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Cloud Detection of RGB Color Aerial Photographs
by Progressive Refinement Scheme

Qing Zhang, Chunxia Xiao

Abstract—In this paper, we propose an automatic and effective ~ Cloud detection is a very challenging work, since it is
cloud detection algorithm for color aerial photographs. Based on  essentially an image segmentation problem. To detect cloud
the properties derived from observations and statistical esults regions in color aerial photographs, we need to first recgni
on a large number of color aerial photographs with cloud layes, he cloud | d th ' h ial oh hi
we present a novel progressive refinement scheme for detaui the cloud layers, an t_ en segment the aeria _p otograph int
clouds in the color aerial photographs. We first construct a two classes (cloud regions and non-cloud regions). However
significance map which highlights the difference between oud for complex aerial photographs that have both bright naud|
regions and non-cloud regions. Based on the significance mapregions and semitransparent cloud pixels, current teciesiq
and the proposed optimal threshold setting, we obtain a coae ;g |ly fail to provide a satisfactory cloud detection tesu
cloud detection result which classifies the input aerial phtwgraph E . h f . ionoasth
into the candidate cloud regions and non-cloud regions. In mer ven _resortlng to the state-of-artimage _segmentatlc_)n t
to accurately detect the cloud regions from the candidate oud We still cannot get a good cloud detection result withoutruse
regions, we then construct a robust detail map derived from a interaction. Besides the detection accuracy, high effagien
multiscale bilateral decomposition to guide us remove nomioud and automaticity (no user interactions) should be takea int
regions from the candidate cloud regions. Finally, we furtter consideration as well to process high resolution photdwsap

perform a guided feathering to achieve our final cloud detedbn hile the later t . ¢ Iso difficult bl
result, which detects semitransparent cloud pixels aroundthe while the later two requirements are aiso arricuit problems

boundaries of cloud regions. The proposed method is evalued A number of cloud detection methods [5]-[7] have been
in terms of both visual and quantitative comparisons, and tke proposed. However, most of them are designed for moderate

evaluation results show that our proposed method works weflor  gpatial resolution sensors such as Advanced Very High Resol
cloud detection of color aerial photographs. tion Radiometer (AVHRR) and Moderate Resolution Imaging

Index Terms—Progressive refinement scheme, cloud detection, Spectroradiometer (MODIS). These sensors are usually e-
optimal thresholding, image segmentation, color aerial pbto-  quipped with more than one thermal band, or with water vapor
graph, significance map, detail map, guided feathering. absorption bands. To the best of our knowledge, there lg litt
work focusing on cloud detection of color aerial photogmph
with just RGB bands information. The other relevant work
may be image segmentation [8]—[13], shadow detection [14]-

ITH the rapid development of aerial photograph ad16], and image dehazing [17]-[19]. Different from multsp
quisition technology, obtaining high resolution colotral satellite images, the RGB color aerial photograph isap
aerial photographs is an easy task now. Huge amount ddta which is consisted of only three RGB channels. Thus,
aerial photographs are created every day, and these aefialid detection for color aerial photographs is more difficu
photographs have been widely used in agriculture engingerithan multispectral satellite images since we have no auyili
environmental protection, resource exploration, gedg@g channels information. Automatic image segmentation nuztho
survey and military reconnaissance. As cloud covers mane th{9]-[11] can be used for cloud detection, however, they lgua
50% surface of the earth, many aerial photographs will éont#ail to handle complex aerial photographs. Interactivegma
cloud regions. As a result, clouds will lead to inaccuratsegmentation methods, such as graph-cut [8], Grabcut [12],
analysis and interpretation for color aerial photogragfe. and alpha matting [13], [20], [21] can be used to detect coud
example, it will be easier to identify objects from coloriaér but these methods need large amount of user interactions
photographs if cloud regions have been specified. Hencedclavhich prevent them from being put into practical applicatio
detection of color aerial photographs is an important prér cloud detection for high resolution photographs.
processing for many follow-up manipulation, such as objectIn this paper, we proposed a novel progressive refinement
recognition, image retrieval [1], [2] and image classificat scheme for cloud detection of color aerial photographs. Our
[3], [4]. Besides, detecting cloud regions automaticallyda approach is based on some properties derived from observa-
effectively will benefit for many automation applicationsoait tions and statistical results on a large number of coloraheri
color aerial photographs, such as disaster forecast, tmollu photographs with cloud layers. We find that cloud pixels in
monitoring and oil exploration etc. Thus, cloud detection f color aerial photographs usually have higher intensitied a
color aerial photographs is a meaningful work. lower hues. Based on this observation, we first construct
a significance map for the input aerial photograph, which
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I. INTRODUCTION
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In order to handle complex cloudy aerial photograph, sudetect clouds for color aerial photographs. To the best of ou
as the photographs with both bright non-cloud regions akdowledge, there is little work about cloud detection foloco
semitransparent cloud pixels, we incorporate a detail mtp i aerial photographs in literature. Cloud detection of calerial
the cloud detection to obtain a finer cloud detection resufthotographs is more difficult because we have no auxiliary
Finally, we further perform a guided feathering to achievikands information except common RGB. Le et al. [23] pro-
the final cloud detection result, which detects semitraresgia posed an automatic detection algorithm for cloud/shadow on

cloud pixels around the boundaries of cloud regions. high resolution optical images by using a Markov Random
In summary, our work has the following three main contriField (MRF) framework. However, this method may fail to
butions: distinguish cloud regions from bright non-cloud regionsg a

