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Figure1: Ourtexturegenerationprocesstakesanexampletexturepatch(left) andarandomnoise(middle)asinput,andmodifiesthisrandom
noiseto make it look like thegivenexampletexture.Thesynthesizedtexture(right) canbeof arbitrarysize,andis perceivedasvery similar
to thegivenexample.Usingouralgorithm,texturescanbegeneratedwithin seconds,andthesynthesizedresultsarealwaystileable.

Abstract

Texture synthesisis importantfor many applicationsin computer
graphics,vision, andimageprocessing.However, it remainsdiffi-
cult to designanalgorithmthatis bothefficientandcapableof gen-
eratinghigh quality results. In this paper, we presentan efficient
algorithmfor realistic texture synthesis.The algorithmis easyto
useandrequiresonly a sampletexture as input. It generatestex-
tureswith perceivedquality equalto or betterthanthoseproduced
by previous techniques,but runs two ordersof magnitudefaster.
Thispermitsusto applytexturesynthesisto problemswhereit has
traditionally beenconsideredimpractical. In particular, we have
appliedit to constrainedsynthesisfor imageeditingandtemporal
texturegeneration.Ouralgorithmis derivedfrom Markov Random
Field texturemodels,andgeneratestexturesthrougha determinis-
tic searchingprocess.We acceleratethis synthesisprocessusing
tree-structuredvectorquantization.

Keywords: Texture Synthesis,CompressionAlgorithms, Image
Processing

1 Introduction

Textureis aubiquitousvisualexperience.It candescribeawideva-
riety of surfacecharacteristicssuchasterrain,plants,minerals,fur
andskin. Sincereproducingthevisualrealismof therealworld is a
majorgoalfor computergraphics,texturesarecommonlyemployed
whenrenderingsyntheticimages.Thesetexturescanbe obtained
from a variety of sourcessuchashand-drawn picturesor scanned
photographs.Hand-drawn picturescanbe aestheticallypleasing,
but it is hardto make themphoto-realistic.Most scannedimages,
however, are of inadequatesizeandcan lead to visible seamsor
repetitionif they aredirectlyusedfor texturemapping.

Texture synthesisis an alternative way to createtextures. Be-
causesynthetictexturescanbemadeof any size,visual repetition
is avoided. Texturesynthesiscanalsoproducetileableimagesby
properlyhandlingthe boundaryconditions.Potentialapplications
of texture synthesisarealsobroad;someexamplesareimagede-
noising,occlusionfill-in, andcompression.

Thegoalof texturesynthesiscanbestatedasfollows: Given a
texture sample,synthesizea new texture that, whenperceived by
a humanobserver, appearsto begeneratedby thesameunderlying
stochasticprocess. The major challengesare 1) Modeling- how
to estimatethestochasticprocessfrom agivenfinite texturesample
and2) Sampling-how to developanefficientsamplingprocedureto
producenew texturesfrom a givenmodel. Both themodelingand
samplingpartsare essentialfor the successof texture synthesis;
the visual fidelity of generatedtextureswill dependprimarily on
theaccuracy of themodeling,while theefficiency of thesampling
procedurewill directlydeterminethecomputationalcostof texture
generation.

In this paper, we presenta very simplealgorithmthat can ef-
ficiently synthesizea wide variety of textures. The inputsconsist
of an exampletexture patchanda randomnoiseimagewith size
specifiedby the user(Figure1). The algorithmmodifiesthis ran-
domnoiseto makeit look likethegivenexample.This techniqueis
flexible andeasyto use,sinceonly anexampletexturepatch(usu-
ally a photograph)is required.New texturescanbegeneratedwith
little computationtime, andtheir tileability is guaranteed.Theal-
gorithmis alsoeasyto implement;thetwo majorcomponentsarea
multiresolutionpyramidandasimplesearchingalgorithm.

Thekey advantagesof this algorithmarequality andspeed;the
quality of thesynthesizedtexturesareequalto or betterthanthose
generatedby previous techniques,while the computationspeedis
2 ordersof magnitudefasterthan thoseapproachesthat generate
comparableresultsto our algorithm. This permitsus to applyour
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algorithm in areaswheretexture synthesishastraditionally been
consideredtooexpensive. In particular, wehaveextendedthealgo-
rithm to constrainedsynthesisfor imageeditingandmotiontexture
synthesis.

1.1 Previous Work

Numerousapproacheshave beenproposedfor textureanalysisand
synthesis,andanexhaustive survey is beyondthescopeof this pa-
per. We briefly review somerecentandrepresentative works and
referthereaderto [9] and[13] for morecompletesurveys.

Physical Simulation: It is possibleto synthesizecertainsur-
facetexturesby directly simulatingtheir physicalgenerationpro-
cess.Biological patternssuchasfur, scales,andskin canbemod-
eled using reactiondiffusion ([28]) and cellular texturing ([29]).
Someweatheringandmineralphenomenoncanbefaithfully repro-
ducedby detailedsimulations([6]). Thesetechniquescanproduce
texturesdirectly on 3D meshesso the texture mappingdistortion
problemis avoided. However, different texturesareusuallygen-
eratedby very differentphysicalprocessso theseapproachesare
applicableto only limited classesof textures.

Markov Random Field and Gibbs Sampling: Many algo-
rithms model texturesby Markov RandomFields (or in a differ-
entmathematicalform, GibbsSampling),andgeneratetexturesby
probabilitysampling([7], [30], [21], [19]). SinceMarkov Random
Fieldshave beenproven to be a goodapproximationfor a broad
rangeof textures,thesealgorithmsaregeneralandsomeof them
producegoodresults.A drawbackof Markov RandomField sam-
pling, though,is that it is computationallyexpensive; even small
texturepatchescantake hoursor daysto generate.

