Pattern Avoidance on k-ary Heaps

Derek Levin, Lara Pudwell, Manda Riehl, and Andrew Sandberg

University of Wisconsin - Eau Claire, Valparaiso University

AMS Section meeting - Georgetown University - March 8, 2015

Sophia Yakoubov, PP2013, Pattern Avoidance on Combs

Something like combs, but not combs

Definition

A *heap* is a complete k-ary tree labeled with $\{1, \ldots, n\}$ such that every child has a larger label than its parent.

Where's the pattern?

 $\pi_h = \frac{1}{4} \, 4 \, 2 \, \frac{6}{6} \, \frac{8}{6} \, \frac{3}{6} \, \frac{5}{6} \, 7 \, 9 \, 10$

Where's the pattern?

 $\pi_h = 14268357910$ h avoids 321.

k-ary Heaps

 $\pi_h = 1\ 2\ 4\ 3\ 12\ 5\ 7\ 8\ 11\ 6\ 10\ 9$ h avoids 231.

Notation

 $\mathcal{H}_n^k(P)$ is the set of k-ary heaps on n nodes avoiding P.

Goal

Determine $|\mathcal{H}_n^k(P)|$.

Start with k = 2, $P \subset S_3$.

Crunch the numbers, cross your fingers

Р	$\left\{\left \mathcal{H}_{n}^{2}(P)\right \right\}_{n\geq1}$	OEIS#
Ø	1, 1, 2, 3, 8, 20, 80, 210, 896,	
{123}	1, 1, 1, 0, 0, 0, 0, 0,	
{132}	$1, 1, 1, 1, 1, 1, 1, 1, \dots$	
{213}	1, 1, 2, 2, 5, 5, 14, 14, 42,	
{231}	1, 1, 2, 3, 7, 14, 37, 80, 222,	
{312}	1, 1, 2, 3, 7, 14, 37, 60, 222,	
{321}	$1, 1, 2, 3, 7, 16, 45, 111, 318, \dots$	
{213, 231}	1, 1, 2, 2, 4, 4, 8, 8, 16,	
{213, 312}	1, 1, 2, 2, 7, 7, 0, 0, 10,	
{213, 321}	1, 1, 2, 2, 4, 4, 7, 7, 11,	
{231, 312}		
{231, 321}	$1, 1, 2, 3, 6, 11, 22, 42, 84, \dots$	
{312, 321}		

Crunch the numbers, cross your fingers

Р	$\left \left\{ \left \mathcal{H}_n^2(P) \right \right\}_{n \geq 1} \right $	OEIS#
Ø	1, 1, 2, 3, 8, 20, 80, 210, 896,	A056971
{123}	1, 1, 1, 0, 0, 0, 0, 0,	A000004
{132}	1, 1, 1, 1, 1, 1, 1,	A000012
{213}	1, 1, 2, 2, 5, 5, 14, 14, 42,	A208355
{231}	1, 1, 2, 3, 7, 14, 37, 80, 222,	A246747
{312}	1, 1, 2, 3, 7, 14, 37, 00, 222,	A240141
{321}	1, 1, 2, 3, 7, 16, 45, 111, 318,	A246829
{213, 231}	1, 1, 2, 2, 4, 4, 8, 8, 16,	A016116
{213, 312}	1, 1, 2, 2, 1, 1, 0, 0, 10,	
{213, 321}	1, 1, 2, 2, 4, 4, 7, 7, 11,	$A000124(\lceil \frac{n}{2} \rceil)$
{231, 312}		
{231, 321}	$1, 1, 2, 3, 6, 11, 22, 42, 84, \dots$	A002083
{312, 321}		

Crunch the numbers, cross your fingers

Р	$\left\{\left \mathcal{H}_{n}^{2}(P)\right \right\}_{n\geq1}$	OEIS#
Ø	$1, 1, 2, 3, 8, \overline{20}, 80, 210, 896, \dots$	A056971
{123}	1, 1, 1, 0, 0, 0, 0, 0,	A000004
{132}	$1, 1, 1, 1, 1, 1, 1, 1, \dots$	A000012
{213}	1, 1, 2, 2, 5, 5, 14, 14, 42,	A208355
{231} {312}	1, 1, 2, 3, 7, 14, 37, 80, 222,	A246747
{321}	1, 1, 2, 3, 7, 16, 45, 111, 318,	A246829
{213, 231} {213, 312}	1, 1, 2, 2, 4, 4, 8, 8, 16,	A016116
{213, 321}	1, 1, 2, 2, 4, 4, 7, 7, 11,	$A000124(\lceil \frac{n}{2} \rceil)$
{231, 312} {231, 321} {312, 321}	1, 1, 2, 3, 6, 11, 22, 42, 84,	A002083

