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ABSTRACT OF THE DISSERTATION

Enumeration Schemes for Pattern-Avoiding Words and

Permutations

by Lara Kristin Pudwell

Dissertation Director: Doron Zeilberger

Let p = p1 · · · pn ∈ Sn and q = q1 · · · qm ∈ Sm. We say that p contains q as a pattern

if there are indices 1 ≤ i1 < · · · < im ≤ n such that pij < pik ⇐⇒ qi < qk;

otherwise, p avoids q. The study of pattern avoidance in permutations is well studied

from a variety of perspectives. This thesis is concerned with two generalizations of

this pattern avoidance problem. The first generalization is that of pattern avoidance

in words (where p and q may have repeated letters). The second is that of barred

permutation patterns (where p avoids q unless q is part of an instance of an even larger

pattern in p). In both cases, we seek to find universal methods that count words (resp.

permutations) avoiding a particular set of patterns, and automate these methods to

achieve new enumeration results.
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Chapter 1

A Survey of Related Literature

In this thesis, we use several techniques to study pattern avoidance in words and barred

pattern avoidance in permutations. Both of these topics are less well-understood gener-

alizations of the notion of pattern avoidance in permutations. In this chapter, we seek

to set an appropriate context by recalling standard results about pattern avoidance in

permutations. We also recall the ground-breaking results of Regev and Burstein for

pattern-avoiding words, and the results of Callan for barred pattern avoidance. Finally,

as this thesis is concerned with universal techniques for enumerating these pattern-

avoiding objects, the chapter concludes with a summary of the four major universal

techniques for pattern avoidance in permutations.

1.1 Pattern Avoidance in Permutations

Definition 1. Given a string of numbers s = s1 · · · sn, the reduction of s, denoted

red(s), is the string obtained by replacing the ith smallest letter(s) of s with i.

For example, red(15487864) = 13265642 because in 15487864 the smallest letter

is 1, the second smallest letter is 4, the third smallest letter is 5, etc., and so in the

reduction 4 is replaced with 2, 5 is replaced with 3, etc. This definition gives rise to a

generalized notion of one string being contained in another string, namely:

Definition 2. Given strings s of length n and t of length m, we say that s contains t as

a pattern if there there exist indices 1 ≤ i1 < · · · < 1m ≤ n such that red(si1 · · · sim) = t.

Otherwise, s avoids t as a pattern.

This notion is well studied for the case where both s and t are permutations.
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It is a straightforward exercise to fix a permutation s and list all permutations t that

are contained in s (or similarly that s avoids). However, it is a much more interesting

question to study the following object:

Sn(Q) = {π ∈ Sn | π avoids q for all q ∈ Q}.

More specifically, we are interested in finding a closed form formula, generating function,

or recurrence enumerating |Sn(Q)| for various sets of patterns Q.

The ground-breaking paper in the area of permutation patterns is that of Simion and

Schmidt in 1985 [31], and in the past 25 years this research area has become increasingly

popular. However, while the terminology is relatively new, the ideas behind pattern

avoidance have been around much longer. For example, consider the following well-

known result of Erdős and Szekeres:

Theorem 1. (Erdős and Szekeres, 1935 [16]) Given a, b ∈ N, n = ab + 1 and x =

x1, . . . , xn a sequence of n real numbers. Then x either contains a monotonically in-

creasing subsequence of length a + 1 or a monotonic decreasing subsequence of length

b+ 1.

Rephrased in our terminology, this theorem says that

|Sn({1 · · · (a+ 1), (b+ 1) · · · 1})| = 0 if n ≥ ab+ 1.

Before we return to further enumeration results, we first discuss some particularly

celebrated asymptotic results for the pattern avoidance problem.

1.1.1 Asymptotic Results

While we are primarily interested in finding |Sn(Q)| exactly, a number of asymptotic

results exist. The most famous of these is the Stanley–Wilf Conjecture, which supposed

that

Conjecture 1. (Stanley and Wilf, 1980 [5]) Given a permutation pattern q, there exists

a constant cq such that for all positive integers n, we have

|Sn({q})| ≤ cnq .
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While an exponential bound may still seem rather large, this is a significant bound

compared to the total number of permutations of length n, which grows as n!.

The Stanley–Wilf Conjecture is now known to be true, although no direct proof is

known. In 2000, Martin Klazar showed that the Füredi–Hajnal Conjecture implies the

Stanley–Wilf Conjecture [21]. The Füredi–Hajnal Conjecture, which deals with pattern

avoidance in 0-1 matrices, states:

Conjecture 2. (Füredi and Hajnal, 1992 [18]) Let P be a permutation matrix and let

f(n, P ) be the maximum number of 1s in an n× n P -avoiding 0-1 matrix. Then there

exists a constant cP so that

f(n, P ) ≤ cPn.

The Füredi–Hajnal Conjecture was proved in a remarkably beautiful and simple

way by Marcus and Tardos in 2004 [26].

The study of Stanley–Wilf limits (the optimal constant cq given in the Stanley–Wilf

Conjecture) is currently receiving much attention. Notably, the constant cq constructed

in the proof of the conjecture is generally a severe over-estimate and can be much

improved. The first optimal result in this area is that of Regev for monotone patterns:

Theorem 2. (Regev, 1981 [30]) For all k and n, |Sn({12 · · · (k + 1)})| asymptotically

equals λk
(k)2n

n(k2−1)/2
, where λk =

kk2/2
∏k−1

j=1 j!

(2π)(k−1)/22(k2−1)/2
.

We now turn our attention to two key applications of pattern avoidance before

considering explicit enumeration results for various sets Sn(Q).

1.1.2 Sorting

Donald Knuth [23] first generated interest in the study of pattern avoidance in permu-

tations by demonstrating a connection to sorting through an arrangement of stacks and

queues. In particular, the set of permutations that can be sorted through a system of

stacks and queues may be characterized in terms of pattern avoidance.

As a reminder, a stack is a first-in last-out data structure, and a queue is a last-in

last-out data structure. In either case, one may always add or remove precisely one
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element to the stack or queue. The type of structure tells us what element we are

allowed to remove.

We say a permutation π is sortable through a system of stacks and queues if we can

obtain the identity permutation, 12 · · ·n, by passing π through the system of stacks and

queues exactly once, making decisions in such a way as to not make the permutation

more disorderly. See Figure 1.1 below for the example of sorting the permutation 132

through a single stack:

132 32 32 2

→
1

→ →
3

→ 2
3

→
3

→

1 1 1 12 123
(a) (b) (c) (d) (e) (f) (g)

Figure 1.1: Sorting the permutation 132 through a single stack

Note that from state (b) to state (c) we have purposely taken 1 out of the stack

before inserting 3, otherwise, we would create an inversion (3 before 1) that was not

in the original permutation. Similarly between state (d) and state (e) we have put 2

in the stack before removing 3, otherwise we would introduce an inversion (3 before 2)

that was not present before. Sorting through a queue is similar, except numbers are

removed from the opposite end of the queue than they were inserted.

Now, as a first simple characterization, the only permutation that is sortable through

a single queue is the identity permutation.

On the other hand, in the case of stacks:

Theorem 3. (Knuth, 1973 [23]) A permutation is sortable through a single stack if

and only if it avoids the pattern 231.

For the case of parallel queues or stacks, we have the following results:

Theorem 4. (Tarjan, 1972 [34]) A permutation is sortable through l parallel queues if

and only if it avoids the pattern (l + 1)l · · · 1.
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Theorem 5. (Tarjan, 1972 [34]) A permutation is sortable through l parallel stacks if

and only if it avoids the pattern 23 · · · (l + 2)1.

Clearly, the language of pattern avoidance is very powerful for these characteriza-

tions. We will return to sorting applications when we discuss barred patterns in section

1.3.

1.1.3 Schubert varieties

In the 19th century, H. Schubert developed the techniques of enumerative calculus to

find the number of points, lines, planes, etc. that obey certain intersection properties

and other geometric conditions. His original work, while far-reaching and extremely

beautiful, was largely based on intuition rather than rigor. Thus, Hilbert’s 15th problem

called for building a rigorous foundation for Schubert’s enumerative calculus [22]. One

object that appears in Schubert calculus the Schubert variety.

Recall that the Grassmannian G(n, k) is the set of all k-dimensional subspaces of an

n-dimensional vector space over a fieldK. Schubert varieties are a class of subvarieties of

the Grassmannian. More precisely, given integers 1 ≤ a1 < · · · < ak ≤ n, the Schubert

variety Ω(a1, . . . , ak) is the collection of all points of G(n, k) representing k-dimensional

subspaces W with the property dimK(W ∩ 〈en−ai+1, . . . , en〉) ≥ i for 1 ≤ i ≤ m, where

e1, . . . en are the standard basis vectors of n-dimensional space.

Schubert varieties are one of the most-studied classes of singular algebraic varieties,

and it is useful to be able to say whether a Schubert variety is singular or smooth. The

most relevant result for our discussion is the following:

Theorem 6. (Lakshmibai and Sandhya, 1990 [24]) Let B be a Borel subgroup of

SLn(C), w an element of the symmetric group Sn, and Xw the Schubert variety as-

sociated to w in the flag manifold SLn(C)/B. Then Xw is smooth if and only if w

avoids the patterns 4231 and 3412.

While delving further into the language of projective algebraic geometry is beyond

the scope of this introduction, this theorem serves to illustrate yet another application
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with connections to our definition of pattern avoidance. This notion will also be re-

visited when we discuss barred patterns in section 1.3.

1.1.4 Symmetries

We may think of a permutation in Sn as a function from [n] = {1, . . . , n} to [n]. For

example, we may graph the permutation 14253 as in Figure 1.2.

5 •
4 •
3 •
2 •
1 •

1 2 3 4 5

Figure 1.2: The graph of the permutation 14253

Since the graph of a permutation is necessarily on an n × n square we may use

the natural symmetries of the square to determine some useful relationships between

various sets Sn(Q).

We consider three symmetries that are natural both for the square and in the lan-

guage of permutations.

Definition 3. Let p = p1 · · · pn ∈ Sn. Then:

• pr = pn · · · p1 (reversal)

• pc = pc
1 · · · pc

n where pc
i = n+ 1− pi for 1 ≤ i ≤ n (complement)

• p−1 = p−1
1 · · · p−1

n where p−1
i = j if and only if pj = i (inverse)

We note that:

• Reversal corresponds to flipping the graph of p over the vertical line of symmetry:

p = 14253

5 •

4 •

3 •

2 •

1 •

1 2 3 4 5

pr = 35241

5 •

4 •

3 •

2 •

1 •

1 2 3 4 5
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• Complement corresponds to flipping the graph of p over the horizontal line of

symmetry:

p = 14253

5 •

4 •

3 •

2 •

1 •

1 2 3 4 5

pc = 52413

5 •

4 •

3 •

2 •

1 •

1 2 3 4 5

• Inverse corresponds to flipping the graph of p over the main diagonal line of

symmetry:

p = 14253

5 •

4 •

3 •

2 •

1 •

1 2 3 4 5

p−1 = 13524

5 •

4 •

3 •

2 •

1 •

1 2 3 4 5

These lead to the natural symmetries:

p avoids q ⇐⇒ pr avoids qr,

⇐⇒ pc avoids qc,

⇐⇒ p−1 avoids q−1,

and moreover |Sn(Q)| = |Sn(Qr)| = |Sn(Qc)| =
∣∣Sn(Q−1)

∣∣, where Q∗ is the set obtained

by applying the operation ∗ to all patterns in the set Q. By repeatedly applying the

operations of reverse, complement, and inverse, which generate the symmetries of the

square, we see that we can partition sets of patterns into equivalence classes up to size

8 that will necessarily have the same enumeration. Two pattern sets Q and Q′ that

yield the same sequence {|Sn(Q)|}n≥0 are said to be Wilf-equivalent.

There are other relations besides those given by the symmetries of the square that

give Wilf-equivalent classes of patterns. For example:

Theorem 7. (West, 1990 [37]) Let A = a3 · · · al be a permutation of 3 · · · l. Then

|Sn({12A})| = |Sn({21A})| for all n ≥ 0, i.e. {12A} and {21A} are Wilf-equivalent.
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Further, West conjectured (this was later proved on a case-by-case basis for each of

t = 2, t = 3, and t ≥ 4):

Theorem 8. Let It = 12 · · · t, Jt = t(t − 1) · · · 1, and let A = at+1 · · · al be any per-

mutation of (t+ 1) · · · l. Then |Sn({ItA})| = |Sn({JtA})| for all n ≥ 0, i.e. {ItA} and

{JtA} are Wilf-equivalent.

1.1.5 Enumeration Results

The symmetries and equivalences of the previous section will guide us as we seek to

comprehensively enumerate Q-avoiding permutations for various Q.

We first consider results for when Q contains exactly one pattern:

• Length 1:

|Sn({1})| = 0 for n ≥ 1 since any permutation with at least one letter contains a

1 pattern.

• Length 2:

|Sn({12})| = 1 for n ≥ 1, which counts the strictly decreasing permutations. Also,

since 21 = 12r we have |Sn({21})| = 1.

• Length 3:

From the symmetries of the square, we have |Sn({123})| = |Sn({321})| and

|Sn({132})| = |Sn({231})| = |Sn({213})| = |Sn({312})|. Simion and Schmidt [31]

provided a bijection between {123}-avoiding permutations and {132}-avoiding

permutations, and moreover showed that |Sn({π3})| = Cn = (2n
n )

n+1 where π3 is any

permutation of length 3, and Cn denotes the nth Catalan number.

For length 4 and greater, less comprehensive results are known. From the sym-

metries of the square and other non-trivial equivalences, patterns of length 4 fall into

three distinct categories, which are typically represented by the patterns 1342, 1234,

and 1324.

For each of these we have the following:



9

Theorem 9. (Cori, Jacquard, and Schaeffer, 1997 [13])∑
n≥0

|Sn({1342})|xn =
32x

−8x2 + 20x+ 1− (1− 8x)3/2
,

and thus

|Sn({1342})| = (−1)n−1 7n2 − 3n− 2
2

+ 3
n∑

i=2

(−1)n−i2i+1 (2i− 4)!
i!(i− 2)!