Feature Matching: Somealgorithmsmodel texturesasa set
of features,andgeneratenew imagesby matchingthe featuresin
an exampletexture ([10], [5], [23]). Thesealgorithmsareusually
moreefficient thanMarkov RandomField algorithms.Heegerand
Bergen([10]) modeltexturesby matchingmarginal histogramsof
imagepyramids.Theirtechniquesucceedsonhighlystochastictex-
turesbut fails on morestructuredones.De Bonet([5]) synthesizes
new imagesby randomizinganinput texturesamplewhile preserv-
ing the cross-scaledependencies.This methodworks betterthan
[10] on structuredtextures,but it canproduceboundaryartifactsif
theinput textureis not tileable.SimoncelliandPortilla ([23]) gen-
eratetexturesby matchingthejoint statisticsof theimagepyramids.
Theirmethodcansuccessfullycaptureglobaltexturalstructuresbut
fails to preserve localpatterns.

1.2 Overview

Ourgoalwasto developanalgorithmthatcombinestheadvantages
of previous approaches.We want it to be efficient, general,and
able to producehigh quality, tileable textures. It shouldalso be
userfriendly; i.e. the numberof tunableinput parametersshould
beminimal. This canbeachievedby a carefulselectionof thetex-
turemodelingandsynthesisprocedure.For the texturemodel,we
useMarkov RandomFields (MRF) sincethey have beenproven
to cover the widest variety of useful texture types. To avoid the
usualcomputationalexpenseof MRFs,we have developeda syn-
thesisprocedurewhichavoidsexplicit probabilityconstructionand
sampling.

Markov RandomField methodsmodela textureasa realization
of a local andstationary randomprocess.That is, eachpixel of a
textureimageis characterizedby a smallsetof spatiallyneighbor-
ing pixels,andthis characterizationis thesamefor all pixels. The
intuition behindthis modelcanbe demonstratedby the following
experiment(Figure2). Imaginethataviewer is givenanimage,but
only allowed to observe it througha small movablewindow. As
thewindow is movedtheviewer canobserve differentpartsof the

(a)

(a1) (a2)

(b)

(b1) (b2)

Figure2: How texturesdiffer from images. (a) is a generalim-
agewhile (b) is a texture. A movablewindow with two different
positionsaredrawn asblacksquaresin (a) and(b), with thecorre-
spondingcontentsshown below. Differentregionsof a textureare
alwaysperceived to besimilar (b1,b2),which is not thecasefor a
generalimage(a1,a2).In addition,eachpixel in (b) is only related
to a smallsetof neighboringpixels. Thesetwo characteristicsare
calledstationarityandlocality, respectively.

image.Theimageis stationaryif, undera properwindow size,the
observable portion alwaysappearssimilar. The imageis local if
eachpixel is predictablefrom asmallsetof neighboringpixelsand
is independentof therestof theimage.

Basedon theselocality andstationarityassumptions,our algo-
rithm synthesizesa new texture so that it is locally similar to an
exampletexturepatch.Thenew textureis generatedpixel by pixel,
andeachpixel is determinedso that local similarity is preserved
betweenthe exampletextureandthe result image. This synthesis
procedure,unlikemostMRF basedalgorithms,is completelydeter-
ministic andno explicit probabilitydistribution is constructed.As
aresult,it is efficientandamenableto furtheracceleration.

Theremainderof thepaperis organizedasfollows. In section2,
we presentthe algorithm. In section3, we demonstratesynthe-
sisresultsandcomparethemwith thosegeneratedby previousap-
proaches.In section4, weproposeaccelerationtechniques.In sec-
tions 5 and 6, wediscussapplications,limitations,andextensions.

2 Algorithm

UsingMarkov RandomFieldsasthetexturemodel,thegoalof the
synthesisalgorithm is to generatea new texture so that eachlo-
cal region of it is similar to anotherregion from the input texture.
We first describehow the algorithmworks in a singleresolution,
andthenweextendit usingamultiresolutionpyramidto obtainim-
provementsin efficiency. For easyreference,we list the symbols
usedin Table1 andsummarizethealgorithmin Table2.

2.1 Single Resolution Synthesis

The algorithmstartswith an input texture sample
���

anda white
randomnoise

���
. We forcetherandomnoise

���
to look like

� �
by

transforming
� �

pixel by pixel in arasterscanordering,i.e. fromtop
to bottomandleft to right. Figure3 shows a graphicalillustration
of thesynthesisprocess.

To determinethe pixel value � at
� �

, its spatialneighborhood��� �
	 (the L-shapedregions in Figure3) is comparedagainstall
possibleneighborhoods

��� ���	 from
���

. The input pixel �� with
themostsimilar

��� ���	 is assignedto � . We usea simple ��� norm
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Figure3: Singleresolutiontexturesynthesis.(a) is theinput textureand(b)-(d)show differentsynthesisstagesof theoutputimage.Pixelsin
theoutputimageareassignedin arasterscanordering.Thevalueof eachoutputpixel � is determinedby comparingits spatialneighborhood��� �
	 with all neighborhoodsin the input texture. The input pixel with mostsimilar neighborhoodwill be assignedto the corresponding
outputpixel. Neighborhoodscrossingtheoutputimageboundaries(shown in (b) and(c)) arehandledtoroidally, asdiscussedin Section2.4.