« Based on the constructed significance map, we proposeiai$ also time-consuming for energy optimization.
optimal threshold setting scheme to obtain a good coarsdmage segmentatiorCloud detection of color aerial pho-
cloud detection. tographs is essentially an image segmentation problemawe c

« We develop a detail-aware cloud detection method &Pply some automatic image segmentation methods [9]-¢11]t
process complex cloudy aerial photographs, which c&§tect clouds for color aerial photograph. However, autama
refine the coarse cloud detection results. image segmentation methods usually cannot achieve good

« We introduce guided image filtering to detect the semiesults for compleximages. To increase the detection acgur
transparent cloud pixe|s around the boundaries of tM¢ can resortto some interactive image segmentation method

cloud regions. Many popular interactive image segmentation methods [8],
Our method has the following advantages that would bendf] Nave been proposed. Boykov et al. [8] proposed a method
practical applications: via graph cuts to achieve segmentation results by combining

« Automation: Our method can automatically detect cloudgoIour information and edge information. Grabcut [12] syst

. : ) . . employed graph cuts optimization to achieve more coherent
in color aerial photograph without user interactions. ; : .
) . : and higher quality foreground segmentation. However,ehes
« Accuracy: Our method has high cloud detection accurac ) : . :
: . ethods require lots of user interactions to process high
even processing complex cloudy aerial photographs.

. Efficiency: Our method can provide us fast feedbac|’<esolut|on aerial photographs. Thus, these methods are in-

(<2s) for input color aerial photographs with moderaPplicable in practical applications. Many soft segméatat

ate size (typically for aerial photograph with size O]methods based on image matting [13], [20], [21] have been
1024 1024) designed to deal with boundaries of fuzzy foreground object
; ’ ) . . Although we can get a good cloud detection result based on the
The remainder of this paper is organized as follows. Ifoge matting methods, we should provide some complex user
section Il, we introduce the related work. In section Ill, Weyaifieq scribbles beforehand, furthermore, these msthod
present the technique details for the progressive reflnEmEgua"y requires long processing time.

scheme used in the cloud detection system. Section IV givesgy, o 4oy detectiarSimilar to the automatic cloud detection
o , automatic shadow detection is
performa_nce of our_method, and the limitations of our meth%qso a challenging problem, and there are lots of simitsiti
is also given. Section V concludes the paper and gives gy yeen these two topics. Researchers have designed many
future work. effective automatic shadow detection methods [14]-[154] [
Huang et al. [15] noticed that shadow pixels usually have
larger hues, lower blue channel values, and relatively lsmal
In this section, we review the most related work to outifference between the values of green and blue channels.
work, namely, cloud detection, image segmentation, shad@ased on these facts, they computed three thresholds aver th
detection and image dehazing. Our cloud detection method fastogram of the input image to separate the shadow regions
color aerial photographs is partially inspired by theseksor from non-shadow regions. Inspired by observation of Huang
Cloud detection In the last few years many researcherst al. [15], Tsai [16] proposed a shadow detection method for
have explored automatic cloud detection methods for multielor aerial photographs which used a ratio map of the hue to
spectral satellite images. Most of the current cloud ditect the intensity in conjunction with a thresholding settingstead
methods are highly dependent on the available spectralsbanfl using the ratio map proposed in Tsai's method, Chung et
besides RGB. Some of these methods work on pixel lay. [14] proposed a modified ratio map to further stretch the
pixel basis [22], some use neighborhood information, siuch disparity between shadow regions and non-shadow regions,
local standard deviation [5]. The Moderate Resolution Imagnd a successive thresholding scheme is then applied totdete
ing Spectroradiometer (MODIS) onboard the NASrra shadow regions from color aerial photographs.
and Aqua satellites measures radiances at 36 wavelengths|mage DehazingAs cloud is sometimes similar to the haze
including infrared and solar bands, with a spatial resofuti in appearance, cloud detection is relevant to image debazin
between 250m to 1km. Based on the MODIS data, maspme aspects. Many works have been done on image dehazing
cloud detection methods [6], [7] have been proposed to recent years. Tan [19] found that clear images had higher
improve the detection performance. Although there are maogntrast compared with foggy images, thus he maximized
effective cloud detection methods for multi-spectral dadse the local contrast of the restored image for enhancing image
been proposed, we can not directly apply these methodsvieibility. Based on the assumption that the propagation of

Il. RELATED WORK
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light and the shading parts of the target surface were lpca

uncorrelated, Fattal [17] first estimated the scene radiand Input acrial photograph

then derived the transmission image. He et al. [18] propase! v
single image haze removal approach based on Dark Char v
Prior (DCP) and produced impressive results. More recent Construct a
. . p p - 8 ) significance map
inspired by the Dark Channel Prior [18], Xiao et al. [25 ) v
proposed a fast image dehazing method by using joint bikte Optimal Detail map
filtering. threshold setting
v
1. CLOUD DETECTION ALGORITHM Coarse cloud
] . detection result
The HSI color model [26], which follows the human visua !
perception closely, separates the color components irstefm ¥
intensity, hue and saturation. For an input RGB color aeri Candidate
photograph, we can transform it into HSI color model a °1°“dieg1°“5
follows: Detail maps
1 1/3 1/3 1/3 R intersection
Vi |=| -v6/6 —vB/6 V6/3 ¢ | @ v
Va 1/\/6 —2/\/6 0 B ‘ Post processing ‘
v
_ /12 2 Finer cloud
S = V1 + V2 (2) detection result
—1(Va 255 .
H: (ta'n (Vl)'—i_ﬂ-)x 27 ) Zf‘/l#‘l (3) < l ¢
H is undefined, otherwise A4
. . I Non-cloud regions ‘ ‘ Cloud regions I
In the HSI color modelH and! corresponds to the intensity- I T
equivalent and hue-equivalent components, respectively. v v
It seems that it is an easy task for human beings | Guided feathering |
identify clouds in color aerial photographs. However, ider
tifying clouds in color aerial photographs by computer i | Final result |

