (m + i) is eithermonocolored or properly bicolored in s.Proof. Follows from Lemma 7.37 and Claim 7.34.Lemma 7.39 Let
1a
2 be an execution fragment in C=SF such that
1 and
2 are coloringepochs for Tr, and let Scope(
1) = m. Let � = (lstate(
2):now � fstate(
2):now). ThenScope(
2) � min((Scope(
1) + b�c) ; Height(Tr)):Proof. Let �0 = b�c. From Lemma 7.38, there exists a state s in
2 such that (s:now �fstate(
2):now) � �0, and every root interval of length � m + �0 is either monocolored orproperly bicolored in s. Hence by Lemma 7.32, ScopeB(
2) � min(m + �0;Height(Tr)) forevery branch B. Hence Scope(
2) � min(m+�0;Height(Tr)).Lemma 7.40 Let � =
1a
2a
3 : : :be an execution in C=SF , where
1,
2,
3,: : :are coloringepochs for tree Tr. Then for any coloring epoch
,Scope(
) � min(fstate(
):now=2 ; Height(Tr))91

Proof. By induction on
.Clearly, Scope(
1) � 0.Now suppose the Lemma holds for
i, i.e. Scope(
i)�min(fstate(
i):now=2 ; Height(Tr)).If Scope(
i) = Height(Tr), then Lemma 7.36 implies Scope(
i+1) = Height(Tr), which sat-is�es the Lemma. If Scope(
i) < Height(Tr), then by the inductive hypothesis, Scope(
i) �fstate(
i):now=2. We show that Scope(
i+1) > fstate(
i+1):now=2, which would satisfy theLemma. Consider the two cases:Case 1 (fstate(
i+1):now � fstate(
i):now) < 1.Then Lemma 7.36 yieldsScope(
i+1) � Scope(
i) + 1� fstate(
i):now=2 + 1 (by the inductive hyp.)= (fstate(
i):now + 2)=2� fstate(
i+1):now=2Case 2 (fstate(
i+1):now � fstate(
i):now) � 1.Then by Lemma 7.39,Scope(
i+1) � Scope(
i) + bfstate(
i+1):now � fstate(
i):nowc� fstate(
i):now=2 + bfstate(
i+1):now � fstate(
i):nowc(by the inductive hypothesis)> fstate(
i):now=2 + (fstate(
i+1):now � fstate(
i):now)=2(since x � 1 implies bxc > x=2)= fstate(
i+1):now=2Lemma 7.41 Let � =
1a
2a
3 : : : be an execution fragment in C=SF , where
1,
2,
3,: : : arecoloring epochs for Tr. There exists an epoch
i in � such that fstate(
i):now � 3Height(Tr),and Scope(
i) = Height(Tr). 92

Proof. If there exists an epoch
i in � such that 3Height(Tr) � fstate(
i):now � 2Height(Tr),then by Lemma 7.40 Scope(
i) = Height(Tr). If there is no such epoch
i, then there mustexist an epoch
i such that fstate(
i):now < 2Height(Tr) and lstate(
i):now > 3Height(Tr).Since blstate(
i):now � fstate(
i):nowc � Height(Tr), Lemma 7.39 implies that Scope(
i) =Height(Tr).Lemma 7.42 C=SF 4�+1=) MT r 8r 2 �.Proof. Let s 2 C=SF . Let � be any execution fragment in C=SF beginning with s, for which(lstate(�):now � fstate(�):now) � 4�+ 1. Let � =
1a
2a
3 : : :, where
1,
2,
3,: : : are color-ing epochs. By Lemma 7.41, there exists an epoch
i such that fstate(
i):now � 3Height(Tr)and Scope(
i) = Height(Tr).If lstate(
i):now � 4Height(Tr), then since Scope(
i) = Height(Tr), there exists a states0 = lstate(
i) such that s0:now � 4Height(Tr) + 1 and s0 2 MT r .If lstate(
i):now > 4Height(Tr), then since fstate(
i):now � 3Height(Tr), Lemma 7.28implies that for any state s0 in
i such that 4Height(Tr) < s0:now � (4Height(Tr) + 1),s0:Domain(Tr) = Height(Tr), which implies that s0 2 MT r.Since Height(Tr) � �, the Lemma follows.7.2.2 The \Blocking" ResultIn this section we establish the second of the two self-stabilization results, MT r13�+6=) GT r.Thus, starting from a state in C=SF in which Tr is monocolored, any execution reaches a statein which tree Tr is well-colored, within time 13� + 6.If a tree Tr is monocolored with some color c in some state s, it stays monocolored until theroot chooses a new color c0. When the new color c0 is propagated to all nodes in the tree (as itmust be, from Lemma 7.36), the tree becomes well-colored, since in the process of copying anew color from its parent a node resets its own coloring variables (through Reset-Coloru). Weshow, in Lemma 7.62, that within 12� + 6 time the root must choose a new color.93