Symbol Meaning���
Input texturesample���
Outputtextureimage� �

Gaussianpyramidbuilt from
���� �

Gaussianpyramidbuilt from
���

�� An inputpixel in
���

or
� �

� An outputpixel in
� �

or
� ���� �	 Neighborhoodaroundthepixel �� � ��	 � th level of pyramid
�� � ����������	 pixel at level � andposition
� ������	 of

�

Table1: Tableof symbols

(a) (b) (c)

Figure4: Synthesisresultswith differentneighborhoodsizes.The
neighborhoodsizesare(a) 5x5, (b) 7x7, (c) 9x9, respectively. All
imagesshown areof size128x128.Notethatastheneighborhood
sizeincreasestheresultingtexturequalitygetsbetter. However, the
computationcostalsoincreases.

(sumof squareddifference)to measurethesimilarity betweenthe
neighborhoods.Thegoalof this synthesisprocessis to ensurethat
the newly assignedpixel � will maintainasmuchlocal similarity
between

� �
and
���

aspossible.The sameprocessis repeatedfor
eachoutputpixel until all thepixelsaredetermined.This is akin to
puttingtogetherajigsaw puzzle:thepiecesaretheindividualpixels
andthefitnessbetweenthesepiecesis determinedby thecolorsof
thesurroundingneighborhoodpixels.

2.2 Neighborhood

Becausethe setof local neighborhoods
��� ����	 is usedasthe pri-

marymodelfor textures,thequality of thesynthesizedresultswill

(a)

(b) (c)

Figure5: Causalityof the neighborhood.(a) sampletexture (b)
synthesisresultusingacausalneighborhood(c) synthesisresultus-
ing anoncausalneighborhood.Both (b) and(c) aregeneratedfrom
the samerandomnoiseusinga 9x9 neighborhood.As shown, a
noncausalneighborhoodis unableto generatevalid results.

dependon its sizeandshape.Intuitively, thesizeof theneighbor-
hoodsshouldbeonthescaleof thelargestregulartexturestructure;
otherwisethis structuremaybelost andtheresultimagewill look
too random.Figure4 demonstratestheeffect of theneighborhood
sizeon thesynthesisresults.

Theshapeof theneighborhoodwill directly determinethequal-
ity of

���
. It mustbecausal,i.e. theneighborhoodcanonly contain

thosepixels precedingthe currentoutput pixel in the rasterscan
ordering. The reasonis to ensurethat eachoutputneighborhood��� �
	 will containonly alreadyassignedpixels. For the first few
rowsandcolumnsof

� �
,
��� �
	 maycontainunassigned(noise)pix-

elsbut asthealgorithmprogressesall theother
��� �
	 will becom-

pletely“valid” (containsonlyalreadyassignedpixels).A noncausal��� �
	 , whichalwayscontainsunassignedpixels,is unableto trans-
form

� �
to look like

���
(Figure5). Thus,the noiseimageis only

usedwhengeneratingthefirst few rows andcolumnsof theoutput
image.After this, it is ignored.

2.3 Multiresolution Synthesis

The singleresolutionalgorithmcapturesthe texture structuresby
usingadequatelysizedneighborhoods.However, for texturescon-
taining largescalestructureswe have to uselargeneighborhoods,
and large neighborhoodsdemandmore computation. This prob-
lem canbesolvedby usinga mutlresolutionimagepyramid ([4]);
computationis saved becausewe canrepresentlarge scalestruc-
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Figure6: A causalneighborhoodcontainingtwo levelsof pyramid
pixels.Thecurrentlevel of thepyramidis shown atleft andthenext
lower resolutionlevel is shown at right. Thecurrentoutputpixel � ,
marked asX, is locatedat

� ����������	 , where � is the currentlevel
numberand

� ������	 is its coordinate.At this level of thepyramid �
theimageis only partiallycomplete.Thus,wemustusethepreced-
ing pixelsin therasterscanordering(markedasO).Thepositionof
theparentof thecurrentpixel, locatedat

� ��� �!��" � �$# � 	 , is marked
asY.

turesmorecompactlyby a few pixels in a certainlower resolution
pyramidlevel.

The multiresolutionsynthesisalgorithm proceedsas follows.
Two Gaussianpyramids([4]),

� �
and
� �

, arefirst built from
���

and
���

, respectively. Thealgorithmthentransforms
� �

from lower
to higherresolutions,suchthateachhigherresolutionlevel is con-
structedfrom thealreadysynthesizedlower resolutionlevels. This
is similar to the sequencein which a pictureis painted: long and
thick strokes areplacedfirst, anddetailsare thenadded. Within
eachoutputpyramid level

� �%� �&	 , the pixels aresynthesizedin a
way similar to the singleresolutioncasewherethe pixels areas-
signedin a rasterscanordering. Theonly modificationis that for
themultiresoltioncase,eachneighborhood

��� �
	 containspixelsin
thecurrentresolutionaswell asthosein thelower resolutions.An
exampleof multiresolutionneighborhoodwith two levelsis shown
in Figure6. Thesimilarity betweentwo multiresolutionneighbor-
hoodsis measuredby computingthe sumof squareddistanceof
all pixelswithin them. Theselower resolutionpixelsconstrainthe
synthesisprocessso that the addedhigh frequency detailswill be
consistentwith thealreadysynthesizedlow frequency structures.

2.4 Edge Handling

Proper edge handling for
��� �
	 near the image boundariesis

very important. For the synthesispyramid the edge is treated
toroidally. In other words, if

� � � ����������	 denotesthe pixel at
level � and position

� ������	 of pyramid
� �

, then
� �%� ����������	('� � � ���)�+*-,/.�01�)��*-,/. � 	 , where 0 and
�

are the num-
berof rows andcolumns,respectively, of

� � � ��	 . Handlingedges
toroidally is essentialto guaranteethat the resultingsynthetictex-
turewill tile seamlessly.