a difficult problem, especially to detect the cloud regions
aummat'cal_ly and eﬁeCt'Yely- FortunaFer, after a laegeount iy 1. Bock diagram of the proposed cloud detection system
of observations and statistical experiment, we have okserv

that cloud regions in the color aerial photographs usuaiyre

the following common properties: A. Significance map

« Property I Cloud regions generally have higher intensity We have learnt from above properties that cloud regions
since the reflectivity of cloud regions is usually largein color aerial photographs usually have higher intensitgl a

than that of the non-cloud regions. lower hue. For an input color aerial photograph, we first
« Property 2 Most cloud regions often have lower saturatransform it from RGB color model into HSI color model,
tions and hues. and then we construct a significance map to highlight the

« Property 3 In color aerial photographs, the ground covdifference between cloud regions and non-cloud regions as
ered by cloud veil usually has little details as the groun@llows
object features are attenuated by cloud veil. W = M ()
o Property 4 Cloud regions in color aerial photographs Thue + €
always appear in terms of clustering, not in sparkle cloughere Tintensity and I, refer to intensity and hue of the
pixels. pixel in the input aerial photograph respectively. We bound
« Property 5 Semitransparent cloud pixels are often presefie intensity and hue td0,1] to compute the significance
around the boundaries of cloud regions. map, which is proved to be a better significance map.
Based on above observations, we propose our progresstvean amplification factor, in our paper, we typically set
refinement scheme for cloud detection. In Fig.1, we give tlle= 1.0. To alleviate the noise disturbing without blurring the
block diagram of the proposed cloud detection system. Olloundaries, we then apply the bilateral filter [27]10. To
system has the following main steps. Firstly, we constructabtain an intuitive visual description of the significancepm
significance map for the input color aerial photograph. Sewe scale the value of filtered” to the range of0, 255]. The
ondly, based on the significance map, we develop an optinsignificance maghV efficiently stretch the disparity between
threshold setting to obtain a coarse cloud detection resuwboud regions and non-cloud regions, which will be used as
Then, we incorporate a detail map into the cloud detecti@m input of our optimal threshold setting scheme.
to remove redundant non-cloud regions in the coarse resultln Fig.2, we visualize the significance map. We can notice
Finally, a guided feathering technology is used to refine thleat significance map in Fig.2(b) successfully stretch the
cloud detection result. difference between cloud regions and non-cloud regiond, an
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the filtered significance map in Fig.2(c) reduces the noise inIn Fig.3, we illustrates the threshold shifting problem loé t
Fig.2(b). Otsu’s method. According to the histogram in Fig.3(d), we ca
see that the significance map in Fig.3(b) has a small number
of pixels of relatively high intensity (larger than 100). Ud)

a prohibitively low threshold 61 will be obtained by Otsu’
method due to the threshold shifting problem. As a result,
many non-cloud regions are mistaken for cloud regions in
Fig.3(c). In Fig.3(e), we further provide a histogram toigade

the result in Fig.3(c), in which blue region refers to detelct
non-cloud pixels, the yellow region for detected cloud fsxe

To ensure the detection accuracy, we should make the coarse
@ (b) (©) cloud detection resulR“°?"s¢ containing the whole true cloud
pixels and as few non-cloud pixels as possible. To address th
threshold shifting problem, we propose an optimal threghol
setting.

Fig. 2. The significance map. (a) Input color aerial photpbrgb) Original
significance map. (c) Filtered significance map.

B. Optimal threshold setting

Based on the significance map, we can identify clou
regions from input color aerial photograph by using globd
thresholding method, such as the Otsu’s method [28]. We u

the Otsu’s method to segment the input photograph into can- @

didate cloud regions and non-cloud regions, which canvece * o

a coarse cloud detection result. The Otsu’s method assurz™ 2°®

that the photograph to be thresholded contains two cladses’” i

pixels or bi-modal histogram (for example, foreground an N

background), then calculates the optimal threshold séipgra T Py R W™ B
those two classes so that their inter-class variance isTmari (d) (e)

Spe?""??‘"yv the optlmal thrEShom can be determined by Fig. 3. Threshold shifting problem. (a) Input color aeridlopograph. (b)
maximizing the following formulation Significance map. (c) Cloud detection result based on tlesitold determined

by the Otsu’s method [28]. (d) Histogram of the significancapnin (b). (e)
T = argmazx{wo(T)(uo(T)—a)*+w1 (T)(u1(T)—u)*} (5) Histogram indicates the detection result in (c).

