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Cloud Detection of RGB Color Aerial Photographs
by Progressive Refinement Scheme

Qing Zhang, Chunxia Xiao

Abstract—In this paper, we propose an automatic and effective
cloud detection algorithm for color aerial photographs. Based on
the properties derived from observations and statistical results
on a large number of color aerial photographs with cloud layers,
we present a novel progressive refinement scheme for detecting
clouds in the color aerial photographs. We first construct a
significance map which highlights the difference between cloud
regions and non-cloud regions. Based on the significance map
and the proposed optimal threshold setting, we obtain a coarse
cloud detection result which classifies the input aerial photograph
into the candidate cloud regions and non-cloud regions. In order
to accurately detect the cloud regions from the candidate cloud
regions, we then construct a robust detail map derived from a
multiscale bilateral decomposition to guide us remove non-cloud
regions from the candidate cloud regions. Finally, we further
perform a guided feathering to achieve our final cloud detection
result, which detects semitransparent cloud pixels aroundthe
boundaries of cloud regions. The proposed method is evaluated
in terms of both visual and quantitative comparisons, and the
evaluation results show that our proposed method works wellfor
cloud detection of color aerial photographs.

Index Terms—Progressive refinement scheme, cloud detection,
optimal thresholding, image segmentation, color aerial photo-
graph, significance map, detail map, guided feathering.

I. I NTRODUCTION

W ITH the rapid development of aerial photograph ac-
quisition technology, obtaining high resolution color

aerial photographs is an easy task now. Huge amount of
aerial photographs are created every day, and these aerial
photographs have been widely used in agriculture engineering,
environmental protection, resource exploration, geographical
survey and military reconnaissance. As cloud covers more than
50% surface of the earth, many aerial photographs will contain
cloud regions. As a result, clouds will lead to inaccurate
analysis and interpretation for color aerial photographs.For
example, it will be easier to identify objects from color aerial
photographs if cloud regions have been specified. Hence, cloud
detection of color aerial photographs is an important pre-
processing for many follow-up manipulation, such as object
recognition, image retrieval [1], [2] and image classification
[3], [4]. Besides, detecting cloud regions automatically and
effectively will benefit for many automation applications about
color aerial photographs, such as disaster forecast, pollution
monitoring and oil exploration etc. Thus, cloud detection for
color aerial photographs is a meaningful work.
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Cloud detection is a very challenging work, since it is
essentially an image segmentation problem. To detect cloud
regions in color aerial photographs, we need to first recognize
the cloud layers, and then segment the aerial photograph into
two classes (cloud regions and non-cloud regions). However,
for complex aerial photographs that have both bright non-cloud
regions and semitransparent cloud pixels, current techniques
usually fail to provide a satisfactory cloud detection result.
Even resorting to the state-of-art image segmentation methods,
we still cannot get a good cloud detection result without user
interaction. Besides the detection accuracy, high efficiency
and automaticity (no user interactions) should be taken into
consideration as well to process high resolution photographs,
while the later two requirements are also difficult problems.

A number of cloud detection methods [5]–[7] have been
proposed. However, most of them are designed for moderate
spatial resolution sensors such as Advanced Very High Resolu-
tion Radiometer (AVHRR) and Moderate Resolution Imaging
Spectroradiometer (MODIS). These sensors are usually e-
quipped with more than one thermal band, or with water vapor
absorption bands. To the best of our knowledge, there is little
work focusing on cloud detection of color aerial photographs
with just RGB bands information. The other relevant work
may be image segmentation [8]–[13], shadow detection [14]–
[16], and image dehazing [17]–[19]. Different from multispec-
tral satellite images, the RGB color aerial photograph is optical
data which is consisted of only three RGB channels. Thus,
cloud detection for color aerial photographs is more difficult
than multispectral satellite images since we have no auxiliary
channels information. Automatic image segmentation methods
[9]–[11] can be used for cloud detection, however, they usually
fail to handle complex aerial photographs. Interactive image
segmentation methods, such as graph-cut [8], Grabcut [12],
and alpha matting [13], [20], [21] can be used to detect clouds,
but these methods need large amount of user interactions
which prevent them from being put into practical applications
in cloud detection for high resolution photographs.

In this paper, we proposed a novel progressive refinement
scheme for cloud detection of color aerial photographs. Our
approach is based on some properties derived from observa-
tions and statistical results on a large number of color aerial
photographs with cloud layers. We find that cloud pixels in
color aerial photographs usually have higher intensities and
lower hues. Based on this observation, we first construct
a significance map for the input aerial photograph, which
successfully highlights the difference between cloud pixels
and non-cloud pixels. Then, we present an optimal threshold
setting scheme to obtain a coarse cloud detection result.
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In order to handle complex cloudy aerial photograph, such
as the photographs with both bright non-cloud regions and
semitransparent cloud pixels, we incorporate a detail map into
the cloud detection to obtain a finer cloud detection result.
Finally, we further perform a guided feathering to achieve
the final cloud detection result, which detects semitransparent
cloud pixels around the boundaries of cloud regions.

In summary, our work has the following three main contri-
butions:

• Based on the constructed significance map, we propose an
optimal threshold setting scheme to obtain a good coarse
cloud detection.

• We develop a detail-aware cloud detection method to
process complex cloudy aerial photographs, which can
refine the coarse cloud detection results.