(
n− i+ 2

2

)
∼ 8n

This result corresponds to sequence A022558 in the Online Encyclopedia of Integer

Sequences. It is significant because 1342 is one of only two permutations of length > 3

for which there is an exact formula for |Sn({q})|. The other permutation is:

Theorem 10. (Gessel, 1990 [19])

|Sn({1234})| = 1
(n+ 1)2(n+ 2)

n∑
k=0

(
2k
k

)(
n+ 1
k + 1

)(
n+ 2
k + 1

)
∼ 9n

This formula corresponds to sequence A117158. In 2006, Elizalde found a remarkable

exponential generating function for these permutations:

Theorem 11. (Elizalde, 2006 [15])∑
n≥0

|Sn({1234})| x
n

n!
=

2
cosx− sinx+ e−x

For the remaining class of {1324}-avoiding permutations, Marinov and Radoičić [27]

found a recurrence based on the generating tree for this permutation class, and have

used it to compute |Sn({1324})| for n ≤ 20, given in A113228. No exact enumeration

or generating function is known; however, it can be shown that |Sn({1324})| is asymp-

totically strictly greater than 9n. There are no known exact enumeration results for

Sn({q}) where q has length > 4.

For permutations avoiding more than one pattern, much work has been done; many

cases can be solved using the method of finitely labeled generating trees or the method

of enumeration schemes, both discussed in section 1.4. Vatter has programmed both of

these techniques in Maple, and the results can be found in an online webbook [14].

Now that we have exhausted enumeration results for pattern-avoiding permutations,

we continue with a a generalization of this concept that is the focus of Chapters 2, 3,

and 4.
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1.2 Pattern Avoidance in Words

1.2.1 Definitions

We maintain the same definitions of reduction and containment as for permutations,

but are now interested in words, where a word is a string of n letters chosen from the

alphabet [k] = {1, . . . k}. The key difference is that while a permutation of length n uses

all letters from 1 to n without repetition, a word may have repeated letters, and may

not necessarily use all letters in the alphabet. We write Wn(k,Q) for the set of words

in [k]n avoiding pattern set Q. Clearly, |Wn(k, {})| = kn. For example, the complete

set of words in [2]3 is W3(2, {}) = {111, 112, 121, 211, 122, 212, 221, 222}.

We may be interested in sets of words with a specific number of occurrences of each

letter. For example, the set of words with one 1, two 2s, and one 3 is {1322, 1232, 1223,

2132, 2123, 2213, 3122, 3212, 3221, 2312, 2321, 2231}. Given fixed alphabet size k, an

alphabet vector or frequency vector is a vector v of length k of non-negative integers.

Given a word w ∈ [k]n, w has frequency vector [a1, . . . ak] where ai is the number of is

in w for 1 ≤ i ≤ k. We denote the weight of a frequency vector v by ||v|| =
∑n

i=0 ai. If

w ∈ [k]n and w has frequency vector v, then ||v|| = n.

Now, the key object with which we are concerned is:

Definition 4.

A[a1,...,ak](Q) :=

w ∈ [k]
∑

ai

∣∣∣∣∣ w has ai i’s,

w avoids q for every q ∈ Q

 .

We have two immediate observations about A[a1,...,ak](Q):

• If ai = 0, then
∣∣A[a1,...,ak](Q)

∣∣ =
∣∣A[a1,...,ai−1,ai+1,...,ak](Q)

∣∣.
•
∣∣A[1, . . . , 1︸ ︷︷ ︸

n

](Q)
∣∣ = |Sn(Q)|.

By the first observation, we may assume that ai > 0 for 1 ≤ i ≤ k. By the second

observation, we see that pattern avoidance in permutations is merely a special case of

pattern avoidance in words.
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1.2.2 Symmetries

The symmetries of reverse and complement for permutations generalize to pattern

avoidance in words if we apply the appropriate operations to their alphabet vectors

as well.

For example:

• Reverse corresponds to flipping the graph of w over the vertical line of symmetry:

w = 1453312

5 •

4 •

3 • •

2 •

1 • •

1 2 3 4 5 6 7

wr = 2133541

5 •

4 •

3 • •

2 •

1 • •

1 2 3 4 5 6 7

That is if w has alphabet vector [a1, . . . , ak] and avoids q, then wr has alphabet

vector [a1, . . . , ak] and avoids qr.

• Complement corresponds to flipping the graph of w over the horizontal line of

symmetry:

w = 1453312

5 •

4 •

3 • •

2 •

1 • •

1 2 3 4 5 6 7

wc = 5213354

5 • •

4 •

3 • •

2 •

1 •

1 2 3 4 5 6 7

That is if w has alphabet vector [a1, . . . , ak] and avoids q, then wc has alphabet

vector [ak, . . . , a1] and avoids qc.

However, since words may have repeated letters, the graph of a word is no longer

a square but a rectangle, and we lose the symmetry of inverses. Thus, the trivial

equivalence classes given by the symmetries of the rectangle partition pattern sets into

equivalence classes of size at most 4.
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1.2.3 Asymptotic and Enumeration Results

The problem of pattern avoidance in words is more general than the problem of pattern

avoidance in permutations, and thus more difficult; however some results are known.

As for permutations, Regev has computed asymptotics for the number of words

avoiding the monotone pattern, more precisely:

Theorem 12. (Regev, 1981 [30])

|Wn(k, {12 · · · (l + 1)})| ∼ 0!1!2! · · · (l − 1)!
(k − l)! · · · (k − 1)!

(
1
l

)l(k−l)

nl(k−l)ln

We focus on generating function results for Wn(k,Q) in Chapter 2. For words

with specified alphabet vectors, more is known. In his Ph.D. Thesis, Burstein [7]

uses generating function techniques to find the number of words avoiding any set of

permutation patterns of length 3. He also discusses various additional symmetries

beyond those of reverse and complement. In 2001, Albert, Aldred, Atkinson, Handley,

and Holton [2] reformulated the results for patterns of length 3 as exact formulas rather

than generating functions. Beyond these results little is known about words avoiding

permutations. Finding recurrences for words avoiding permutations is the focus of

Chapter 3.

For the case of words avoiding patterns with repeated letters, little is known beyond

the work of Burstein and Mansour [6] for patterns with at most two distinct letters,

and of Heubach and Mansour [20] for words avoiding patterns of length 3. These words

are the focus of Chapter 4.

1.3 Barred Pattern Avoidance in Permutations

1.3.1 Definitions

Finally, we consider another generalization of the notion of pattern avoidance in per-

mutations.

Let q′ ∈ Sm, b ∈ {0, 1}m. The barred permutation q is the permutation obtained by

copying the entries of q′ and putting a bar over q′i if and only if bi = 1. Write Sm for
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the set of all barred permutations of length m. For example, the complete set of barred

permutations of length 2 is {12, 12, 12, 12, 21, 21, 21, 21}.

Let p ∈ Sn, q ∈ Sm. Given q, let q be the permutation formed by ignoring the

bars in q, and let q be the permutation formed by deleting all barred letters of q and

reducing the remaining (unbarred) letters. We say p contains q as a barred pattern

if every instance of q in p is part of an instance of q in p. In this case, we say every

instance of q extends to an instance of q. For example if q = 132, we have q = 132 and

q = red(32) = 21. p avoids q if and only if every decreasing pair of numbers in p has a

smaller number preceding them.

Most notably, if every letter of q ∈ Sn is barred (that is q = ∅), then Sn({q}) is the

set of permutations containing q, since avoiding q means every instance of the empty

subpermutation extends to a copy of q. Therefore, in some sense, barred pattern avoid-

ance bridges the gap from pattern avoidance to pattern containment, with a number of

intermediate cases.

1.3.2 Symmetries

The same symmetries of the square apply to barred patterns with the caveat that bars

are moved in the appropriate way. In the graphs below, we will use • to denote an

unbarred element and � to denote a barred element.

• Reversal corresponds to flipping the graph of q over the vertical line of symmetry:

q = 14253

5 •

4 •

3 �

2 �

1 •

1 2 3 4 5

qr = 35241

5 •

4 •

3 �

2 �

1 •

1 2 3 4 5

• Complement corresponds to flipping the graph of q over the horizontal line of

symmetry:
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q = 14253

5 •

4 •

3 �

2 �

1 •

1 2 3 4 5

qc = 52413

5 •

4 �

3 �

2 •

1 •

1 2 3 4 5

• Inverse corresponds to flipping the graph of q over the main diagonal line of

symmetry:

q = 14253

5 •

4 •

3 �

2 �

1 •

1 2 3 4 5

q−1 = 13524

5 �

4 •

3 �

2 •

1 •

1 2 3 4 5

By applying the natural operations to the bars in a pattern as well, we maintain

the relationship

|Sn(Q)| = |Sn(Qr)| = |Sn(Qc)| =
∣∣Sn(Q−1)

∣∣
for barred patterns just as for unbarred patterns.

1.3.3 Applications

Barred pattern avoidance also appears in several interesting applications.

Recall that the number of permutations that can be sorted through a single stack

is characterized in terms of pattern avoidance.

Consider the permutations that are not sortable by passing through a stack once,

but can be sorted by passing through the stack a second time. These permutations are

called 2−stack sortable. For example 231 is not stack sortable because sorting it once

through a stack yields 213. However 213 is stack sortable, so 231 is 2−stack sortable.

We have the following characterization:

Theorem 13. (West, 1990 [37]) A permutation is 2-stack sortable if and only if it

avoids 2341 and 35241.
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The number of 2-stack sortable permutations was first computed by Doron Zeil-

berger, who solved a degree-9 functional equation to obtain:

Theorem 14. (Zeilberger, 1992 [41]) The number of 2-stack sortable permutations of

length n is
2(3n)!

(n+ 1)!(2n+ 1)!)
.

This formula produces OEIS sequence A000139. A characterization of k-stack

sortable permutations for k ≥ 3 does not yet exist.

Beyond stack sortability, barred pattern avoidance characterizes at least two other

combinatorial objects.

Consider a permutation p = p1 · · · pn ∈ Sn. We can draw Gp, the combinatorial

graph of p, on vertex set [n] where i ∼ j if and only if both (i) i < j and pi < pj and

(ii) there is no i < k < j with pi < pk < pj .

For example the graph Gp of p = 13254 is

•1

•3
•2

•5
•4

���� ooo

����� jjjjjj

�������
�����

p is called forest-like if Gp is a forest, that is if Gp has no cycles. Since there is a

cycle between the vertices 3 → 4 → 2 → 5 → 3, we see that 13254 is not forest-like,

but the permutation p = 15432 is, since its graph Gp is:

•1
•2

•3
•4

•5

ttttttt

����������









 ggggggggg

Theorem 15. (Butler and Bousquet-Melou, 2006 [9]) A permutation is forest-like if

and only if it avoids the patterns 1324 and 21354. Moreover, the generating function

for these permutations is

F (x) =
(1− x)(1− 4x− 2x2)− (1− 5x)

√
1− 4x

2(1− 5x+ 2x2 − x3)
.
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The number of such permutations is given in OEIS sequence A111053.

The pattern set {1324, 21354} is also interesting because it is part of another useful

characterization for Schubert varieties.

A variety is locally factorial if the local ring at every point is a unique factorization

domain. Otherwise stated, a Schubert variety is locally factorial if it is smooth except

at a closed set of points that has particularly nice properties. Again, our intent is not

to delve deeply into the language of algebraic geometry but to illustrate connections

with pattern avoidance. We have:

Theorem 16. (Woo and Yong, 2006 [40]) A Schubert variety Xw is locally factorial if

and only if w avoids the patterns 1324 and 21354.

1.3.4 Enumeration Results

Beyond the special cases of barred pattern avoidance relevant to the above applications,

little is known beyond the work of Callan. He has completely enumerated permutations

avoiding a single pattern of length 4 with one bar [10], and has dealt with the special case

of {35241}-avoiding permutations [11]. In Chapter 5, we present a universal technique

for counting permutations that avoid barred patterns and give the first comprehensive

study of permutations that avoid barred patterns of length ≤ 5 with any number of

bars.

1.4 Universal Enumeration Techniques for Pattern-Avoiding Permu-

tations

Typically, by nature of the problem, techniques for the enumeration of pattern-avoiding

objects depend on the pattern(s) being avoided. This leads to many beautiful results

that give intuition about particular forbidden patterns, but that are usually not readily

generalizable. As a result, several attempts have been made to compute the size of

classes of pattern-avoiding permutations using techniques that are independent of the

set of forbidden patterns. These universal techniques are finitely labeled generating

trees, insertion encoding, substitution decomposition, and enumeration schemes. The
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sequel will primarily be concerned with this last method of enumeration schemes.

1.4.1 Finitely Labeled Generating Trees

The technique of generating trees has been used to enumerate a number of combinatorial

objects. It was introduced for the enumeration of pattern-avoiding permutations by

Chung, Graham, Hoggatt, and Kleiman [12], used extensively by West [39, 38], and

automated by Vatter [35].

According to Vatter, “A generating tree is a rooted, labeled tree such that the

labels of the children of each node are determined by the label of that node. Thus, a

generating tree may be given by specifying the label of the root and a set of succession

rules.”

For example, a complete ternary tree may be given by:

Root : (1)

Rule : (1) (1)(1)(1).

Notice that the above generating tree uses only one label, yet it is an infinite tree.

Given a set of forbidden patterns Q, we also consider a pattern avoidance tree T (Q)

that has nodes {Sn(Q)}n≥1 where π ∈ Sn(Q) is a child of π′ ∈ Sn−1(Q) if π can be

obtained by inserting n into π′.

For example, the first 4 levels of T ({123, 231}) are given in Figure 1.3.

1

12 21

312 132 321 213

4312 4132 1432 4321 3214 4213 2143

wwoooooooooo

''OOOOOOOOOO

�������
��?????

