
Time Optimal Self-Stabilizing Spanning Tree 
Algorithms 

Sudhanshu Aggarwal 1 and Shay Kutten2 

1 MIT Laboratory for Computer Science and IBM T.J. Watson Research Center 
2 IBM T.J. Watson Research Center 

Abs t rac t .  In this paper we present time-optimal self-stabilizing algo- 
rithms for asynchronous distributed spanning tree computation in net- 
works. We present both a randomized algorithm for anonymous networks 
as well as a deterministic version for ID-based networks. Our protocols 
are the first to be time-optimal (i.e. stabilize in time O(diameter)) with- 
out any prior knowledge of the network size or diameter, assuming we are 
allowed messages of size O(ID). Both results are achieved through a new 
technique of symmetry breaking that may be of independent interest. 

1 Introduction 

The task of spanning tree construction is a basic primitive in communication 
networks. Many crucial network tasks, such as network reset (and thus any in- 
pu t /ou tpu t  task), leader election, broadcast, topology update, and distributed 
database maintenance, can be efficiently carried out in the presence of a tree 
defined on the network nodes spanning the entire network. Improving the effi- 
ciency of the underlying spanning tree algorithm usually also correspondingly 
improves the efficiency of the particular task at hand. In practice, computation 
in asynchronous distributed networks is made much more difficult because of 
the possibility of numerous kinds of faults. The property of sel f  stabilization, 
first introduced by Dijkstra [Dij74], implies the ability of the system to recover 
from any transient fault that  changes the state of the system. Self-stabilization 
is a very strong and highly desirable fault-tolerance property. 

We would therefore like to have an efficient self-stabilizing algorithm for 
spanning tree construction in asynchronous networks. There are two principal 
measures of efficiency - stabilization time, which is the maximum time taken for 
the algorithm to converge to a "spanning tree" state, starting from an arbitrary 
state, and the space required at each node (i.e. size of local memory needed). Let 
d be the diameter of the network, and let n be the network size - the number of 
nodes in the network. Note that  the optimal stabilization time must necessarily 
be 12(d), and the optimal space requirement for an ID-based protocol must be 
D(log n) (since there must exist IDs of size I2(log n)). 

Several factors influence the "difficulty" of the protocol. The protocol can be 
designed for networks that  are either ID-based (each node has a unique "hard- 
wired" ID), or for networks that  are anonymous (in which nodes lack unique 
IDs, so there is no a priori way of distinguishing them). The protocol may either 



401 

"know" the network size n, or it may "know" some upper bound on n, or it 
may "know" nothing whatsoever. Of course, the more "knowledge" a protocol 
"is given" about the network, the easier it becomes to achieve its objectives. 

Following the pioneering work of [Dij74], there has been considerable work 
in this area. [Ang 80] showed that no deterministic algorithm can construct a 
spanning tree in an anonymous network, so any protocol for the anonymous 
case must necessarily employ randomization. [AKY90] give an ID-based self- 
stabilizing spanning tree protocol with a stabilization time of O(n 2) and space 
requirement O(log n); they subsequently also give a randomized protocol. They 
presented the technique of "local checking" and "local detection", used in many 
subsequent papers. [AG90] give an ID-based self-stabilizing spanning tree proto- 
col with time complexity O(N2), where N is a pre-specified bound on the network 
size n. [APV91] give an ID-based self-stabilizing reset protocol that stabilizes in 
O(n) time and requires O(log n) space. 

[DIM91] give a self-stabilizing spanning tree algorithm for anonymous net- 
works that runs in expected O(dlog n) time and O(log n) space. [AV91] present 
a self-stabilizing synchronizer, which stabilizes in time O(D), where D is a pre- 
specified bound on the network diambter. [AM89] give a Monte-Carlo spanning 
tree protocol for anonymous networks that works in O(d) time and expected 
O(log log n) space; however, their protocol is not self-stabilizing. 