For theinputpyramid
� �

, toroidalneighborhoodswill typically
containdiscontinuitiesunless

� �
is tileable.A reasonableedgehan-

dler for
� �

is to padit with areflectedcopy of itself. Anothersolu-
tion is to useonly those

��� � � 	 completelyinside
� �

, anddiscard
thosecrossingtheboundaries.Weusea reflective edgehandlerfor
all examplesshown in thispaper.

2.5 Initialization

Naturaltexturesoftencontainrecognizablestructuresaswell asa
certainamountof randomness.Sinceour goalis to reproducereal-
istic textures,it is essentialthat thealgorithmcapturestherandom
aspectof the textures. This notion of randomnesscansometimes
beachievedby entropy maximization([30]), but thecomputational
costis prohibitive. Instead,we initialize the outputimage

� �
asa

white randomnoise,andgraduallymodify this noiseto look like
the input texture

� �
. This initialization stepseedsthe algorithm

with sufficiententropy, andletstherestof thesynthesisprocessfo-
cuson the transformationof

���
towards

� �
. To make this random

noiseabetterinitial guess,wealsoequalizethepyramidhistogram
of
� �

with respectto
� �

([10]).
The initial noiseeffects the synthesisprocessin the following

way. For thesingleresolutioncase,neighborhoodsin thefirst few
rows andcolumnsof

���
containnoisepixels. Thesenoisepixels

introduceuncertaintyin theneighborhoodmatchingprocess,caus-
ing the boundarypixels to be assignedsemi-stochastically(How-
ever, thesearchingprocessis still deterministic.Therandomnessis
causedby the initial noise). The restof the noisepixels areover-
writtendirectlyduringsynthesis.For themultiresolutioncase,how-
ever, moreof thenoisepixelscontributeto thesynthesisprocess,at
leastindirectly, sincethey determinethe initial valueof the lowest
resolutionlevel of

� �
.

2.6 Summary of Algorithm

Wesummarizethealgorithmin thefollowing pseudocode.

function
�3254

TextureSynthesis(
���

,
� �

)
1 Initialize(

���
);

2
� �64

BuildPyramid(
���

);
3

� �74
BuildPyramid(

���
);

4 foreach level � from lower to higherresolutionsof
� �

5 loop throughall pixels
� � � ��� � 	 of

� � � �&	
6 8 4 FindBestMatch(

� �
,
� �

, ����� � ��� � );
7

� � � ����� � ��� � 	 4 8 ;
8

� 2 4
ReconPyramid(

� �
);

9 return
�32

;

function 8 4 FindBestMatch(
� �

,
� �

, ����� � ��� � )
1

� � 4
BuildNeighborhood(

� � ������� � ��� � );
2

��9�: ��;� 4
null; 8 4 null;

3 loop throughall pixels
� � � ��� � 	 of

� �<� �&	
4

�-�64
BuildNeighborhood(

� �
, ����� � ��� � );

5 if Match(
�=�

,
� �

) > Match(
� 9�: ��;�

,
� �

)
6

� 9�: ��;� 4?�=�
; 8 4 � �/� ����� � ��� � 	 ;

7 return 8 ;

Table2: Pseudocodeof theAlgorithm

The architectureof this algorithm is flexible; it is composed
from severalorthogonalcomponents.We list thesecomponentsas
followsanddiscussthecorrespondingdesignchoices.

Pyramid: The pyramids are built from and reconstructedto
imagesusing the standardroutines BuildPyramid and Recon-
Pyramid. Various pyramids can be usedfor texture synthesis;
examplesareGaussianpyramid ([21]), Laplacianpyramid ([10]),
steerablepyramid ([10], [23]), and feature-basedpyramids([5]).
Different pyramids will give different trade-offs betweenspatial
and frequency resolutions. In this paper, we chooseto use the
Gaussianpyramidfor its simplicity andgreaterspatiallocalization
(adetaileddiscussionof this issuecanbefoundin [20]). However,
otherkindsof pyramidscanbeusedinstead.
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Neighborhood: The neighborhoodcan have arbitrary size and
shape;theonly requirementis that it containsonly valid pixels. A
noncausal/symmetricneighborhood,for example,canbe usedby
extendingtheoriginalalgorithmwith two passes(Section5.1).

Synthesis Ordering: A rasterscanorderingis usedin line 5 of
function TextureSynthesis. This, however, canalsobe extended.
For example,a spiralorderingcanbeusedfor constrainedtexture
synthesis(Section5.1). The synthesisorderingshouldcooperate
with the BuildNeighborhood so that the neighborhoodcontains
only valid pixels.

Searching: An exhaustive searchingprocedureFindBestMatch
is employed to determinethe outputpixel values. Becausethis is
a standardprocess,variouspoint searchingalgorithmscanbeused
for acceleration.Thiswill bediscussedin detailin Section4.

3 Synthesis Results

To test the effectivenessof our approach,we have run the algo-
rithm on many different imagesfrom standardtexture sets. Fig-
ure7 showsexamplesusingtheBrodatztexturealbum([3]) andthe
MIT VisTex set([17]). TheBrodatzalbum is themostcommonly
usedtexture testingsuiteandcontainsa broadrangeof grayscale
images. Sincemost graphicsapplicationsrequirecolor textures,
wealsousetheMIT VisTex set,whichcontainsrealworld textures
photographedundernaturallighting conditions.