�������
��?????

�� ������
��////

������
��////

������
��////

Figure 1.3: The pattern avoidance tree T ({123, 231})

Given a pattern avoidance tree T (Q), our goal is to find an isomorphic generating

tree with finitely many labels. Once we have found such a finitely labeled generating
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tree, there are standard techniques, such as the transfer matrix method [33], for com-

puting the generating function for Q-avoiding permutations. Further, it is guaranteed

to be a rational function. Vatter showed:

Theorem 17. (Vatter, 2006 [35]) Let Q be a finite set of patterns. The pattern avoid-

ance tree T (Q) is isomorphic to a finitely labeled generating tree if and only if Q contains

both a child of an increasing permutation and a child of a decreasing permutation.

Further, he exhibited an algorithm that is guaranteed to succeed whenever the above

condition is satisfied. He observes that his algorithm for finitely labeled generating

trees is a special case of the method of enumeration schemes, described later in this

chapter; however, the technique of finitely labeled generating trees guarantees the easy

computation of a rational generating function, whereas enumeration schemes do not.

For the case of pattern-avoiding words, Bernini, Ferrari, and Pinzani [4] have made

use of generating trees to enumerate words avoiding specific classes of patterns of length

3, but nothing is yet known for more general cases.

1.4.2 Insertion Encoding

The method of insertion encoding was introduced by Albert, Linton, and Ruškuc [3].

Generally, insertion encoding builds on the machinery of regular languages.

The key idea is that every permutation can be generated from the empty permuta-

tion by successive insertions of a new maximum element. This observation was already

used to construct generating trees in the previous section, but will now be used in a new

way. During the construction of a permutation, we may insert the maximum at any

of a number of active sites, denoted by 3. Moreover, upon inserting a new maximum

letter into an active site, it may do precisely one of the following:

• Fill the active site, i.e. replace 3 with n.

• Be inserted to the left of the active site, i.e. replace 3 with n3.

• Be inserted to the right of the active site, i.e. replace 3 with 3n.

• Be inserted in the middle of the active site, i.e. replace 3 with 3n3.
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Further, we allow only active sites where a new maximum element will eventually

be inserted. This gives a unique construction of any permutation.

For example, the permutation 152436 is generated in the following way:

3

13

1323

132333

132433

152433

152436

If the insertion encoding of a class of pattern-avoiding permutations forms a regular

language, then there are standard techniques to compute the rational generating func-

tion that enumerates elements the class. The following definition is necessary for the

characterization of those permutation classes which have regular insertion encodings:

A vertical alternation is a permutation π of length 2n such that either

π(1), π(3), . . . , π(2n− 1) < π(2), π(4), . . . , π(2n)

or

π(1), π(3), . . . , π(2n− 1) > π(2), π(4), . . . , π(2n).

Finally, we have:

Theorem 18. (Albert, Linton, and Ruškuc, 2005 [3]) The insertion encoding of Sn(Q),

where Q is a finite set of patterns, forms a regular language if and only if the class

contains only finitely many vertical alternations.

Notice that this theorem considers vertical alternations in the entire set {Sn(Q)}n≥1

rather than just in the pattern set Q.

Brändén and Mansour [6] have demonstrated a method using automata to count

pattern-avoiding words. Their results, however, require fixing the alphabet size a priori.
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1.4.3 Substitution Decomposition

A block or interval of a permutation π is a contiguous sequence of indices [a, b] such

that the images {π(i) : i ∈ [a, b]} are also contiguous. For example, the permutation

28635417 has a block composed of 6354. Every permutation has n trivial blocks of

length 1, and one trivial block of length n (itself). A permutation π is simple if these

are the only blocks of π.

Non-simple pattern-avoiding permutations admit a clear recursive structure (by

insertion of smaller pattern-avoiding permutations as blocks of larger ones), which leads

to the following theorem:

Theorem 19. (Albert and Atkinson, 2005 [1]) A permutation class with only finitely

many simple permutations has an algebraic generating function.

The first standard example of substitution decomposition is for {132}-avoiding per-

mutations. By determining the location i of the maximum element of π, we note that

all elements before position i must be strictly larger than all elements after position i,

giving the recursive structure: |Sn({132})| =
∑n

i=1 |Si−1({132})| · |Sn−i({132})|, which

is satisfied by the Catalan numbers.

1.4.4 Enumeration Schemes

Finally, we consider the notion of enumeration schemes which will be extended through-

out the following chapters. Generally, an enumeration scheme is a recurrence developed

using a divide-and-conquer algorithm. Rather than looking for appropriate notation to

describe and organize pattern-avoiding permutations as in the previous techniques, enu-

meration schemes introduce new sets and objects into consideration to accomplish more

difficult enumerations.

Enumeration schemes for pattern-avoiding permutations were first introduced by

Zeilberger [42], but then improved and reformulated by Vatter [36]. Later, Zeilberger

rewrote and programmed Vatter’s improved enumeration schemes in his original termi-

nology [43].
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Zeilberger’s original enumeration schemes rely on two key definitions: refinement

and reversibly deletable elements. Vatter later introduced the notion of gap vectors,

which greatly increased the success rate of the schemes. He also took advantage of

one of the symmetries of the square to reformulate Zeilberger’s notation. Below, we

introduce each of these three concepts in Zeilberger’s terminology.

Since the set Sn(Q) may be complicated, we partition it into disjoint subsets and

seek to find recurrences between these subsets. Then, if Sn(Q) = ∪n
i=0Ai we have

|Sn(Q)| =
∑n

i=0 |Ai|.

Zeilberger partitions Sn(Q) based on the pattern formed by the initial letters of the

permutations in the set. The reduction of the initial l letters of a permutation is called

its prefix. For example, 14325 has prefixes 1, 12, 132, 1432, 14325. We have:

Sn

(
Q; p1 · · · pl

)
:= {p ∈ Sn | p avoids Q, p has prefix p1 · · · pl}.

Sometimes it is necessary to specify not only the pattern formed by the initial letters

of a permutation, but also explicitly which letters form that prefix. Thus we also have:

Sn

Q;
p1 · · · pl

i1 · · · il

 :=

p ∈ Sn

∣∣∣∣∣
p avoids Q,

p has prefix p1 · · · pl, and

i1, . . . , il are the first l letters of p

 .

We observe that Sn(Q) = Sn(Q; 1) = Sn(Q; 12) ∪ Sn(Q; 21), etc.

Now that we have a way to partition Sn(Q), we explore ways to find recurrences

between the resulting subsets.

Definition 5. Given a prefix p = p1 · · · pt, position r is reversibly deletable if every

possible bad pattern involving pr implies the existence of another bad pattern without

pr.

For example, if Q = {123} and p = 21, we have that p1 is reversibly deletable. The

only way to involve p1 in a bad 123 pattern is if we have p1 < a < b, where a and b are

letters appearing later in the 123-containing permutation. But prefix 21 means that

p1 > p2, so p1 < a < b as well. That is, every bad pattern involving p1 implies the

existence of a forbidden 123 pattern without p1.
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There is always a natural embedding

Sn

p1 · · · pl

i1 · · · il

→ Sn−1

p1 · · · p̂r · · · pl

i1 · · · îr · · · il

 ,

where î means to delete i. Namely, delete the rth letter of each permutation and reduce.

However, if pr is reversibly deletable, and the role of pr is played by letter j, then∣∣∣∣∣∣Sn

p1 · · · pl

i1 · · · il

∣∣∣∣∣∣ =

∣∣∣∣∣∣Sn−1

p1 · · · p̂r · · · pl

i1 · · · îr · · · il

∣∣∣∣∣∣ ,
thus giving us the desired recurrence.

Our current definitions give the foundation of a method to derive recurrences for

pattern-avoiding permutations, but are often not enough. For example, when Q =

{123}, the prefix 12 does not have a reversibly deletable element.

Thus we introduce the notion of gap vectors. These vectors will greatly reduce the

number of cases we must check to decide if a letter is reversibly deletable, and increase

the success rate of our schemes.

Definition 6. Given a prefix p of length l, a spacing vector is a vector in Nl+1.

Given a set of forbidden patterns Q, prefix p and spacing vector v, let s1 · · · sl be

the permutation obtained by sorting p. Then, Sn(Q; p; v) is the set of permutations of

length n, avoiding Q, beginning with prefix p, and with at least v1 letters smaller than

s1, vj letters that are greater than sj−1 and smaller than sj, and vl+1 letters that are

greater than sl.

We say that v is a gap vector for (Q, p) if |Sn(Q; p; v)| = 0 for all n ≥ l.

For example, v = 〈0, 0, 1〉 is a gap vector for Q = {123}, p = 12. Sorting p, we get

s1s2 = 12. Now v3 = 1 implies that there is a letter a after the prefix that is larger than

both letters in the prefix. However 12a forms a forbidden 123 pattern, so there are no

permutations of length n avoiding Q with prefix p and spacing v. Thus, we know that

if a permutation avoids {123} and begins with an increasing pair of letters, the second

letter must necessarily be the largest letter of the permutation. In our earlier notation,
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that is: ∣∣∣∣∣∣Sn

{123} ;
1 2

i j

∣∣∣∣∣∣ = 0 for j < n

∣∣∣∣∣∣Sn

{123} ;
1 2

i n

∣∣∣∣∣∣ =

∣∣∣∣∣∣Sn−1

{123} ;
1

i

∣∣∣∣∣∣ .
Now we have all the tools necessary for the main definition of this section:

Definition 7. An enumeration scheme is a set of triples [pi, Ri, Gi] such that for each

triple:

• pi is a reduced prefix of length n.

• Ri a subset of {1, . . . , n}, the reversibly deletable elements of pi.

• Gi is a set of vectors of length n + 1, the set of gap vectors corresponding to

(Q, pi).

and

• Either Ri is non-empty or all refinements of pi are also in the scheme.

The final condition guarantees that the enumeration scheme encodes a recurrence

counting the elements of Sn(Q). If Ri is empty, then we must further divide the set

Sn(Q; pi), in our divide-and-conquer algorithm. If Ri is non-empty, then we have a

recurrence to count the elements of the set Sn(Q; pi).

For the case of {123}-avoiding permutations, we have seen that for p = 21, p1 is

reversibly deletable, and for p = 12, we have gap vector 〈0, 0, 1〉 which gives that p2 is

reversibly deletable. So the corresponding enumeration scheme for Q = {123} is:

{[∅, ∅, ∅], [1, ∅, ∅], [21, {1}, ∅], [12, {2}, {〈0, 0, 1〉}]}

From this, we get the recurrence:

|Sn(Q)|=
∑n

i=1

∣∣∣∣∣∣Sn

Q;
1

i

∣∣∣∣∣∣
=
∑n

i=1

∑i−1
h=1

∣∣∣∣∣∣Sn

Q;
2 1

i h

∣∣∣∣∣∣+
∑n

j=i+1

∣∣∣∣∣∣Sn

Q;
1 2

i j

∣∣∣∣∣∣

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=
∑n

i=1

∑i−1
h=1

∣∣∣∣∣∣Sn−1

Q;
1

h

∣∣∣∣∣∣+

∣∣∣∣∣∣Sn

Q;
1 2

i n

∣∣∣∣∣∣


=
∑n

i=1

∑i−1
h=1

∣∣∣∣∣∣Sn−1

Q;
1

h

∣∣∣∣∣∣+

∣∣∣∣∣∣Sn−1

Q;
1

i

∣∣∣∣∣∣


=
∑n

i=1

∑i
h=1

∣∣∣∣∣∣Sn−1

Q;
1

h

∣∣∣∣∣∣


From this, we can compute∣∣∣∣∣∣Sn

Q;
1

i

∣∣∣∣∣∣−
∣∣∣∣∣∣Sn

Q;
1

i− 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣Sn−1

Q;
1

i

∣∣∣∣∣∣ ,
and together with the initial conditions of∣∣∣∣∣∣Sn

Q;
1

1

∣∣∣∣∣∣ = 1 and

∣∣∣∣∣∣Sn

Q;
1

n+ 1

∣∣∣∣∣∣ = 0,

we get the unique solution

∣∣∣∣∣∣Sn

Q;
1

i

∣∣∣∣∣∣ =
(
n+i−2
n−1

)
−
(
n+i−2

n

)
, which in turn gives

|Sn (Q)| = (2n
n )

n+1 , as desired.

This example of a scheme for {123}-avoiding permutations is fairly simple, and

there are other methods that will solve it. In general, however, enumeration schemes

can handle more complex pattern-avoiding situations and give results in cases where

no other method works. In many cases, enumeration schemes can find a recurrence to

compute the size permutation classes for which there is no easily computable closed

form or generating function enumeration.

It is this notion of enumeration schemes that will be extended in Chapters 3, 4, and

5 for the cases of words avoiding permutations, words avoiding patterns with repeated

letters, and permutations avoiding barred patterns, respectively.
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Chapter 2

Generating Functions for Pattern-Avoiding Words

In this chapter, I describe an algorithm to find the generating function for the number

of pattern-avoiding words in an alphabet of fixed size, and give a bijective proof of the

generating function for {123, 132}-avoiding words.

2.1 Definitions

As in Chapter 1, let [k]n denote the set of words of length n in the alphabet {1, . . . , k},

and let w = w1 · · ·wn ∈ [k]n. The reduction of w, denoted by red(w), is the unique

word of length n obtained by replacing the ith smallest entries of w with i for each i.

For w ∈ [k]n and q ∈ [k]m, we say that w contains q if there exist 1 ≤ i1 < i2 <

· · · < im ≤ n so that red(wi1 · · ·wim) = q. Otherwise w avoids q.

It is an easy exercise to fix a word w and list all patterns of length m that w avoids.

However, it is a much more difficult question to fix a pattern (or set of patterns) Q and

enumerate all words avoiding Q. In later chapters, we will be interested in counting

pattern-avoiding words with specific alphabet distributions, but in this chapter we focus

on a simpler task: Finding a generating function for the number of Q-avoiding words

of length n in the alphabet {1, . . . , k}.