wherewy (T') = Zz-T:o pi,yw(T) = Z?f’THpi , U= Zfi%z According to above observations (property 1 and property

pi v uo(T) =St gi-pi, wi(T) = S50, i-p; andp; is  2), we recognize that true cloud pixels usually have compara
the probability of the gray level . The variableT is within tively high intensities and comparatively low hues. To itilgn
the range of{0, 255]. To get a coarse cloud detection resulthe distribution law of intensity and hue of true cloud pgel
we can first apply Otsu’s method over the histogram of thee collect 500 cloudy color aerial photographs from Flick-
significance mapV to select the global threshol@Glotal, r.com and several popular search engines, and we manually
Then, we can get a coarse cloud detection reBfilt*"** based extract all cloud regions of these photographs. Then, we plo
on the significance ma@’ , and it is defined by the histogram of intensity and hue based on pixels in all
1, W(z) > TClobal extracted cloud regions. Fig.4(a) is the intensity histogover
RCoarse — { ’ herwi (6) all cloud regions from 500 cloudy color aerial photographs.
0, otherwise Fig.4(b) is the corresponding cumulative histogram of4a).
here, 1 refers to those pixels lying in candidate cloud meglio We can see that over 95% of the true cloud pixels have
and O refers to those pixels lying in non-cloud regiongntensity not less than 100. Fig.4(c) is the hue histogram.
However, due to the threshold shifting problem of the OtsufSig.4(d) is the corresponding cumulative histogram of &jg).
method, the coarse cloud detection result may suffer fro@bviously, almost all of the hues are between 50 and 80.
excessive error detection. For example, when the histogfamNotice that, to make the histograms more intuitive, we have
the significance map has single peak instead of two isolatedunded intensity and hue to the range [0, 255].
peaks, the threshold shifting problem will occur. Specifiga  The intensity histogram in Fig.4 illustrates that the true
a prohibitively high threshold will be selected if most dixe cloud pixels usually have an intensity value not less than
have comparatively high intensity, a coarse cloud detectid00. In addition, to stretch the disparity between true dlou
based on the prohibitively high threshold will miss someetrupixels and non-cloud pixels, we have constructed a sigmifiea
cloud pixels which actually have relatively low intensi§n map beforehand. Therefore, we believe that a proper global
the contrary, a prohibitively low threshold will be seletté threshold for coarse cloud detection should not less th@én 10
more pixels have comparatively low intensity, a coarse @¢lo’he lower bound (100) can ensure the coarse cloud detection
detection based on the low threshold will mistake excessiwéll not bring in excessive non-cloud pixels which have lowe
non-cloud pixels for cloud pixels. intensities. As a prohibitively high threshold will caudeet
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Fig. 4. Statistics of intensity and hue of cloudy photogsapfa) Histogram of the intensity of the cloud pixels in thed 5oudy color aerial photographs.
(b) Corresponding cumulative distribution of (a). (c) légtam of the hue of the cloud pixels in the 500 cloudy coloizhgrhotographs. (d) Corresponding
cumulative distribution of (c).

coarse cloud detection result missing some true cloud Rixeg=
thus an upper bound is required as well. Our coarse clo
detection aims at extracting all true cloud regions, and are c
tolerate a certain amount of non-cloud pixels in the coars
cloud detection result, since our follow-up operationsl wil
further remove them. However, we cannot tolerate missing @)
too many frue cloud pixels in _thIS step. Thus, we t_yplcallyig. 5. Coarse cloud detection result. (a) Input color &guietograph. (b)
set the upper bound to 150 which turns out to be suitable fosarse cloud detection result by performing Otsu’s methodw significance
protecting the true cloud pixels. Our optimal thresholdisgt map- (c) Coarse cloud detection result produced by the pesp@ptimal
. threshold setting.
can be defined by

100, TGlobal <100 _ _
TOptmal _ J pGlobal 1) < TGlobal < 15) ) photographs which have lots of ground objects of compara-
150, TGlobal < 150 tively high intensity, our optimal threshold setting mayl fa

to distinguish these bright ground objects from cloud regio
whereT %l js the global threshold determined by the Otsu'Shus, to remove possible non-cloud regions from our coarse
method over the histogram of the significance map. Based ¢loud detection result, we further incorporate a robusaitiet
the T7OPtimal we can compute a more accurate coarse clowughp into the cloud detection system.
detection result.

We have noticed that hue has a small value ra3ge30]
compared with the wide value rangi#0, 255] of the intensity
of true cloud pixels. To further improve the detection aeoyr According to our above analysis, some non-cloud regions
we compute one more cloud detection result based on timay be included in the coarse cloud detection result, thus
value range of hue, we regard pixels having a hue valuee should remove these non-cloud regions to achieve better
between 50 and 80 as cloud pixels, the rest as non-cloudspixegsults. Fortunately, the property 3 have illustrated thatid
Then, we implement an intersection between the two clouegions in color aerial photographs usually have much less
detection results to get the final coarse cloud detectionltresdetails compared with complex ground. This property is an
In Fig.5, we compare our final coarse cloud detection resitportant clue for us to remove redundant non-cloud regions
with result derived from Otsu’s method, we can see that thefrem our coarse cloud detection result. Based on the malgsc
is a large amount of error detection in Fig.5(b) while our ffindilateral decomposition [29], we construct a detail map to
coarse cloud detection result in Fig.5(c) successfullyids/o capture the edge features of the input aerial photographs,
the serious error detection by using optimal thresholdrggett which will be used to guide the following cloud detection.

