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ANALYTICAL SOLUTION FOR THE GENERALIZED

TIME–FRACTIONAL TELEGRAPH EQUATION

V. B. L. CHAURASIA AND RAVI SHANKER DUBEY

Abstract. We discuss and derive the analytical solution for the generalized time-fractional tele-
graph equation. These problems are solved by taking the Laplace and Fourier transforms in
variable t and x respectively. Here we use Green function also to derive the solution of the given
differential equation.

1. Introduction

Fractional differential equations have attracted in the recent years a considerable
interest due to their frequent appearance in various fields and their more accurate mod-
els of systems under consideration provided by fractional derivatives. Application of
fractional derivatives have been used successfully to model frequency dependent damp-
ing behaviour of many viscoelastic materials, modeling of many chemical processed,
mathematical biology and many other problems in engineering. The history and a
comprehensive treatment of fractional differential equations are provided by Podlubny
[1] and a review of some applications of fractional differential equations are given by
Mainardi [2].

The fractional telegraph equation have been considered by many authors, namely
Cascaval, Eckstein, Frota and Goldstein [3], Orsingher and Beghin [4], Chen, Liu and
Anh [5], Orsingher and Zhao [6], Camargo, Chiacchio and Oliveira [8], Momani [7],
Mainardi [9, 11]. Many author have been discussed the time-fractional telegraph equa-
tions, dealing with well-posedness and presenting a study involving asymptotic by us-
ing the Riemann-Liouville approach. The time fractional telegraph equationwith Brow-
nian time,was studied by Orsingher and Beghin [4]. The solution of the time fractional
telegraph equation with three kinds of non-homogeneous boundary conditions using
the separating variables method was studied and obtained by Chan, Liu and Anh [5].
Orsingher and Zhao [6] considered the space-fractional telegraph equations, obtaining
the Fourier transform of its fundamental solution and presenting a symmetric process
with discontinuous trajectories, whose transition function satisfies the space-fractional
telegraph equation.The analytic and approximate solutions of the space and time frac-
tional telegraph differential equations by means of the so called Adomian decompo-
sition method, discussed by Momani [7], Camargo et al. [8] discussed the so-called
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general space-time fractional telegraph equations by the methods of differential and in-
tegral calculus, discussing the solution by means of the Laplace and Fourier transforms
in variables t and x , respectively.

An attempt has been made to study the following generalized time-fractional tele-
graphic equation

a1D
α
t v(x, t)+a2D

2α
t v(x,t)+ ...+anD

nα
t v(x,t) = d

∂ 2v(x,t)
∂x2 + f (x,t) , t ∈ R+,

(1.1)
where a1 , a2 , . . . , an are positive constants, 1/n < α � 1, Dβ

t is the fractional deriva-
tive defined in the Caputo sense:

Dβ
t f (t) =

⎧⎨
⎩

dn f (t)
dtn , β = n ∈ N,

1
Γ(n−β )

t∫
0

(t− τ)n−β−1 dn f (τ)
dτn dτ, n−1 < β < n,

(1.2)

where f (t) is a continuous function. Properties and more details about the Caputo’s
fractional derivative can also be found in [1, 2].

The Laplace transform of this derivative is given in [14] in the form;

L{Dα
t f (x, t) ;s}= sαF (x,s)−

m−1

∑
r=0

sα−r−1 f (r)(x,0), (m−1 < α � m) . (1.3)

The above formula is useful in deriving the solution of differential and integral equa-
tions of fractional order governing certain physical problems.

By the definition of Fourier transform

F

{
∂ α

∂xα f (x,t)
}

(k) = (−ik)α F [ f (x, t)](k). (1.4)

For the generalized TFTE (1.1), we will consider three basic problems with the follow-
ing three kinds of initial and boundary conditions, respectively.