Most of the work already done in this area depends on the pattern(s) to be avoided.

That is, typically, one chooses a pattern set, and then uses the structure of those forbid-

den patterns to compute the number of permutations or words avoiding Q. However,

we would like to accomplish this in a way that is programmable and independent of the

pattern set Q.
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2.2 Automated Generating Functions

First, we consider several simple cases. Let fk,Q be the generating function for words in

the alphabet [k] = {1, . . . , k} avoiding pattern set Q. That is, if Wn(k,Q) is the set of

words of length n in the alphabet [k] which avoid Q, then fk,Q(x) =
∑

n≥0 |Wn(k,Q)|xn.

We have:

1. If 1 ∈ Q, then fk,Q(x) = 1 (only the empty word avoids the pattern 1).

2. If Q = {}, then fk,Q(x) = 1
1−kx (the generating function for all words in [k]n,

n ≥ 0).

3. Let m be the minimum number of letters used in a pattern in Q. If k < m,

then fk,Q(x) = 1
1−kx (That is, if k is smaller than the minimum number of letters

required to form a bad pattern, then all words in the alphabet [k] avoid Q).

Now that these cases have been taken care of, we move to the more complex situation

that Q is a non-trivial set of patterns and k is sufficiently large that a forbidden pattern

may occur in words in the alphabet [k].

Our work is made simpler with the following observation: If we have a fixed alphabet

size k, there are a finite number of sets of letters that can compose the forbidden pattern

q. Namely, if q uses m letters, there are
(

k
m

)
different choices of letters to compose q.

For example, in the alphabet [4], we can create the pattern 121 in 6 ways: 121, 131,

141, 232, 242, and 343.

So, we consider the particular generating function g[k],S(x), which counts all words

in the alphabet [k] = {1, . . . , k} avoiding the specific strings in S. We have fk,Q(x) =

g[k],S(x) where S is the set of all strings in [k] which form patterns in Q. Observe

that g{1,...,i−1,i+1,...,k},S(x) = g[k−1],S∗(x) by decreasing all letters greater than i in the

alphabet {1, . . . , i− 1, i+ 1, . . . , k} and in the strings of S.

Let del(S, a) be the set of strings s′ such that either (i) s′ ∈ S and s′ does not

begin with a, or (ii) as′ ∈ S. So, |del(S, a)| = |S|. We now have the following easy

observation:



27

Proposition 1.

g[k],S(x) = 1 + x
∑
a∈[k]

g[k],del(S,a)(x)

Proof. It suffices to note that 1 counts the empty permutation, and each term in the

sum counts Q-avoiding permutations beginning with the letter a.

Our earlier observations will now come into play.

• By (1), if del(S, a) contains a string of length 1, say l, we may remove that

letter from the alphabet and then remove that string from del(S, a), and compute

instead g[k]\{l},del(S,a)\{l}(x). Let L be the set of all such l.

• By (2), if del(S, a) = {}, we may add 1
1−kx in place of g[k],del(S,a)(x).

• By (3), if there exists q ∈ del(S, a) involving letters not in alphabet [k] \ L, we

may remove q from del(S, a).

Proposition 2. Repeated application of Proposition 1 terminates after finitely many

iterations to give an algebraic equation for g[k],S(x) in terms of itself, x, and k.

Proof. Notice that after each iteration, we have g[k],S(x) as a sum of itself and terms

of type g[k′],S′(x) with k′ < k and/or |S′| < |S|. Each of these g[k′],S′(x) can be written

as a sum of itself and even smaller g[k′′],S′′(x), until we finally reach a g[k∗],S∗(x) which

can be written in terms of x and k as given by the above observations.

Now, we may solve for this smallest g[k∗],S∗(x) and then substitute to find each

successively larger g[k′],S′(x) until we have an algebraic equation for g[k],S(x) itself.

We now have an automated method for finding a generating function for words of

length n avoiding pattern set Q in fixed alphabet [k]. The Maple code for this process

can be found on the author’s webpage at:

http://www.math.rutgers.edu/~lpudwell/maple/new_words

A parallel observation helps us to find the multivariate generating function for

pattern-avoiding words, namely:

http://www.math.rutgers.edu/~lpudwell/maple/new_words
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Proposition 3.

g[k],S(x1, . . . , xk) = 1 +
∑
a∈[k]

xag[k],del(S,a)(x1, . . . , xk)

The Maple code for this process can be found at:

http://www.math.rutgers.edu/~lpudwell/maple/mwords

2.3 Results

While the multivariate generating function encodes more information, the data given

by it for specific k is often more unruly, so we focus on results given by experimentation

with the univariate generating function.

The above process for finding generating functions has the advantage that it is

guaranteed to work regardless of the pattern(s) being avoided. However, even the

univariate generating function may become complicated rather quickly. For example,

the pattern 1324 is particularly difficult to grapple with. It is the smallest pattern

for which there is no closed form formula or generating function for the number of

permutations of length n which avoid it. With this automated technique, we see that

the generating function for the number of words avoiding {1324} on an alphabet of size

k = 1, . . . , 6 is:

f[1],{1324} =
1

1− x

f[2],{1324} =
1

1− 2x

f[3],{1324} =
1

1− 3x

f[4],{1324} =
20x3 − 22x2 + 8x− 1

(3x− 1)4

f[5],{1324} =
1274x7 − 3185x6 + 3410x5 − 2030x4 + 727x3 − 157x2 + 19x− 1

(3x− 1)8

f[6],{1324} =
P (x)

(3x− 1)12

where P (x) = 84458x11 − 327677x10 + 578062x9 − 612281x8 + 432820x7 − 214509x6 +

76104x5 − 19344x4 + 3456x3 − 414x2 + 30x− 1.

http://www.math.rutgers.edu/~lpudwell/maple/mwords
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Although there is a clear conjecture for the denominator of these functions, the

numerator grows quickly and in a seemingly unpredictable way. Although this technique

does not allow us to count {1324}-avoiding words with a specific number of occurrences

of each letter, it gives us a beginning tool for study of this class of words that is largely

not understood.

Sometimes, however, we are able to find a sequence of generating functions for

specific alphabet sizes that lends itself well to a more general result. We consider

f[k],{123,132} with various values of k:

f[1],{123,132} =
1

1− x

f[2],{123,132} =
1

1− 2x

f[3],{123,132} =
1− 2x+ 2x2

(2x− 1)2(x− 1)

f[4],{123,132} =
1− 2x+ 4x2

(2x− 1)3

f[5],{123,132} =
1− 4x+ 12x2 − 16x3 + 8x4

(2x− 1)4(x− 1)

Experimentation with these generating functions leads to the conjecture:

f[k],{123,132} =
1

2(1− x)(1− 2x)k−1
+

1
2(1− x)

.

We confirm this with an explicit bijection in the following section.

2.4 A Bijective Proof

In his thesis [7], Burstein used analytic methods to find the generating function for words

on an alphabet of size k which simultaneously avoid the patterns 123 and 132. In this

section, I give a new bijective proof of this result via a bijection between {123, 132}-

avoiding permutations, and 2-colored decreasing sequences. There is a similar bijection

between {231, 213}-avoiding words and 2-colored increasing sequences. The composi-

tion of these two maps yields a new bijection between the two sets of restricted words

which were first shown to be equinumerous by Mansour [25] in 2005. We will show:



30

Theorem 20. [7] Let Wn(k, {123, 132}) be the set of words in [k]n (k ≥ 0) which simul-

taneously avoid the patterns 123 and 132, and let Fk(x) =
∑

n≥0 |Wn(k, {123, 132})|xn.

Then

Fk(x) =
1

2(1− x)(1− 2x)k−1
+

1
2(1− x)

.

First, notice that for k ≤ 2, all words in [k]n avoid 123 and 132, so F0(x) = 1,

F1(x) = 1
1−x , and F2(x) = 1

1−2x , which are all of the desired form. Now, we turn our

attention to general k, and consider the following proposition.

Proposition 4. The number of {123, 132}-avoiding words on [k]n with at least one k

is
∑n−1

i=0

(
k−2+i
k−2

)
2i.

Proof. We prove the proposition with a bijection.

By the standard “stars and bars” computation, the number of decreasing sequences

of length i in the alphabet [k − 1] is
(
k−2+i
k−2

)
. Thus,

∑n−1
i=0

(
k−2+i
k−2

)
2i computes the

number of 2-colored decreasing sequences in [k − 1] of length at most n− 1.

Now we exhibit a bijection from the set of 2-colored decreasing sequences on [k− 1]

of length at most n− 1 to {123, 132}-avoiding words in [k]n with at least one k.

Algorithm 1.

Input: s = (s1, ..., sm), a 2-colored decreasing sequence in [k − 1] of length m (< n).

Output: w ∈ [k]n, a {123, 132}-avoiding word with at least one k.

max:=k

w:=k

for i from 1 to m do

l:=length(w)

if color(si)=R then

w:=w1, ..., wl, si

if color(si)=L, si−1 > si, and color(si−1)=R then

w:=w1, ..., wl−1, si, wl

max:=si−1

if color(si)=L and there does not exist j < i so that sj = si and
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color(sj)=R then

w:=w1, ..., wl−1, si, wl

if color(si)=L and there exists j < i so that sj = si and color(sj)=R then

w:=w1, ..., wl−1,max,wl

If length(w) < n then

w := w,maxn−l.

Return w.

Example 1. In general, the 2-coloring of the sequence s instructs us whether to insert

si to the right (R) or the left (L) of the last letter of w with a little added bookkeeping.

Let k = 3 and n = 5.

Input: (2(R),1(L),1(R),1(L))

First, initialize w = 3, max = 3.

Since s1 = 2 and color(s1) = R, w = 32, max = 3.

Since s2 = 1, color(s2) = L, s1 > s2, and color(s1)=R, w = 312, max = 2.

Since s3 = 1 and color(s3) = R, w = 3121, max = 2.

Since s4 = 1, color(s4) = L, and s3 = s4 with color(s3)=R, w = 31221, max = 2.

Since all entries of s have been exhausted and w has length n, w is the desired {123, 132}-

avoiding word on [3]5 with at least one 3.

We will show that Algorithm 1 maps to the correct set after exhibiting its inverse.

Appealing to the general intuition that Algorithm 1 places an R-colored (resp. L-

colored) entry of a decreasing sequence to the right (resp. left) of the last entry of the

word, an inverse map should reverse this process. All letters to the left of the first k are

colored with L. After this, the inverse map finds the largest possible uncolored entry to

add to the decreasing sequence and labels it R, labeling everything smaller and to the

left of this entry with an L. Consider the following:

Algorithm 2.

Input: w ∈ [k]n, a {123, 132}-avoiding word with at least one k.

Output: D, a decreasing sequence on [k − 1] of length m (< n) and C, a sequence of

colors of the same length.
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C:=the empty word

D:=the empty word

i:=1

while wi 6= k

D:=D, wi, C:=C,L, i:=i+1

while there are uncolored entries of w

m:=min(max(uncolored entries of w),last entry of D, k-1).

curr := the position of the first uncolored occurrence of m.

D:=D, wcurr, C:=C, R

wj1 , ..., wjc := the uncolored elements of w to the left of curr

(other than the first occurrence of k)

for i from 1 to c

If wji ≤ wcurr then

D:=D, wj, C:=C, L

If wji > wcurr then

D:=D, wcurr, C:=C, L

If all elements of w have been colored, or all remaining entries of w

are larger than the last entry of D, then return [D,C].

Example 2. Let k = 3 and w = 31221.

There are no entries to the left of the first 3, so m := min{max{1, 2, 2, 1}, 2} = 2.

w3 is the first uncolored occurrence of m, and w2 is the only uncolored element besides

w1 = k to the left of w3. Thus, D=[2,1], C=[R,L].

Now, m := min{max{2, 1}, 1, 2} = 1.

w5 is the first uncolored occurrence of m and w4 is the only uncolored element to the

left of w5. Thus, D=[2,1,1,1], C=[R,L,R,L].

We have exhibited an inverse map for Algorithm 1. Now, we check that Algorithm 1

always maps 2-colored decreasing sequences to {123, 132}-avoiding words with at least

one k. It is clear from the algorithm that w contains at least one k.

To see that w is {132}-avoiding, recall that s is a decreasing sequence and that the
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algorithm inserts each entry of s into w as either the last, or next to last entry of w.

Find the smallest i such that the word formed from 1, . . . si avoids 132 but insertion of

si+1 creates a 132 pattern. Consider the case that si and si+1 form the 32 part of a 132

pattern. Then, some entry sk, k < i must play the role of 1 in the 132 pattern, which

contradicts the fact that s is decreasing. Otherwise, si+1 plays the role of the 1 in the

132 pattern, which implies that si+1 was inserted earlier than the next to last element

of w, a contradiction.

To see that w is {123}-avoiding, notice that the only way for two entries of s to be

inserted into w in increasing order is if si > si+1, and color(si+1) = L, color(si) = R.

However, in this case, the algorithm reassigns max := si, and no entry larger than max

is inserted into w during the rest of the algorithm. Thus it is impossible to create a

123 pattern.

Now, it is clear that Algorithms 1 and 2 provide a bijection between the set of 2-

colored decreasing sequences on [k− 1] of length at most n− 1 and {123, 132}-avoiding

words on [k]n with at least one k.

From this proposition, we are in a position to prove the following lemma. Then, by

induction, we can prove the theorem.

Lemma 1. [25] Let W ∗n(k, {123, 132}) be the set of words in [k]n which simultane-

ously avoid the patterns 123 and 132 and contain at least one k, and let Gk(x) be

the generating function for these words, so Gk(x) =
∑

n≥0 |W ∗n(k, {123, 132})|xn =

Fk(x)− Fk−1(x). Then, Gk(x) = x
(1−x)(1−2x)k−1 .

Proof. The coefficient of xn in Gk(x) is the number of {123, 132}-avoiding words in [k]n

with at least one k. By the proposition this is
∑n−1

i=0

(
k−2+i
k−2

)
2i.