In order to choose a new color, the root must �rst set its mode to echo (from the code),which requires that all its children echo. A node u could be prevented from echoing because itmay be blocked by its neighbors|if its color is non-zero, it needs to notice a non-zero color ateach of its neighbors (i.e., nbr-coloruv 6= unde�ned), and it needs to notice that all neighborshave observed its color (self-coloruv = coloru). Theorem 7.60 shows that a node can be blockedfor at most 10�+ 5 time, which implies that an \echo wave" must reach the root and cause itto choose a new color within 12� + 6 time.De�nition 7.43 (Waiting) A node u waits in state s 2 C=SF if it is in a broadcast interval(cf. De�nition 7.30). It waits with color c if it is waiting in s and s:coloru = c.De�nition 7.44 (Waiting epoch) Let � be an execution fragment in C=SF . A waiting epoch! for u is a maximal fragment contained in � such that u waits in each state of ! and coloruremains constant in !. A waiting epoch of color c is a waiting epoch in which u waits withcolor c.De�nition 7.45 (Blocking, enabling) Let u be waiting in s with color c 6= 0, and letv 2 Nbrs(u). Then,� u is blocked by v on self-color in s if s:self-coloruv 6= coloru. Otherwise, u is enabled by von self-color.� u is blocked by v on nbr-color in s if s:nbr-coloruv = unde�ned. Otherwise, u is enabledby v on nbr-color.� u is blocked by v in s if it is blocked by v on self-color or nbr-color.� u is enabled by v in s if it is enabled by v on both self-color and nbr-color.De�nition 7.46 (Recoloring) A node u is recolored in a step (s; a; s0) if s:coloru 6= s0:coloru.94

Lemma 7.47 Let r 2 �(s), and let � be an execution fragment in C=SF starting with s. Ifs:moder = broadcast, and if there exists s0 2 � such that s0color r 6= s:color r, then there existsa state s00 preceding s0 in � such that s00:colorr = s:color r and s00:moder = echo.Proof. Let (s1; a; s2) be the �rst step in � such that s1:colorr 6= s2:colorr ; there must existsuch a step between s and s0 in �. From the code, a can only be NEXT-COLORr . Sinces1:colorr = s:color r, and since s1:moder = echo from the condition in NEXT-COLORr , theLemma follows.Claim 7.48 In any step (s; a; s0) in C=SF such that s:modeu = broadcast and s0:modeu = echo,u is enabled by all v 2 Nbrs(u) in s.Proof. Follows since a can only be DETECT-TREESu and the conditions in [J] must besatis�ed.Lemma 7.49 Let u be waiting in s, and let � be any execution fragment in C=SF starting withs. If there exists a step (s0; a; s00) in � in which u is recolored, then there must exist a state s1between s and s00 in � such that u is enabled by all v 2 Nbrs(u) in s1.Proof. Since u is waiting in s, there exists a broadcast interval R = u1u2 : : :u in s. FromLemma 7.31, there exists s2 between s and s00 such that R is an echo interval in s2. Sinces2:modeu = echo, the Lemma follows from Claim 7.48.Lemma 7.50 Let ! be a waiting epoch for u of color c. In any state s 2 ! such that (s:now >fstate(!):now + 2), u is enabled by all v 2 Nbrs(u) on self-color.Proof. Let ! be a waiting epoch of color c. For any v 2 Nbrs(u), there must exist a step(s1;COPYvu; s2) in ! such that s1:now = s2:now � fstate(!):now + 1. Since s1:coloru = c,s2:colorvu = c. There must exist another step (s3;COPYuv; s4) following s2 in ! such thats3:now = s4:now � s2:now + 1. Since s3:colorvu = c, s4:self-coloruv = c. Hence u is enabledby v on self-color in s4. Further, for all states s following s4 in ! u must remain enabled by von self-color. Hence the Lemma follows. 95

Lemma 7.51 Let � be an execution fragment of duration > 1 contained in a waiting epochfor u. If u is blocked by v on nbr-color in lstate(�), then lstate(�):coloruv = 0.Proof. Consider the last step (s; a; s0) in � such that a = COPYuv. Since lstate(�):nbr-coloruv = unde�ned, and COPYuv is the only action that can change nbr-coloruv between s0and lstate(�), it follows that s0:nbr-coloruv = unde�ned. Since statement [C] must have beenexecuted in the COPYuv step, s0:colorv = 0, and therefore s0:coloruv = 0 = lstate(�):coloruv.Lemma 7.52 Let ! be a waiting epoch for u. If u is enabled by v on nbr-color in some s 2 !,u is enabled by v on nbr-color for all s0 following s in !.Proof. From the code, if s:nbr-coloruv 6= unde�ned, the only code that can change s:nbr-coloruv to unde�ned is the call to Reset-Color(), which can be made either through [D] ofCOPYuv or through NEXT-COLORu or EXTEND-IDu. Since ! is a waiting epoch for u, noneof these possibilities is feasible.Lemma 7.53 Let s be a state in C=SF in which u is blocked by v on nbr-color, s:coloruv = 0or unde�ned, and v is blocked by u on self-color. Let � be any execution fragment in C=SFbeginning with s. Then if there exists s0 2 � such that v is enabled by u on self-color, thereexists s00 before s0 in � such that u is enabled by v on nbr-color.Proof. s:coloruv = 0 or unde�ned, s:self-colorvu 6= s:colorv, and s0:self-colorvu = s0:colorv.From Lemma 7.49, it is possible to choose an s0 in � satisfying the given conditions such thats0:colorv = s:colorv. Since s:self-colorvu 6= s:colorv and s0:self-colorvu = s:colorv, there mustexist a step (s1;COPYvu; s2) between s and s0 in � such that s1:self-colorvu 6= s:colorv ands2:self-colorvu = s:colorv. Hence s1:coloruv = s:colorv 6= 0. Since s:coloruv = 0 or unde�ned,and s1:coloruv > 0, there must exist a step (s3;COPYuv; s4) between s and s1 such thats3:coloruv = 0 or unde�ned and s4:coloruv > 0. Since s3:colorv 6= 0, statement [C] in COPYuvsets s4:nbr-coloruv = s3:colorv 6= unde�ned. Thus u is enabled by v on nbr-color in s4.96