PROBLEM 1. Generalized TFTE in a whole-space domain (Cauchy problem)

v(x,0) = φ (x) ,
∂ nv(x,0)

∂ tn
= 0, ∀n ∈ [1,n] , x ∈ R, (1.5)

v(∓∞,t) = 0, t > 0.

PROBLEM 2. Generalized TFTE in a half-space domain (Signaling problem)

v(x,0) =
∂ n

∂ tn
v(x,0) = 0, ∀n ∈ [1,n], x ∈ R+, (1.6)

v(0,t) = ξ (t) , v(+∞,t) = 0, t > 0, (1.7)

and we set f (x, t) = 0 in (1.1).
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PROBLEM 3. TFTE in a bounded-space domain

v(x,0) = φ (x) ,
∂
∂ t

v(x,0) = Ψ(x), 0 < x � M, (1.8)

v(0,t) = v(M,t) = 0, t > 0, (1.9)

here we also set f (x,t) = 0 in (1.1).
In this paper, we derive the analytical solutions of the previous three problems for

the generalized TFTE. The structure of the paper is as follows. In Section 2, by using
the method of Laplace and Fourier transforms, the fundamental solution of Problem
1 is derived. In section 3, by investigating the explicit relationships of the Laplace
Transforms to the Green functions between Problem 1 and 2 the fundamental solution
of the Problem 2 is also derived. To solve the Cauchy problem we use Laplace Fourier
transform which is defined in equation (1.3, 1.4). Similarly we can solve Problem 3 in
the same manner.

Eα ,β (z) is Mittag-Leffler function of two parameters is defined below:

Eα ,β (z) =
∞

∑
n=0

zn

Γ(αn+ β)
, α,β > 0 and Eα ,1 = Eα . (1.10)

2. The Cauchy problem for the generalized TFTE

We first focus our attention on (1.1) in a whole-space domain, that is to say, Prob-
lem 1 will to be considered, which we refer to as the so-called Cauchy problem.

First of all we solve (1.1) by taking Laplace transform with the help of (1.3) and
using boundary conditions.

a1sα ṽ(x,s)+a2s2α ṽ(x,s)+ ...+ansnα ṽ(x,s)− (
a1sα−1 +a2s2α−1 + ...+ansnα−1

)
φ(x)

= d ∂ 2 ṽ(x,s)
∂x2 + f̃ (x,s),

(2.1)
on taking Fourier transform of equation (2.1) with the help of (1.4),

n

∑
i=1

ais
iα ˜̃v(k,s)− sα−1

(
a1 +a2s

α + ...+ans
(n−1)α

)
φ̃ (k) =−k2d ˜̃v(k,s)+ ˜̃f (k,s).

(2.2)
Then we get

˜̃v(k,s) = (a1s
α−1+a2s

2α−1+...+ansnα−1)
n
∑

i=1
aisiα +k2d

φ̃(k)+
˜̃f (k,s)

n
∑

i=1
aisiα +k2d

:= ˜̃G1(k,s)φ̃ (k)+ ˜̃G2(k,s) ˜̃f (k,s),
(2.3)

where
˜̃G1(k,s) = ˜̃G1,1(k,s)+ ˜̃G1,2(k,s)+ ...+ ˜̃G1,n(k,s), (2.4)

˜̃G1,1 =
a1sα−1

n
∑
i=1

aisiα + k2d
, ˜̃G1,2 =

a2s2α−1

n
∑
i=1

aisiα + k2d
, ..., ˜̃G1,n =

ansnα−1

n
∑
i=1

aisiα + k2d
, (2.5)
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and
˜̃G2 =

1
n
∑
i=1

aisiα + k2d
. (2.6)

By the Fourier transform pair [
e−c|x|

]
F←→ 2c

c2 + k2 , (2.7)

we also have

(2.8.1) G̃1,1(x,s) = a1s
α−1

2

√
d

(
n
∑

i=1
aisiα

)e
−

√
n
∑

i=1

ais
iα

d |x|
,

(2.8.2) G̃1,2 (x,s) = a2s
2α−1

2

√
d

(
n
∑
i=1

aisiα
)e
−

√
n
∑

i=1

ais
iα

d |x|
,

...