A visual comparisonof our approachwith several other algo-
rithmsis shown in Figure8. Result(a) is generatedby Heegerand
Bergen’salgorithm([10]) usingasteerablepyramidwith 6 orienta-
tions.Thealgorithmcapturescertainrandomaspectsof thetexture
but fails on thedominatinggrid-likestructures.Result(b) is gener-
atedby DeBonet’sapproach([5]) wherewechoosehisrandomness
parameterto make theresultlook best.Thoughcapableof captur-
ing morestructuralpatternsthan(a), certainboundaryartifactsare
veryvisible. This is becausehisapproachcharacterizestexturesby
lower frequency pyramidlevelsonly; thereforethelateralrelation-
shipbetweenpixelsat thesamelevel is lost. Result(c) is generated
by Efros andLeung’s algorithm([7]). This techniqueis basedon
theMarkov RandomFieldmodelandis capableof generatinghigh
quality textures.However, a directapplicationof his approachcan
producenon-tileableresults.1

Result(d) is synthesizedusingour approach.It is tileableand
the imagequality is comparablewith thosesynthesizeddirectly
from MRFs. It took about8 minutesto generateusinga 195MHz
R10000processor. However, this is not the maximumpossible
speedachievablewith this algorithm. In the next section,we de-
scribemodificationsthatacceleratethealgorithmgreatly.

4 Acceleration

Our deterministicsynthesisprocedureavoids the usualcomputa-
tional requirementfor samplingfrom a MRF. However, the algo-
rithm asdescribedemploys exhaustive searching,which makes it
slow. Fortunately, accelerationis possible.Thisis achievedby con-
sideringneighborhoods

��� �	 aspoints in a multiple dimensional
space,andcastingtheneighborhoodmatchingprocessasa nearest
pointsearchingproblem([18]).

The nearestpoint searchingproblemin multiple dimensionsis
statedasfollows: givena set @ of A pointsandanovel querypoint

1We have found that it is possibleto extendtheir approachusingmul-
tiresolutionpyramidsandatoroidalneighborhoodto maketileabletextures.
However this is not statedin theoriginalpaper([7]).

B
in a . -dimensionalspace,find apoint in thesetsuchthatits dis-

tancefrom
B

is lesserthan,or equalto, thedistanceof
B

from any
otherpoint in theset.Becausea largenumberof suchqueriesmay
needto be conductedover thesamedataset @ , thecomputational
costcanbe reducedif we preprocess@ to createa datastructure
that allows fastnearestpoint queries. Many suchdatastructures
havebeenproposedandwereferthereaderto [18] for amorecom-
pletereference.However, mostof thesealgorithmsassumegeneric
inputsanddo not attemptto take advantageof any specialstruc-
turesthey mayhave. Popat([21]) observedthattheset @ of spatial
neighborhoodsfrom a texture canoften be characterizedwell by
a clusteringprobability model. Taking advantageof this cluster-
ing property, we proposeto usetree-structuredvectorquantization
(TSVQ,[8]) asthesearchingalgorithm([27]).

4.1 TSVQ Acceleration

Tree-structuredvectorquantization(TSVQ)is acommontechnique
for datacompression.It takes a set of training vectorsas input,
andgeneratesa binary-tree-structuredcodebook.The first stepis
to computethecentroidof thesetof trainingvectorsanduseit as
theroot level codeword. To find thechildrenof this root, thecen-
troid andaperturbedcentroidarechosenasinitial child codewords.
A generalizedLloyd algorithm([8]), consistingof alternationsbe-
tweencentroidcomputationandnearestcentroidpartition, is then
usedto find the locally optimal codewords for the two children.
The training vectorsare divided into two groupsbasedon these
codewordsandthealgorithmrecursesoneachof thesubtrees.This
processterminateswhenthe numberof codewordsexceedsa pre-
selectedsizeor theaveragecodingerror is below a certainthresh-
old. The final codebookis the collectionof the leaf level code-
words.

Thetreegeneratedby TSVQ canbeusedasa datastructurefor
efficient nearestpoint query. To find the nearestpoint of a given
queryvector, thetreeis traversedfrom theroot in abestfirst order-
ingby comparingthequeryvectorwith thetwochildrencodewords,
andthenfollowstheonethathasaclosercodeword. Thisprocessis
repeatedfor eachvisitednodeuntil a leafnodeis reached.Thebest
codeword is thenreturnedasthecodewordof thatleafnode.Unlike
full searching,theresultcodewordmaynotbetheoptimalonesince
only partof the treeis traversed.However, the resultcodeword is
usuallycloseto theoptimalsolution,andthecomputationis more
efficient thanfull searching.If thetreeis reasonablybalanced(this
canbe enforcedin the algorithm),a singlesearchwith codebook
size CD@�C canbe achieved in time E �GF ,/H�CI@�CJ	 , which is muchfaster
thanexhaustive searchingwith lineartimecomplexity E � CI@�CJ	 .

To useTSVQ in our synthesisalgorithm,we simply collect the
set of neighborhoodpixels

��� � � 	 for eachinput pixel and treat
themasavectorof sizeequalto thenumberof pixelsin

��� ���	 . We
usethesevectors K ��� ���	ML from each

� �<� �&	 asthe training data,
and generatethe correspondingtree structurecodebooksN � �&	 .
During the synthesisprocess,the (approximate)closestpoint for
each
��� �
	 at

� �O� ��	 is foundbydoingabestfirst traversalof N � �&	 .
Becausethis treetraversalhastime complexity E �GF ,<H �=P 	 (where�=P

is thenumberof pixelsof
� �<� �&	 ), thesynthesisprocedurecan

beexecutedveryefficiently. Typical texturestakesecondsto gener-
ate;theexacttiming dependson theinputandoutputimagesizes.