All heaps:
$$|\mathcal{H}_n^2| = \binom{n-1}{n_\ell} \left| \mathcal{H}_{n_\ell}^2 \right| \left| \mathcal{H}_{n-1-n_\ell}^2 \right|$$
 $(n_\ell = \text{number of vertices left of root.})$

All heaps:
$$|\mathcal{H}_n^2| = \binom{n-1}{n_\ell} \left| \mathcal{H}_{n_\ell}^2 \right| \left| \mathcal{H}_{n-1-n_\ell}^2 \right|$$
 $(n_\ell = \text{number of vertices left of root.})$

123-avoiders:

All heaps:
$$|\mathcal{H}_n^2| = \binom{n-1}{n_\ell} \left| \mathcal{H}_{n_\ell}^2 \right| \left| \mathcal{H}_{n-1-n_\ell}^2 \right|$$
 $(n_\ell = \text{number of vertices left of root.})$

123-avoiders:

All heaps:
$$|\mathcal{H}_n^2| = \binom{n-1}{n_\ell} \left| \mathcal{H}_{n_\ell}^2 \right| \left| \mathcal{H}_{n-1-n_\ell}^2 \right|$$
 $(n_\ell = \text{number of vertices left of root.})$

123-avoiders:

Onward...

	(1 0 (-) 1)	
P	$\{ \mathcal{H}_n^2(P) \}_{n\geq 1}$	OEIS#
Ø	1, 1, 2, 3, 8, 20, 80, 210, 896,	A056971
{123}	1, 1, 1, 0, 0, 0, 0, 0,	A000004
{132}	1, 1, 1, 1, 1, 1, 1, 1,	A000012
{213}	1, 1, 2, 2, 5, 5, 14, 14, 42,	A208355
{231}	1, 1, 2, 3, 7, 14, 37, 80, 222,	A246747
{312}	1, 1, 2, 3, 7, 14, 37, 00, 222,	A240141
{321}	1, 1, 2, 3, 7, 16, 45, 111, 318,	A246829
{213, 231}	1, 1, 2, 2, 4, 4, 8, 8, 16,	A016116
{213, 312}	1, 1, 2, 2, 4, 4, 0, 0, 10,	AUIUIIU
{213, 321}	1, 1, 2, 2, 4, 4, 7, 7, 11,	$A000124(\lceil \frac{n}{2} \rceil)$
{231, 312}		
{231, 321}	1, 1, 2, 3, 6, 11, 22, 42, 84,	A002083
{312, 321}		

Progress...

Р	$\{ \mathcal{H}_n^2(P) \}_{n\geq 1}$	OEIS#
Ø	1, 1, 2, 3, 8, 20, 80, 210, 896,	A056971
{123}	1, 1, 1, 0, 0, 0, 0, 0,	A000004
{132}	1, 1, 1, 1, 1, 1, 1,	A000012
{213}	1, 1, 2, 2, 5, 5, 14, 14, 42,	A208355
{231} {312}	1, 1, 2, 3, 7, 14, 37, 80, 222,	A246747
{321}	1, 1, 2, 3, 7, 16, 45, 111, 318,	A246829
{213, 231} {213, 312}	1, 1, 2, 2, 4, 4, 8, 8, 16,	A016116
{213, 321}	1, 1, 2, 2, 4, 4, 7, 7, 11,	A000124($\lceil \frac{n}{2} \rceil$)
{231, 312} {231, 321} {312, 321}	1, 1, 2, 3, 6, 11, 22, 42, 84,	A002083

- n appears on a leaf.
- All labels before n are less than all labels after n.
- Labels before *n* are a heap avoiding 231.
- Labels after *n* are a permutation avoiding 231.