[DIM91] also mention a self-stabilizing spanning tree protocol for anonymous 
networks that requires O(d) time (and is thus time-optimal), but requires prior 
knowledge of a bound N on the network size. Recently, [AKMPV93] have de- 
veloped a time-optimal self-stabilizing spanning tree protocol for ID-based net- 
works; they, too, require prior knowledge of a bound D on the diameter of the 
network. Their protocol requires O(d) time and O(log n log D) space. However, 
they need messages of size O(lognlogD). The usual convention only "allows" 
messages of size O(log n), so their messages are longer than permitted (which 
implies that if they were to follow the convention, their time complexity would 
actually be O(dlog D)). 

We present the first time-optimal self-stabilizing spanning tree algorithms 
that do not need any prior knowledge of the network size or diameter. We present 
both a randomized Las-Vegas algorithm for anonymous networks and a deter- 
ministic version for ID-based networks. Both our protocols stabilize in O(d) time, 
and require space only O(log n) bits larger than the space occupied at the "start" 
of the algorithm (i.e. set by the adversary in the "bad" initial state; not by the 
algorithm). 

Thus, with respect to the O(dlogn)-time protocol of [DIM91], we decrease 
the time complexity to O(d), and compared to their O(d)-time protocol, we do 
not need a bound N on the network size. Unlike [AKMPV93], we do not need 
a bound D on the diameter. Further, our deterministic algorithm is the first 
to be time-optimal under the conventional measure of time complexity which 
allows messages of only O(log n) bits to be sent in one unit of time (provided 
the adversary has not set more than O(log n) bits). 



402 

2 T h e  M o d e l  

We assume that  the network is represented by a graph G : (V, E) of processors 
V and links E.  Our protocols are developed for the popular shared memory 
model. In the shared memory model, each processor is associated with a set of 
local registers. Processors communicate by performing write operations on their 
local registers and read operations on the registers of their neighbors. All reads 
and writes are atornic.~Each processor is a state machine; the local computation 
at each processor consists of a sequence of atomic steps. The state of a processor 
fully describes its internal state and the values written in all its registers. A 
configuration C of the network is a vector of states of all its processors. The 
fair scheduler (demon) of the global computation consists of an infinite sequence 
of processors such that  each processor appears in the sequence infinitely often. 
Whenever a processor appears in the schedule its next step is performed. An 
ezecution of the system is an infinite sequence of configurations {C1, C% ...}. 

The protocol is presented as a "loop" of code performed repeatedly; each 
processor will execute the entire loop infinitely often. As in [DIMgll, we partit ion 
fair executions into rounds. We define the ]~rst round of an execution E to be the 
minimal prefix E1 of E in which each processor has executed steps comprising 
one loop iteration. Let E~ be the suffix of E such that  E -- E1 �9 E~. We define 
the second round of E to be the first round of E~, and so on. Rounds mark the 
passage of t ime- - the  stabilization time of the protocol is the maximum number 
of rounds required for the system to reach its desired state. For the purpose 
of self-stabilization, we assume that  the network is dynamic - nodes or links 
may en te r  or leave the network at any time. Further, the state of a processor 
may change arbitrarily. We assume that  the sequence of topological changes and 
non-algorithmic state changes is finite and that  eventually such events cease. 

3 Comparison of our work with previous approaches 

Spanning tree algorithms usually utilize variants of a common overall scheme. 
We first describe the basic scheme which assumes the existence of unique node 
IDs. The network is logically partitioned into a spanning forest, which is defined 
by parent pointers maintained by the nodes. Initially (unless initialized by the 
adversary), this forest consists of the single-node trees defined by the network 
nodes themselves. Starting from this configuration, the trees gradually coalesce 
into larger trees. Each node keeps track of the ID of the root of its tree. The goal 
is to produce a spanning tree rooted at the node with the highest ID. When a 
node v notices a neighbor u with a higher root ID, it attaches itself to u's tree 
by making u its parent (parent~ ~-- u). Thus, trees with higher root IDs overrun 
trees with lower ones. Eventually, all nodes in the network form a single tree 
rooted at the node with the highest ID. 

