PRO-DASP

Power Reduction for Digital Audio Signal Processing

Using Transformations to Implement Hardware-Macros for a Low Power Design Methodology

Nikolaus Voß and Bärbel Mertsching

Prof. Wolfgang Nebel, Prof. Bärbel Mertsching, Prof. Birger Kollmeier

- 1. Macro-Module Library for Audio-Processing
- 2. Power-Reduction Strategy
- 3. Design-Flow
- 4. Module-Hierarchy
- 5. Examples (Module and Algorithm)
- 6. Conclusion

Audio Signal Processing

- Filters are the Central Concept of Signal Processing
- Two main mathematical principles: FIR & IIR

TVA-Kolloquium 2002

Universität Hambu

Library

Audio algorithms can be partitioned to a set of filters

=> Library approach is sensible

Macro-Library

Design-goals:

- 1. Technology independence
 - => Low-level (automatic) optimization possible
 - => Extensive applicability (technology, size)
- 2. High level of optimization
- 3. Easy useability
 - => Development of a software-framework

VIVA-Kolloquium 2002

Audio Filter Example: GSM-Compression 1

GSM 06.10 audio compressor model for human speech

Universität OLDENBURG

VIVA-Kolloquium 2002

GSM Compression 2

- Two filters: 1. Short term prediction 2. Long term prediction
- Exploits correlation in speech to reduce data-rate
- Implemented in every cellular phone
- 3G: advanced compression scheme

OSSITE OLDENBURG

VIVA-Kolloquium 2002

- 1. Macro-Module Library for Audio-Processing
- 2. Power-Reduction Strategy
- 3. Design-Flow
- 4. Module-Hierarchy
- 5. Examples (Module and Algorithm)
- 6. Conclusion

Power-Reduction Strategy 1

- Two trends related to Moore's Law:
 - Reduction of energy-delay product
 - Standby-power is becoming more important

OSSILIZAT Universität OLDENBURG

IVA-Kolloguium 2002

Power-Reduction Strategy 4

Reason:

As Supply Voltages become smaller, the relative Gate-Overdrive has to be reduced as the delay depends on the gate-overdrive

For modern technologies, Vdd-Reduction is limited due to relatively high gate-delay for smaller Voltages

OSSIGNATION DENBURG

Power-Reduction Strategy 5

Consequence for PRO-DASP:

Reduction of switched capacitance by exploiting locality (modularisation, library approach)

VIVA-Kolloquium 2002

- 1. Macro-Module Library for Audio-Processing
- 2. Power-Reduction Strategy
- 3. Design-Flow
- 4. Module-Hierarchy
- 5. Examples (Module and Algorithm)
- 6. Conclusion

Design-Flow 1

- Partitioning of algorithm to modules
- Heuristical/probabilistical refinement
- Quality assurance via MEDI testbench
- Further optimization through ORINOCO
- Optimization through compiler/back-end tools

VIVA-Kolloquium 2002

Structure

- 1. Macro-Module Library for Audio-Processing
- 2. Power-Reduction Strategy
- 3. Design-Flow
- 4. Module-Hierarchy
- 5. Examples (Module and Algorithm)
- 6. Conclusion

OSSICIZATI Universität OLDENBURG

VIVA-Kolloquium 2002

Module-Hierarchy 1

- Two-level approach:
 - Low-level modules for number systems and number representation
 - High-level modules for actual filter architecture
- "Glue-layers"

Module-Hierarchy 2 Low-Power Macro-Module Library Level of Abstraction Filter High-Level Number System / Arch. of Arithm. Number Repres. Architecture Filter-Interface Operators Twos-Compl. FIR direct FIR Ripple IIR direct IIR Signed Magnitude CLA LNS CSA DCM Fourier Transf. RNS DECOR Adaptive Array Floating-Point Baugh-Wooley DAT Booth SMT Wallache Tree Radix-n-FFT UΗ universität OLDENBURG

Example-Module: DECOR 1

- DECoRrelation transform: exploitation redundancy of coefficients to reduce strength of multiplication by only multiplying differences of coefficients (cf. DCM)
- Mathmatically a multiplication of the Z-transfer-function with unity

OSSILIZAT Universität OLDENBURG

/IVA-Kolloguium 2002

Example-Module: DECOR 3 $V(z) = H(z)^{(1+az^{-b})^m} V(z)$

Example Algorithm: Resynthesis 1

- Gammatone-resynthesis is used as pre and post-Processing for audio algorithms
- Set of band-pass filters, frequency selection is approximation of basilar membrane filtering of inner ear

Resynthesis Results Floating Point 3 afloat-Filtering for various Samples -0.5 Snapper 5 Cembalo Coleman Cembalo Sample resp Exponent-Bits WMA Kolloquium 2002

- 1. Macro-Module Library for Audio-Processing
- 2. Power-Reduction Strategy
- 3. Design-Flow
- 4. Module-Hierarchy
- 5. Examples (Module and Algorithm)
- 6. Conclusion

Conclusion

- Modularization is a sensible approach
 - Energy savings for modern technologies
 - Audio algorithms are easily partitioned to modules
 - Modules can be optimized by external tools

OSSILIZAT UNIVERSITÄT OLDENBURG

VIVA-Kolloquium 2002

Conclusion

- Modules are embedded into a SW-frame
 - Application of probablistic/heuristic methods for selection and optimization of modules
 - Exploration of a multi-dimensional solution space possible

Conclusion

• Independent of target technology through focusing on algorithmic level (in contrast to existing high-level tools like HYPER-LP)

/IVA-Kolloquium 2002

Outlook

- Integration of probabilistic/heuristic methods for module selection
- Automatic generation of VHDL hardware description in SW-FW
- VLSI chip-design for example algorithm

