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Abstract

Consumption of hypercaloric diets leads to increase of free fatty acids (FFA), pro-inflammatory cytokines and production of 
oxygen and nitrogen reactive species. These alterations induce oxidative and nitrosative stress causing dysfunction of tissues 
and consequently the development of chronic diseases. Therefore, it is important to decrease oxidative stress and thus pre-
venting the development of these diseases. Strawberry has a lot of vitamin C and polyphenols, compounds with excellent 
antioxidant properties, which may be an option for reducing oxidative stress and therefore to prevent the development of some 
diseases. Studies conducted in vitro, in animal models and clinical studies support that this fruit can be a good alternative to 
reduce oxidative stress and thus reducing and/or preventing the development of diseases in humans.
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Introduction

The 2012 National Survey on Health and Nutrition 
in Mexico showed that the prevalence of overweight 
and obesity is 71.3% for both genders, with 73% in 
females and 69.4% in males. It also reported that the 
costs generated by obesity have been estimated in 67 
thousand million pesos in 20081, and it is therefore 
urgent taking adequate measures in order to reduce 
obesity increase.

Mexican diet, in spite of its particularities, is very 
similar to the western diet; it is hypercaloric, with high 
fat and carbohydrate contents, and it is therefore one 
of the determining factors in the development of obe-
sity. Evidences support that hypercaloric diet with high 
fat and carbohydrate contents significantly contributes 

to the development of obesity and metabolic syndrome 
in animals2 and in humans3. Metabolic syndrome is a 
group of chronic metabolic conditions that include hy-
pertension, dyslipidemias, insulin resistance, obesity 
and diabetes4. Thus, hypercaloric diets can induce an 
inflammatory state and higher production of free radi-
cals (FR) (Fig.  1), which brings oxidative stress and 
the development of chronic metabolic diseases as a 
consequence, as it will be reviewed later.

Free radicals and antioxidant systems

FRs are chemical species with an unpaired electron 
in their most outer orbital, which confers them an un-
stable configuration and, therefore, a great capability 
to react with other molecules. FRs are divided into 
reactive nitrogen species (RNS) and reactive oxygen 
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species (ROS)5. FRs are physiologically produced in 
some reactions that take place as part of metabolism; 
for example in mammals’ mitochondria at stage 4, 1 
to 2% of consumed oxygen is converted into ROS6-8. 
It should be mentioned that FR controlled production 
enables the occurrence of different physiological pro-
cesses, such as neurotransmission, vasorelaxation, 
ovule fertilization by spermatozoids, cell membrane 
genes and enzymes activation, collagen synthesis, 
bacterial lysis, etc., but FRs excessive production is 
deleterious for cell physiology.

ROS and RNS are broken down and/or neutralized 
by exogenous and endogenous antioxidants. Exoge-
nous antioxidants are water-soluble (ascorbic acid), 
fat-soluble (tocopherols, carotenoids, xanthophylls) or 
have both properties (polyphenols, flavonoids, tannins, 
lignins, phenylpropanoids). In turn, enzymatic-type 
endogenous antioxidants are manganese-dependent 
superoxide dismutase (MnSOD) and coenzyme Q (Co-
Q), which are found in the mitochondrial intermem-
brane space, in addition to copper-dependent 
superoxide dismutase (CuSOD), zinc-dependent SOD 

(ZnSOD), glutathione peroxidase (GSH-Px), phospho-
lipid-hydroperoxide glutathione peroxidase (PH-GPX) 
and catalases found in the cytosol9-11.

Oxidative stress occurs when FR production ex-
ceeds exogenous and endogenous systems capaci-
ty12-14. Thus, FRs increase has toxic effects on cells 
and tissues because they can oxidize carbohydrates, 
DNA, lipids and proteins, with this being an important 
mechanism in the development of chronic metabolic 
diseases (Fig. 1), as later it will be reviewed.