Lemma 7.54 Let s be a state in C=SF in which u is blocked by v on nbr-color, s:coloruv = 0or unde�ned, and v is blocked by u on self-color. Then in any execution fragment � in C=SFbeginning with s, there exists s0 following s in � such that s0:now � s:now +1 and u is enabledby v on nbr-color.Proof. There exist two exhaustive possibilities:Case 1 There exists s0 following s in � such that s0:now � s:now + 1 and v is enabled by uon self-color.Then from Lemma 7.53, there exists s00 before s0 in � such that u is enabled by v onnbr-color, and the Lemma follows.Case 2 There exists no s0 following s in � such that s0:now � s:now + 1 and v is enabled byu on self-color.There must exist a step (s1;COPYuv; s2) in � such that s1:now � s:now + 1. Since vis not enabled by u between s and s1, s1:colorv = s:colorv > 0. From statement [C] inCOPYuv, s2:nbr-coloruv = s1:colorv > 0; hence the Lemma follows.Lemma 7.55 Let (s; a; s0) be a step in C=SF in which s0:coloru 6= s:coloru. Then u is blockedby all v 2 Nbrs(u) in s0.Proof. Follows since a must have called Reset-Color.Lemma 7.56 Let Tr be monocolored with color 0 in s. In any execution fragment in C=SF ofduration > 2� beginning with s, there exists a state s1 in which moder = echo.Proof. From the code in statement [J] in DETECT-TREES, nodes with color 0 do not \wait"for neighbors to enable them before echoing; a node u with color 0 echoes as soon as it noticesthat all its children are echoing. Thus the root must echo within time 2�.97

Lemma 7.57 Let tree(u) be monocolored with color 0 in s 2 C=SF . For any execution frag-ment � in C=SF beginning with s, there exists s0 following s in � such that s0:now � s:now +4�,u waits in s0, and u is blocked by all neighbors v 2 Nbrs(u) in s0.Proof. By Lemma 7.56, within time 2� in � a state is reached in which moder = echo. Thuswithin time 2�+1, r must choose a new color (through NEXT-COLORu). Within � additionaltime, u must be recolored with this new color. The Lemma follows from Lemma 7.55.Lemma 7.58 Let tree(u) be monocolored with a color 6= 0 in s, and let � be an executionfragment in C=SF beginning with s. If there exists a state s0 following s in � such that s0:now �s:now+1 and s0:coloru = 0, then there exists a state s00 following s in � such that s00 � s+1+2�and tree(u) is monocolored with color 0 in s00.Proof. Let Tr = tree(u). Since non-root nodes can only copy new colors from their parents,the coloring epoch
0 containing s0 is di�erent from the epoch
 containing s. Since Tr is mono-colored in s, Scope(
) = Height(Tr). Hence from Lemma 7.36, Scope(
0) = Height(Tr).Since
0 is of color 0, there exists a state s00 in
 0 such that Tr is monocolored with color 0.Since s0:coloru = 0, and each child copies its parent's color within time 2, such a state s00 existsfor which s00:now < s0:now + 2�.Lemma 7.59 Let u be blocked by v on nbr-color in s, and let � be a fragment starting with sthat is contained in some waiting epoch for u. If there exists an execution fragment �1 in �such that (lstate(�):now � fstate(�):now > 1) and s0:colorv 6= 0 for every s0 2 �1, then u isenabled by v on nbr-color in lstate(�1).Proof. There must exist a step (s1;COPYuv; s2) in �1. Since s1:colorv > 0, [C] in the codefor COPYuv sets s2:nbr-coloruv = s1:colorv > 0, and so u is enabled by v on nbr-color in s2.The Lemma then follows from Lemma 7.52. 98