To adapt the ID-based scheme to an anonymous network (i.e. with no pre- 
assigned IDs), we need randomization to break symmetry between the proces- 
sors. Each node in the network flips coins to arrive at a random ID, and par- 
ticipates in the tree construction process described above. Since IDs are chosen 



403 

randomly, it is possible that  the node with the highest priority in the network is 
not unique. To detect such "multiple highest priorities", [AKY90] and [DIM 91] 
proposed the method of recoloring trees. In their scheme, each tree is associated 
with a randomly chosen color. The root chooses a color at random from a small 
set of colors. This color is propagated through the entire tree rooted at that  
root. When the root receives confirmation that  the entire tree has been colored 
with its color (through a simple acknowledgement mechanism), it chooses a new 
color. The process is repeated forever. This allows neighboring trees with the 
same priority p to detect the existence of each other. 

When a root learns of the existence of another tree rooted at the same ID, in 
the [AKY90] and [DIM91] schemes the root eztends its ID by a randomly chosen 
bit and continues the protocol. Extending IDs is a way of breaking symmetry; 
eventually the roots in the network have appended enough random bits to their 
IDs so that  there is a unique root with the highest ID, and consequently a unique 
tree spanning the entire network. 

Our main technical contribution in this paper is to develop an intuitive frame- 
work for ID extension and generalize the concept. Our generalization enables us 
to reduce the time complexity of the randomized protocol to O(d), without prior 
knowledge of the size or diameter of the network. Intuitively, the log n factor in 
the previous randomized result came from the need to initiate a new competition 
every time two trees "collided". Every time a tree T~ noticed another tree T~, 
with the same ID, T~ would randomly extend its ID to try to "win" over T~,. 
Our new method usually needs just  O(1) ID extensions per node to converge to 
a spanning tree, as opposed to O(log n) extensions in the previous scheme. 

4 ID representat ion 

IDs are represented as tuples of entries. In the deterministic protocol, each entry 
is an integer. In the randomized version, each entry is itself a pair (tl, sl) chosen 
according to the scheme in [AM89]. [AM89] proposed a scheme by which if 
several (say k) pairs (ti, s~) are randomly computed, there is a unique highest pair 
(lexicographically) with probability at least ~, where ~ is a constant independent 
of k. The number t~ is randomly selected according to the probability distribution 
P(tl = z) = 1/2 ~ and the number sl is randomly uniformly selected from the 
range [1,201n(4r)] where r = 1/e (~ = 1-  e; e is the probability of error we are 
prepared to tolerate for a given collection of random tis). For our purposes, we 
choose ~ = e = 1/2. 

Thus, an ID is a tuple ( a l , . . . , a j )  consisting of an arbitrary number j of 
entries. We impose a lexicographic order -~ on IDs; this order is a total order. 
If  X -~ Y and X is a proper prefix of Y, we define the precedence to hold in 

the weak sense, or X -~ Y. Otherwise, if X -~ Y and X is not a prefix of Y, we 

define the precedence to hold in the strong sense, or X ~ Y. As mentioned earlier, 
nodes compete with one another for being the root of the eventual spanning tree. 
The competition is on the basis of IDs; a higher ID "beats" a lower one. If two 
trees with the same ID detect the existence of each other, they need to break 



404 

symmetry so that  only one of the two advances in the competition. A highly 
desirable model to impose on this competition is the tournament model, to pick 
a unique winner starting with n competitors. As the tournament  progresses, we 
have a shrinking pool of "candidates" for the eventual winner; once a player 
leaves the pool, it is out of the running. 

Our definition of IDs and the ordering defined on them captures the tourna- 
ment model. A node can only change its ID by appending an entry to it. When 
two equal IDs are independently extended in this manner, one of the new IDs is 
ordered higher than the other (if they are different). Further, note that  the first 
ID is now higher in the strong sense: if both the changed IDs undergo further 
(possibly none) extensions, the first ID will remain higher even after additional 
extensions. The second, lower, ID can never compete with the first after this 
extension. Hence our shrinking pool of "candidate" IDs. On the other hand, if 
an ID X is higher than ID Y in the weak sense, it is still possible for Y, through 
some sequence of extensions, to eventually be higher than X in the strong sense. 
Thus a weak-sense relationship between two IDs implies that  the IDs are not 
yet "differentiated" in the competition; any of them might eventually "beat" the 
other. 