For some cloudy color aerial photographs, our final coarseThe bilateral filtering [27] is a non-linear, edge-presegyi
cloud detection result will be very close to the ideal cloudnd noise-reducing filter. The basic idea of the bilateral
detection result. However, for some complex input colofaer filtering is to replace the intensity value of each pixel by a

C. Cloud detection incorporating detail map
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weighted average of intensity values from neighboring Igixe within cloud regions. Thus, we compuié&<** as a weighted
Specifically, the weights depend on both Euclidean distansem of theM detail Ievels{Dj}jle,
and color intensity difference of pixels, and are based on "

Gaussian function. For an input intensity imalgehe bilateral [Detail _ l Zw' . D.
filter is defined as o 7

I'(p) = %ggas(llp—qll)-gaT(III(q)—I(p)II)-I(q) (8) )\:i‘ﬂj 1)
j=2

where the normalization term

k= gs.(Ilp—all) - 95.(11(q) = I(p)|)) (9)

qeN

11)

where the weightv; is computed as
Wi = G5, *e(‘Djl) (13)

where’ denotes the filtered image,denotes the coordinate 1676, We typically set; = 7 to locally smooth the weight

of the current pixel to be filtered2 denotes a square window@"d reduce noise. Since the input color aerial photograph ma
centered inp, and¢ denotes coordinates of pixels withii. suffer from heavy noise, we do not take the first detail level

I(p) and I(q) are intensity values of pixels located aand D1 into the weighted S(ljjm.'llr: alllour implementatiO(I)n, ylve set
. 2 2 —
g, respectivelygs(z) ¢(—=22/9*) 5 ands, are the standard M = 4 to construct 4 detail levels to compute a detail map.

deviation of the Gaussian function. In Fig.6 we display the detail map computed by our method,

Using bilateral filtering, we can decompose an input ima%éil\(’ﬁ (:(Ijn :ea;hdatnzgremr?Igfgféer:es:smc%enat;?gga\;{v?tr? ?chmee
I into two layers: a base layer and a detail layer. For ar 9 ISe g P

. . : : single level detail map.
input image, the filtered imagE refers to the base layer that - . . .
P 9 oE y In order to refer more detail information, we iteratively

maintains strongest edges while smoothing out small chan%e | hol dilati i ith x 7 structural
in intensity. The detail layetD then can be produced by bRy a morphology dration operator with > ¢ structur

subtraction of a based layer from an input image= I — I’ elements on the detail ma@’¢**" to obtain a more consistent

The basic idea of the multiscale bilateral decompositiotois deta|l_ map. In all our |n_1plem¢ntat|on, we typically implemte
constructM detail layers on the input image by using bilateraq1e dilation operator with 2 times.

filtering. For an input imagd, we iteratively implement the
bilateral filtering to build a series of filtered imadé; }1Z,,.
At the finest scale, we havg = I. Based on equation 8, we
can iteratively construcf//}}Z, by

L= % > g5l —all) - 9., (|1 (@) = T;()|]) - T} (a)

qeN
(10)

whered, ; andd, ; are the standard deviation of thieh bilat-
eral filtering, respectively. In our implementation, weitglly @) () ©
set the size of2 to 7. To increase the spatial smoothing at each _ _ _ _
soalej, we Sel.1 = V30,0 andd.; — /10,1 andd.y S, Conpaen o dleren el nop. @ et corie preicon
is set to 2. Since cloud regions may have some weak edgfﬁéﬁscale detail map.
we seté, o to R/10 andd, ; = §,;_1 to iteratively weaken
these edges, whei is the maximum intensity of the image. As cloud regions are clusters of similar cloud pixels in

We computeM subsequent image detail Ievqg)j}jl‘il, most cases, cloud regions usually have little details. @n th
whereD; = I — Ii_,. Here, I} attenuates the strong edgesther hand, our multiscale bilateral decomposition cathur
in the input color aerial photograph and the detail laybys attenuate weak details within cloud regions. Thus, cloud
contain small changes in intensity. A simple detail map caggions and non-cloud regions are usually visually diff€ie
be constructed just dependent énh = I — I;. when the the detail map. To make the detail map display the disparity
input color aerial photograph contains very little noisee t between cloud regions and non-cloud regions more intyitive
simplest detail map will not be a bad choice. However, whame apply the Otsu’s method to compute a threstblerte
the image suffers from heavy noise, or the cloud regions hawe the detail mag/’¢***, then a binary detail magPete!
too many weak edges, the simple detail map will not workan be obtained by
well. To construct an effective detail map which has litttése _ | [Detail _ pDetail
and edge information in cloud regions, we compute the detalil RPetail — { ’ .
map based on th&/ (M > 1) subsequent image detail levels 0, otherwise
{Dj}jf‘il. We can accelerate the multiscale decomposition by Then the binary detail map will be consist of regions with
using [30]. details and other regions without details. According to our

Our goal in building a detail mag?“** is to reduce the analysis, we believe that all regions without details in the
possible noise of the input image and restrain some weaksedpary detail map are highly likely to be cloud regions. Then

(14)
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(b) (d) (e)

Fig. 7. Procedure of our detail-aware cloud detection.rfpyt color aerial photograph. (b) Coarse cloud detectisnlte(c) Binary detail map. (d) Intersection
between (b) and (c). (e) Final result with hole filling andyticlustering removing.

by combining our coarse cloud detection resBIt°*"*¢, a
finer cloud detection resulR” " can be computed by

RFiner _ RCoarse ﬂRDetail (15)

where RE°e7s¢ denotes the coarse cloud detection result, an
RPeteil denotes the binary detail map derived frafete! @ (b) ©