Hypercaloric diet, oxidative stress and 
organ dysfunction

Using murine models, hypercaloric diets with fat and/
or carbohydrates high contents were shown to induce 
an adipose tissue increase that body weight gain2,15-17, 
while, in humans, hypercaloric diets were strongly as-
sociated with body weight increase18-20 and, on the 
other hand, overweight and/or obesity were also 
strongly associated with pro-inflammatory cytokines 
increase21-23. In animal models, it is well documented 
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Figure 1. Hypothetical model of tissue dysfunction and chronic diseases induced by hypercaloric diets. Hypercaloric diets induce the develop-
ment of chronic diseases, while strawberry polyphenols can prevent the development of these diseases by reducing oxidative and nitrosative 
stress.
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that hypercaloric diet causes weight increase and 
higher production of pro-inflammatory cytokines 
(Fig. 1). For example, hypercaloric diet increased the 
production of interleukin (IL) 1, IL-6 and tumor necrosis 
factor α (TNF-α); it also induced higher production of 
FRs and oxidative stress15,17,24-26. In addition, hyperca-
loric diet induced obesity and the development of he-
patic steatosis in animal models2,16. In humans, hyper-
caloric diet has only been associated with obesity and 
liver fatty acids content, which were measured with 
ultrasonography19.

Consumption of hypercaloric diets with high con-
tents of free fatty acids (FFA) is worrying, since they 
increase the production of ROS (Fig 1). In rats, FFA 
plasma levels elevation increased the production of 
ROS27. FFA also increased the production of ROS in 
aortic endothelial cells and in human β-cells in vi-
tro28,29. In neuronal cells in vitro, FFA increased ROS 
production and lipid peroxidation, which caused for 
the mitochondria to uncouple29. Similarly, in human 
hepatoma cells in vitro, FFA caused for the mitochon-
dria to uncouple and increased nitrosative and oxida-
tive stress, thus reducing oxidative phosphorylation30. 
FFA also induced IL-1a production and mitochondrial 
uncoupling in vitro31. In addition, sucrose increases 
ROS production and lipid peroxidation in rat isolated 
aorta32. All these studies show that lipid and/or carbo-
hydrate-rich hypercaloric diets significantly contribute 
to the development of inflammatory state, FR produc-
tion and obesity.

In humans, hypocaloric diets reduce body weight, 
leptin secretion, C-reactive protein, TNF-α, IL-633-35 
and oxidized lipid markers36, whereas body weight re-
duction decreases insulin resistance and oxidized 
low-density lipoprotein (LDL) levels37. These data rein-
force data obtained in animal models, in the sense that 
hypercaloric diets induce pro-inflammatory cytokines 
expression and FR production, which contributes to 
the development of diseases such as diabetes.

Based on the above description, as shown in fig-
ure 1, it is highly likely for hypercaloric diets to induce 
oxidative stress and damage in two forms. First, 
hypercaloric diet increases the production of pro-in-
flammatory cytokines, which overstimulate cells to 
increase ROS and RNS generation. Second, hyper-
caloric diets induce mitochondrial uncoupling, which 
entails higher ROS production by the mitochondria 
itself. However, it is not clear whether hypercaloric 
diets first increase pro-inflammatory cytokines pro-
duction or if they first cause for the mitochondria to 
uncouple, or if both processes are simultaneously 

produced. Regardless of which process takes place 
first, the result is the presence of oxidative stress, 
which entails increased oxidization of macromole-
cules that are important to cell physiology.

Macromolecule oxidization brings the development 
of complications such as diabetes as a consequence. 
For example, Carvalho-Filho et al. demonstrated in 
2005 that a fat-rich diet in rats induces insulin recep-
tor, insulin receptor substrate and protein kinase B/Akt 
nitration, which led to the development of insulin re-
sistance38. Furthermore, in mice, a fat-rich diet im-
paired glucose uptake in muscular tissue, with this 
insulin resistance being accompanied by nicotinamide 
adenine dinucleotide phosphate (NADPH) oxidase 2 
overexpression and a higher release of hydrogen per-
oxide. It also induced a decrease in the reduced/oxi-
dized glutathione (GSH/GSSG) ratio39, an antioxidant 
system that is highly important for the cell.

Strawberry use in clinical trials

Decreasing oxidative stress is clearly necessary in 
order to prevent and/or delay the development of 
chronic metabolic diseases. In that regard, antioxi-
dant-rich foods can decrease oxidative stress, and it 
is therefore desirable for them to possess high reac-
tivity to FRs; antioxidants also must be fat-soluble, in 
order for them to be able to cross biological mem-
branes and neutralize FRs, and be able to neutralize 
the presence of secondary reactions; i.e., to neutralize 
secondary FRs12,40.