5 D e f i n i t i o n s  

In Section 2, we defined an ezecution of our protocol as an infinite sequence of 
configurations C1, C2, C3, .... Configurations are ordered chronologically in the 
sequence; we define the relation -~ on configurations to be chronological order. 
Let the round number of a configuration be the number of the round it occurs 
in. We define the special configurations R1, R2, Rz, .... : configuration Ri is the 
latest configuration in the i ' th  round. Thus Ra denotes the last configuration of 
the 3rd round, and so on. 

We define VAR(v, C) to be value of local variable VAR held by node v in 
configuration C. Thus distanee(v,C) is the value of the distance variable in node 
v's memory in configuration C. IDS(C) is the set of node IDs existing in config- 
uration C. ROOTS(C) is the set of root nodes in configuration C (i.e. for which 
distance -= 0). The following additional terms are defined: 

CANDIDATE-IDa(C): { ID(V~, C) I -7( 3 I E lOS(C) I I ~- ID(V~, C)) }, i.e 
the set of all IDS Ij existing in configuration C such that  no other ID is greater 
than Ij in the strong sense. CANDIDATE-ROOTS(C) is the restriction of this 
set to roots (distance = 0). 

MAXID(C) : (I [ I C IDS(C) and I ~- I 'V I ' E IDS(C) ). This is the 
value of the maximum ID in configuration C. Note that  this ID must be in 
CANDIDATE-IDS(C). MINID(C) is analogous to MAXID(C). 

6 T h e  R a n d o m i z e d  A l g o r i t h m  for n o d e  v 

Each node v maintains a set of local variables partitioned into eight arrays 
called ID, distance, parent, color, direction, other-trees, recorded-colornelghbor 



405 

and recorded-color, ay. Each array is indexed from 0 through DEG~, where DEGv 
is the degree of node v. 

From node o's point of view, the most " important"  variables are what we 
refer to as its core variables - -  all the eight variables indexed by 0 in its arrays. 
(Henceforth, we will drop the array index when mentioning values indexed by 
0; ' thus we refer to parent[O] simply as parent). Values indexed by a nonzero 
index i store the most  recently read values of the core variables of the neighbor 
numbered i at v. 

Nodes maintain IDs; these IDs are not "hardwired". The parent variable at  v 
is the number  of a neighboring node (possibly itself); the set of parent variables 
at  all nodes define a subset Ep,,e,~, of the set of edges E.  We a t t empt  to make 
the parent subgraph Gp~,e,~t = (V, Ep,,e,~t) represent a forest; thus we a t t empt  
to make each node v belong to a tree T~. The distance variable is an estimate of 
the distance from v to the root of its tree T~ (if such a tree exists). 

DO PERIODICALLY: 

/* copy neighbor variables into local memory */ 
LOOK-AT-NEIGHBORS, 
/* become child of neighbor with maximum priority, or become root */ 
MAXIMIZE-PRIORITY, 
/* if local neighborhood "looks" stable, participate in recoloring etc.*/ 
i fVj  E { 1,2, . . . B E G ,  } ,  ID[j] = ID and  I distance[j]- distance I < 1, 
t hen  DETECT-OTHER-TREES 
/* if root has detected other trees with same ID, extend ID */ 
i f  (distance = 0 and direction = echo and other-trees = true) 
t h e n  EXTEND-ID 

Fig. 1. Main  Loop  o f  A lgor i thm.  

The protocol at each node is in the form of a loop executed infinitely often 
(Fig. 1). The procedure LOOK-AT-NEIGHBORS reads the values of each of its 
neighbors'  core variables and copies it into the corresponding local "opinions". 
The procedure M A X I M I Z E - P R I O R I T Y  (Fig. 2) makes v participate in the im- 
por tan t  task of tree overrunning; it sets the ID, distance and parent variables. 
The procedure D E T E C T - O T H E R - T R E E S  makes v participate in recoloring its 
tree to detect "competing" trees with the same ID. I f  v is a root node and the re- 
coloring process has informed it of a "competi tor" tree, v invokes the procedure 
EXTEND-ID to eztend its ID randomly to break symmetry.  