Theorem 7.60 Let � be an execution fragment in C=SF , and let ! be a waiting epoch of duration> (10� + 5) contained in �. In any s0 2 ! such that s0:now > fstate(!):now + (10� + 5), u isenabled by all v 2 Nbrs(u) on nbr-color.Proof. Let s = fstate(!), and let u be blocked by some neighbor v on nbr-color in s. Let s1be a state in ! such that (s:now + 1 < s1:now � s:now + 2). If u is blocked by v on nbr-colorin s1, then by Lemma 7.51 s1:coloruv = 0. By Lemma 7.42, there exists s2 following s1 in �such that s2:now � (s1:now + 4� + 1) and tree(v) is monocolored in s2. If u is blocked byv on nbr-color in s2, by Lemma 7.51 s2:coloruv = 0. Note that s2:now � s:now + (4� + 3).Consider the two cases:Case 1 tree(v) is monocolored with color 0 in s2.By Lemma 7.57, there exists s3 following s2 in � such that s3:now � s2:now + 4� and vis blocked by u in s3. If u is blocked by v on nbr-color in s3, Lemma 7.51 implies thats3:coloruv = 0. Then by Lemma 7.54, there exists s4 following s3 in � such that s4:now �s3:now + 1 and u is enabled by v on nbr-color. Note that (s4:now � s:now + (4� + 3)+4� + 1) = (s:now+ 8� + 4).Case 2 tree(v) is monocolored with some color 6= 0 in s2.Then there must exist a step (s3; COPYuv; s4) such that s3 follows s2 in � and s3:now �s2:now + 1. If s3:colorv 6= 0, u is enabled by v in s4 on nbr-color. (Note that s4:now �s:now+(4�+3)+1 = s:now+4�+4.) If s3:colorv = 0, by Lemma 7.58 there exists a states4 following s2 in � such that (s4:now � s2:now +1 + 2�) and tree(v) is monocoloredwith color 0 in s4. We now proceed as in Case 1 and conclude that there exists s5 followings4 in � such that (s5:now � s4:now + (4�+ 1)) and u is enabled by v on nbr-color in s5.Note that s5:now � (s2:now + 6� + 2) � (s:now + 10� + 5).By Lemma 7.52, u is enabled by v on nbr-color for all s0 following s in ! such that s0:now >(fstate(!):now + 10� + 5). 99

Lemma 7.61 Let � be an execution fragment in C=SF , and let ! be a waiting epoch of duration> (10� + 5) contained in �. In any s0 2 ! such that s0:now > fstate(!):now + (10� + 5),(s0:self-coloruv = coloru) and (s0:nbr-coloruv 6= unde�ned).Proof. Follows from De�nition 7.45, Lemma 7.50, and Theorem 7.60.Lemma 7.62 Let s 2 MT r. In any execution fragment � in C=SF of duration � 12� + 6beginning with s, there exists a step (s0;NEXT-COLORr ; s00) in � such that (s0:now � s:now +12� + 6), s0:color r 6= s00:colorr, and s0 2 MT r.Proof. This is a consequence of Lemma 7.61 and the fact that a node enabled by all itsneighbors echoes at most 2 time units after all its children have echoed.Lemma 7.63 Let (s; a; s0) be a step in C=SF such that s 2 MT r and s0:color r 6= s:colorr. Thenin any execution fragment � in C=SF of duration > � beginning with (s; a; s0), there exists s00 in� such that s00:now � s:now + � and s00 2 GT r.Proof. Let c0 = s0:colorr . Each branch B 2 branches(Tr) is properly bicolored in s0, andthus by Lemma 7.32, for each branch B there exists a state sB such that B is a broadcastinterval of color c0. State sB must be reached within time � (since color c0 can take upto � timeto propagate); any state following the latest such sB in � must be in GT r.Lemma 7.64 MT r13�+6=) GT r.Proof. Follows from Lemmas 7.62 and 7.63.7.2.3 Self-stabilization of the Coloring Algorithm: Main ResultLemma 7.65 C=SF 17�+7=) C=WC . 100

Proof. For all r 2 �, from Lemma 7.42 C=SF 4�+1=) MT r , and from Lemma 7.64,MT r13�+6=) GT r.Hence for all r, C=SF 17�+7=) GT r . Since GT r =) GT r� by Lemma 7.12, the Lemma follows.Lemma 7.66 (Main coloring self-stabilization result) C= 19�+8=) C=WC .Proof. From Lemma 7.7, C=2�+1=) C=SF . From Lemma 7.65, C=SF 17�+7=) C=WC . Thus the Lemmafollows.7.3 Tree DetectionFrom Lemma 7.66, starting from any state in C=, within time 19�+8, unless a state in C1 isreached, a state in C=WC is reached, which implies that all trees are well-colored. Thus thecoloring algorithm can proceed \normally."In this section we show that the coloring algorithm achieves its goal of detecting the exis-tence of multiple trees with the same root ID, by showing that C=WC 58�+28�!2=9 C1.De�nition 7.67 (Neighboring trees) Trees Tr and Tr0 are said to be neighbors if there existu 2 Tr and v 2 Tr0 such that v 2 Nbrs(u).Let � be any execution starting with a state in C=WC , and let �0 be the maximal pre�x of� that is in C=WC , if � is �nite, or � itself, if it is in�nite. Let T and T be neighboring trees.From Observation 7.21, �0 can be partitioned into coloring epochs
i for T and
i for T suchthat �0 =
1a
2a
3 : : : =
1a
2a
3 : : :.De�nition 7.68 (
i notices
j) Let T and T be neighboring trees. Let
i and
j be coloringepochs for T and T respectively, and let Color(
i);Color(
j) 6= 0. Then, in execution �,
inotices
j if there exists a step (s;COPYuv; s0) in � such that u 2 T , v 2 T , v 2 Nbrs(u), and:1. s 2
i, s 2
j ; 101