- n appears on a leaf.
- All labels before *n* are less than all labels after *n*.
- Labels before *n* are a heap avoiding 231.
- Labels after *n* are a permutation avoiding 231.

$$\left|\mathcal{H}_{n}^{2}(231)\right| = \sum_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} C_{i} \cdot \left|\mathcal{H}_{n-i-1}^{2}(231)\right|$$

n	$ \mathcal{H}_{n}^{2}(321) $	n	$ \mathcal{H}_{n}^{2}(321) $	n	$ \mathcal{H}_{n}^{2}(321) $
1	1	11	2686	21	395303480
2	1	12	8033	22	1379160685
3	2	13	25470	23	4859274472
4	3	14	80480	24	17195407935
5	7	15	263977	25	61310096228
6	16	16	862865	26	219520467207
7	45	17	2891344	27	790749207801
8	111	18	9706757	28	2859542098634
9	318	19	33178076	29	10391610220375
10	881	20	113784968	30	37897965144166
				31	138779392289785

n	$ \mathcal{H}_{n}^{2}(321) $	n	$ \mathcal{H}_{n}^{2}(321) $	n	$ \mathcal{H}_{n}^{2}(321) $
1	1	11	2686	21	395303480
2	1	12	8033	22	1379160685
3	2	13	25470	23	4859274472
4	3	14	80480	24	17195407935
5	7	15	263977	25	61310096228
6	16	16	862865	26	219520467207
7	45	17	2891344	27	790749207801
8	111	18	9706757	28	2859542098634
9	318	19	33178076	29	10391610220375
10	881	20	113784968	30	37897965144166
				31	138779392289785

For
$$n \ge 9$$
, $2^{n-1} < \left| \mathcal{H}_n^2(321) \right| < 4^n$.

Progress...

Р	$\left \left\{\left \mathcal{H}_{n}^{2}(P)\right \right\}_{n\geq1}\right $	OEIS#
Ø	1, 1, 2, 3, 8, 20, 80, 210, 896,	A056971
{123}	1, 1, 1, 0, 0, 0, 0, 0,	A000004
{132}	1, 1, 1, 1, 1, 1, 1, 1,	A000012
{213}	1, 1, 2, 2, 5, 5, 14, 14, 42,	A208355
{231} {312}	1, 1, 2, 3, 7, 14, 37, 80, 222,	A246747
{321}	1, 1, 2, 3, 7, 16, 45, 111, 318,	A246829
{213, 231} {213, 312}	1, 1, 2, 2, 4, 4, 8, 8, 16,	A016116
{213, 321}	1, 1, 2, 2, 4, 4, 7, 7, 11,	A000124 $(\lceil \frac{n}{2} \rceil)$
{231, 312} {231, 321} {312, 321}	1, 1, 2, 3, 6, 11, 22, 42, 84,	A002083

Narayana-Zidek-Capell Numbers: 1, 1, 2, 3, 6, 11, 22, 42, 84, 165, 330, . . .

(Count types of compositions, trees, etc.)

Given by:

•
$$a_1 = a_2 = 1$$

$$\bullet \ a_{n+1} = \begin{cases} 2a_n & n \text{ even} \\ 2a_n - a_{\frac{n-1}{2}} & n \text{ odd} \end{cases}$$

Narayana-Zidek-Capell Numbers: 1, 1, 2, 3, 6, 11, 22, 42, 84, 165, 330, . . .

Insert n + 1, but maintain a heap.

Narayana-Zidek-Capell Numbers: 1, 1, 2, 3, 6, 11, 22, 42, 84, 165, 330, . . .

Insert n + 1, but maintain a heap.

Observation

Before insertion, n is a leaf.

After insertion, n + 1 is a leaf.

Lemma

In order to avoid 231 and 312, n+1 must be inserted immediately before n or at the end.

Heaps Avoiding $\{231, 312\}$: n + 1 must be right before n, or at end

Proof of Lemma:

- n+1 at last leaf: OK
- n+1 right before n: OK

Heaps Avoiding $\{231, 312\}$: n+1 must be right before n, or at end

Proof of Lemma:

• If n + 1 is inserted further before n, we create a 312.

Heaps Avoiding $\{231, 312\}$: n+1 must be right before n, or at end

Proof of Lemma:

• If n+1 is inserted after n, but not at the end, we create a 231.

Easy Case (n is even.):

The new leaf is the sibling of a current leaf.

Internal nodes stay internal, leaves stay leaves.

We can put n + 1 at the (new) last leaf, or we can insert it right before n.

$$|\mathcal{H}_{n+1}^2(\{231,312\})| = 2 |\mathcal{H}_n^2(\{231,312\})|.$$


```
Second Case (n is odd.):
The new leaf is child of a former leaf.
```

Inserting n + 1 at the last leaf: Still OK!