In action [A] of MAXIMIZE-PRIORITY,  we make v determine the number  l 
of its neighbor with the highest priority (defined in Section 3). Of  course, many  
neighbors may  all have the same highest priority; we break ties by choosing the 
highest-numbered neighbor. Action [B] determines whether node v can increase 



406 

MAXIMIZE-PRIORITY 
/* let 1 be the largest index of all neighbors that have max priority */ [A] 
Let 1 ~ MAX { b [ (ID[b], distance[b]) = MAX;.e{x,2,...D~a,} (ID[j], distance[j]) } 
(where MAX' is maximum over the relation -~, defined in Section 2) 

/* if v can improve its priority, by becoming child of another */ 
/* neighbor, do so, otherwise become root */ 
i f  (ID[I] ~- ID) or (ID[I] = ID and distance[t] < distance)/* see def. of ~- */ 
then [B] 

ID ~ ID[I] 
distance ~-- distance[l] + 1 
parent *-- l 

else /* no neighbor has a larger priority; become root */ [C] 
distance *-- 0 
parent ~ 8elf /* 8eli.= 0 */ 

Fig. 2. Procedure MAXIMIZE-PRIORITY 

its priority by attaching to the "highest" neighbor I determined by action [A 1. I f  
the priority cannot decrease, it then makes the neighbor numbered I its parent, 
assumes its ID, and assumes its distance incremented by one. However, if node 
v can only decrease its priority by at taching to the neighbor numbered l, action 
[C] makes it become a root, keeping its ID unchanged and resetting its distance 
to zero. This is the mechanism of handling the ghost root prob lem- - i f  node v 
notices that  it was a nonroot node with a ID Zg that  is not possessed by any 
of its neighbors and is higher than all its neighbors IDs, it was erroneously 
"believing" in the existence of a root node with ID Ig. In this situation, node v 
simply becomes a roo t  with ID I 9 by setting its distance to zero, thus obviating 
the need to "correct" erroneous belief in that  root elsewhere in the network. 
Hence action [C] plays an impor tan t  role in self-stabilization. 

The details of procedure D E T E C T - O T H E R - T R E E S  are left to the full paper. 

7 Correctness and Complexity Proofs for the Randomized 
Algorithm 

We prove tha t  start ing from an arbi trary initial state of all local variables and 
program counters, the graph of parent  pointers forms a spanning tree within 
expected O(d) time, and remains "fixed" ever after. The assumption of a fair 
scheduler allows us to parti t ion the execution into an infinite number  of  rounds 
(defined in Section 2). We prove that  the protocol converges to a spanning tree 
within O(d) rounds; hence the time complexity is O(d). 

The main outline of the proof  is as follows: We first prove that  start ing from 
an arbi t rary initial state, the parent graph must  always be a spanning forest after 



407 

2 rounds. We show that  the set of root nodes in the forest can only diminish: 
roots can become non-roots, but not vice-versa. A key property of our algorithm 
(Ref. Section 4) is that  the ID of the root node of the final spanning tree must 
belong to the set of IDs called CANDIDATE-IDS (defined in Section 5); once 
a root node's ID ceases to be a member of this set, it can never be the final 
rootid. We show that  if in some configuration all the nodes in the forest (if 
there are > 2 trees present) have the same ID, within (constant • diameter) 
rounds afterwards, some node will have extended its ID. Using this fact, we 
show that  during each epoch of duration (constant • diameter) rounds, there 
is a constant probability of there being a unique root at the end of the epoch. 
Thus there exists a unique root node within the network at the end of expected 
O(diameter) rounds, and hence O(diameter) time. 

The details of the proofs are left to the full paper; here we just  state the main 
lemmas. 

L e m m a  1. For  any node v, the value of its (ID, distance) cannot decrease with 
time, i.e. (ID, distance) (v, Ci) ~ (ID, distance) ~v, Cj) V Cj ~- C,, v C V. 

The following lemma and corollary show that  after 2 rounds starting from 
the initial arbitrary state, the graph of the parent pointers is "consistent" in that  
a child always has a lower priority than its parent; thus the entire parent graph 
has no cycles, and must be a spanning forest. 

L e m m a 2 .  Let the system be initialized in an arbitrary state, i.e. let the system 
be started with arbitrary values for the local variables. V C ~- R2, each node obeys 
the distance invariant, i.e. Vu, v E V, 
parent(u,C) = v ~ (ID, distance)(u,C) -~ (ID, distance)(v,C) 

C o r o l l a r y  3. For  any C~- R2, the graph of all parent(v, C) pointers defines a 
spanning forest. 