2. s:coloru = Color(
i), s:colorv = Color(
j);3. s:modeu = broadcast.If these conditions hold, we also say that
i notices
j in step (s;COPYuv; s0).De�nition 7.69 (
i confronts
j)
i confronts
j if
i notices
j andColor(
i) 6= Color(
j).Lemma 7.70 Any coloring epoch
 for a tree Tr has duration � 13� + 6.Proof. If fstate(
) 62 MT r , then because a new color propagates within one time unit froma parent to its child, there exists a state s 2
 such that s:now � fstate(
):now + � ands 2 MT r. From Lemma 7.62, there exists a step (s0;NEXT-COLORr ; s00) such that s0:now �s:now + 12� + 6 and s0:colorr 6= s00:colorr. Thus s00 begins a new coloring epoch. The Lemmafollows from the fact that s00:now � fstate(
):now + 13� + 6.Lemma 7.71 Any coloring epoch
 of color 0 for a tree Tr has duration � 3� + 2.Proof. Similar to that of Lemma 7.70, with the exception that from statement [J], a nodecolored 0 does not need to be enabled by its neighbors in order to echo.Lemma 7.72 If
i confronts
j, there exists s0 following fstate(
i) in � such that s0 2 C1 ands0:now < fstate(
i):now + (13� + 6).Proof. If
i confronts
j , some node in T must set other-trees to true in
 within time 11�+5,since all nodes in T cannot remain broadcasting for more than time 11�+ 5. By time 13�+ 5,the root of T must set other-trees to true, and by time 13� + 6, it must extend its ID byexecuting EXTEND-IDu, thus reaching a state in C1.Lemma 7.73 There exists i � 3 such that
i notices
j for some j.Proof. Consider the following possibilities: 102

Case 1 Color(
1) = 0.Then by Claim 7.22 Color(
2) 6= 0. There must then exist a step (s; a; s0) in
2 suchthat s:coloru = 0, s0:coloru = Color(
2), s0:modeu = broadcast, and s0:nbr-coloruv =unde�ned. Since u is blocked by v on nbr-color in s0, there must exist another step(s00;COPYuv; s000) following s0 in
2 such that s00:nbr-coloruv = unde�ned and s000:nbr-coloruv > 0. s00 must then belong in some epoch
j for T , such that Color(
j) 6= 0.From the de�nitions,
2 notices
j.Case 2 Color(
1) 6= 0.If there exists a state s0 in
1 such that s0:coloru = Color(
1), s0:modeu = broadcastand s0:nbr-coloruv = unde�ned, then by an argument similar to that in Case 1,
1 noticessome
j. If there exists no such s0, we use the fact that Color(
2) = 0 (Claim 7.22).Then, by reasoning identical to that in Case 1,
3 must notice some
j .7.3.1 The \Order" ResultsClaim 7.74 Let i < i0. If
i notices
j and
i0 notices
j0, then j � j 0.Proof. Let
i notice
j in step (s1; a; s2) and
i0 notice
j0 in step (s3; a; s4). Since
i precedes
i0 in �0, s2 precedes s3. Since s1 2
j and s3 2
j0 ,
j cannot follow
j0 in �0; hence j � j 0.Claim 7.75 Let
i notice
j and
j0 notice
i0. Then,1. (j < j 0) =) (i � i0).2. (j > j 0) =) (i � i0).Proof. Let
i notice
j in step (s1; a; s2) and let
j0 notice
i0 in step (s3; a; s4).If (j < j 0),
j precedes
j0 , so s2 precedes s3. Hence
i must precede or coincide with
i0 ,and i � i0.If (j > j 0),
j follows
j0 , so s4 precedes s1. Thus
i cannot precede
i0 , and i � i0.103

Lemma 7.76 Let i < i0, and let
i notice
j and
i0 notice
j0. For any coloring epoch
j00such that j < j 00 < j 0, if
j00 notices some coloring epoch
i00, then i � i00 � i0.Proof. From Claim 7.75(1), i � i00, and from Claim 7.75(2), i0 � i00. Hence i � i00 � i0.Lemma 7.77 Let Color(
i) = Color(
j) 6= 0, and let Color(
i), Color(
i+2), andColor(
j+2) all be di�erent. If
i notices
j, then either
i+2 confronts (
j or
j+2) or
j+2confronts (
i or
i+2).Proof.
i+2 must notice
k for some k. From Claim 7.74, k � j. If k = j,
i+2 confronts
j.(Note that k 6= j + 1, since Color(
j+1) = 0.) If k = j + 2,
i+2 confronts
j+2. Supposek > j + 2.
j+2 must then notice some
i0 , and by Lemma 7.76, i � i0 � i + 2. Since Col-or(
i+1) = 0, i0 6= i + 1. Hence
j+2 must notice either
i or
i+2; it then confronts
i and
i+2 respectively.Corollary 7.78 Let Color(
i) = Color(
j) 6= 0, and let Color(
i), Color(
i+2), andColor(
j+2) all be di�erent. If
i notices
j, then there exists s following fstate(
i) in � suchthat s 2 C1 and (s:now < fstate(
i):now + 42� + 20).Proof. From Lemma 7.77, either
i+2 confronts (
j or
j+2), or
j+2 confronts (
i or
i+2). Let (s1; a; s2) be a \confrontation step" from those mentioned above. From Lem-mas 7.70 and 7.71, the durations of
i and
j are at most 13�+6, and those of
i+1 and
j+1 are at most 3� + 2. Hence fstate(
i+2):now � fstate(
i):now+ (13� + 6)+ (3� + 2), andfstate(
j+2):now � fstate(
j):now+ (13�+6)+ (3�+2). Since
i notices
j , Lemma 7.70 impliesthat fstate(
j):now � fstate(
i):now+ (13�+6). Therefore fstate(
j+2):now � fstate(
i):now+(29�+14). Lemma 7.72 then implies that there exists a state s following fstate(
i) in � suchthat s 2 C1 and s:now < fstate(
i):now+ (29� + 14)+ 13� + 6, which yields the result.7.3.2 The Tree Detection PropositionTheorem 7.79 C=WC 58�+28�!2=9 C1. 104