Second Case (*n* is odd.):

The new leaf is child of a former leaf.

Inserting n + 1 at the last leaf: Still OK!

Inserting n + 1 before n:

The last leaf a becomes a child of the first leaf b. What if a < b?

Inserting n+1 anywhere except the first or last leaf:

Inserting n+1 anywhere except the first or last leaf:

bna was already a copy of 231.

n was first leaf, insert n+1 as new first leaf:

Not a heap! Don't count this.

How many members of $\mathcal{H}_n^2(\{231,312\})$ have n on the first leaf?

- Other leaves are the largest elements in decreasing order.
- The heap obtained by removing all leaves:
 - avoids 231 and 312.
 - has $\frac{n-1}{2}$ nodes.
- There are $\left|\mathcal{H}^2_{\frac{n-1}{2}}(\{231,312\})\right|$ such heaps.

How many members of $\mathcal{H}_n^2(\{231,312\})$ have n on the first leaf?

- Other leaves are the largest elements in decreasing order.
- The heap obtained by removing all leaves:
 - avoids 231 and 312.
 - has $\frac{n-1}{2}$ nodes.
- There are $\left|\mathcal{H}^2_{\frac{n-1}{2}}(\{231,312\})\right|$ such heaps.

$$\left|\mathcal{H}_{n+1}^2(\{231,312\})\right| = 2\left|\mathcal{H}_n^2(\{231,312\})\right| - \left|\mathcal{H}_{\frac{n-1}{2}}^2(\{231,312\})\right|$$
 when n is odd.

Summary

P	$\left \left\{\left \mathcal{H}_{n}^{2}(P)\right \right\}_{n\geq1}\right $	OEIS#
Ø	1, 1, 2, 3, 8, 20, 80, 210, 896,	A056971
{123}	1, 1, 1, 0, 0, 0, 0, 0,	A000004
{132}	$1, 1, 1, 1, 1, 1, 1, 1, \dots$	A000012
{213}	1, 1, 2, 2, 5, 5, 14, 14, 42,	A208355
{231} {312}	1, 1, 2, 3, 7, 14, 37, 80, 222,	A246747
{321}	1, 1, 2, 3, 7, 16, 45, 111, 318,	A246829
{213, 231} {213, 312}	1, 1, 2, 2, 4, 4, 8, 8, 16,	A016116
{213, 321}	1, 1, 2, 2, 4, 4, 7, 7, 11,	A000124 $(\lceil \frac{n}{2} \rceil)$
{231, 312} {231, 321} {312, 321}	1, 1, 2, 3, 6, 11, 22, 42, 84,	A002083

What about *k*-ary heaps?

Patterns P	$\left \mathcal{H}_n^k(P)\right $ (where $\ell=\left\lceil rac{(k-1)n-(k-2)}{k} ight ceil$)
{213}	C_{ℓ}
{231}	$\int 1 \qquad \qquad n=1$
{312}	$\left \left\{ \sum_{i=0}^{\ell-1} C_i \cdot \left \mathcal{H}_{n-i-1}^k(231) \right n \ge 2 \right. \right.$
{321}	OPEN
{213, 231}	$2^{\ell-1}$
{213, 312}	2
{213, 321}	$\binom{\ell}{2} + 1$
{231, 312}	(1
{231, 321}	$\begin{cases} 2a_{n-1} & k \nmid n-2 \end{cases}$
{312, 321}	$2a_{n-1}-a_{\frac{n-2}{k}} k \mid n-2.$

Ongoing work/ Thank you!

Ongoing work:

- Trees that aren't heaps (Unary-binary, binary, some k-ary)
- ullet How many permutations avoiding σ can be realized as trees?
- Forests of heaps (Stay tuned for the next talk!)

Ongoing work/ Thank you!

Ongoing work:

- Trees that aren't heaps (Unary-binary, binary, some k-ary)
- ullet How many permutations avoiding σ can be realized as trees?
- Forests of heaps (Stay tuned for the next talk!)

Thank you to:

- UWEC Department of Mathematics
- UWEC Office of Research and Sponsored Programs

paper to appear in Australasian Journal of Combinatorics
preprint and slides at faculty.valpo.edu/lpudwell