After the second round, the set of root nodes can only get smaller with 
t ime- -a  root may become a nonroot, but not vice-versa. 

L e m m a 4 .  R O O T S ( q )  C_ ROOTS(C,) V Cj h C, ~- R~ 

We now show that  nodes must "learn" about "high" IDs existing in the 
network within diameter rounds-- the  highest ID in the network in some config- 
uration 1~ is no larger than the lowest ID in configuration l~+d,a,~ete,. In this 
sense, high IDs "overrun" lower IDs. 

L e m m a 5 .  V v E V, ID(v, R~+4) ~- MAXID(I~). 

The following is a crucial property of our algorithm. To ensure fast progress, 
we want that  if a root r l  has an ID that  is smaller than that  of another root ~., 
then the relationship will stay that  way, even if the two roots never communicate 
directly. We can ensure this only if r~.'s ID is higher in the strong sense - -  
Corollary 6 below. However, later, in Lemma 12, we show (based on Lemmas 
9-11) that  even if the IDs are not related in the strong sense, then they become 
so in O(d) time. 



408 

C o r o l l a r y  6. V Ci ~- R~, Cj ~- Ci, if both I"1 and r~ are roots in the interval 

[Ci, Cj], then ID(rl,  Ci) ~ ID(r2, C,) :, ID(rl,  Cj) ~ ID(r~., Ci). 

We will show that  the set CANDIDATE-IDS is the set of IDs that  have 
a chance of "surviving" - a root not having an ID in this set will definitely 
be 'overrun by some other tree. We now have a "competition" between roots 
in the forest. The winner of the competition will be the root of the eventual 
spanning tree. The set CANDIDATE-ROOTS is the set of roots still in the fray; 
all other roots have "lost" and will be overrun. All roots change their IDs only 
by extension (unless they cease to be a root), and by changing their ID they 
may lose their membership in CANDIDATE-ROOTS. 

L e l n m a  7. V C~ >.- R2, Cj ~ Ci, CANDIDATE-ROOTS(Cj) C_ CANDIDATE- 
ROOTS(C,). 

Coronary S. If r �9 MAXROOTS(Cj) ,  r �9 CANDIDATE-ROOTS(CI) V R2 
c~ ~ c~. 

The set CANDIDATE-ROOTS of "candidates" for the root of the eventual 
spanning tree has been shown to shrink with time. However, "shrinking" of this 
set alone is not enough to get a good time complexity; the set must shrink fast. 
The following lemmas show that  if we consider any epoch of kl * diameter rounds 
(where kl is some small constant), with at least a constant probability there will 
be just  a single root node left in the set CANDIDATE-ROOTS at the end of the 
epoch. 

Let the highest ID in some configuration C be I'. Then by Lemma 5, in some 
configuration C' occuring within O( diameter ) rounds, all IDs in the network 
will be at least as large as I'. Thus we have two scenarios for C': either some 
ID is greater than I' in the strong sense, dr all IDs are comparable to I' only in 
the weak sense. Lemma 9 shows that  if the first scenario holds, there will be a 
unique member in CANDIDATE-IDS with at least a constant probability. 

L e m m a  9. Let ]CANDIDATE-IDS(C)I > I for some C ~- R2. Let 1' = MAXID(C) .  

Let MINID(C f) ~- 1" and suppose 3 Is �9 IDS(C r) I Io ~- 1", for some C r ~- C. 
Then with probability >_ 1/2, I CANDIDATE-IDS(Cf)I = 1. 

We now show that  the "recoloring" approach - the procedure DETECT-  
OTHER-TREES - accomplishes its objectives. Specifically, consider a configu- 
ration in which all root nodes in the network (> 2 roots) have the same ID. 
Then, we show that  within kl x diameter rounds, with constant probability, 
some root node will have extended its ID. 

L e m m a l 0 .  Let MAXID(R4) -- MINID(R4), i.e. let all IDS be equal in con- 
figuration R4, and let IROOTS(R4)I > 1. Then with probability > Pl, 3 I �9 

IDS(R~+h~d) such that I ~ MAXID(RI) ,  where 



409 

Pl >_ 1 - (1)  Lk'/e-l /sJ 

Lemmas 11 and 12 show that  in any epoch of duration of (constant x diam- 
eter) rounds, with probability >_ 1/2 there is a single member in CANDIDATE- 
IDS at the end of the epoch. 