Gk(x) =
∑
n≥0

|W ∗n(k, {123, 132})|xn =
∑
n≥0

n−1∑
i=0

(
k − 2 + i

k − 2

)
2ixn

=
x

1− x
∑
n≥0

(
k − 2 + n

k − 2

)
(2x)n =

x

1− x
1

(1− 2x)k−1
=

x

(1− x)(1− 2x)k−1
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2.5 Concluding Remarks

Although the generating function for {123, 132}-avoiding words is especially nice, and

leads to a combinatorial enumeration, this process of automatically computing gener-

ating functions for specific k has the advantage that it will succeed for any pattern set

Q, and allow for exploration of words avoiding even the most unruly patterns.

In the sequel, we will consider methods that work for arbitrary alphabet size. While

those results are more general, they also work only if the pattern set is sufficiently nice.

Thus, this most general technique is in some sense also the most broadly successful to

gain an initial perspective on pattern-avoiding words.
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Chapter 3

Enumeration Schemes for Words Avoiding Permutations

3.1 Background

In this chapter, we are concerned with finding recurrences to count words with spe-

cific alphabet vectors which avoid permutations as patterns. We first recall some key

notation from Chapter 1.

A frequency vector or alphabet vector is a vector a = [a1, . . . , ak] such that k ≥ 1

and ai ≥ 0 for 1 ≤ i ≤ k. Let ‖a‖ =
∑k

i=1 ai. Then, given a frequency vector a and a

set of reduced words Q in [k]m for some m > 0, we define

Aa(Q) := {w ∈ [k]‖a‖ | w avoids q for every q ∈ Q,w has ai i’s for 1 ≤ i ≤ k}.

Notice that if a1 = · · · = ak = 1, we reduce to the case of counting pattern-avoiding

permutations. Also note that if ai = 0 for some i, then we have Aa(Q) = Aa′(Q), where

a′ = [a1, . . . , ai−1, ai+1, . . . , ak]. Thus, we may assume that ai > 0 for 1 ≤ i ≤ k. When

the set of patterns Q is clear from context, we may simply write Aa.

In Chapter 1, I briefly described Zeilberger’s method of prefix enumeration schemes

to count pattern-avoiding permutations. This was later improved by Vatter. In this

chapter, I extend the notion of Zeilberger and Vatter’s schemes to enumerate words

avoiding sets of permutations (i.e. the patterns in Q have no repeated letters, but w

may), and detail the success rate of this method.

3.2 Refinement

Assume we want to enumerate the elements of a set A(n). If we cannot find a closed

form formula for |A(n)|, then ideally, we want to find a recurrence only involving n.

Unfortunately, this is not always possible.
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If we cannot find a direct recurrence, following Zeilberger, we introduce the notion

of refinement as follows. Decompose A(n) as A(n) =
⋃

i∈I B(n, i), so that the B(n, i)

are disjoint. Then, if we can find a recurrence for each B(n, i) in terms of the other

B(n, i) and A(n), we have a recursive formula for A(n) as well. If not, then refine each

B(n, i) as the disjoint union B(n, i) =
⋃

j∈J C(n, i, j), and repeat.

In the case of words, we will use reduced prefixes as our refinement parameter. Let

w ∈ [k]n, w = w1 · · ·wn. The i-prefix of w is red(w1 · · ·wi), 1 ≤ i ≤ n. For example,

if w = 152243, the 1-prefix of w is 1, the 2-prefix of w is 12, the 3-prefix of w is 132,

the 4-prefix of w is 1322, the 5-prefix of w is 14223, and the 6-prefix of w is 152243. In

particular, the n-prefix of w is red(w).

Now, to allow us to talk about sets, we introduce the following notation:

Aa

(
Q; p1 · · · pl

)
:= {w ∈ [k]‖a‖ | w avoids Q,w has l − prefix p1 · · · pl}

Aa

Q;
p1 · · · pl

i1 · · · il

 :=

w ∈ [k]‖a‖
∣∣∣∣∣
w avoids Q

w has l − prefix p1 · · · pl

w = i1 · · · ilwl+1 · · ·wn


For example, A[1,2,1]

(
{}; 21

)
= {3122, 3212, 3221, 2123, 2132}.

A[2,1,2]

{}; 121

131

 = {13123, 13132}.

A[2,1,1,1,1]

{}; 132

154

 = {154123, 154132, 154312, 154321, 15432132, 154231}.

Thus, for any pattern set Q, we have

Aa(Q; ∅) = Aa (Q; 1)

= Aa (Q; 12) ∪Aa (Q; 11) ∪Aa (Q; 21)

= (Aa (Q; 231) ∪Aa (Q; 121) ∪Aa (Q; 132) ∪Aa (Q; 122) ∪Aa (Q; 123))

∪ (Aa (Q; 221) ∪Aa (Q; 111) ∪Aa (Q; 112))

∪ (Aa (Q; 321) ∪Aa (Q; 211) ∪Aa (Q; 312) ∪Aa (Q; 212) ∪Aa (Q; 213)), etc.

Finally, for ease of notation, we make the following definition:
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Definition 8. Given a prefix p of length l, the set of refinements of p is the set of all

prefixes of length l + 1 whose l-prefix is p.

For example, the set of refinements of 1 is {11, 12, 21}. The set of refinements of

11 is {221, 111, 112}. The set of refinements of 12 is {231, 121, 132, 122, 123}. This

simplifies our notation to the following:

Aa (Q; p) =
⋃

r∈{refinements of p}Aa (Q; r).

Graphically, we may represent refinement using a directed tree with root ∅, where

the children of each vertex are its refinements. For example, the first three levels of the

refinement above may be encoded as in Figure 3.1. Each vertex labeled with prefix p

represents the set Aa(Q; p). Then, to count the elements of Aa(Q) is is enough to count

the elements of the sets represented by the leaves of the tree.

∅

1

12 11 21

��

�����������

�� ��?????????

Figure 3.1: Refinement for an arbitrary pattern set

Now that we have developed a way to partition Aa(Q) into disjoint subsets, we

investigate methods to find recurrences between these subsets.

3.3 Reversibly Deletable Elements

Following Zeilberger, we have the following:

Definition 9. Given a set of forbidden patterns Q, p = p1 · · · pl an l-prefix, and 1 ≤

t ≤ l, we say that pt is reversibly deletable if every instance of a forbidden pattern

q which involves pt in a word with prefix p implies the presence of an instance of a

forbidden pattern without pt.

For example, let Q = {123} and p = 21. Then w = ij · · · with i > j. p1 is

reversibly deletable since the only way for p1 = i to be involved in a 123 pattern is if
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w = ij · · · a · · · b · · · with i < a < b. But since i > j, we have j < a < b as well so jab

forms a 123 pattern without using position p1.

Now, if pt is reversibly deletable, we have the following recurrence, where p̂t (resp.

ît) indicates that the letter pt (resp. it) has been deleted:∣∣∣∣∣∣Aa

Q;
p1 · · · pl

i1 · · · il

∣∣∣∣∣∣ =

∣∣∣∣∣∣A[a1,...,at−1,...,ak]

Q;
p1 · · · p̂t · · · pl

i1 · · · ît · · · il

∣∣∣∣∣∣
That is, deleting and replacing pt provides a bijection between the two sets above.

It should be noted that in Zeilberger’s original schemes for permutations, if positions

t and s are both reversibly deletable, then∣∣∣∣∣∣Aa

Q;
p1 · · · pl

i1 · · · il

∣∣∣∣∣∣ =

∣∣∣∣∣∣A[a1,...,at−1,...,as−1,...,ak]

Q;
p1 · · · p̂t · · · p̂s · · · pl

i1 · · · ît · · · îs · · · il

∣∣∣∣∣∣
However, in the case of pattern-avoiding words, this is no longer true. Consider for

example q = 123, p = 11. Both p1 and p2 are reversibly deletable independently, but

not together. In a later section, we will revisit the question of when reversibly deletable

letters in the same prefix can be deleted at the same time.

Graphically, we represent a reversibly deletable element pt with a dotted arrow from

p to red(p1 · · · p̂t · · · pl) labelled dt, where dt stands for the deletion of position t. For

example, in the case of Q = {123} above, we saw that prefix p = 12 has position 1

reversibly deletable. By a similar argument, when Q = {123} and p = 11, p1 is also

reversibly deletable. We encode this information in Figure 3.2.

∅

1

12 11 21

��

�����������

�� ��?????????

d1

II d1

ll

Figure 3.2: Reversibly deletable elements in the scheme for Q = {123}
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3.4 Gap Vectors

Thus far, knowing only a prefix and a forbidden pattern are enough to determine

reversibly deletable positions. However, there are instances when this is not the case.

Consider for example q = 123 and p = 12. With our current definition neither position

of the prefix is reversibly deletable. However, observe that if w ∈ [k]n, w = ij · · · with

i < j < k, then k eventually appears in the word w. Thus, w = ij · · · k · · · and ijk

is a 123 pattern. Every word with prefix 12 where the letter playing the role of “2” is

less than k has a 123 pattern, so we know that in any {123}-avoiding word with prefix

12, the second letter is necessarily k. Since this is the largest letter in the alphabet, it

cannot be involved in a 123 pattern, so p2 = k is trivially reversibly deletable.

To help determine the reversibly deletable positions in these more sophisticated

cases, we introduce the following:

Definition 10. Given a pattern set Q, a prefix p = p1 · · · pl, and letters i1 · · · il com-

prising the prefix p, let s1 ≤ · · · ≤ sl such that {s1, . . . , sl} = {i1, . . . , il}. We say that

g = 〈g1, . . . , gl+1〉 is a gap vector for [Q, p] if there are no words avoiding Q, with prefix

p and with s1 − 1 ≥ g1, sj − sj−1 ≥ gj (2 ≤ j ≤ l), and k − sl ≥ gl+1.

For example, in the case of Q = {123} and p = 12 above, g = 〈0, 1, 1〉 is a gap vector

since the set of all words in [k]n where w = i1i2 · · · , and i1 − 1 ≥ 0, i2 − i1 ≥ 1, and

k − i2 ≥ 1, (i.e. all words that begin with an increasing pair where i2 < k) is empty.

(Otherwise, w = i1i2 · · · k · · · contains a 123 pattern, namely i1i2k.)

This definition may at first seem awkward in that the the entries at the beginning

and end of a vector have a slightly different meaning from the interior entries. An

interior 0 denotes a repeated letter in the prefix, while an interior 1 denotes two nec-

essarily adjacent letters. In the convention of Zeilberger and Vatter, we would have

used −1 and 0 respectively instead. This change gives one advantage of notation. If

prefix p = p1 · · · pl has gap vector 〈g1, . . . , gl+1〉, then prefix p1 · · · p̂t · · · pl has gap vector

〈g1, . . . , gt +gt+1, . . . , gl+1〉. With the notation of 0s and −1s, further adjustment would

need to be made.

Notice that as in Vatter’s schemes, if g and h are vectors of length l, gi < hi for all
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1 ≤ i ≤ l, and g is a gap vector for some [Q, p], then so is h. In other words, the set of

gap vectors for a given pattern and prefix form an upper ideal in the poset of vectors

in Nl, so we can find a finite basis of gap vectors for [Q, p] by choosing the minimal

elements of this ideal.

Graphically, since gap vectors are associated with a particular prefix p, and there

is a finite basis of gap vectors for any [Q, p], we write the set of basis gap vectors for

[Q, p] below p. For example, if Q = {123}, we encode the gap vector for prefix p = 12

as in Figure 3.3.

∅

1

12
≥ 〈0, 1, 1〉

11 21

��

�����������

�� ��?????????d2

22

d1

II d1

ll

Figure 3.3: Gap vectors in the scheme for Q = {123}

3.5 Enumeration Schemes for Words

We now come to the main definition of this chapter, identical to the definition of scheme

for permutations. An abstract enumeration scheme S is a set of triples [p,G,R] where

p is a reduced prefix of length l, G is a (possibly empty) set of vectors of length l + 1

and R is a subset of {1, . . . , l}. If d is the maximum length of a prefix p in S, we say

that S is a scheme of depth d.

Such an enumeration scheme is said to be a concrete enumeration scheme if for

all triples in S, either R is non-empty or all refinements of p are also in S. Once we

have such an enumeration scheme, it can be considered as an encoding of a system of

recurrences. The simplest example of such a scheme is

S = { [∅, {}, {}], [1, {}, {1}] }

For prefix ∅, all refinements, i.e. {1}, belong to S. For prefix 1, R 6= ∅.
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In fact, this is the scheme for counting all words in [k]n. First note that it is

equivalent to count all words or to count all words beginning with a 1 pattern. For

words beginning with a 1 pattern, the “1” is trivially reversibly deletable (there is no

forbidden pattern to avoid). This gives the following recurrence:

|Aa({}; ∅)| = |Aa({}; 1)| =
k∑

i=1

∣∣∣∣∣∣Aa

{}; 1

i

∣∣∣∣∣∣ =
k∑

i=1

∣∣A[a1,...,ai−1,...,ak]({}; ∅)
∣∣ ,

∣∣A[a1]({})
∣∣ = 1.

As expected, this gives the unique solution |Aa({}; ∅)| =
( ‖a‖
a1,...,ak

)
.

We have now developed all the necessary tools to completely automatically find

concrete enumeration schemes to count pattern-avoiding words in the following way:

1. Initialize S := {[∅, {}, {}]}.

2. Let P = {refinements of all prefixes in S with no reversibly deletable elements}

3. For each prefix p ∈ P , find its set Gp of gap vectors.

4. For each pair [p,Gp], find the set Rp of all reversibly deletable elements, and let

and S2 = ∪p∈P {[p,Gp, Rp]}.

5. If Rp 6= {} for all triples in S2, then return S ∪ S2. Otherwise let S = S ∪ S2, and

return to step 2.

It is clear that steps 1, 2, and 5 can be done completely automatically. In the

following sections, we will prove that steps 3 and 4 can be done completely rigorously

and automatically as well.