In recent years, interest has been awakened by 
polyphenols owing to their high antioxidant capacity, 
which confers them great potential in the prevention 
and/or treatment of several diseases where oxidative 
stress has significant effect on disease pathophysiol-
ogy (Fig.  1). Polyphenols are widely distributed in 
vegetable-origin foods such as turmeric, spinach, 
grapes, strawberries, apples, cranberries, grenade 
and cocoa beans, among others. In this review, we 
will focus on strawberry owing to its antioxidant prop-
erties and its potential in health.

Strawberry contains a large number of phenolic 
compounds such as anthocyanins (pelargonidin, etc.), 
flavonols (quercetin, etc.), proanthocyanidins (procy-
anidin, etc.), ellagitannins (agrimoniin, etc.), ellagic 
acid glucosides and cinnamic acid conjugates (cou-
maroyl-hexose and cinnamoyl-glucose)41,42. Strawber-
ry also is of great interest due to its high contents of 
vitamin C, which together with phenols confer it great 
antioxidant power that can be beneficial for health, a 

N
o

 p
ar

t 
o

f 
th

is
 p

u
b

lic
at

io
n

 m
ay

 b
e 

re
p

ro
d

u
ce

d
 o

r 
p

h
o

to
co

p
yi

n
g

 w
it

h
o

u
t 

th
e 

p
ri

o
r 

w
ri

tt
en

 p
er

m
is

si
o

n
 �o

f 
th

e 
p

u
b

lis
h

er
.  


©

 P
er

m
an

ye
r 

20
18



C.I. Oviedo-Solís, et al.: Strawberry polyphenols and oxidative stress

63

potential that has been demonstrated in different in-
vestigations, as we will next discuss.

In one study, healthy volunteers consumed 500  g 
strawberries/day. Strawberries significantly reduced 
total cholesterol, LDL and triglycerides; i.e.,  they im-
proved plasma lipid profile. They also significantly 
decreased serum and urine malondialdehyde (MDA) 
levels, and improved antioxidant status biomarkers, 
anti-hemolytic defenses and platelet function43. In an-
other study conducted in apparently healthy men and 
women, they consumed 500  g strawberries/day per 
each 70  kg body weight for 2  weeks. At treatment 
conclusion, a moderate vitamin C and fasting plasma 
antioxidant capacity increase was observed, in addi-
tion to a delay in plasma lipid oxidation and increased 
resistance to erythrocyte oxidative hemolysis44. 
Healthy adult females were assessed in order to find 
out how much does serum antioxidant capacity in-
crease when any of the following antioxidants is con-
sumed: 240  g of strawberries, 294  g of spinach, 
300 mL of red wine, 125 mg of vitamin C or a control 
beverage. The results showed that total serum antiox-
idant capacity significantly increased from 7 to 25% 
during the 4-h period after the consumption of red 
wine, strawberries, vitamin C or spinach. Urinary an-
tioxidant capacity also increased by 9.6, 27.5 and 
44.9% in those who consumed strawberries, spinach 
and vitamin C, respectively, during the 24-h period 
after these treatments45.

In a crossover study, adult men and women with 
overweight and regular consumption of foods with 
high carbohydrate content and moderate fat content 
ingested a beverage with 10 g of freeze-dried straw-
berry and placebo. The strawberry beverage in-
creased postprandial plasma levels of anthocyanins 
and its metabolites, while decreasing inflammatory 
markers such as CRP and IL-6; it was also associated 
with an increase in insulin sensitivity46. In men and 
women with hyperlipidemia who consumed 10  g of 
freeze-dried strawberries in a beverage after a fat-rich 
meal, triglycerides and oxidized LDL levels significant-
ly decreased after 6  weeks, in comparison with the 
group that consumed placebo47. In a double-blind 
study where 20 obese adults of both genders partici-
pated, they consumed freeze-dried strawberries 
(equivalent to 4 portions of frozen strawberries) for 
3  weeks. At the end of treatment, cholesterol and 
high-density lipoprotein (HDL) small particle cholester-
ol plasma levels were decreased, and LDL particles 
were enlarged, with these changes being associated 
with a decrease in cardiovascular risk48.