• We introduce guided image filtering to detect the semi-
transparent cloud pixels around the boundaries of the
cloud regions.

Our method has the following advantages that would benefit
practical applications:

• Automation: Our method can automatically detect clouds
in color aerial photograph without user interactions.

• Accuracy: Our method has high cloud detection accuracy
even processing complex cloudy aerial photographs.

• Efficiency: Our method can provide us fast feedback
(<2s) for input color aerial photographs with moder-
ate size (typically for aerial photograph with size of
1024×1024).

The remainder of this paper is organized as follows. In
section II, we introduce the related work. In section III, we
present the technique details for the progressive refinement
scheme used in the cloud detection system. Section IV gives
the experimental results and comparisons to demonstrate the
performance of our method, and the limitations of our method
is also given. Section V concludes the paper and gives the
future work.

II. RELATED WORK

In this section, we review the most related work to our
work, namely, cloud detection, image segmentation, shadow
detection and image dehazing. Our cloud detection method for
color aerial photographs is partially inspired by these works.

Cloud detection. In the last few years many researchers
have explored automatic cloud detection methods for multi-
spectral satellite images. Most of the current cloud detection
methods are highly dependent on the available spectral bands
besides RGB. Some of these methods work on pixel by
pixel basis [22], some use neighborhood information, such as
local standard deviation [5]. The Moderate Resolution Imag-
ing Spectroradiometer (MODIS) onboard the NASATerra
and Aqua satellites measures radiances at 36 wavelengths,
including infrared and solar bands, with a spatial resolution
between 250m to 1km. Based on the MODIS data, many
cloud detection methods [6], [7] have been proposed to
improve the detection performance. Although there are many
effective cloud detection methods for multi-spectral datahave
been proposed, we can not directly apply these methods to

detect clouds for color aerial photographs. To the best of our
knowledge, there is little work about cloud detection for color
aerial photographs in literature. Cloud detection of coloraerial
photographs is more difficult because we have no auxiliary
bands information except common RGB. Le et al. [23] pro-
posed an automatic detection algorithm for cloud/shadow on
high resolution optical images by using a Markov Random
Field (MRF) framework. However, this method may fail to
distinguish cloud regions from bright non-cloud regions, and
it is also time-consuming for energy optimization.

Image segmentation. Cloud detection of color aerial pho-
tographs is essentially an image segmentation problem, we can
apply some automatic image segmentation methods [9]–[11] to
detect clouds for color aerial photograph. However, automatic
image segmentation methods usually cannot achieve good
results for complex images. To increase the detection accuracy,
we can resort to some interactive image segmentation methods.
Many popular interactive image segmentation methods [8],
[12] have been proposed. Boykov et al. [8] proposed a method
via graph cuts to achieve segmentation results by combining
colour information and edge information. Grabcut [12] system
employed graph cuts optimization to achieve more coherent
and higher quality foreground segmentation. However, these
methods require lots of user interactions to process high
resolution aerial photographs. Thus, these methods are in-
applicable in practical applications. Many soft segmentation
methods based on image matting [13], [20], [21] have been
designed to deal with boundaries of fuzzy foreground objects.
Although we can get a good cloud detection result based on the
these matting methods, we should provide some complex user
specified scribbles beforehand, furthermore, these methods
usually requires long processing time.

Shadow detection. Similar to the automatic cloud detection
of color aerial photographs, automatic shadow detection is
also a challenging problem, and there are lots of similarities
between these two topics. Researchers have designed many
effective automatic shadow detection methods [14]–[16], [24].
Huang et al. [15] noticed that shadow pixels usually have
larger hues, lower blue channel values, and relatively small
difference between the values of green and blue channels.
Based on these facts, they computed three thresholds over the
histogram of the input image to separate the shadow regions
from non-shadow regions. Inspired by observation of Huang
et al. [15], Tsai [16] proposed a shadow detection method for
color aerial photographs which used a ratio map of the hue to
the intensity in conjunction with a thresholding setting. Instead
of using the ratio map proposed in Tsai’s method, Chung et
al. [14] proposed a modified ratio map to further stretch the
disparity between shadow regions and non-shadow regions,
and a successive thresholding scheme is then applied to detect
shadow regions from color aerial photographs.

Image Dehazing. As cloud is sometimes similar to the haze
in appearance, cloud detection is relevant to image dehazing in
some aspects. Many works have been done on image dehazing
in recent years. Tan [19] found that clear images had higher
contrast compared with foggy images, thus he maximized
the local contrast of the restored image for enhancing image
visibility. Based on the assumption that the propagation of
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light and the shading parts of the target surface were locally
uncorrelated, Fattal [17] first estimated the scene radiance and
then derived the transmission image. He et al. [18] proposeda
single image haze removal approach based on Dark Channel
Prior (DCP) and produced impressive results. More recently,
inspired by the Dark Channel Prior [18], Xiao et al. [25]
proposed a fast image dehazing method by using joint bilateral
filtering.

III. C LOUD DETECTION ALGORITHM

The HSI color model [26], which follows the human visual
perception closely, separates the color components in terms of
intensity, hue and saturation. For an input RGB color aerial
photograph, we can transform it into HSI color model as
follows:
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In the HSI color model,H andI corresponds to the intensity-
equivalent and hue-equivalent components, respectively.