Recall from section 1.2, that, as in the case of permutations, the operations of

reversal and complement are involutions on the set of words in [k]n with some useful

properties. Namely,

A[a1,...,ak](Q) = A[a1,...,ak](Q
r),

A[a1,...,ak](Q) = A[ak,...,a1](Q
c),
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where Q∗ denotes applying operation ∗ to all elements of Q.

If we are unable to automatically find a scheme for Aa(Q) directly, we may use these

natural symmetries, or Wilf equivalences, on patterns to find an equivalent scheme.

3.6 Finding Gap Vectors Automatically and Rigorously

Recall that for a fixed set of patterns Q and a prefix p of length l, g is a gap vector if

there are no words avoiding Q with prefix p and spacing given by g. Thus, to study

gap vectors we consider the following sets:

A(Q, p,g) =


w ∈ [1 + ‖g‖]n,

n ≥ l

∣∣∣∣∣
w avoids Q,w has prefix p,

{s1, . . . , sl} = {w1, . . . , wl} with s1 ≤ · · · ≤ sl,

and s1 = g1 + 1, sj = sj−1 + gj (j > 1)

 ,

where ‖g‖ =
∑

i gi, the weight of g. Thus, A(Q, p,g) is the set of all Q-avoiding words

with alphabet size k = 1 + ‖g‖ whose first l elements form a p pattern composed of the

letters g1 + 1, g2 + g1 + 1, . . . , gl + · · ·+ g1 + 1.

Not all pairs (p,g) result in a non-empty set A(Q, p,g). If the set A(Q, p,g) is

empty, then g is a gap vector.

Denote G(p) := {g ∈ Nl+1|A(Q, p,g) 6= ∅ for all n ≥ l}. The set Nl+1 \ G(p) is

the same as the set of all gap vectors that was introduced previously. We observed

before that the set of gap vectors is an upper ideal in Nl+1. Since Nl+1 is partially

well-ordered, we may define the set of gap vectors in terms of a basis by specifying the

minimal elements not in G(p). We are guaranteed, by the poset structure of Nl+1 under

product order, that this basis is finite.

Now that we are concerned with determining a finite set of vectors, two questions

remain: (1) How can we determine all gap vectors of a particular weight?, and (2) What

is the maximum weight of a gap vector in the basis?

First, following Zeilberger, we may find all gap vectors of a specific norm k = ‖g‖

in the following way. Intuitively, a gap vector g specifies the relative spacing of the

initial entries of a word beginning with prefix p. Consider prefix p = p1 . . . pl, sorted

and reduced to be s = s1 · · · sl and potential gap vector g = 〈g1, . . . , gl+1〉. This means
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that there are g1 entries smaller than s1, max{0, gi+1 − 1} entries between si and si+1

(for 2 ≤ i ≤ l − 1), and finally gl+1 entries larger than sl.

Let 1
g1+1 ,

2
g1+1 , . . . ,

g1

g1+1 be the g1 elements smaller than s1.

Let si + 1
gi+1+1 , si + 2

gi+1+1 , . . . , si + max{0,gi+1}
gi+1+1 be the elements between si and si+1,

(2 ≤ i ≤ l − 1).

Let sl + 1
gl+1+1 , . . . , sl + gl+1

gl+1+1 be the gl+1 elements larger than sl.

Extending the definition of reduction to fractional elements, we may consider all

words of length l + ‖g‖ which begin with s and end with some permutation of the set

of fractional letters above. There are ≤ (g1 + · · ·+ gl+1)! such possibilities. If each and

every one of these words contains an element of Q, then we know that g is a gap vector

for prefix p since the set of words beginning with p, avoiding Q, and obeying the gap

conditions imposed by g is the empty set.

Now, we have a rigorous way to find all gap vectors of a specific weight, but the

question remains: what is the maximum weight of elements in the (finite) basis of gap

vectors guaranteed above?

First, it should help to remember how gap vectors are used. The notion of gap

vector was introduced to help determine when a particular letter of a word prefix is

reversibly deletable. We revisit this concept more rigorously.

For any r ∈ [l], the set A(Q, p,g) embeds naturally (remove the entry (pr) and

reduce) into A(Q, dr(p), dr(g)) where dr(p) is obtained by deleting the rth entry of p

and reducing. dr(g) is obtained by sorting p, and finding the index i corresponding to

pr, then letting dr(g) = 〈g1, . . . , gi−1, gi + gi+1, gi+2, . . . , gl+1〉.

Sometimes this embedding of A(Q, p,g) into A(Q, dr(p), dr(g)) is a bijection. If

this is true for all gap vectors g that obey G(p), that is, this embedding is a bijection

whenever the set A(Q, p,g) is non-empty, then we say that pr is reversibly deletable for

p with respect to Q. Notice that this equivalent to the notion of reversibly deletable

introduced previously.

Adapting notation from Vatter, we have the following proposition, which puts a

bound on the maximum weight of gap vectors to check before declaring an element to
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be reversibly deletable.

Proposition 1. The entry pr of the prefix p is reversibly deletable if and only if

|A(Q, p, g)| = |A(Q, dr(p), dr(g))|

for all g ∈ G(p) with ‖g‖ ≤ ‖Q‖∞+ l− 2, where ‖Q‖∞ denotes the maximum length of

a pattern in Q, and l is the length of prefix p.

Proof. If pr is reversibly deletable then the claim follows by definition. To prove the

converse, suppose that pr is not reversibly deletable. We trivially have that

|A(Q, dr(p), dr(g))| ≥ |A(Q, p,g)|,

and since pr is not reversibly deletable, we now have

|A(Q, dr(p), dr(g))| > |A(Q, p,g)|

for some g ∈ G(p). Pick g ∈ G(p) and p∗ ∈ A(Q, dr(p), dr(g)) so that p∗ cannot be

obtained from a word in A(Q, p,g) by removing pr and reducing.

Now, form the Q-containing word p′ by incrementing every entry of p∗ that is at

least pr by 1 and inserting pr into position r. p′ is the word that would have mapped

to p∗, except that p′ contains a pattern ρ ∈ Q, and thus is in A(∅, p,g) \A(Q, p,g).

Now, pick a specific occurrence of ρ ∈ Q that is contained in p′. Since p∗ =

red(p′ − p(r)) avoids Q, this occurrence of ρ must include the entry pr. Let p′′ be the

reduction of the subsequence of p′ formed by all entries that are either in the chosen

occurence of ρ or in prefix p (or both). p′′ is now a word of length ≤ ‖Q‖∞ + l − 1.

Since all gap vectors g have ‖g‖ = k − 1 where k is the size of the alphabet, we have

that p′′ lies in A(∅, p,h) for some h with ‖h‖ ≤ ‖Q‖∞ + l − 2. On the other hand,

red(p′′ − p(r)) avoids Q, so that |A(Q, dr(p),h)| > |A(Q, dr(p),h)|, as desired.

Although not as sharp as the original bound of ‖g‖ ≤ ‖Q‖∞ − 1 given by Vatter

for pattern-avoiding permutations, this still gives a bound on the maximum weight of

basis vectors for the set of gap vectors that only increases linearly with the depth of the

enumeration scheme. Now we have found a completely rigorous way to compute a basis
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for all gap vectors corresponding to a given prefix p. Finally, we turn our attention to

the notion of reversibly deletable elements.

3.7 Finding Reversibly Deletable Elements Rigorously

By definition, to show that pr is reversibly deletable, we must show that every conceiv-

able forbidden pattern involving pr implies the presence of another forbidden pattern

not involving pr. For example, in the case of Q = {1234} and p = 123, we first compute

that g = 〈0, 1, 1, 1〉 is a basis for G(p) with respect to p, thus p3 = k, the largest letter

in the word. Since the third (and largest) letter cannot be in a 1234 pattern, p3 is

trivially reversibly deletable.

As a more instructive example, consider p = 4213 and Q = {43215} and check if p3

is reversibly deletable. To check, note that the only ways that p3 =“1” can participate

in a 43215 pattern is if we have (1) 4213abc, where c >“4”>“1”> a > b, (2) 4213abc

where c >“2”>“1”> a > b, or (3) 4213ab where b >“4”>“2”>“1”> a.

Consider the first case. If this happens, then we have 2 letters smaller than “1”,

and one letter larger than “4”, i.e. our word has the gap condition 〈2, 0, 0, 0, 1〉. In this

case, form the word 4213abc and delete the “1”, to obtain 423abc. Then, 43abc forms

a 43215 pattern, so p3 is ok.

Now, consider the case where 21abc is our 43215 pattern. Again, we have 2 let-

ters smaller than “1”, but our final letter is bigger than “2”, so we may have any

of the following gap vectors: 〈2, 0, 1, 0, 0〉 (that is, “2”< c <“3”), 〈2, 0, 0, 1, 0〉 (that

is, “3”< c <“4”), or 〈2, 0, 0, 0, 1〉 (that is, c >“4”). Again, we must test all 3 cases,

to check for implied instances of 43215. For gap 〈2, 0, 1, 0, 0〉, we have 4213abc with

b < a <“1”<“2”< c <“3”<“4”, so 423abc reduces to 635214. There is no implied

43215 pattern, so p3 is not reversibly deletable.

The graphs of these permutations may give more intuition for the situation at hand.

The graphs of 4213abc and 423abc for each of cases (1), (2), and (3) are given in

Figure 3.4, where > highlights p3 =“1” to be deleted, � highlights the other letters

in a forbidden 43215 pattern that uses p3, and � highlights a letter in 4213abc that,
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together with the letters labeled �, forms a 43215 pattern without using p3 (if such a

letter exists).

�
�

•
�

>
�
�

→

�
�

•
�

�
�

Case (1) p = 4213 and v = 〈2, 0, 0, 0, 1〉

•
�

•
�

>
�
�

→

•
�

•
�

�
�

Case (2) p = 4213 and v = 〈2, 0, 0, 1, 0〉

•
•

�
�

>
�
�

→

•
•

�
�

�
�

Case (3) p = 4213 and v = 〈2, 0, 1, 0, 0〉

Figure 3.4: An example of finding a reversibly deletable element

These examples give the general idea for how to test if a position pr is reversibly

deletable:

1. List all possible bad patterns involving pr.

2. For each possible bad pattern involving pr, list all gap spacings the pattern may

have with respect to the prefix p.

3. If each gap spacing of the bad pattern implies an instance of a forbidden pattern

after pr has been removed, then pr is reversibly deletable. Otherwise, it is not.
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Furthermore, if there are non-trivial gap vectors, we may rule out many of the above

cases in our computation because the gap vectors imply that the set of all such words

with no bad pattern is empty.

Now that we have shown how to completely automatically determine the set of all

gap vectors, and the set of reversibly deletable entries of a given prefix, we revisit the

notion of independence of reversibly deletable elements. We showed earlier that if both

pr and ps are reversibly deletable entries of prefix p, we cannot necessarily delete both pr

and ps. We now show an important case where elements may be deleted simultaneously.

Proposition 2. Let S be a concrete enumeration scheme, let p be a prefix in S and let

pr, ps be reversibly deletable elements of p. If neither dr(p) nor ds(p) is a member of

S, and ps is reversibly deletable for some i-prefix of dr(p) in S, then pr and ps may be

deleted simultaneously.

We will denote this embedding (deleting pr and ps simultaneously) as dr,s.

Proof. Suppose that p, r, s,S are as above. Since dr(p) is not in S, there must be some

i-prefix p∗ of dr(p) in S with a reversibly deletable element p∗j . Since p∗j is reversibly

deletable for p∗, it is also reversibly deletable for dr(p) (which begins with p∗), therefore

this position is also reversibly deletable.

In short, this proposition shows that while we may not always be able to delete

more than one prefix entry at a time, when it is necessary to obtain a prefix in scheme

S, it can always be done.

We have now shown how to completely rigorously find all components of a concrete

enumeration scheme for pattern-avoiding words.

3.8 The Maple Package mVATTER

The above algorithm has been programmed in the Maple package mVATTER, available

from the author’s website: http://www.math.rutgers.edu/~lpudwell/maple.html.

The main functions are SchemeF, MiklosA, MiklosTot, and SipurF.

http://www.math.rutgers.edu/~lpudwell/maple.html


48

SchemeF inputs a set of patterns Q and a maximum depth scheme to search for, and

outputs a concrete enumeration scheme for words avoiding Q of the specified maximum

depth. SchemeF also makes use of the natural symmetries of pattern-avoiding words:

reversal and complement. If it cannot find a scheme for a set of patterns, it tries to

find a scheme for a symmetry-equivalent pattern set and returns that scheme instead.

MiklosA inputs a scheme, a prefix, and an alphabet vector v and returns the number

of words obeying the scheme and the vector, having that prefix. To count all words

with a specific alphabet vector v avoiding a specific set of patterns Q, try MiklosA(

SchemeF( Q, SchemeDepth), [], v).

MiklosTot inputs a scheme, and positive integers k and n, and outputs the total

number of words in [k]n obeying the scheme.

SipurF inputs a list [L], a maximum scheme depth, an integer r, and a list of

length r. It outputs all information about schemes for words avoiding one pattern of

each length in L. For example, SipurF([3],2,4,[10,8,6,6]) outputs all information

about words avoiding one permutation pattern of length 3. It will output the first 10

terms in the sequence of the number of permutations (1 copy of each letter) avoiding a

pattern, the first 8 terms in the sequence of the number of words with exactly 2 copies

of each letter, and the first 6 terms in the sequences with exactly 3 or 4 copies of each

letter.

SipurF has been run on [L] for various lists of the form [3a, 4b], and the output is

available from the author’s website.

3.9 A Collection of Failures

Although this notion of enumeration schemes for words is successful for many sets of

forbidden patterns, there is more to be done.

There are many cases where enumeration schemes of Vatter and Zeilberger fail.

Unfortunately, these schemes for words avoiding permutation patterns will necessarily

fail whenever Zeilberger and Vatter’s schemes fail for permutations avoiding the same

patterns. Namely, the chain of prefixes with no reversibly deletable elements from the
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permutation class enumeration scheme will still have no reversibly deletable elements

for words, since there are even more possibilities for a bad pattern to occur.