As some cloud regions (for example cirrus) may contaifg. 9. Refinement by removing tiny clusters and filling hol@g Input color
strong edges, the cloud regions around the strong edgebe/villa}‘?fia' photograph. (b) Re_su]t wi_thout using tiny clqstearmoving_gnd holes
mistaken as non-cloud regions. Thus,we resort to the Matlf'9- (¢ Result by combining tiny clusters removing andlés filling.
function imfill() to fill holes inside cloud regions aRmer.
In fact, before filling these regions, we should exclude e t (egions | the result derived from the the single detail level
clusters inR"*"" to provide a cleaner result since the cloug i Fig.8(b) has mistaken more cloud pixels for non-cloud
regions are usually not less than a certain size. To remqyge|s compared with the result derived from multiscaleadet
these tiny clusters (including regions just have singlespix map in Fig.8(c).
we first use a median filter to remove the salt and pepper noise j|ustrated in Fig.9, the cloud regions (cirrus cloud}us
and then we extract all connected components A", Lerial photograph in Fig.9(a) have some strong edges, which
We calcaulate the number of pixels for all extracted corgtcligaq 1o a detection result with some holes inside the cloud
components, if the pixel number of a connected componentisyions in Fig.(b). By removing tiny clusters and filling bs)
less than a certain threshold®**¢, the corresponding cloud we receive a more accurate result.
region will be regarded as non-cloud regions. In our paper,
the thresholdl'¥*#¢ is set to 120, and a largdf®*** can be
selected if the aerial photographs having high resolution. D. Refinement by guided image filtering

Although we can get a good cloud detection result through
above processes, we may miss some semitransparent cloud
pixels around boundaries of the cloud regions (according to
property 5) since above cloud detection processes belong to
hard segmentation. To receive a more accurate cloud boyndar
detection results, we apply the guided filter [31] to refine th
cloud boundary detection.
Fig. 8. Comparison between the results derived from diffedetail maps.  The guided filter is a new type of explicit image filter which
(a) Input color aerial photograph. (""" based on the single level detail jnvolves a guidance imagk an input imageP, and an output
map D1 (¢) R based on our multiscale detail mag’<' . image f. It can be used as a guided feathering, in which a

In Fig.7, we give the procedure of the cloud detectiofinary mask will be refined to appear an alpha matte near the

incorporated with detail map. In Fig.7(b), we give the cearfbiect boundaries. The key assumption of the guided filtar is

cloud detection result of the input aerial photograph, arlgeal linear mode between the guidancand the filter output

Fig.7(c) is a binary detail map, Fig.7(d) is the intersautio/+ 8ndf is supposed to a linear transform bfin a square

between Fig.7(b) and Fig.7(c). Based on Fig.7(d), we furth¥indow wy centered at the pixel:
remove the tiny_clusters and repa@r holes inside cloud regio fi = apl; + By, Vi € wy, (16)
to achieve the final resuR?""*" (Fig.7(e)).

In Fig.8 we compare our detection results with result derivevhere o, and g, are constant linear coefficients iog, ¢
from the single level detail map. As the input aerial pho&mir denotes a pixel coordinate in the square window The
in the first row of Fig.8(a) has some strong edges in cloddcal linear model presented in equation 16 ensures fhat




JOURNAL OF BTEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 8

(@ (b) () (d)

Fig. 10. Result comparison betweétf " and RF"ne!. (a) Input color aerial photograph. (b) Result&f‘"e". (c) Output of the guided feathering over
(b). (d) Final binary resuliRF"al,

has an edge only i has an edge, sincéf = aVI. The two clouds automatically]'Z"e¥ is fixed to 60 to make a trade-
coefficientsay, and 8, are defined by off in our implementation.
LS LB — P In Fig.10 we compare our finall cloud detection result
Wl ez Hie Lk RFmal with RFimer we notice thatR?"¢! has repaired some
Qg = 52 1z (17) hiatuses around the boundary of cloud regions compared with
k RFimer "and what's moreR " contains most semitranspar-
ent cloud pixels.

Br = Pr — oupur (18)

where 1, and 67 denote the mean and variance bfn wy, IV. RESULTS AND DISCUSSION

respectively|w| denotes the number of pixels in;, and P, In this section, we further demonstrate the effectivendss o

s the mean .OP in wy.. As a pixel is mvolve_d by all W'ndOWS_ our cloud detection algorithm by both visual comparisond an
that contain it, so the putput value ofone_plxe_l shou_ld corabi guantitative evaluation. We implemented our cloud debecti
all of them, and the final output of the pixel is defined by algorithm in C++ combined with Matlab on a PC with
fi = a L + B (19) Pentium Dual-Core CPU E6500 @2.93GHz and 4GB RAM.
~ To evaluate the efficiency of our cloud detection algorithm,
wherea; and 3; denote mean of ally, and 3, of windows we compare our method with the cloud detection method
that contain the pixel. [23], some popular automatic image segmentation methods
To implement the guided feathering, the former cloud d¢9]-[11] and interactive image segmentation methods [8],
tection resultRf""*" is used as the inpu®, and the guidance [13]. Furthermore, we present a quantitative evaluatiothef
image is the original color aerial photograpithen the output detection accuracy and runtime to prove the efficiency of our
is the final cloud detection resuR*"* can be obtained by method.
applying a guided image filtering ovét?"¢" and I. In our
implementation, we typically set the window radius to 60j an™ - @ .. 4™ ——
e = 1076 for the guided filter. We notice that the output ofj
the guided feathering is not a binary result. To obtain afyina &