L e m m a  11. Let 1' ~ MINID(C f) V • e IDS(C'), for some C ~ ~- C. I fMINID(C')  

MAXID(C),  then with probability > 1/2, ICANDIDATE-IDS(C~)I = 1. 

L e m m a l 2 .  Let ICANDIDATE-IDS(Ri)I > 1. Then with probability > pl/2,  
I CANDIDATE-IDS(Rt+(ka+2)d)I = 1, where pl and kl are related by Lemma 12, 
and d is the diameter of the network. 

Finally, the main result: 

T h e o r e m  13. Starting from an arbitrary initial state, the graph of parent point- 
ers forms a spanning tree in ezpeeted O(d) rounds. 

C o r o l l a r y  14. The stabilization time of the protocol is O(diameter}. 

8 T h e  d e t e r m i n i s t i c  v e r s i o n  

For our deterministic algorithm, we assume that  each node has access to a "hard- 
wired" unique ID. We refer to the unique ID as the node's UID to prevent confu- 
sion with the nodes "other" ID, which is a tuple of entries as in the randomized 
case. The deterministic protocol is very similar to the randomized version. The 
main simplification, compared to the randomized version, arises in the method 
for recoloring trees. We no longer need random coin flips to break symmetry: the 
unique UIDs are exploited for fully reliable symmetry breaking. Each node, as 
before, has a color. However, the main difference is that  trees do not need to be 
repeatedly recolored. The root of a tree always at tempts  to propagate its UID 
as the color of its tree, so nodes repeatedly copy their parent's color. If a leaf 
notices a neighbor with the same ID but a different color, it can safely conclude 
that  its neighbor belongs to a different tree, and informs its root through the 
other-trees variable which is echoed to its root by its ancestors in the tree. When 
a root detects the presence of a competing tree, it appends its own UID to its 
ID; this change in its ID is automatically propagated to its leaves. 

R e f e r e n c e s  

[AG90] Anish Arora and Mohamed G. Gouda. Distributed reset. In Proc. lOth 
Conf. on Foundations of Software Technology and Theoretical Computer 
Science, pages 316-331. Spinger-Verlag (LNCS 472), 1990. 



410 

[AKMPV93] Baruch Awerbuch, Shay Kutten, Yishay Mansour, Boaz Patt-Shamir, and 
George Varghese. Time Optimal Self-Stabilizing Synchronization. In Pro- 
ceedings of the 2Sth Annual A CM Symposium on Theory of Computing, 
May 1993. 

[AKY90] Yehuda Afek, Shay Kutten, and Moti Yung. Memory-efficient self- 
stabilization on general networks. In Proc. 4th Workshop on Distributed 
Algorithms, Italy, September 1990. 

[AM89] Yehuda Afek and Yossi Matias. Simple and Efficient Election Algorithms 
for Anonymous Networks. In 3rd International Workshop on Distributed 
Algorithms, Nice, France, September 1989. 

[AngS0] Dana Angluin. Local and global properties in networks of processes. In 
Proceedings o] the 12th Annual A CM Symposium on Theory of Comput- 
ing, May 1980. 

[APV91] Baruch Awerbuch, Boaz Patt-Shamir, and George Varghese. Self- 
stabilization by local checking and correction. In 32nd Annual Symposium 
on Foundations o] Computer Science, pages 268-277, October 1991. 

[AV91] Baruch Awerbuch and George Varghese. Distributed program checking: a 
paradigm for building self-stabilizing distributed protocols. In 3$nd An- 
nual Symposium on Foundations o] Computer Science, pages 258-267, 
October 1991. 

[Dij74] Edsger W. Dijkstra. Self stabilization in spite of distributed control. 
Comm. ACM, 17:643-644, 1974. 

[DIM91] Shlomi Dolev, Amos Israeli, and Shlomo Moran. Uniform self-stabilizing 
leader election. In Proc. 5th Workshop on Distributed Algorithms, pages 
167-180, 1991. 