4.2 Acceleration Results

An example comparingthe resultsof exhaustive searchingand
TSVQis shown in Figure9. Theoriginal imagesizesare128x128
andthe resultingimagesizesare200x200. The averagerunning
time for exhaustive searchingis 360 seconds.The averagetrain-
ing time for TSVQ is 22 secondsandtheaveragesynthesistime is
7.5 seconds.Thecodeis implementedin C++ andthetimingsare
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(a) (f)

(b) (g)

(c) (h)

(d) (i)

(e) (j)

Figure7: Texturesynthesisresults.Thesmallerpatchesaretheinput textures,andto their right aresynthesizedresults.A 9x9neighborhood
is usedfor all cases.Brodatztextures: (a) D52 (b) D103 (c) D84 (d) D11 (e) D20. VisTex textures: (f) Flowers0000(g) Misc 0000(h)
Clouds0000(i) Fabric0015(j) Leaves0009.
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Sample

(a) (b) (c) (d)

Figure8: A comparisonof texturesynthesisresultsusingdifferentalgorithms:(a)HeegerandBergen’smethod([10]) (b) DeBonet’smethod
([5]) (c) EfrosandLeung’smethod([7]) (d) Ourmethod.Only EfrosandLeung’salgorithmproducesresultscomparablewith ours.However,
ouralgorithmis 2 ordersof magnitudefasterthantheirs(Section4). Thesampletexturepatchhassize64x64,andall theresultimagesareof
size192x192.A 9x9neighborhoodis usedfor (c) and(d).

(a)Exhaustive (a)TSVQ (b) Exhaustive (b) TSVQ

Figure9: AcceleratedsynthesisusingTSVQ.In eachpairof figures,theresultgeneratedby exhaustivesearchingis ontheleft andtheTSVQ
acceleratedresultis on theright. Theoriginal imagesareshown in Figure7. All generatedimagesareof size200x200.Theaveragerunning
timefor exhaustivesearchingis 360seconds.Theaveragetrainingtimefor TSVQis 22secondsandtheaveragesynthesistimeis 7.5seconds.

(a) (b) (c)

Figure10: TSVQ accelerationwith differentcodebooksizes.The
original imagesizeis 64x64andall thesesynthesizedresultsareof
size128x128.Thenumberof codewordsin eachcaseare(a)64(b)
512(c) 4096(all).

measuredon a 195MHzR10000processor. As shown in Figure9,
resultsgeneratedwith TSVQ accelerationareroughlycomparable
in quality to thosegeneratedfrom theunacceleratedapproach.In
a few cases,TSVQ will generatemoreblurry images(suchasFig-
ure9 (b)). We fix this by allowing limited backtrackingin thetree
traversalso thatmorethanoneleaf nodecanbevisited. Whenthe
numberof visitedleaf nodesis thesameasthecodebooksize,the
resultwill beexactly thesameastheexhaustive searchingcase.

Onedisadvantageof TSVQ accelerationis thememoryrequire-
ment.Becauseaninputpixelcanappearin multipleneighborhoods,
a full-sizedTSVQtreecanconsumeE � .RQ � 	 memorywhere. is
theneighborhoodsizeand

�
is thenumberof input imagepixels.

Fortunately, texturesusuallycontainrepeatingstructures;therefore

Algorithm TrainingTime SynthesisTime
EfrosandLeung none 1941seconds

ExhaustiveSearching none 503seconds
TSVQacceleration 12seconds 12seconds

Table3: A breakdown of runningtime for the texturesshown in
Figure8. Thefirst row shows the timing of EfrosandLeung’s al-
gorithm. The secondandthird rows show the timing of our algo-
rithm, usingexhaustive searchingandTSVQ acceleration,respec-
tively. All the timings weremeasuredusinga 195 MHz R10000
processor.

wecanusecodebookswith fewernumberof codewordsthanthein-
put trainingset.Figure10shows texturesgeneratedby TSVQwith
differentcodebooksizes.As expectedthe imagequality improves
whenthecodebooksizeincreases.However, resultsgeneratedwith
fewer numberof codewords suchas (b) look plausiblecompared
with the full codebookresult (c). In our experiencewe can use
codebookswith lessthan10 percentsize of the original training
datawithout noticeabledegradationof quality of the synthesisre-
sults. To further reducethe expenseof training,we canalsotrain
on a subsetratherthantheentirecollectionof input neighborhood
vectors.

Table3 shows a timing breakdown for generatingthe textures
shown in Figure8. Our unacceleratedalgorithmtook503seconds.
TheTSVQacceleratedalgorithmtook12 secondsfor training,and
another12secondsfor synthesis.In comparison,EfrosandLeung’s
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algorithm([7]) took half an hour to generatethe sametexture 2.
Becausetheir algorithm usesa variablesizedneighborhoodit is
difficult to accelerate.Our algorithm, on the other hand,usesa
fixed neighborhoodand can be directly acceleratedby any point
searchingalgorithm.

5 Applications

Oneof the chief advantagesof our texturesynthesismethodis its
low computationalcost. This permitsus to explore a variety of
applicationsin additionto the usualtexture mappingfor graphics
that were previously impractical. Presentedhereare constrained
synthesisfor imageeditingandtemporaltexturegeneration.