Further, this technique only succeeds for words avoiding permutations (i.e., the

patterns to be avoided have precisely one copy of each letter). The key observation is

that gap vectors keep track of spacing, but they do not keep track of frequency. More

precisely:

Proposition 3. If Q = {ρ} where ρ has a repeated letter, then there is no finite

enumeration scheme for words avoiding Q.

Proof. To show that there is no finite enumeration scheme, we must exhibit a chain of

prefixes which have no reversibly deletable elements with respect to Q. Consider the

structure of ρ. We have ρ = q1lq2lq3, where l is the first repeated letter of ρ. Thus,

q1lq2 is a permutation.

First we consider a simple case. Suppose that q1 = ∅. Then, consider the chain of

prefixes of the form pi = 1 . . . i. Consider an occurence of ρ beginning with j, 1 ≤ j ≤ i.

Since j is the first repeated letter in forbidden pattern ρ, there is no other letter in pi

which can take its place. Thus we have an infinite chain of prefixes with no reversibly

deletable element.

Now, suppose that |q1| ≥ 1 and the final letter of q1 is > l. For 1 ≤ i ≤ |q1|,

we let pi = (q1)1 · · · (q1)i. Now, for i > |q1|, let d = i − |q1|, and make the following

construction:

(q∗1)i =


(q1)i, if (q1)i < l;

(q1)i + d if (q1)i > l;

Then, pi = (pi)1 · · · (pi)i where

(pi)j =


(q∗1)i, if j ≤ |q∗1|;

l + (j − (|q∗1|+ 1)) if j > |q∗1|;

In essence, for large i, pi = q∗1l
∗, where l has been replaced by increasing sequence

l∗, and all entries of q1 greater than l are incremented accordingly.
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Viewing a prefix as a function from {1, . . . , i} to {1, . . . , i}, the prefixes pi of length

|q1|+ 1 and |q1|+ 4 are displayed in Figure 3.5 as an example.

Figure 3.5: Constructing prefixes without reversibly deletable elements

Now, consider the occurrence of forbidden pattern ρ that uses element j of the

monotone run at the end of pi as l. Since this is the first repeated letter in the pattern,

no matter how ρ occurs in the word, the role of l must be played by j. Thus there are

no reversibly deletable entries of pi.

For the remaining case: |q1| ≥ 1 and the final letter of q1 is smaller than l, repeat

the construction above, but with a decreasing run instead of an increasing run at the

end of pi for large i. Again, for each letter in pi, we can pick an occurrence of ρ that

demonstrates that letter is not reversibly deletable.

This shortcoming raises the question whether there is yet another way to extend

schemes. Recall that in this paper, we have modified Zeilberger’s original schemes which

use prefixes for refinement. On the other hand, Vatter took symmetries and refined by

the patterns formed by the smallest entries of a permutation. In the study of restricted

permutations, these two notions are equivalent, but for words, this is no longer true.

Indeed, in Vatter’s notation, if we refine by adding one letter at a time, the repeated

letters in words cause 1 → 11 → 111 → · · · to often be an infinite chain in schemes

for pattern-avoiding words. Ideally we would like to find schemes that do not depend
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on the alphabet size or on specifying frequency of letters. One way to circumvent this

difficulty is to refine words by adding multiple letters at a time. These results will be

given in Chapter 4.

3.10 Examples and Successes

Despite the holes for progress discussed in Section 3.9, prefix enumeration schemes

for words have a reasonable success rate, especially when avoiding sets of permutation

patterns. This method is 100% successful when avoiding sets of patterns of length 3, and

enjoys a fairly high success rate when avoiding sets of 3 or more patterns simultanously.

Some of the nicer results are displayed below.

As described above, we draw an enumeration scheme as a directed graph, where

the vertices are prefixes. A solid arrow goes from a prefix to any of its refinements.

A dotted arrow, denoting reversibly deletable elements, goes from a prefix to one of

its i-prefixes, and is labelled by the corresponding deletion map. If there are any gap

vectors for a given prefix, the basis for those gap vectors is written below that prefix.

Many of the enumeration schemes for permutations carry over to enumerating words

almost directly. Some simple examples include the scheme for counting all words, and

the scheme for counting words avoiding the pattern 12.

Aa(∅)
∅

1

Aa(12)
∅

1
≥ (0, 1)

��
d1

BB

��
d1

BB

Figure 3.6: The schemes for Aa(∅) and Aa(12)

The first non-trivial examples are schemes for avoiding one pattern of length 3.

These schemes are nearly identical to the permutation schemes, only with the 11 prefix

now included. The symmetry of these schemes gives an alternate explanation that

Aa(123) and Aa(132) are Wilf-equivalent for words as well as for permutations. The

schemes for words avoiding 123 and 132 are found in Figure 3.7.
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Aa(123)
∅

1

12
≥ 〈0, 1, 1〉

11 21

Aa(132)
∅

1

12
≥ 〈0, 2, 0〉

11 21

��

�����������

�� ��?????????d2

22

d1

II d1

ll
��

�����������

�� ��?????????d2

22

d1

II d1

ll

Figure 3.7: The schemes for Aa(123) and Aa(132)

A more interesting example is seen in Figure 3.8.

Aa(1234)
∅

1

12 11 21

132123
≥ 〈0, 1, 1, 1〉

231 121 122

2312 2413 3412 3421 2311 2313 2314
≥ 〈0, 1, 1, 1, 1〉

��

�����������

�� ��?????????

�����������

wwooooooooooooooo

�� ��?????????

''OOOOOOOOOOOOOOO

vvmmmmmmmmmmmmmmmmmmmmmmm

zztttttttttttttttt

�������������

�� ��77777777777

$$JJJJJJJJJJJJJJJJ

((QQQQQQQQQQQQQQQQQQQQQQQ

d1

II d1

ll

d2

33
d3

33
d3

ff d2
nn

d1,2

22

d1,2

99

d1,2

HH

d3

TT
d3

gg
d4

kk d4
qq

Figure 3.8: The scheme for Aa(1234)

We conclude this chapter with statistics comparing the success rate of Vatter and

Zeilberger’s schemes for permutations versus the success rate of schemes for words. As

discussed above, the current success of word schemes is bounded above by the success

of permutation schemes. We consider success rate to be the percentage of trivial Wilf

classes of patterns whose elements can be enumerated via schemes. Notice that there

are fewer Wilf classes when enumerating permutations, since the operations of reverse,

complement, and inverse all give trivial equivalences, while in the case of words, inverses

no longer exist. Finally, we use the notation of the program SipurF, described above.
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For example, avoiding the list [3, 4] means to avoid one pattern of length 3 and one

pattern of length 4. It is important to note that a pattern set that is not counted as

successful in the following table does not necessarily indicate that there does not exist

a scheme for that pattern set, but rather that it may have a scheme of greater depth

than we have asked the computer to search.

Pattern Permutation Scheme Word Scheme
Lengths Success Rate Success Rate

[2] 1/1 (100%) 1/1 (100%)
[2,3] 1/1 (100%) 1/1 (100%)
[2,4] 1/1 (100%) 1/1 (100%)

[3] 2/2 (100%) 2/2 (100%)
[3,3] 5/5 (100%) 6/6 (100%)

[3,3,3] 5/5 (100%) 6/6 (100%)
[3,3,3,3] 5/5 (100%) 6/6 (100%)

[3,3,3,3,3] 2/2 (100%) 2/2 (100%)
[4] 2/7 (28.6%) 2/8 (25%)

[3,4] 17/18 (94.4%) 9/24 (37.5%)
[3,3,4] 23/23 (100%) 27/31 (87.1%)

[3,3,3,4] 16/16 (100%) 20/20 (100%)
[3,3,3,3,4] 6/6 (100%) 6/6 (100%)

[3,3,3,3,3,4] 1/1 (100%) 1/1 (100%)
[4,4] 29/56 (51.8%) ≥ 9/84 (≥ 10.7%)

[3,4,4] 92/92 (100%) 38/146 (26%)
[3,3,4,4] 68/68 (100%) 89/103 (86.4%)

[3,3,3,4,4] 23/23 (100%) 29/29 (100%)
[3,3,3,3,4,4] 3/3 (100%) 3/3 (100%)

Table 3.1: Success rate of permutation schemes versus word schemes

We continue our discussion of pattern-avoiding words in Chapter 4, where we con-

sider words avoiding patterns with repeated letters.
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Chapter 4

Enumeration Schemes for Patterns with Repeated Letters

In the previous chapter, we adapted the method of enumeration schemes to count words

that avoid permutation patterns. In this chapter, we modify the enumeration scheme

paradigm further to count words that avoid patterns with repeated letters.

As before, we are concerned with the enumeration of

A[a1,...,ak](Q) =
{
w ∈ [k]‖a‖|w avoids Q,w has ai i’s, 1 ≤ i ≤ k

}
,

only now in the case when Q contains patterns with repeated letters. First, I will review

the limitations of Zeilberger and Vatter’s enumeration schemes when they are extended

to the case of pattern-avoiding words. Then, I will introduce a new notion of schemes

for words. I will use this notion to find recurrences counting words avoiding any pattern

of length 3. The main result is that this new kind of enumeration scheme is guaranteed

to work when enumerating words that avoid any monotone pattern of arbitrary length.

4.1 Old Schemes for Permutations

In Chapter 3, we extended Zeilberger’s notion of prefix scheme to pattern-avoiding

words.

Suppose we would like to enumerate the elements of a set A(n). If we cannot find

a closed-form formula for A(n), ideally, we could find a recurrence which depends only

on n. However, this is not always possible. Following Zeilberger, we introduce the

notion of refinement. Namely, parameterize A(n) =
⋃

i∈I B(n, i) for some parameter i,

so that A(n) is a disjoint union of the B(n, i)’s. If we can then find a recurrence for

each B(n, i) in terms of the A(n)’s and the B(n, i)’s, we then have a formula for A(n).

If not, continue by parameterizing each B(n, i) =
⋃

j∈J C(n, i, j).
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Zeilberger’s schemes for pattern-avoiding permutations refine by looking at prefixes.

That is if A(n) is the set of words whose first l letters reduce to p, then B(n, i) is the

set of words whose first l + 1 letters reduce to some longer prefix p′ = p1 · · · pl · i and

such that red(p1 · · · pl) = p.

For example, given prefix p, let Aa(Q; p) be the set of Q-avoiding words with alpha-

bet vector a = [a1, . . . , ak] whose first |p| letters reduce to p. We have:

Aa(Q; ∅) = Aa(Q; 1) = Aa(Q; 12) ∪Aa(Q; 11) ∪Aa(Q; 21), etc.

Furthermore, we can deduce recurrences by knowing the prefix of a word. For

example, we have seen that if a {123}-avoiding word has prefix 21, the “2” can be

deleted, because any possible way for the “2” to be involved in a bad pattern implies

that the “1” is also in a bad pattern. Therefore, if the role of “2” is played by the letter

j, we have

∣∣∣∣∣∣A[a1,...,aj ,...,ak]

{123};
21

ji

∣∣∣∣∣∣ =

∣∣∣∣∣∣A[a1,...,aj−1,...,ak]

{123};
1

i

∣∣∣∣∣∣.
While this method of finding recurrences with refinement based on prefixes has a

reasonable success rate for words avoiding permutations, it was shown in Chapter 3

that it necessarily fails if the pattern to be avoided has a repeated letter. Thus, we

turn to a symmetric approach introduced by Vatter [36].

4.2 Old Schemes for Permutations: a Symmetry

Vatter’s schemes for permutations take a symmetry of Zeilberger’s approach and look

at the patterns formed by the i smallest letters in a permutation instead of the initial

i letters.

In his case, the notation Aa(Q; p) denotes the set of Q-avoiding words with alpha-

bet vector a = [a1, . . . , ak] whose smallest |p| letters form pattern p. For example,

Aa(Q; 132) denotes the set of words where 1 appears before 3, which appears before 2.

Still, we have:

Aa(Q; ∅) = Aa(Q; 1) = Aa(Q; 12) ∪Aa(Q; 11) ∪Aa(Q; 21), etc.

The logic for finding recurrences is similar. For example, if we wish to avoid the
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pattern 123, and consider the set A[a1,...,ak]({123}; 21), we know that if the letter 1 is in-

volved in a 123 pattern, then the letter 2 must also be involved in a 123 pattern. Then we

have
∣∣A[a1,...,ak]({123}; 21)

∣∣ =
∣∣A[a1−1,a2,...,ak]({123}; 2)

∣∣ =
∣∣A[a2,...,ak]({123}; 1)

∣∣, where

the last equality is because Vatter considers the special case of permutations.

In essence, Vatter takes inverses of the permutations in Zeilberger’s schemes, and

as the inverse map provides an involution on the set of all permutations, this is an

equivalent construction.

For words, however, the inverse map no longer exists. Enumerating words by con-

sidering the pattern formed by the i smallest letters is no longer as straightforward.

In general, to count pattern-avoiding words, the chain of prefixes of smallest letters

1→ 11→ 111→ · · · forms an infinite chain of subsets of Aa(Q) without recurrences.

Clearly, while both Zeilberger’s and Vatter’s schemes are effective for enumerating

permutations, they have their drawbacks when extended to words. Thus, we must make

more significant modifications.

4.3 New Schemes

Vatter’s approach can be modified in the following way. Instead of looking at the

patterns formed by the i smallest letters in a word by adding one letter at a time,

refine by successively adding all copies of the smallest letter at once. As we will see, this

introduces new parameters into the enumeration scheme, but it allows the enumeration

of words which were unable to be counted by previous methods. For convenience, we

consider the sets As(Q,a), where A∅(Q,a) = Aa(Q). If the set of patterns Q is clear

from context, we may write only As(a). The function of the subscript s will become

clear in section 4.4.