. -
result, we can select an threshdli&**" to produce a binary }
o

result. However, besides the true semitransparent clowdspi &
the guided feathering may also bring in some non-cloud pixg
around the boundaries of cloud regions. Since semitraaspar
cloud pixels are usually not as bright as the common clol
pixels, we trend to select a small threshold to obtain theg
semitransparent cloud pixels. However, a too small thiesh
may bring in some non-cloud pixels. Our experience is th
if the user tends to detects more semitransparent cloudspixe @
a smaller threshold is recommended, and if the user tendSFE? 11. Comparisons with other competing cloud detectiathod [23]. (a)
detects more accurate semitransparent cloud pixels, arlarngput color aerial photograph. (b) Result of [23]. (c) Ousut.
threshold is recommended. To make our method detecting
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Fig. 12. Detection comparisons with automatic image segatien methods. (a) Input color aerial photographs. (b)uResf k-means [11]. (c) Result of
mean-shift [9]. (d) Result of graph-based segmentation. [() Result of our method. (f) The ground truth.

A. Visual comparisons results of both mean-shift and graph-based segmentat®sn ar

: . . computed in two steps. We first segment the input photographs

torlr?a'cl':cl;ga.llllag\'cl:cfz:gpglrehgg(r) mg;hc;c(ij \ggha [aﬂ;kgh'ggn%@sing mean-shift or graph-based segmentation, and then we
icaty uars W bas v tect cloud regions according to the average intensithef t

Field (MRF) framevyork. We observe that the methc_)d [2% gion, regions having an average intensity more than 160 ar
cannot produce satisfactory results for complex aerlal—pzp

. . . regarded as cloud regions. In Fig.12, the cloud layers are
tographs while our method can achieve better results. Besidy, o <o “including thick clouds (first and fifth row), snows

as the met:gd [23] 'nvf(f).h/.estathcompzlgx cl):ptlmlzatlor; prfocesghird row), and semitransparent clouds (second and fourth
our method is more efficient than [23]. For example, for g w). For photographs with bright non-cloud regions, for

input photograph with size of600 x 1200, [23] takes more xample, the third photograph in Fig.12 with snows, current

L 1_05 o detect the clouds, while our mgthod tak(_as only_ foud detection or image segmentation methods usuallydail
In Fig.12, we compare our cloud detection algorithm W'tgroduce satisfactory results. However, though these tmdc
the automatic image segmentation methods [9]-{11], andyisng are visually similar to cloud regions, they are euit

we present five groups of cloud detection results. In theaﬁ'ferent in our multiscale detail map. Thus, by incorpargt

results, the results of k-means are obtained by computiog ty,s getail map into our cloud detection system, we can remove
clustering center for the photograph based on intensitg Th
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() (9)

Fig. 13. Detection comparisons with interactive image sagation methods. (a) Input color aerial photograph. (b3rUisteraction for graph-cut [8], where
blue scribbles indicate cloud regions (foreground), artiseribbles indicate non-cloud regions (background). @3uR of graph-cut based on mask (b). (d)
Trimap for robust-matting [13], where white scribbles waie cloud regions, black scribbles indicate non-cloudorey and the other gray regions denote
unknown regions. (e) Result of robust-matting based onafirfd). (f) Our cloud detection result. (g) The ground truth.

them from the candidate cloud regions. As for photographser interaction for interactive image segmentation nutho
with semitransparent cloud pixels, our guided featherinly wwhich is defined as

help us involve them in the final cloud detection result. As QI = S_P (21)
illustrated in Fig.12, compared with these image segmiemtat TN
methods, our method produce much better results. where S P denotes the number of user scribbled pixels.

In F|g]_3’ we further compare our approach with some in- In Table I, we give the aforementioned error rét& for the
teractive image Segmentation methods [8], [13] Since tise fi results in FIng, and the table shows that our method has low
and the second aerial photograph in Fig.13 have some iglola error rate compared with k-means, mean-shift and graph-
small cloud regions, we have to take pains to produce lots @sed segmentation. Since these methods may mistake lots
interactions for graph-cut [8] and robust-matting [13]w#w- Of non-cloud pixels (usually have high intensities) forudo
er, our method achieves better results though we requiresii¥els, and they are also weak in detecting the semitraespar
interaction. As for complex cloudy aerial photographs ie thcloud pixels, so they usually have higher error rate than our
third and fourth row in Fig.13, they have both white non-cloumethod. In Table II, we show error rate and quantity of the
regions and Semitransparent cloud pixe|s_ Though we haveer interaction for results in Flgl3 Although our method
provided enough interactions for these complex photogréph Needs no interaction, our method still outperforms graph-c
perform graph-cut and robust-matting, they still mistakeren and robust-matting for these color aerial photographs.
non-cloud pixels for cloud pixels than our method.