(2.8.n) G̃1,n(x,s) = ansnα−1

2

√
d

(
n
∑

i=1
aisiα

)e
−

√
n
∑

i=1

ais
iα

d |x|
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.8)

On solving (2.3) we get

v(x, t) =
+∞∫
−∞

G1 (x− y,t)φ (y)dy+
+∞∫
−∞

dy

t∫
0

G2 (x− y,t− τ) f (y,τ)dτ, (2.9)

where G1(x, t) , G2(x,t) is the corresponding Green function or fundamental solution
obtained when φ(x) = δ (x) , f (x) = 0 and φ(x) = 0, f (x, t) = δ (x)δ (t) respectively,
which is characterized by (2.5) or (2.6).

To express the Green function, we recall two Laplace transform pairs and one
Fourier transform pair,

F (β )
1 (ct) := t−β Mβ

(
ct−β ) L←→ sβ−1e−csβ

,

F (β )
2 (ct) := cwβ (ct) L←→ e−(s/c)β

,

F (β )
3 (cx) := 1

2
√

π c−1/2e−x2/4c F←→ e−ck2
,

(2.10)

where Mβ denotes the so-called M function (of the Wright type) of order β , which is
defined

Mβ (z) =
∞

∑
n=0

(−z)n

n!Γ [−βn+(1−β)]
, 0 < β < 1. (2.11)

Mainardi [9] has showed that Mβ (z) is positive for z > 0, the other general properties
can be found in some references (see [1, 9–11] e.g.).
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wβ (0 < β < 1) denotes the one-sided stable probability density which can be
explicitly expressed by Fox function [12]

wβ (t) = β−1t−2H10
11

(
t−1

∣∣∣∣ (−1,1)
(−1/β ,1/β)

)
. (2.12)

Then the Fourier-Laplace transform of the Green function (2.4) can be rewritten in
integral form

˜̃G1 (k,s) =
(
a1sα−1 +a2s2α−1 +a3s3α−1 + ...+ansnα−1

) ∞∫
0

e
−v

(
n
∑
i=1

aisiα+k2d

)
dv

˜̃G1(k,s) = a1

∞∫
0

L
{

F(α)
1 (va1t)

}[
L
{

F (2α)
2 (va2)

−1/2α t
}

L
{

F (3α)
2 (va3)

−1/3α t
}

...

...L
{

F (nα)
2 (van)

−1/nα t
}]

F {F3(dvx)}dv+ ...+an

∞∫
0

L
{

F(nα)
1 (vant)

}
×

[
L
{

F (α)
2 (va1)

−1/α t
}

L
{

F (2α)
2 (va2)

−1/2α t
}

...

...L

{
F

(n−1α)
2 (van−1)

−1/(n−1)α t

}]
F {F3(dvx)}dv.

(2.13)
Going back to the space-time domain, we obtain the relation

G1 (x, t) = a1

∞∫
0

{
F(α)

1 (va1t)
}
∗
[{

F(2α)
2 (va2)

−1/2α t
}{

F (3α)
2 (va3)

−1/3α t
}

...

...
{

F (nα)
2 (van)−1/nαt

}]
F3(dvx)dv+ ...

+an

∞∫
0

{
F (α)

1 (vant)
}
∗
[{

F (α)
2 (va1)

−1/α t
}{

F (2α)
2 (va2)

−1/2α t
}

...

...