5.1 Constrained Texture Synthesis

Photographs,films and imagesoften contain regions that are in
somesenseflawed.A flaw canbeascrambledregionon ascanned
photograph,scratchesonanold film, wiresor propsin amovie film
frame,or simply anundesirableobjectin animage.Sincethepro-
cessescausingtheseflaws areoften irreversible,analgorithmthat
canfix theseflaws is desirable.For example,Hirani andTotsuka
([11]) developedan interactive algorithmthatfinds translationally
similar regionsfor noiseremoval. Often,theflawedportionis con-
tainedwithin aregionof texture,andcanbereplacedbyconstrained
texturesynthesis([7],[12]).

Texture replacementby constrainedsynthesismustsatisfy two
requirements:thesynthesizedregion mustlook like thesurround-
ing texture,andtheboundarybetweenthenew andold regionsmust
be invisible. Multiresolution blending([4]) with anothersimilar
texture,shown in Figure11(b), will producevisibleboundariesfor
structuredtextures.Betterresultscanbeobtainedby applyingour
algorithmin Section2 over theflawedregions,but discontinuities
still appearat the right and bottom boundariesas shown in Fig-
ure 11 (c). Theseartifactsarecausedby the causalneighborhood
aswell astherasterscansynthesisordering.

To remove theseboundaryartifacts a noncausal(symmetric)
neighborhoodmustbeused.However, wehave to modify theorig-
inal algorithm so that only valid (alreadysynthesized)pixels are
containedwithin the symmetricneighborhoods;otherwisethe al-
gorithmwill notgeneratevalid results(Figure5). Thiscanbedone
with atwo-passextensionof theoriginalalgorithm.Eachpassis the
sameastheoriginalmultiresolutionprocess,exceptthatadifferent
neighborhoodis used.During thefirst pass,theneighborhoodcon-
tainsonly pixelsfrom thelowerresolutionpyramidlevels.Because
the synthesisprogressesin a lower to higherresolutionfashion,a
symmetricneighborhoodcanbe usedwithout introducinginvalid
pixels. This passusesthe lower resolutioninformationto “extrap-
olate” thehigherresolutionregionsthatneedto bereplaced.In the
secondpass,a symmetricneighborhoodthat containspixels from
both the currentandlower resolutionsis used. Thesetwo passes
alternatefor eachlevel of the outputpyramid. In the accelerated
algorithm, the analysisphaseis alsomodifiedso that two TSVQ
treescorrespondingto thesetwo kinds of neighborhoodsarebuilt
for eachlevel of the input pyramid. Finally, we alsomodify the
synthesisorderingin thefollowing way: insteadof theusualraster-
scanordering,pixels in the filled regionsareassignedin a spiral
fashion. For example,the hole in Figure11 (a) is replacedfrom
outsideto inside from the surroundingregion until every pixel is
assigned(Figure11 (d)). This spiral synthesisorderingremoves

2In this timing comparisonwe choosea very small input patch(with
size64x64). Becausethe time complexity of our approachover Efrosand
Leung’s is SUTDVIWYX[Z]\D^_SUTDZ]\ whereZ is thenumberof input imagepixels,
ourapproachperformsevenbetterfor largerinput textures.

the directionalbiaswhich causesthe boundarydiscontinuities(as
in Figure11 (c)).

Examplesof constrainedsynthesisfor holefilling andimageex-
trapolationareshown in Figure12. Within eachpairof images,the
black region is filled in usinginformationsavailablein the restof
the image. The synthesizedregionscanblendsmoothlywith the
originalpartsevenfor structuredtextures.Becauseof its efficiency,
thisapproachmaybeusefulasaninteractive tool for imageediting
or denoising([16]).

5.2 Temporal Texture Synthesis

The low costof our acceleratedalgorithmenablesus to consider
synthesizingtexturesof dimensiongreaterthantwo. An exampleof
3D textureis temporaltexture.Temporaltexturesaremotionswith
indeterminateextent both in spaceandtime. They candescribea
wide variety of naturalphenomenasuchasfire, smoke, andfluid
motions.Sincerealisticmotionsynthesisis oneof themajorgoals
of computergraphics,atechniquethatcansynthesizetemporaltex-
tureswould be useful. Most existing algorithmsmodel temporal
texturesby directsimulation;examplesincludefluid, gas,andfire
([24]). Direct simulations,however, areoften expensive andonly
suitablefor specifickinds of textures;thereforean algorithmthat
canmodelgeneralmotiontextureswouldbeadvantageous([26]).

Temporaltexturesconsistof 3D spatial-temporalvolumeof mo-
tion data. If the motion datais local andstationaryboth in space
andtime, the texturecanbe synthesizedby a 3D extensionof our
original algorithm. This extensioncanbe simply doneby replac-
ing various2D entitiesin the original algorithm,suchas images,
pyramids,andneighborhoodswith their 3D counterparts.For ex-
ample,thetwo Gaussianpyramidsareconstructedby filtering and
downsamplingfrom 3D volumetricdata; the neighborhoodscon-
tain local pixels in both the spatialandtemporaldimension.The
synthesisprogressesfrom lower to higherresolutions,andwithin
eachresolutionthe output is synthesizedslice by slice along the
timedomain.

Figure 13 shows synthesisresultsof several typical temporal
textures: fire, smoke, and oceanwaves (shown in the accompa-
nying video tape). The resultingsequencescapturethe flavor of
the original motions,andtile both spatiallyandtemporally. This
techniqueis alsoefficient. Acceleratedby TSVQ,eachresultframe
took about20 secondsto synthesize.Currentlyall the texturesare
generatedautomatically;we plan to extendthealgorithmto allow
moreexplicit usercontrols(suchasthedistributionandintensityof
thefire andsmoke).