Proof. Let s 2 C=WC . If s 62 C1, then js:�j � 2, so there exists more than one tree in s. LetT and T be two neighboring trees. Let � be any execution fragment of RSST starting withs, and let �0 be the maximal pre�x of � that is in C=WC . Let �0 be partitioned into coloringepochs
i for T and
i for T such that �0 =
1a
2a
3 : : : =
1a
2a
3 : : :. By Lemma 7.73,unless a state in C1 is reached in � before lstate(
3), there exists i � 3 such that
i notices
jfor some j. By Lemmas 7.70 and 7.71, fstate(
i):now � s:now + (16� + 8).If Color(
i) 6= Color(
j), by Lemma 7.72 there exists state s0 in � such that s0 2 C1and s0:now < fstate(
i):now+(13� + 6) � s:now + (29� + 14). If Color(
i) = Color(
j),let (s1; a; s2) be a step in which
i notices
j . Consider the execution automaton ~H =H (RSST;A; s1).Let the event e0 be de�ned as the event in which Color(
i),Color(
i+2), andColor(
j+2)are all di�erent. Then,P ~H (e0) = P (Color(
i) 6= Color(
i+2))� P (Color(
j+2) 62 fColor(
i);Color(
i+2)g)= 2=3� 1=3 (since the colors are chosen from f1,2,3g)= 2=9For any execution � 2 e0, Corollary 7.78 implies that there exists s0 following fstate(
i) in� such that s0 2 C1 and s:now < fstate(
i):now +42�+20. Since fstate(
i) � s:now +16�+8,the Lemma follows.We are now in a position to state the Tree Detection Proposition:Proposition 7.80 C= 77�+36�!2=9 C1.Proof. From Lemma 7.66, C= 19�+8=) C=WC , and from Lemma 7.79, C=WC 58�+28�!2=9 C1. Hence theProposition follows. 105

106

Chapter 8The Deterministic VersionIn this chapter we describe the main ideas behind the deterministic version of the algorithm,for ID-based networks.For our deterministic algorithm, we assume that each node has access to a \hardwired"unique ID. We refer to the unique ID as the node's UID to prevent confusion with the nodes\other" ID, which is a tuple of entries as in the randomized case. The \hardwiring" of theUID implies that the UID cannot be corrupted by the adversary; a nodes' UID always remains�xed and unique.The deterministic protocol is very similar to the randomized version. Each node has anID consisting of a tuple of entries; each entry is now an integer instead of a pair as for therandomized version. The tree overrunning process (and action MAXIMIZE-PRIORITY) isalso identical: nodes attempt to form rooted trees, and trees compete with one another forbeing the eventual spanning tree.The main simpli�cation, compared to the randomized version, arises in the method forrecoloring trees. We no longer need random coin
ips to break symmetry: the unique UIDsare exploited for fully reliable symmetry breaking. Each node, as before, has a color. However,the main di�erence is that trees do not need to be repeatedly recolored. The root of a treealways attempts to propagate its UID as the color of its tree, so nodes repeatedly copy their107

parent's color. If a leaf notices a neighbor with the same ID but a di�erent color, it concludesthat its neighbor belongs to a di�erent tree, and informs its root through the other-trees variablewhich is echoed to its root by its ancestors in the tree. When a root detects the presence ofa competing tree, it appends its own UID to its ID; this change in its ID is automaticallypropagated to its leaves. Note that we do not need the variables direction and recorded-colorin the deterministic case.The correctness and complexity proofs are analogous to those for the randomized version,with the exception that all probabilities in Chapter 6 are now certainties.