It seems that it is an easy task for human beings to
identify clouds in color aerial photographs. However, iden-
tifying clouds in color aerial photographs by computer is
a difficult problem, especially to detect the cloud regions
automatically and effectively. Fortunately, after a largeamount
of observations and statistical experiment, we have observed
that cloud regions in the color aerial photographs usually share
the following common properties:

• Property 1: Cloud regions generally have higher intensity
since the reflectivity of cloud regions is usually larger
than that of the non-cloud regions.

• Property 2: Most cloud regions often have lower satura-
tions and hues.

• Property 3: In color aerial photographs, the ground cov-
ered by cloud veil usually has little details as the ground
object features are attenuated by cloud veil.

• Property 4: Cloud regions in color aerial photographs
always appear in terms of clustering, not in sparkle cloud
pixels.

• Property 5: Semitransparent cloud pixels are often present
around the boundaries of cloud regions.

Based on above observations, we propose our progressive
refinement scheme for cloud detection. In Fig.1, we give the
block diagram of the proposed cloud detection system. Our
system has the following main steps. Firstly, we construct a
significance map for the input color aerial photograph. Sec-
ondly, based on the significance map, we develop an optimal
threshold setting to obtain a coarse cloud detection result.
Then, we incorporate a detail map into the cloud detection
to remove redundant non-cloud regions in the coarse result.
Finally, a guided feathering technology is used to refine the
cloud detection result.

Fig. 1. Block diagram of the proposed cloud detection system.

A. Significance map

We have learnt from above properties that cloud regions
in color aerial photographs usually have higher intensity and
lower hue. For an input color aerial photograph, we first
transform it from RGB color model into HSI color model,
and then we construct a significance map to highlight the
difference between cloud regions and non-cloud regions as
follows

W =
Iintensity + ε

Ihue + ε
(4)

where Iintensity and Ihue refer to intensity and hue of the
pixel in the input aerial photographI, respectively. We bound
the intensity and hue to[0, 1] to compute the significance
map, which is proved to be a better significance map.ε
is an amplification factor, in our paper, we typically set
ε = 1.0. To alleviate the noise disturbing without blurring the
boundaries, we then apply the bilateral filter [27] toW . To
obtain an intuitive visual description of the significance map,
we scale the value of filteredW to the range of[0, 255]. The
significance mapW efficiently stretch the disparity between
cloud regions and non-cloud regions, which will be used as
an input of our optimal threshold setting scheme.

In Fig.2, we visualize the significance map. We can notice
that significance map in Fig.2(b) successfully stretch the
difference between cloud regions and non-cloud regions, and
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the filtered significance map in Fig.2(c) reduces the noise in
Fig.2(b).

(a) (b) (c)

Fig. 2. The significance map. (a) Input color aerial photograph. (b) Original
significance map. (c) Filtered significance map.

B. Optimal threshold setting

Based on the significance map, we can identify cloud
regions from input color aerial photograph by using global
thresholding method, such as the Otsu’s method [28]. We use
the Otsu’s method to segment the input photograph into can-
didate cloud regions and non-cloud regions, which can receive
a coarse cloud detection result. The Otsu’s method assumes
that the photograph to be thresholded contains two classes of
pixels or bi-modal histogram (for example, foreground and
background), then calculates the optimal threshold separating
those two classes so that their inter-class variance is maximum.
Specifically, the optimal thresholdT can be determined by
maximizing the following formulation

T = argmax{w0(T )(u0(T )−ū)2+w1(T )(u1(T )−ū)2} (5)

wherew0(T ) =
∑T

i=0 pi , w1(T ) =
∑255

i=T+1 pi , ū =
∑255

i=0 i·
pi , u0(T ) =

∑T
i=0 i · pi , u1(T ) =

∑255
i=T+1 i · pi and pi is

the probability of the gray leveli . The variableT is within
the range of[0, 255]. To get a coarse cloud detection result,
we can first apply Otsu’s method over the histogram of the
significance mapW to select the global thresholdTGlobal.
Then, we can get a coarse cloud detection resultRCoarse based
on the significance mapW , and it is defined by

RCoarse =

{

1, W (x) ≥ TGlobal

0, otherwise
(6)

here, 1 refers to those pixels lying in candidate cloud regions,
and 0 refers to those pixels lying in non-cloud regions.
However, due to the threshold shifting problem of the Otsu’s
method, the coarse cloud detection result may suffer from
excessive error detection. For example, when the histogramof
the significance map has single peak instead of two isolated
peaks, the threshold shifting problem will occur. Specifically,
a prohibitively high threshold will be selected if most pixels
have comparatively high intensity, a coarse cloud detection
based on the prohibitively high threshold will miss some true
cloud pixels which actually have relatively low intensity.On
the contrary, a prohibitively low threshold will be selected if
more pixels have comparatively low intensity, a coarse cloud
detection based on the low threshold will mistake excessive
non-cloud pixels for cloud pixels.