C. Time complexity

The main computation of our cloud detection method is the
detail-aware cloud detection and guided feathering refergm

To quantitatively evaluate the efficiency of our cloud detegor the detail-aware cloud detection, the computation pain
tion method, we use the error rate to evaluate the accuraigys in the multiple bilateral filtering whose time compligxi
of our method, automatic image segmentation methods [95- O(Nr2), where r is the kernel radius. Fortunately, the
[11], and interactive image segmentation methods [8], .[13cceleration methods [30], [32] with &) have been devel-
The error rate ER) is defined by oped based on histograms recently. In this paper, we resort

CN + NC to [30] for our task. As illustrated in [31], the guided filter
=—— (20) has an OF) complexity which can provide fast feedback

N (<1s) for a 6-mega-pixel photograph. In Table Il and IV,

where CN denotes the number of cloud pixels identified awe give the runtime for all the aerial photographs in Fig.12
non-cloud pixels)NC denotes the number of non-cloud pixeland Fig.13, where the stage 1 refers to runtime for the detalil
identified as cloud pixels, an@N denotes the number ofaware cloud detection, and the stage 2 refers to runtime for
pixels in the input photograph. We also give the quantityhef t the guided feathering refinement. The results show that our

B. Quantitative evaluation

ER
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TABLE |
QUANTITATIVE EVALUATION OF ACCURACY FOR RESULTS INFIG.12

11

Method ER of 1th photograph | ER of 2th photograph | ER of 3th photograph | ER of 4th photograph | ER of 5th photograph
K-means 29.71% 23.03% 26.64% 13.76% 33.13%
Mean-shift 23.92% 14.48% 24.63% 12.55% 27.07%
Graph-based 34.23% 26.31% 38.33% 39.67% 41.56%
Our method 1.73% 4.73% 1.85% 4.03% 1.41%

TABLE I
QUANTITATIVE EVALUATION OF ACCURACY FOR RESULTS INFIG.13
Method QI& E'R of 1th photograph | QI& ER of 2th photograph | QI& ER of 3th photograph | QI& E'R of 4th photograph
QT ER QT ER QT ER QT ER

Graph-cut 2.65% 3.41% 5.91% 17.69% 6.13% 14.91% 7.03% 6.87%
Robust-matting| 5.75% 2.02% 6.75% 9.52% 5.13% 13.01% 5.67% 7.33%
Our method 0 1.34% 0 5.18% 0 2.14% 0 5.71%

method provides fast feedback 2s) for 1-mega-pixel aerial
photographs. Since the core steps of our method can §
implemented in OF), we can put our method into practical

PR

applications.
TABLE Il
QUANTITATIVE EVALUATION OF RUNTIME FOR RESULTS INFIG.12
Input photograph Size Stage 1| Stage 2| Total time
The first 700 x 465 | 0.796s | 0.212s 1.008s i
The second 930 x 614 | 1.141s | 0.311s 1.452s -
The third 480 x 640 | 0.734s | 0.219s 0.953s
The fourth 579 x 758 | 0.883s | 0.231s | 1.124s (b)
The fifth 629 x 777 | 0.949s | 0.267s 1.216s
Fig. 14. Failed cases. (a) Input color aerial photograph.Qbr result. (c)
The ground truth.
TABLE IV

QUANTITATIVE EVALUATION OF RUNTIME FOR RESULTS INFIG.13

photographs. We first compute a significance map to highlight

Input photograph Size Stage 1| Stage 2| Total time the difference between cloud regions and non-cloud regions
The first 690 x 668 | 0.734s | 0.228s | 0.962s i i :
e second Tond 768 T 1405 0.901= 1795 Then weI pr(;)%osed an optlrralI) thre(zjsholdhsett_lng_f_to obtain a
The third 700 <x 410 | 0.704s | 02185 | 09275 coarse cloud detection result based on the significance map,
The fourth 1024 x 768 | 1.314s | 0.353s 1.667s and the result consists of candidate cloud regions and non-

cloud regions. To remove the redundant non-cloud regions

from the candidate cloud regions, we incorporate a muliésca

D. Limitations detail map into the cloud detection system to achieve a fer r
ult. Finally, we perform a guided feathering to receive aeno

To detect clouds from the aerial photograph with bright nom: te boundaries for the cloud : To d rat
cloud regions that have little details is very challengiog f accurate bounaaries for the cloud regions. 1o demonstrate

our cloud detection system. These non-cloud regions ldk;sicéhe effectiveness and efficiency of our method, we evaluate

meet the properties we have summarized from common clo ' mgthoi n V|TtuaLcomparlsodnfha?d quam'tftze evaiuag
regions, such as higher intensity, smoother, lower chrimna xperiment resutts have proved that our method can produce

and appearing in terms of clusters. Thus, our system may tisfactory results. In the future, we will take more setitan

to distinguish cloud regions from these non-cloud regions, ormation into consideration to further improve the @y
In the first aerial photograph of Fig.14, cloud regions al.%]t our cloud Qetectlor) method. For exqmple, we will add the
surrounded by some non-cloud regions that are extrem g€ _dgpth mfor_matlon to help us ach|eve_a higher accuracy
similar to cloud regions. As a result, our system have méstak. addltl_on, we will adapt our work to multispectral satell
these non-cloud regions for cloud regions. When clouds ffyages in the future.
aerial photographs are extremely thin, we will fail to get an
accurate detail map, and we will miss some cloud regions, as
illustrated in the second row of Fig.14. We would like to thank the anonymous reviewers for their
valuable comments and insightful suggestions. We alsokthan
V. CONCLUSION AND FUTURE WORK Prof. Yongjun Zhang and Prof. Xiangyun Hu for providing
We have presented a novel progressive refinement schamehigh quality color aerial photographs. This work was
to automatically detect the cloud regions in the color deripartly supported by the National Basic Research Program of
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