108

Chapter 9Conclusions and DiscussionIn this thesis we have presented self-stabilizing algorithms for constructing spanning treesin asynchronous networks in O(diameter) time; our algorithms are time-optimal. We havepresented both a randomized version for anonymous networks and a deterministic version forID-based networks; both versions use the same general paradigm. We have presented a formalanalysis of the randomized protocol using the Probabilistic Automata formalism of Segala andLynch; in doing so, we have demonstrated the capability of the model to e�ectively analyzethe interactions between the probabilistic choices made by the random algorithmic steps andthe nondeterministic choices made by the scheduler.Besides the stabilization time, another key measure of e�ciency (which we have hithertonot dwelt upon) is the space required at each node, i.e. the size of the local memory needed ateach node to execute the algorithm. The optimal space requirement for an ID-based protocolmust necessarily be
(logn) (since there must exist IDs of size
(logn)).Our deterministic protocol requires ID extensions of size O(logn), and our randomizedprotocol requires extensions of expected size O(log log n). Since in a \well-colored" state (cf.Section 7) a root extends only if there exists another root with the same ID, it is likely thateach root requires a total of O(1) extensions in both versions of the protocol. If so, bothprotocols would require space only O(logn) bits larger than the space occupied at the \start"109

of the algorithm. (For the purposes of self-stabilization, the adversary is allowed to set the\initial" state, which might occupy an arbitrary amount of space (since in our protocols IDscan get arbitrarily large). However, the protocols then would \consume" at most expectedO(logn) bits of memory more than the size of the longest \initial" ID.)A current weakness of our scheme is that it is not guaranteed to function in bounded space;if the adversary sets \too much" of the initial bounded memory, the protocol could run outof space. An important open problem is to construct a time-optimal self-stabilizing spanningtree protocol that runs in bounded space, without any prior knowledge about the networkparameters.

110

Appendix AProperties of the Afek-MatiasProbability DistributionWe now prove Theorems 4.2 and 4.3 stated in Section 4.1. Recall the de�nitions of Section4.1. We �rst prove Theorem 4.2:Theorem A.1 For any k; i, P�k(UNIQH j (Highest > i)) � 1=2.For the rest of this chapter, to ease the notation, let U denote the event UNIQH, and letH denote the random variable Highest.Recall that a
ip x actually represents a pair (s; t), where P (s = y) = 1=2y, and P (t =y) = 1=�, where for our purposes � = 20 ln 4r.We will use the following result throughout this section:Claim A.2 P�(x) = P�((s; t)) = 1=(2s � �).Claim A.3 (a < b) =) (P�(a) � P�(b)).Proof. Let a = (sa; ta) and b = (sb; tb), and let a < b. Then if sa < sb, P�(a) > P�(b). If sa =sb and ta < tb, P�(a) = P�(b). 111

Lemma A.4 If a < b, thenP�((X < a) j (X � a)) < P�((X < b) j (X � b)):Proof. We have, P�((X < a) j (X � a)) = P�(X < a)P�(X � a)= P�(X � a)� P�(X = a)P�(X � a)= 1� P�(X = a)P�(X � a)Similarly, P�((X < b) j (X � b)) = 1� P�(X = b)P�(X � b)But clearly P�(X � a) < P�(X � b) , and from Claim A.3, P�(X = a) � P�(X = b).Hence the Lemma follows.Henceforth, unless otherwise mentioned, all probabilities are assumed to be in the space�kAM .Lemma A.5 If a < b, P�k(U j (H = a)) � P�k(U j (H = b)) .Proof. In the event (U \ (H = a)) in �kAM , the highest of the k
ips is unique andis equal to a; all the other k � 1
ips are less than a. Hence P�k(U j (H = a)) = k �[P�((X < a) j (X � a))]k�1, and similarly P�k(U j (H = b)) = k� [P�((X < b) j (X � b))]k�1.The Lemma follows from Lemma A.4.Lemma A.6 For any i, P (U j (H > i)) � P (U j (H � i)).112

Proof. We have,P (U j (H � i)) = P (U \ (H � i))P (H � i)= P (U \ ((H = 1)[(H = 2) [: : :[(H � i)))P (H = 1) + P (H = 2) + : : :+ P (H = i)= Pim=1 P (U \ (H = m))Pim=1 P (H = m)= Pim=1 P (H = m)P (U j (H = m))Pim=1 P (H = m) (A.1)Similarly, P (U j (H > i)) = P1m=i+1 P (H = m)P (U j (H = m))P1m=i+1 P (H = m) (A.2)Now by Lemma A.5, maxm�i P (U j (H = m)) � infm>i P (U j (H = m)). Thus, we canchoose a z such that maxm�i P (U j (H = m)) � z � infm>iP (U j (H = m))Then from (A.1), P (U j (H � i)) � z, and from (A.2), P (U j (H > i)) � z. Hence theLemma follows.Theorem A.7 P�k(UNIQH j (Highest > i)) � 1=2.Proof. We have,P (U) = P (U \ (H � i)) + P (U \ (H > i))= P (H � i)P (U j (H � i)) + P (H > i)P (U j (H > i))= [fP (H � i) + P (H > i)]P (U j (H > i))where f � 1, because of Lemma A.6. Since P (H � i) + P (H > i) = 1, we haveP (U) � P (U j (H > i))113