In Fig.3, we illustrates the threshold shifting problem of the
Otsu’s method. According to the histogram in Fig.3(d), we can
see that the significance map in Fig.3(b) has a small number
of pixels of relatively high intensity (larger than 100). Thus,
a prohibitively low threshold 61 will be obtained by Otsu’
method due to the threshold shifting problem. As a result,
many non-cloud regions are mistaken for cloud regions in
Fig.3(c). In Fig.3(e), we further provide a histogram to indicate
the result in Fig.3(c), in which blue region refers to detected
non-cloud pixels, the yellow region for detected cloud pixels.
To ensure the detection accuracy, we should make the coarse
cloud detection resultRCoarse containing the whole true cloud
pixels and as few non-cloud pixels as possible. To address the
threshold shifting problem, we propose an optimal threshold
setting.

(a) (b) (c)

(d) (e)

Fig. 3. Threshold shifting problem. (a) Input color aerial photograph. (b)
Significance map. (c) Cloud detection result based on the threshold determined
by the Otsu’s method [28]. (d) Histogram of the significance map in (b). (e)
Histogram indicates the detection result in (c).

According to above observations (property 1 and property
2), we recognize that true cloud pixels usually have compara-
tively high intensities and comparatively low hues. To identify
the distribution law of intensity and hue of true cloud pixels,
we collect 500 cloudy color aerial photographs from Flick-
r.com and several popular search engines, and we manually
extract all cloud regions of these photographs. Then, we plot
the histogram of intensity and hue based on pixels in all
extracted cloud regions. Fig.4(a) is the intensity histogram over
all cloud regions from 500 cloudy color aerial photographs.
Fig.4(b) is the corresponding cumulative histogram of Fig.4(a).
We can see that over 95% of the true cloud pixels have
intensity not less than 100. Fig.4(c) is the hue histogram.
Fig.4(d) is the corresponding cumulative histogram of Fig.4(c).
Obviously, almost all of the hues are between 50 and 80.
Notice that, to make the histograms more intuitive, we have
bounded intensity and hue to the range [0, 255].

The intensity histogram in Fig.4 illustrates that the true
cloud pixels usually have an intensity value not less than
100. In addition, to stretch the disparity between true cloud
pixels and non-cloud pixels, we have constructed a significance
map beforehand. Therefore, we believe that a proper global
threshold for coarse cloud detection should not less than 100.
The lower bound (100) can ensure the coarse cloud detection
will not bring in excessive non-cloud pixels which have lower
intensities. As a prohibitively high threshold will cause the
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(a) (b)

(c) (d)

Fig. 4. Statistics of intensity and hue of cloudy photographs. (a) Histogram of the intensity of the cloud pixels in the 500 cloudy color aerial photographs.
(b) Corresponding cumulative distribution of (a). (c) Histogram of the hue of the cloud pixels in the 500 cloudy color aerial photographs. (d) Corresponding
cumulative distribution of (c).

coarse cloud detection result missing some true cloud pixels,
thus an upper bound is required as well. Our coarse cloud
detection aims at extracting all true cloud regions, and we can
tolerate a certain amount of non-cloud pixels in the coarse
cloud detection result, since our follow-up operations will
further remove them. However, we cannot tolerate missing
too many true cloud pixels in this step. Thus, we typically
set the upper bound to 150 which turns out to be suitable for
protecting the true cloud pixels. Our optimal threshold setting
can be defined by

TOptmal =







100, TGlobal < 100
TGlobal, 100 ≤ TGlobal ≤ 150
150, TGlobal > 150

(7)

whereTGlobal is the global threshold determined by the Otsu’s
method over the histogram of the significance map. Based on
the TOptimal, we can compute a more accurate coarse cloud
detection result.

We have noticed that hue has a small value range[50, 80]
compared with the wide value range[100, 255] of the intensity
of true cloud pixels. To further improve the detection accuracy,
we compute one more cloud detection result based on the
value range of hue, we regard pixels having a hue value
between 50 and 80 as cloud pixels, the rest as non-cloud pixels.
Then, we implement an intersection between the two cloud
detection results to get the final coarse cloud detection result.
In Fig.5, we compare our final coarse cloud detection result
with result derived from Otsu’s method, we can see that there
is a large amount of error detection in Fig.5(b) while our final
coarse cloud detection result in Fig.5(c) successfully avoids
the serious error detection by using optimal threshold setting.

For some cloudy color aerial photographs, our final coarse
cloud detection result will be very close to the ideal cloud
detection result. However, for some complex input color aerial

(a) (b) (c)

Fig. 5. Coarse cloud detection result. (a) Input color aerial photograph. (b)
Coarse cloud detection result by performing Otsu’s method on our significance
map. (c) Coarse cloud detection result produced by the proposed optimal
threshold setting.

photographs which have lots of ground objects of compara-
tively high intensity, our optimal threshold setting may fail
to distinguish these bright ground objects from cloud regions.
Thus, to remove possible non-cloud regions from our coarse
cloud detection result, we further incorporate a robust detail
map into the cloud detection system.

C. Cloud detection incorporating detail map

According to our above analysis, some non-cloud regions
may be included in the coarse cloud detection result, thus
we should remove these non-cloud regions to achieve better
results. Fortunately, the property 3 have illustrated thatcloud
regions in color aerial photographs usually have much less
details compared with complex ground. This property is an
important clue for us to remove redundant non-cloud regions
from our coarse cloud detection result. Based on the multiscale
bilateral decomposition [29], we construct a detail map to
capture the edge features of the input aerial photographs,
which will be used to guide the following cloud detection.