{
F

(n−1α)
2 (van−1)

−1/(n−1)α t

}]
F3(dvx)dv

= a1

∞∫
0

{
F(α)

1 (va1t)
}
∗
{

n
∏
r=2

F(rα)
2 (var)

−1/rα t

}
F3 (dvx)dv

+a2

∞∫
0

{
F (2α)

1 ∗ (va2t)
}{

F(α)
2 (va1)

−1/α t
n
∏
r=3

F (rα)
2 (var)

−1/rα t

}
F3(dvx)dv

+...+an

∞∫
0

{
F(nα)

1 (vant)∗
n−1
∏
r=1

F (rα)
2 (var)

−1/rα t

}
F3(dvx)dv

= a1

∞∫
0

F3(dvx)
(

t∫
0

F (α)
1 [va1(t− τ)]

n
∏
r=2

F (rα)
2 (var)−1/rα τdτ

)
dv

+a2

∞∫
0

F3(dvx)
(

t∫
0

F (2α)
1 [va2(t− τ)]

{
F(α)

2 (va1)−1/α τ

×
n
∏
r=3

F (rα)
2 (var)−1/rα τ

}
dτ

)
dv

+...+an

∞∫
0

F3(dvx)
(

t∫
0

F (nα)
1 [van (t− τ)]

{
n−1
∏
r=1

F(rα)
2 (var)−1/rα τ

}
dτ

)
dv

= G1,1 (x, t)+G1,2 (x,t)+G1,3 (x,t)+ ...+G1,n (x,t) .

(2.14)
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By the same technique, we can obtain the expression for G2 (x, t) :

˜̃G2 (x, p) =
∞∫
0

e−v(a1s
α+a2s

2α+...+ansnα+k2d)dv

=
∞∫
0

e−va1s
α
e−va2s

2α
...e−vansnα

e−k2dvdv

=
∞∫
0

L
{(

F (α)
2 (va1)

−1/α t
)[{

F(2α)
2 (a2v)

−1/2α t
}

...
{

F(nα)
2 (anv)−1/nα t

}]}
×FF3(dvx)dv.

(2.15)
Taking Fourier-Laplace inverse transform, we obtain the following relation

G2 (x, t) =
∞∫

0

F3 (dvx)

⎛
⎝ t∫

0

Fα
2 (a1v)

−1/α (t− τ)

{
n

∏
r=2

Frα
2 (arv)−1/rα τ

}
dτ

⎞
⎠dv.

(2.16)
We can ensure that the green functions are non-negative by the non-negative prosperi-

ties of F (β )
1 , F (β )

2 , F (β )
3 .

3. The solution for the generalized TFTE in half-space domain (signaling
problem)

In the section, we considered Problem 2, defined in a half-space domain, which is
known as signaling problem.

On taking the Laplace transform to (1.1) and (1.6) using (1.7) with f ≡ 0 and the
initial condition (1.6), we get

∂ 2ṽ(x,s)
∂x2 =

n

∑
r=1

arsrα

d
ṽ(x, p) (3.1)

ṽ(0,s) = ξ̃ (s) , ṽ(+∞,s) = 0.

On solving the above equation

ṽ(x,s) = ξ̃ (s)e
−

√
n
∑

r=1

arsrα
d x

(3.2)

ṽ(x,s) = L{Gu (x,t)∗ξ (t)} (3.3)

where Gu(x, t) is the Green function or fundamental solution of the Signaling problem
obtained when ξ (x) = δ (x) , which is characterized by

G̃u (x,s) = e
−

√
n
∑

r=1

arsrα
d x

. (3.4)

By taking inverse Laplace transform of (3.2) gives the solution of signaling problem

v(x,t) = Gu (x,t)∗ g(t) =
t∫

0

g(τ)G(x,t− τ)dτ. (3.5)
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Taking partial differentiation of equation (3.2) and using equation (2.8.1), (2.8.2), ellip-
sis , (2.8.n) we get

∂
∂ s

G̃u (x,s) =−a1αxG̃1,1 (x,s)−2a2αxG̃1,2 (x,s)− ...−nanαxG̃1,n (x,s) , x > 0.