6 Conclusions and Future Work

Texturesare importantfor a wide variety of applicationsin com-
putergraphicsandimageprocessing.On theotherhand,they are
hard to synthesize.The goal of this paperis to provide a practi-
cal tool for efficiently synthesizinga broadrangeof textures. In-
spiredby Markov RandomFieldmethods,ouralgorithmis general;
a wide variety of texturescanbe synthesizedwithout any knowl-
edgeof their physicalformationprocesses.The algorithmis also
efficient;by aproperaccelerationusingTSVQ,typical texturescan
begeneratedwithin secondson currentPCsandworkstations.The
algorithmis alsoeasyto use:only anexampletexturepatchis re-
quired.

One drawback of the Markov RandomField approachis that
only local and stationaryphenomenacan be modeled. Other vi-
sualcuessuchas3D shape,depth,lighting, or reflectioncannot
be capturedby this approach.Onepossiblesolutionwould be to
incorporatethis informationin a preprocessingstep,or to impose
certainconstraintsduring the synthesisprocess.For example,to
synthesizeaperspectively viewedbrick wall, wecoulduseashape
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(a) (b) (c) (d)

Figure11: Constrainedtexture synthesis.(a) a texture containinga black region that needsto be filled in. (b) multiresolutionblending
([4]) with anothertextureregion will produceboundaryartifacts.(c) A directapplicationof thealgorithmin Section2 will producevisible
discontinuitiesat theright andbottomboundaries.(d) A muchbetterresultcanbegeneratedby usingamodificationof thealgorithmwith 2
passes.

(a) (a)Result (b) (b) Result

Figure12: Constrainedsynthesisexamples.In eachpairof figures,theoriginal imageis on theleft andthesynthesizedresultis on theright.
Thegoalis to fill in theblackregionswithoutchangingtherestof theimage.Examplesshown areBrodatztextureswith imageextrapolation
(a)D36andholefilling (b) D40.

from texturetechnique([15]) to determinethesizesandorientation
of individualbricksin theoriginal image.Then,duringthesynthe-
sisprocess,aglobalconstraintis enforcedover theoutputimageso
that thepatternis generatedaccordingto the relative positionand
orientationbetweenthewall andtheeyepoint.

Aside from constrainedsynthesisand temporal textures, nu-
merousapplicationsof our approacharepossible.Otherpotential
applications/extensionsare:

Multidimensional texture: The notion of texture extendsnatu-
rally to multi-dimensionaldata.Oneexamplewaspresentedin this
paper- motionsequences.Thesametechniquecanalsobedirectly
appliedto solid texturesor animatedsolid texture synthesis.We
are also trying to extend our algorithm for generatingstructured
solid texturesfrom 2D views ([10]).

Texture compression/decompression: Texturesusuallycontain
repeatingpatternsandhigh frequency information; thereforethey
are not well compressedby transform-basedtechniquessuch
as JPEG. However, codebook-basedcompressiontechniques
work well on textures([2]). This suggeststhat texturesmight be
compressableby our synthesistechnique. Compressionwould
consistof building a codebook,but unlike [2], no code indices
would be generated;only the codebookwould be transmittedand
the compressionratio is controlledby the numberof codewords.
Decompressionwould consistof texture synthesis. This decom-
pressionstep,if acceleratedonemoreorderof magnitudeover our
current software implementation,could be usablefor real time
texturemapping.Theadvantageof this approachover [2] is much

greatercompression,sinceonly thecodebookis transmitted.

Motion synthesis/editing: Some motions can be efficiently
modeledas spatial-temporaltextures. Others,suchas animal or
humanmotion,aretoohighly structuredfor suchadirectapproach.
However, it might be possibleto encodetheir motion as joint
angles,then apply texture analysis-synthesisto the resulting1D
temporalmotionsignals.

Modeling geometric details: Models scannedfrom real world
objectsoften contain texture-like geometricdetails, making the
modelsexpensive to store,transmitor manipulate.Thesegeometric
detailscanbe representedasdisplacementmapsover a smoother
surface representation([14]). The resulting displacementmaps
shouldbe compressable/decompressableas2D texturesusingour
technique. Taking this idea further, missinggeometricdetails,a
commonproblemin many scanningsituations([1]), couldbefilled
in usingourconstrainedtexturesynthesistechnique.

Direct synthesis over meshes: Mappingtexturesonto irregular
3D meshesby projectionoftencausedistortions([22]). Thesedis-
tortionscansometimesbefixedby establishingsuitableparameter-
izationof themesh,but amoredirectapproachwouldbeto synthe-
sizetexturedirectly over the mesh. In principle, this canbe done
usingour technique.However, this will requireextendingordinary
signalprocessingoperationssuchasfiltering anddownsamplingto
irregular3D meshes.
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(a) (b) (c)

Figure13: Temporaltexturesynthesisresults.(a) fire (b) smoke (c) oceanwaves.In eachpairof images,thespatial-temporalvolumeof the
originalmotionsequenceis shown on theleft, andthecorrespondingsynthesisresultis shown on theright. A 5x5x5causalneighborhoodis
usedfor synthesis.Theoriginalmotionsequencescontain32 frames,andthesynthesisresultscontain64 frames.Theindividual framesizes
are(a) 128x128(b) 150x112(c) 150x112.Acceleratedby TSVQ,thetrainingtimeare(a)1875(b) 2155(c) 2131secondsandthesynthesis
timeperframeare(a)19.78(b) 18.78(c) 20.08seconds.To savememory, weuseonly arandom10percentof theinputneighborhoodvectors
to build the(full) codebooks.Theoriginalfire sequenceis acquiredfrom [25].
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