The bilateral filtering [27] is a non-linear, edge-preserving
and noise-reducing filter. The basic idea of the bilateral
filtering is to replace the intensity value of each pixel by a
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weighted average of intensity values from neighboring pixels.
Specifically, the weights depend on both Euclidean distance
and color intensity difference of pixels, and are based on
Gaussian function. For an input intensity imageI, the bilateral
filter is defined as

I ′(p) =
1

k

∑

q∈Ω

gδs(‖p− q‖) · gδr (‖I(q)− I(p)‖) · I(q) (8)

where the normalization term

k =
∑

q∈Ω

gδs(‖p− q‖) · gδr (‖I(q)− I(p)‖) (9)

whereI ′ denotes the filtered image,p denotes the coordinate
of the current pixel to be filtered.Ω denotes a square window
centered inp, and q denotes coordinates of pixels withinΩ.
I(p) and I(q) are intensity values of pixels located atp and
q, respectively.gδ(x) = e(−x2/δ2), δs andδr are the standard
deviation of the Gaussian function.

Using bilateral filtering, we can decompose an input image
I into two layers: a base layer and a detail layer. For an
input image, the filtered imageI ′ refers to the base layer that
maintains strongest edges while smoothing out small changes
in intensity. The detail layerD then can be produced by
subtraction of a based layer from an input image:D = I− I ′.
The basic idea of the multiscale bilateral decomposition isto
constructM detail layers on the input image by using bilateral
filtering. For an input imageI, we iteratively implement the
bilateral filtering to build a series of filtered image{I ′j}Mj=0.
At the finest scale, we haveI ′0 = I. Based on equation 8, we
can iteratively construct{I ′j}Mj=0 by

I ′j+1 =
1

k

∑

q∈Ω

gδs,j(‖p− q‖) · gδr,j (
∥

∥I ′j(q) − I ′j(p)
∥

∥) · I ′j(q)

(10)
whereδs,j andδr,j are the standard deviation of thej-th bilat-
eral filtering, respectively. In our implementation, we typically
set the size ofΩ to 7. To increase the spatial smoothing at each
scalej, we setδs,1 =

√
3δs,0 andδs,j = 2j−1δs,j−1 , andδs,0

is set to 2. Since cloud regions may have some weak edges,
we setδr,0 to R/10 and δr,j = δr,j−1 to iteratively weaken
these edges, whereR is the maximum intensity of the image.

We computeM subsequent image detail levels{Dj}Mj=1,
whereDj = I ′j − I ′j−1. Here,I ′j attenuates the strong edges
in the input color aerial photograph and the detail layersDj

contain small changes in intensity. A simple detail map can
be constructed just dependent onD1 = I ′0 − I ′1. when the
input color aerial photograph contains very little noise, the
simplest detail map will not be a bad choice. However, when
the image suffers from heavy noise, or the cloud regions have
too many weak edges, the simple detail map will not work
well. To construct an effective detail map which has little noise
and edge information in cloud regions, we compute the detail
map based on theM(M > 1) subsequent image detail levels
{Dj}Mj=1. We can accelerate the multiscale decomposition by
using [30].

Our goal in building a detail mapIDetail is to reduce the
possible noise of the input image and restrain some weak edges

within cloud regions. Thus, we computeIDetail as a weighted
sum of theM detail levels{Dj}Mj=1,

IDetail =
1

λ

M
∑

j=2

ωj ·Dj (11)

λ =

M
∑

j=2

ωj (12)

where the weightωj is computed as

ωj = gδd ∗ e(|Dj |) (13)

Here, we typically setδd = 7 to locally smooth the weight
and reduce noise. Since the input color aerial photograph may
suffer from heavy noise, we do not take the first detail level
D1 into the weighted sum. In all our implementation, we set
M = 4 to construct 4 detail levels to compute a detail map.
In Fig.6 we display the detail map computed by our method,
and we can see that our multiscale detail map attenuate some
weaken edges and noise in cloud regions compared with the
single level detail map.

In order to refer more detail information, we iteratively
apply a morphology dilation operator with7 × 7 structural
elements on the detail mapIDetail to obtain a more consistent
detail map. In all our implementation, we typically implement
the dilation operator with 2 times.

(a) (b) (c)

Fig. 6. Comparison of different detail map. (a) Input color aerial photograph.
(b) The single level detail map derived from once decomposition. (c) Our
multiscale detail map.

As cloud regions are clusters of similar cloud pixels in
most cases, cloud regions usually have little details. On the
other hand, our multiscale bilateral decomposition can further
attenuate weak details within cloud regions. Thus, cloud
regions and non-cloud regions are usually visually different in
the detail map. To make the detail map display the disparity
between cloud regions and non-cloud regions more intuitive,
we apply the Otsu’s method to compute a thresholdTDetail

on the detail mapIDetail, then a binary detail mapRDetail

can be obtained by

RDetail =

{

1, IDetail < TDetail

0, otherwise
(14)

Then the binary detail map will be consist of regions with
details and other regions without details. According to our
analysis, we believe that all regions without details in the
binary detail map are highly likely to be cloud regions. Then,
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(a) (b) (c) (d) (e)

Fig. 7. Procedure of our detail-aware cloud detection. (a) Input color aerial photograph. (b) Coarse cloud detection result. (c) Binary detail map. (d) Intersection
between (b) and (c). (e) Final result with hole filling and tiny clustering removing.

by combining our coarse cloud detection resultRCoarse, a
finer cloud detection resultRFiner can be computed by

RFiner = RCoarse
⋂

RDetail (15)

whereRCoarse denotes the coarse cloud detection result, and
RDetail denotes the binary detail map derived fromIDetail.