Since P (U) � 1=2 by Theorem 4.1, it follows that P (U j (H > i)) � 1=2.We now proceed with the proof of Theorem 4.3, which states that for any k; i, P�k(Highest 6= i)� (1� e�1=4) = 0:22.We �rst prove an ancillary lemma:Lemma A.8 For any � such that 0 � � � 1=2, and any n � 0,f(�; n) 4= (1� �)n � (1� 2�)n < 0:78Proof. If (1� 2�)n � 1=2, then f(�; n) � 1=2, so the Lemma holds. We now consider the casein which (1� 2�)n < 1=2. Since (1� 2n�) � (1� 2�)n, it follows that (1� 2n�) < 1=2, whichimplies that � > 1=4n. Thusf(�; n) � (1� �)n < (1� 14n)n < e�1=4 < 0:78;thus proving the Lemma.Given a random
ip x, let x:s and x:t denote its two �elds. Recall that P�(X:s = j) =1=2j.Claim A.9 P�(X:s > j) = 12jProof. P�(X:s > j) = 1Xm=j+1P�(X:s = m)= 1Xm=j+1 12m= 12j114

Corollary A.10 P�(X:s � j) = 1� 12jCorollary A.11 P�(X:s < j) = 1� 12j�1Claim A.12 P�k(Highest:s < j) = (1� 12j�1)kClaim A.13 P�k(Highest:s > j) = 1� (1� 12j)kWe now prove the main theorem:Theorem A.14 For any k; i, P�k(Highest 6= i) � (1� e�1=4) > 0:22.Proof. Let i:s = j. Then,P�k(H 6= i) = P�k(H < i) + P�k(H > i)� P�k(H :s < j) + P�k(H :s > j)= (1� 12j�1)k + 1� (1� 12j)k= 1� [(1� 12j)k � (1� 12j�1)k]Setting 1=2j = �, the last expression reduces toP�k(H 6= i) � 1� [(1� �)k � (1� 2�)k]Since by Lemma A.8 (1� �)k � (1� 2�)k < 0:78, the Theorem follows.115

References[AB89] Yehuda Afek and Geo�rey Brown. Self-stabilization of the alternating bit protocol. In Proc.8th Symposium on Reliable Distributed Systems, October 1989.[AG90] Anish Arora and Mohamed G. Gouda. Distributed reset. In Proc. 10th Conf. on Founda-tions of Software Technology and Theoretical Computer Science, pages 316{331. Springer-Verlag (LNCS 472), 1990.[AK93] Sudhanshu Aggarwal and Shay Kutten. Time Optimal Self-Stabilizing Spanning Tree Al-gorithms. In Proc. 13th Conf. on Foundations of Software Technology and TheoreticalComputer Science, pages 400{410. Springer-Verlag (LNCS 761), 1993.[AKMPV93] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and George Vargh-ese. Time Optimal Self-Stabilizing Synchronization. In Proceedings of the 25th AnnualACM Symposium on Theory of Computing, May 1993.[AKY90] Yehuda Afek, Shay Kutten, and Moti Yung. Memory-e�cient self-stabilization on generalnetworks. In Proc. 4th Workshop on Distributed Algorithms, Italy, September 1990.[AM89] Yehuda Afek and Yossi Matias. Simple and E�cient Election Algorithms for AnonymousNetworks. In 3rd International Workshop on Distributed Algorithms, Nice, France, Septem-ber 1989.[Ang80] Dana Angluin. Local and global properties in networks of processes. In Proceedings of the12th Annual ACM Symposium on Theory of Computing, May 1980.[AP90] Baruch Awerbuch and David Peleg. Network synchronization with polylogarithmic over-head. In 31st Annual Symposium on Foundations of Computer Science, 1990.[APPS92] Baruch Awerbuch, Boaz Patt-Shamir, David Peleg, and Mike Saks. Adapting to asyn-chronous dynamic networks. In Proceedings of the 24th Annual ACM Symposium on The-ory of Computing, pages 557{570, May 1992.[APV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilization by localchecking and correction. In 32nd Annual Symposium on Foundations of Computer Science,pages 268{277, October 1991.[APV92] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self-stabilizing network pro-tocols. Unpublished manuscript, 1992.116

[AS88] Baruch Awerbuch and Michael Sipser. Dynamic networks are as fast as static networks.In 29th Annual Symposium on Foundations of Computer Science, pages 206{220, October1988.[AV91] Baruch Awerbuch and George Varghese. Distributed program checking: a paradigm forbuilding self-stabilizing distributed protocols. In 32nd Annual Symposium on Foundationsof Computer Science, pages 258{267, October 1991.[Awe85] Baruch Awerbuch. Complexity of network synchronization. J. ACM, 32(4):804{823, Octo-ber 1985.[BP89] J.E. Burns and J. Pachl. Uniform self-stabilizing rings. ACM Transactions on ProgrammingLanguages and Systems, 11(2):330{344, 1989.[Dij74] Edsger W. Dijkstra. Self stabilization in spite of distributed control. Comm. ACM, 17:643{644, 1974.[DIM91] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform self-stabilizing leader election.In Proc. 5th Workshop on Distributed Algorithms, pages 167{180, 1991.[LSS94] Nancy Lynch, Isaac Saias, and Roberto Segala. Proving Time Bounds for RandomizedDistributed Algorithms. To appear in Proc. 13th Conf. on Principles of Distributed Com-puting, August 1994.[SL94] Roberto Segala and Nancy Lynch. A model for randomized concurrent systems.Manuscript, 1994[Var92] George Varghese. Self-Stabilization by Local Checking and Correction. PhD thesis, MITLab. for Computer Science, 1992.
117