(3.6)
On solving we get the answer in space-time domain

tGu (x, t) = a1αxG1,1 (x,t)+2a2αxG1,2 (x,t)+ ...+nanαxG1,n (x,t) , x > 0. (3.7)

4. The solution of the generalized TFTE in the bounded space domain

In this section, we find the solution of the generalized TFTE in bounded space
domain. Taking the Fourier sine transform of (1.1) with f = 0 and applying the boundary
condition (1.9), we get

a1D
α
t v (p, t)+a2D

2α
t v (p,t)+ ...+anD

nα
t v (p,t) =−

(
pdπ
M

)2

v (p,t) , t > 0,

(4.1)
where p is the wave number, and

v (p,t) =
M∫

0

v(u,t)sin
( pπu

M

)
du, (4.2)

is the finite sine transform of v(x,t) .
Applying the Laplace transform to (4.1) and using the initial boundary condition

(1.8), we get

ṽ (p,s) =

⎧⎪⎪⎨
⎪⎪⎩

n
∑
i=1

aisiα−1

n
∑
i=1

aisiα +
(

pdπ
M

)2

⎫⎪⎪⎬
⎪⎪⎭ v (p,0)+

⎧⎪⎪⎨
⎪⎪⎩

n
∑
i=2

aisiα−2

n
∑
i=1

aisiα +
(

pdπ
M

)2

⎫⎪⎪⎬
⎪⎪⎭ vt (p,0) (4.3)

where

v (p,0) =
M∫

0

φ (u)sin
( pπu

M

)
du, (4.4)

We consider the roots of the polynomial is defined in below:

n

∑
i=1

ais
iα +

(
pdπ
M

)2

= (sα −λ1)(sα −λ2) ...(sα −λn) . (4.5)

We use the Laplace transform pair which is defined below on solving (4.3)

tβ−1Eα ,β (ctα) L←→ sα−β

sα − c
, (4.6)
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where Eα ,β (z) is Mittag-Leffler function of two parameters is defined in (1.10).

n
∑
i=1

ais
iα−1

n
∑
i=1

aisiα+
(

pdπ
L

)2 = sα−1
[

c1
(sα−λ1)

+ c2
(sα−λ2)

+ ...+ cn
(sα−λn)

]

L←→ [c1Eα (λ1tα)+ c2Eα (λ2tα)+ ...+ cnEα (λntα)]

(4.7)

where

c j =

n
∑
i=1

aiλ i
j

n
∏

i, j=1
j 
=i

(λ j−λi)
, j = 1,2, ...,n (4.8)

and similarly

n
∑

i=2
aisiα−2

n
∑

i=1
aisiα +

(
pdπ
L

)2 = sα−2
[

d1
(sα−λ1)

+ d2
(sα−λ2)

+ ...+ dn
(sα−λn)

]

L←→ tα−2 [d1Eα ,2 (λ1tα)+d2Eα ,2 (λ2tα)+ ...+dnEα ,n (λntα)]

(4.9)

where

d j =

n
∑
i=2

aiλ i−1
j

n
∏

i, j=1
j 
=i

(λ j−λi)
, j = 1,2, ...,n. (4.10)

Now on taking inverse finite sine and Laplace transform for (4.3), we get

v(x, t) = 2
M

∞
∑

m=1
c1Eα (λ1tα)+ c2Eα (λ2tα)+ ...

+cnEα (λntα) sin
( pπx

M

)∫
φ(u)sin

( pπu
M

)
du

+ 2
M

∞
∑

m=1
d1Eα ,2 (λ1tα)+ c2Eα ,2 (λ2tα)+ ...

+dnEα ,2 (λntα)sin
( pπx

M

)∫
Ψ(u)sin

( pπu
M

)
du

(4.11)

Special cases

If we put a1 = 2a , a2 = 1, a3 = a4 , ellipsis, an = 0 then the result of Problem 2,
3 and 4 will reduced in [13].
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