As some cloud regions (for example cirrus) may contain
strong edges, the cloud regions around the strong edges willbe
mistaken as non-cloud regions. Thus,we resort to the Matlab
function imfill() to fill holes inside cloud regions ofRFiner.
In fact, before filling these regions, we should exclude the tiny
clusters inRFiner to provide a cleaner result since the cloud
regions are usually not less than a certain size. To remove
these tiny clusters (including regions just have single pixel),
we first use a median filter to remove the salt and pepper noise,
and then we extract all connected components fromRFiner.
We calcaulate the number of pixels for all extracted connected
components, if the pixel number of a connected component is
less than a certain thresholdT Size, the corresponding cloud
region will be regarded as non-cloud regions. In our paper,
the thresholdT Size is set to 120, and a largerT Size can be
selected if the aerial photographs having high resolution.

(a) (b) (c)

Fig. 8. Comparison between the results derived from different detail maps.
(a) Input color aerial photograph. (b)RFiner based on the single level detail
mapD1. (c) RFiner based on our multiscale detail mapIDetail.

In Fig.7, we give the procedure of the cloud detection
incorporated with detail map. In Fig.7(b), we give the coarse
cloud detection result of the input aerial photograph, and
Fig.7(c) is a binary detail map, Fig.7(d) is the intersection
between Fig.7(b) and Fig.7(c). Based on Fig.7(d), we further
remove the tiny clusters and repair holes inside cloud regions
to achieve the final resultRFiner (Fig.7(e)).

In Fig.8 we compare our detection results with result derived
from the single level detail map. As the input aerial photograph
in the first row of Fig.8(a) has some strong edges in cloud

(a) (b) (c)

Fig. 9. Refinement by removing tiny clusters and filling holes. (a) Input color
aerial photograph. (b) Result without using tiny clusters removing and holes
filling. (c) Result by combining tiny clusters removing and holes filling.

regions , the result derived from the the single detail level
D1 in Fig.8(b) has mistaken more cloud pixels for non-cloud
pixels compared with the result derived from multiscale detail
map in Fig.8(c).

As illustrated in Fig.9, the cloud regions (cirrus cloud) ofthe
aerial photograph in Fig.9(a) have some strong edges, which
lead to a detection result with some holes inside the cloud
regions in Fig.(b). By removing tiny clusters and filling holes,
we receive a more accurate result.

D. Refinement by guided image filtering

Although we can get a good cloud detection result through
above processes, we may miss some semitransparent cloud
pixels around boundaries of the cloud regions (according to
property 5) since above cloud detection processes belong to
hard segmentation. To receive a more accurate cloud boundary
detection results, we apply the guided filter [31] to refine the
cloud boundary detection.

The guided filter is a new type of explicit image filter which
involves a guidance imageI, an input imageP , and an output
imagef . It can be used as a guided feathering, in which a
binary mask will be refined to appear an alpha matte near the
object boundaries. The key assumption of the guided filter isa
local linear mode between the guidanceI and the filter output
f , and f is supposed to a linear transform ofI in a square
window ωk centered at the pixelk:

fi = αkIi + βk, ∀i ∈ ωk, (16)

where αk and βk are constant linear coefficients inωk, i
denotes a pixel coordinate in the square windowωk. The
local linear model presented in equation 16 ensures thatf
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(a) (b) (c) (d)

Fig. 10. Result comparison betweenRFiner andRFinal. (a) Input color aerial photograph. (b) Result ofRFiner . (c) Output of the guided feathering over
(b). (d) Final binary resultRFinal.

has an edge only ifg has an edge, since∇f = α∇I. The two
coefficientsαk andβk are defined by

αk =

1
|ω|

∑

i∈ωk

IiPi − µkP̄k

δ2k + ε
(17)

βk = P̄k − αkµk (18)

whereµk and δ2k denote the mean and variance ofI in ωk,
respectively.|ω| denotes the number of pixels inωk, and P̄k

is the mean ofP in ωk. As a pixel is involved by all windows
that contain it, so the output value of one pixel should combine
all of them, and the final output of the pixel is defined by

fi = ᾱiIi + β̄i (19)

where ᾱi and β̄i denote mean of allαk andβk of windows
that contain the pixeli.

To implement the guided feathering, the former cloud de-
tection resultRFiner is used as the inputP , and the guidance
image is the original color aerial photographI, then the output
is the final cloud detection resultRFinal can be obtained by
applying a guided image filtering overRFiner and I. In our
implementation, we typically set the window radius to 60, and
ε = 10−6 for the guided filter. We notice that the output of
the guided feathering is not a binary result. To obtain a binary
result, we can select an thresholdTBinary to produce a binary
result. However, besides the true semitransparent cloud pixels,
the guided feathering may also bring in some non-cloud pixels
around the boundaries of cloud regions. Since semitransparent
cloud pixels are usually not as bright as the common cloud
pixels, we trend to select a small threshold to obtain these
semitransparent cloud pixels. However, a too small threshold
may bring in some non-cloud pixels. Our experience is that
if the user tends to detects more semitransparent cloud pixels,
a smaller threshold is recommended, and if the user tends to
detects more accurate semitransparent cloud pixels, a larger
threshold is recommended. To make our method detecting

clouds automatically,TBinary is fixed to 60 to make a trade-
off in our implementation.