However, in men and women who consumed 20 or 
50  g of strawberries/day for 12  weeks, no effect on 
adiposity, blood pressure and blood glucose mea-
sures was observed, and neither was there any effect 
on HDL, triglycerides and CRP serum concentrations. 
The group that consumed 50  g of strawberries only 
showed reductions in LDL cholesterol in comparison 
with the strawberry low dose. Both amounts of straw-
berry showed serum MDA decrease49. Similarly, obese 
men and women with a carbohydrate and fat-rich diet 
were administered 305 g of a strawberry beverage or 
placebo (10  g and 0  g of freeze-dried strawberries, 
respectively) for 6 weeks. The group that consumed 
the strawberry beverage showed a significant attenu-
ation of plasminogen activator inhibitor-1 (PAI-1) post-
prandial concentrations and a non-significant de-
crease of IL-1β. No differences were found in platelet 
aggregation, high-sensitivity CRP test, TNF-α, insulin 
or glucose50.

In a cohort study that included 16,010 nurse partic-
ipants, with a 4-year follow-up, higher cranberry and 
strawberry consumption was found to be associated 
with a lower rate of cognitive impairment; in addition, 
it appears to delay cognitive aging up to 2.5 years51. 
These results clearly show that a diet rich in phenolic 
compounds has the potential to limit neurodegenera-
tion and cognitive decline52,53 and is associated with 
lower risk for myocardial infarction54.

Strawberry use in animal models

More specifically, strawberry effectiveness to reduce 
oxidative stress has also been demonstrated in animal 
models. For example, in male rats that were fed straw-
berry or raspberry oil for 5 weeks, SOD and glutathione 
peroxidase (GSH-Px) activity was decreased, which 
suggests that the oils reduced or eliminated FRs, with 
activity of these antioxidant enzymes therefore being 
reduced. However, triglycerides, total cholesterol, LDL 
or HDL cholesterol levels were not affected55. In another 
research, strawberry supplementation to rats signifi-
cantly reduced the production of ROS and doxorubicin 
(DOX)-induced DNA damage, and also improved oxida-
tive stress markers, antioxidant enzymes activity and 
mitochondrial performance. This work confirmed that 
strawberry supplementation can counteract oxidative 
stress caused by DOX56. In albino rats with inflamma-
tory bowel disease, strawberry ethanolic extract im-
proved signs and symptoms of the condition, and this 
was considered to be owing to the antioxidant and an-
ti-inflammatory properties of the extract57; furthermore, 
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a decrease in β-glucuronidase activity was observed in 
the cecum and feces, which indicates positive changes 
in the rats’ microbiota58. On the other hand, Casto et al. 
demonstrated that freeze-dried strawberries can inhibit 
the formation of tumors in the hamster oral cavity59. 
Dudonné (2014) showed that there is synergistic activity 
of strawberry phenolic compounds with onion quercetin 
since, together, they improved bioavailability with pos-
sible UDP-glucuronosyltransferase intestinal induction. 
Three glucuronidated conjugates of strawberry and 
cranberry phenolic compounds (p-hydroxybenzoic acid 
glucuronide, catechins glucunoride and methyl-cathe-
cins glucunoride) were found at higher quantities when 
ingested together with onion60.

Interestingly, one study demonstrated that strawber-
ry antioxidant capacity can also be observed in food 
preservation. One study added strawberry extract to 
chicken turnovers that were stored in refrigeration for 
6 days. The strawberry extract decreased lipid oxidi-
zation, which demonstrates that the extract has good 
antioxidant power and prevents food oxidization61.

Conclusions

Evidences addressed in this review support that 
hypercaloric diets can induce a pro-inflammatory 
state, characterized by FFA, pro-inflammatory cyto-
kines and FR increase, contributing to the develop-
ment of pathologies associated with cell redox state 
alteration. Evidence also supports that strawberries, 
owing to their elevated contents of antioxidant sub-
stances, can attenuate oxidative stress and/or prevent 
the development of diseases in the human.
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