In Fig.10 we compare our final cloud detection result
RFinal with RFiner , we notice thatRFinal has repaired some
hiatuses around the boundary of cloud regions compared with
RFiner, and what’s more,RFinal contains most semitranspar-
ent cloud pixels.

IV. RESULTS AND DISCUSSION

In this section, we further demonstrate the effectiveness of
our cloud detection algorithm by both visual comparisons and
quantitative evaluation. We implemented our cloud detection
algorithm in C++ combined with Matlab on a PC with
Pentium Dual-Core CPU E6500 @2.93GHz and 4GB RAM.
To evaluate the efficiency of our cloud detection algorithm,
we compare our method with the cloud detection method
[23], some popular automatic image segmentation methods
[9]–[11] and interactive image segmentation methods [8],
[13]. Furthermore, we present a quantitative evaluation ofthe
detection accuracy and runtime to prove the efficiency of our
method.

(a) (b) (c)

Fig. 11. Comparisons with other competing cloud detection method [23]. (a)
Input color aerial photograph. (b) Result of [23]. (c) Our result.
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(a) (b) (c) (d) (e) (f)

Fig. 12. Detection comparisons with automatic image segmentation methods. (a) Input color aerial photographs. (b) Result of k-means [11]. (c) Result of
mean-shift [9]. (d) Result of graph-based segmentation [10]. (e) Result of our method. (f) The ground truth.

A. Visual comparisons

In Fig.11, we compare our method with [23], which au-
tomatically detect cloud/shadow based on a Markov Random
Field (MRF) framework. We observe that the method [23]
cannot produce satisfactory results for complex aerial pho-
tographs while our method can achieve better results. Besides,
as the method [23] involves a complex optimization process,
our method is more efficient than [23]. For example, for an
input photograph with size of1600 × 1200, [23] takes more
than 10s to detect the clouds, while our method takes only 2s.

In Fig.12, we compare our cloud detection algorithm with
the automatic image segmentation methods [9]–[11], and
we present five groups of cloud detection results. In these
results, the results of k-means are obtained by computing two
clustering center for the photograph based on intensity. The

results of both mean-shift and graph-based segmentation are
computed in two steps. We first segment the input photographs
using mean-shift or graph-based segmentation, and then we
detect cloud regions according to the average intensity of the
region, regions having an average intensity more than 100 are
regarded as cloud regions. In Fig.12, the cloud layers are
diverse, including thick clouds (first and fifth row), snows
(third row), and semitransparent clouds (second and fourth
row). For photographs with bright non-cloud regions, for
example, the third photograph in Fig.12 with snows, current
cloud detection or image segmentation methods usually failto
produce satisfactory results. However, though these non-cloud
regions are visually similar to cloud regions, they are quite
different in our multiscale detail map. Thus, by incorporating
the detail map into our cloud detection system, we can remove
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(a) (b) (c) (d) (e) (f) (g)

Fig. 13. Detection comparisons with interactive image segmentation methods. (a) Input color aerial photograph. (b) User interaction for graph-cut [8], where
blue scribbles indicate cloud regions (foreground), and red scribbles indicate non-cloud regions (background). (c) Result of graph-cut based on mask (b). (d)
Trimap for robust-matting [13], where white scribbles indicate cloud regions, black scribbles indicate non-cloud regions, and the other gray regions denote
unknown regions. (e) Result of robust-matting based on trimap (d). (f) Our cloud detection result. (g) The ground truth.

them from the candidate cloud regions. As for photographs
with semitransparent cloud pixels, our guided feathering will
help us involve them in the final cloud detection result. As
illustrated in Fig.12, compared with these image segmentation
methods, our method produce much better results.

In Fig.13, we further compare our approach with some in-
teractive image segmentation methods [8], [13]. Since the first
and the second aerial photograph in Fig.13 have some isolated
small cloud regions, we have to take pains to produce lots of
interactions for graph-cut [8] and robust-matting [13]. Howev-
er, our method achieves better results though we requires no
interaction. As for complex cloudy aerial photographs in the
third and fourth row in Fig.13, they have both white non-cloud
regions and semitransparent cloud pixels. Though we have
provided enough interactions for these complex photographs to
perform graph-cut and robust-matting, they still mistake more
non-cloud pixels for cloud pixels than our method.

B. Quantitative evaluation

To quantitatively evaluate the efficiency of our cloud detec-
tion method, we use the error rate to evaluate the accuracy
of our method, automatic image segmentation methods [9]–
[11], and interactive image segmentation methods [8], [13].
The error rate (ER) is defined by

ER =
CN +NC

TN
(20)

whereCN denotes the number of cloud pixels identified as
non-cloud pixels,NC denotes the number of non-cloud pixels
identified as cloud pixels, andTN denotes the number of
pixels in the input photograph. We also give the quantity of the

user interaction for interactive image segmentation methods,
which is defined as

QI =
SP

TN
(21)

whereSP denotes the number of user scribbled pixels.
In Table I, we give the aforementioned error rateER for the

results in Fig.12, and the table shows that our method has low-
er error rate compared with k-means, mean-shift and graph-
based segmentation. Since these methods may mistake lots
of non-cloud pixels (usually have high intensities) for cloud
pixels, and they are also weak in detecting the semitransparent
cloud pixels, so they usually have higher error rate than our
method. In Table II, we show error rate and quantity of the
user interaction for results in Fig.13. Although our method
needs no interaction, our method still outperforms graph-cut
and robust-matting for these color aerial photographs.

C. Time complexity

The main computation of our cloud detection method is the
detail-aware cloud detection and guided feathering refinement.
For the detail-aware cloud detection, the computation mainly
lies in the multiple bilateral filtering whose time complexity
is O(Nr2), where r is the kernel radius. Fortunately, the
acceleration methods [30], [32] with O(N ) have been devel-
oped based on histograms recently. In this paper, we resort
to [30] for our task. As illustrated in [31], the guided filter
has an O(N ) complexity which can provide fast feedback
(<1s) for a 6-mega-pixel photograph. In Table III and IV,
we give the runtime for all the aerial photographs in Fig.12
and Fig.13, where the stage 1 refers to runtime for the detail-
aware cloud detection, and the stage 2 refers to runtime for
the guided feathering refinement. The results show that our
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TABLE I
QUANTITATIVE EVALUATION OF ACCURACY FOR RESULTS IN FIG.12

Method ER of 1th photograph ER of 2th photograph ER of 3th photograph ER of 4th photograph ER of 5th photograph
K-means 29.71% 23.03% 26.64% 13.76% 33.13%

Mean-shift 23.92% 14.48% 24.63% 12.55% 27.07%
Graph-based 34.23% 26.31% 38.33% 39.67% 41.56%
Our method 1.73% 4.73% 1.85% 4.03% 1.41%

TABLE II
QUANTITATIVE EVALUATION OF ACCURACY FOR RESULTS IN FIG.13

Method QI&ER of 1th photograph QI&ER of 2th photograph QI&ER of 3th photograph QI&ER of 4th photograph
QI ER QI ER QI ER QI ER

Graph-cut 2.65% 3.41% 5.91% 17.69% 6.13% 14.91% 7.03% 6.87%
Robust-matting 5.75% 2.02% 6.75% 9.52% 5.13% 13.01% 5.67% 7.33%

Our method 0 1.34% 0 5.18% 0 2.14% 0 5.71%

method provides fast feedback (<2s) for 1-mega-pixel aerial
photographs. Since the core steps of our method can be
implemented in O(N ), we can put our method into practical
applications.

TABLE III
QUANTITATIVE EVALUATION OF RUNTIME FOR RESULTS IN FIG.12

Input photograph Size Stage 1 Stage 2 Total time
The first 700× 465 0.796s 0.212s 1.008s

The second 930× 614 1.141s 0.311s 1.452s
The third 480× 640 0.734s 0.219s 0.953s
The fourth 579× 758 0.883s 0.231s 1.124s
The fifth 629× 777 0.949s 0.267s 1.216s

TABLE IV
QUANTITATIVE EVALUATION OF RUNTIME FOR RESULTS IN FIG.13

Input photograph Size Stage 1 Stage 2 Total time
The first 690× 668 0.734s 0.228s 0.962s

The second 1024× 768 1.402s 0.391s 1.793s
The third 700× 419 0.704s 0.218s 0.922s
The fourth 1024× 768 1.314s 0.353s 1.667s

D. Limitations

To detect clouds from the aerial photograph with bright non-
cloud regions that have little details is very challenging for
our cloud detection system. These non-cloud regions basically
meet the properties we have summarized from common cloud
regions, such as higher intensity, smoother, lower chromatic,
and appearing in terms of clusters. Thus, our system may fail
to distinguish cloud regions from these non-cloud regions.
In the first aerial photograph of Fig.14, cloud regions are
surrounded by some non-cloud regions that are extremely
similar to cloud regions. As a result, our system have mistaken
these non-cloud regions for cloud regions. When clouds in
aerial photographs are extremely thin, we will fail to get an
accurate detail map, and we will miss some cloud regions, as
illustrated in the second row of Fig.14.

V. CONCLUSION AND FUTURE WORK

We have presented a novel progressive refinement scheme
to automatically detect the cloud regions in the color aerial

(a) (b) (c)

Fig. 14. Failed cases. (a) Input color aerial photograph. (b) Our result. (c)
The ground truth.

photographs. We first compute a significance map to highlight
the difference between cloud regions and non-cloud regions.
Then we proposed an optimal threshold setting to obtain a
coarse cloud detection result based on the significance map,
and the result consists of candidate cloud regions and non-
cloud regions. To remove the redundant non-cloud regions
from the candidate cloud regions, we incorporate a multiscale
detail map into the cloud detection system to achieve a finer re-
sult. Finally, we perform a guided feathering to receive a more
accurate boundaries for the cloud regions. To demonstrate
the effectiveness and efficiency of our method, we evaluate
our method in visual comparisons and quantitative evaluation.
Experiment results have proved that our method can produce
satisfactory results. In the future, we will take more semantic
information into consideration to further improve the accuracy
of our cloud detection method. For example, we will add the
image depth information to help us achieve a higher accuracy.
In addition, we will adapt our work to multispectral satellite
images in the future.
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