For example, let A∅(a) be the set of words with alphabet vector a = [a1, . . . , ak]

avoiding 112. Then, we can refine A∅(a) = A11(a)∪A1(a), where A11(a) = { the set of

words with at least two 1s }, and A1(a) = {the set of words with only one 1}. That is,

A11(a) is the set of words with enough 1s to be the start of a forbidden 112 pattern, and

A1(a) is the set of words without enough 1s to start a forbidden 112 pattern involving
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the letter 1.

Essentially, instead of tracking the patterns formed by the initial letters of the word

(as in Zeilberger’s method) or the patterns formed by the smallest letters of the word (as

in Vatter’s method), we begin with the empty word, and successively insert all copies

of a letter at once. After each insertion of new letters, we keep track of the maximal

subpattern of a forbidden 112 pattern. More explicitly, begin with an empty word and

insert all a1 1s. Keep track of the earliest 11 pattern and insert all a2 2s. Keep track of

the new first 11 pattern, and insert all a3 3s. Repeat this process until all a1 + · · ·+ ak

letters have been inserted into the word.

Here, we introduce a revised notion of scheme.

Definition 11. Let S be a set of triples [Ai, Ci, Ri] where

• Ai is a set, possibly with extra parameters distinguishing elements of Ai.

• Ci is a set of pairs [Pi,1, Pi,2] where each Pi,1 is a set of Aj’s with j ≥ i, and the

Pi,2’s are disjoint conditions on the parameters of Ai.

• Ri is a linear combination of the |Aj | , j ≤ i, possibly with coefficients depending

on the parameters of Ai.

We say that S is an enumeration scheme if for each triple [Ai, Ci, Ri] in S, exactly one

of Ci or Ri is non-empty.

Notice that such a scheme can be considered as an encoding for a system of recur-

rences. Namely, Ci are the children of Ai, so |Ai| =
∑

c∈Ci
|c|, and Ri is a recurrence

for |Ai| in terms of the sizes of earlier sets, so |Ai| = Ri.

A simple example is the following:

{[A∅([a1, . . . , ak]), {[A1([a1, . . . , ak]), (a1 = 1)] , [A11([a1, . . . , ak]), (a1 > 1)]} , ∅] ,[
A1([a1, . . . , ak]), ∅,

(
a2 + · · ·+ ak + 1

1

)
· |A∅([a2, . . . , ak])|

]
,

[A11([a1, . . . , ak]), ∅, 0]}
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This scheme can be interpreted in the following way: Let A∅([a1, . . . , ak]) be the set

of all words avoiding 11, A1([a1, . . . , ak]) the set of all words avoiding 11 with a1 = 1,

and A11([a1, . . . , ak]) the set of all words avoiding 11 where a1 > 1.

If a1 = · · · = ak = 1, we have

|A∅([a1, . . . , ak])| = |A1([a1, . . . , ak])|

=
(
a2 + · · ·+ ak + 1

1

)
|A∅([a2, . . . , ak])|

=
(
a2 + · · ·+ ak + 1

1

)
· |A1([a2, . . . , ak])|

=
(
a2 + · · ·+ ak + 1

1

)
·
(
a3 + · · ·+ ak + 1

1

)
|A∅([a3, . . . , ak])|

= · · ·

=
(
a2 + · · ·+ ak + 1

1

)
·
(
a3 + · · ·+ ak + 1

1

)
· · ·
(
ak−1 + ak + 1

1

)
·
(
ak + 1

1

)
= k!.

Otherwise, let j be the smallest integer for which aj > 1, and let (k)j = k · (k −

1) · · · (k − j + 1). Then, we have:

|A∅([a1, . . . , aj , . . . , ak])| = · · · = (k)j−1 · |A∅([aj , . . . , ak])|

= (k)j−1 · |A11([aj , . . . , ak])| = (k)j−1 · 0 = 0

Both cases are as expected.

4.4 Finding Schemes

In Vatter and Zeilberger’s schemes, we found recurrences by looking for letters that

were reversibly deletable, that is, letters that could be deleted from and reinserted into

a pattern-avoiding word without creating a new forbidden pattern. Now we make the

notion of reversibly deletable more general.

Definition 12. Let w ∈ [k]n be an arbitrary word and q ∈ [k]m a forbidden pattern

written in reduced form. Let si(q) denote the substring of q formed by the letters ≤ i,

and set s0(q) = ε, the empty pattern. We say that w is i-critical with respect to q

(i ≥ 0) if w contains a copy of si(q) but avoids si+1(q).
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For example, let w = 1431532231, and let q = 12324. Then s1(q) = 1, s2(q) = 122,

s3(q) = 1232, and s4(q) = 12324. w is 3-critical, since it contains s1(q), s2(q), and s3(q)

as patterns while it avoids the pattern 12324.

Now, we have a more rigorous way to produce a scheme in the sense of Section 4.3.

Given a forbidden pattern q ∈ [k]m,

• The Ais are the sets of words that are i-critical for 0 ≤ i ≤ k − 1, plus Ak (the

set of words containing q) and A∅ (the set of ALL words avoiding q). Ai may

include parameters to track the location of a copy of si(q).

• If Ai is the set of i-critical words, then Ci consists of the pairs

[Ai, (conditions to insert new letters while keeping an i-critical word i-critical)]

and Ai+1,

 conditions to insert new letters so that an i-critical word

becomes (i+ 1)-critical


• Ri results from a case by case analysis of the structure of i-critical words. Namely,

if there are letters in an i-critical word that cannot possibly be involved in a

forbidden pattern, they may be deleted. Also, the parameters of Ai that keep

track of the location of a copy of si(q) within a given word may be adjusted.

As before, the operations of complement and reversal are involutions on the set of

words in [k]n with the following useful properties:

A∅(Q; [a1, . . . , ak]) = A[a1,...,ak](Q) = A[a1,...,ak](Q
r) = A∅(Qr; [a1, . . . , ak])

A∅(Q; [a1, . . . , ak]) = A[a1,...,ak](Q) = A[ak,...,a1](Q
c) = A∅(Qc; [ak, . . . , a1])

In the following sections, we illustrate the power of this method by finding recur-

rences to count the elements of Aa({q}) = A∅({q}; a), where q is any pattern of length

3.

As a final comment on the As notation, As(Q; [a1, . . . , al]) denotes the set of Q-

avoiding words which are s critical when restricted to the alphabet {1, . . . , i}, but with
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a1 i+1’s, a2 (i+2)’s, . . . , al (i+l)’s . Thus, in this chapter the vector [a1, . . . , al] is not

an alphabet vector in the sense of Chapter 3, but rather only contains the information

for the frequency of letters > i for some i. We may refer to such a vector as the upper

alphabet vector. For each of patterns below, we consider letters {1, . . . , i} “old letters”

and (i+1) as the “new letter” to be inserted.

4.5 Avoiding the pattern 111

The simplest pattern of length 3 is 111. The scheme for Aa(111) is very similar to

the scheme for Aa(11) given in Section 4.3 . Notice that s1(111) = 111, so a word is

1-critical if it contains 3 copies of the same letter.

Let w ∈ A∅([a1, . . . , ak]) be an arbitrary {111}-avoiding word in [k]||a||. Either

a1 ≤ 2, i.e. w is 0-critical, or a1 ≥ 3, in which case w is 1-critical. If a word is 0-critical,

the letters in it cannot possibly be part of a bad pattern after subsequent insertion of

larger letters, so they may be inserted anywhere in the word, i.e. |A1([a1, . . . , ak])| =(
a1+···+ak

a1

)
· |A∅([a2, . . . , ak])|. We represent the situation graphically as in Figure 4.1.

A∅

A0 A1 = 0
(a1≤2)

yyrrrrrrrrrrrrr(a1+···+ak
a1

) 11

(a1≥3) %%LLLLLLLLLLLL

Figure 4.1: The scheme for Aa(111)

The nodes in this graph are the sets Ai, the solid lines go from Ai to the sets in Ci,

and are labelled with the corresponding conditions. A labelled dotted arrow contains

the information of Ri

Or, in the more familiar scheme notation, we have:

{[A∅([a1, . . . , ak]), {[A0([a1, . . . , ak]), (a1 ≤ 2)], [A1([a1, . . . , ak]), (a1 ≥ 3)]}, ∅],

[A0([a1, . . . , ak]), ∅,
(
a1 + · · ·+ ak

a1

)
· |A∅([a2, . . . , ak])|],

[A1([a1, . . . , ak]), ∅, 0]}
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We can read this scheme to obtain the following system of recurrences:

If ai ≤ 2 for all i; then,

|A∅([a1, . . . , ak])| = |A0([a1, . . . , ak])| =
(
a1 + · · ·+ ak

a1

)
· |A∅([a2, . . . , ak])|

= · · · =
(
a1 + · · ·+ ak

a1

)
· · ·
(
ak−1 + · · ·+ ak

ak−1

)
·
(
ak

ak

)
=
(
a1 + · · ·+ ak

a1, . . . , ak

)
= |{all words with alphabet vector a}|

Otherwise, let j be the smallest integer for which aj ≥ 3. Then,

|A∅([a1, . . . , ak])| =
(
a1 + · · ·+ ak

a1

)
· · ·
(
aj−1 + · · ·+ ak

aj−1

)
· |A∅([aj , . . . , ak])|

=
(
a1 + · · ·+ ak

a1

)
· · ·
(
aj−1 + · · ·+ ak

aj−1

)
· |A1([aj , . . . , ak])|

=
(
a1 + · · ·+ ak

a1

)
· · ·
(
aj−1 + · · ·+ ak

aj−1

)
· 0 = 0

4.6 Avoiding the pattern 112

Now, we turn to the case of avoiding patterns of length 3 with 2 distinct letters. Taking

into account the symmetries of complement and reversal, once we can count the elements

of Aa(112), we may also count the elements of Aa(211), Aa(122), and Aa(221).

Consider the case of {112}-avoiding words in more detail. As before, let A∅ be the

set of all words avoiding 112, and let A0 and A1 be the sets of 0-critical and 1-critical

words respectively. That is, A0 denotes words without a repeated letter, and A1 denotes

words with a 11 pattern but no 112 pattern when considering the letters {1, . . . , i}.

We still writeA∅([a1, . . . , ak]), andA0([a1, . . . , ak]) to denote words with a particular

alphabet vector, but for A1, we write A1([ai, . . . , ak], j), where j is the position of last

letter of the first 11 pattern formed by the letters 1, 2, . . . , i− 1 already in the word.

We have the following trivial base cases: If k = 1, then A0([a1]) = 1 (since there is

only one word with an alphabet vector [a1] and it avoids 112), and A1([ai], j) =
(
j−1+ai

ai

)
(since any larger letter inserted after the repeated letter in position j forms a 112

forbidden pattern).
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Now, consider what happens when k > 1. In general, we start with the empty word,

and insert all a1 copies of 1 into the word. Next, we insert all a2 copies of 2 into the

word. At each iteration, the word composed of all letters 1, 2, . . . , i is called the “old

word”, and the word composed of 1, 2, . . . , i, i + 1, immediately after all copies of the

letter i+ 1 have been inserted is called the “new word”.

If k > 1 and a1 = 1, there is no way for a single smallest letter to be part of a 112

pattern, so we may find the number of words with alphabet vector [a2, . . . , ak], and insert

the smallest letter anywhere. Thus, |A0([a1, . . . , ak])| =
(
a2+···+ak+1

1

)
· |A∅([a2, . . . , ak])|.

If k > 1 and a1 > 1, the first repeated letter in a string of identical letters 1 . . . 1︸ ︷︷ ︸
a1

is

in position 2, so we have |A∅([a1, . . . ak])| = |A1([a2, . . . , ak], 2)|.

Now, we move on to considering the sets A1([a1, . . . , ak], j).

If k > 1 and a1 = 1, we may not insert the new (larger) letter after position j.

There are j choices for where to insert this letter into the word before position j.

Moreover, inserting this letter in the beginning of the word moves the first repeated

letter to position j + 1 (see Figure 4.2). Thus, we have |A1([a1, . . . , ak], j)| = j ·

|A1([a2, . . . , ak], j + 1)|.

j − 1 old letters 1st repeated letter

position j

(1) Old word, before inserting a1 (i+1)’s

j − 1 old letters 1st repeated letter
+1 new letter

position j + 1

(2) New word, after inserting a1 (i+1)’s

Figure 4.2: Constructing elements of A1({112}; [a1, . . . , ak], j) when a1 = 1

If k > 1 and a1 > 1, again we know that none of the a1 (larger) letters to be

inserted may appear after position j. Since there are at least two identical letters to

insert before position j, the new first repeated letter will be one of the newly inserted

letters. Thus, let the new first repeated letter be in position l (as in Figure 4.3). There
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are l − 2 old letters and 1 new letter before position l, and there are (j − 1) − (l − 2)

old letters and a1 − 2 old letters between position l and the old first repeated letter

in position j. Thus, summing over all possibilities for position l, |A1([a1, . . . , ak], j)| =∑j+1
l=2 (l − 1)

((i−1)+(l−2)+(a1−2)
(a1−2)

)
|A1([a2, . . . , ak], j)|.

(j − 1) old letters 1st repeated letter

position j

(1) Old word, before inserting a1 (i+1)’s

l − 2 old letters i+1 (j − 1)− (l − 2) old letters 1st repeated letter
+1 new letter +(a1 − 2) new letters

position l j + a1

(2) New word, after inserting a1 (i+1)’s

Figure 4.3: Constructing elements of A1({112}; [a1, . . . , ak], j) when a1 > 1

Graphically, we have

A∅

A0 A1(j)
(a1=1)

yyrrrrrrrrrrrrr(a2+···+ak+1
a1

) 11

(a1>1) j:=2 %%LLLLLLLLLLL

a1=1 =⇒ j·A1(j+1)
88

a1>1 =⇒
∑j+1

l=2 (l−1)((j−1)−(l−2)+(a1−2)
a1−2 )A1(l)

ii

Figure 4.4: The scheme for Aa(112)

Which is the same as:

|A∅([a1, . . . , ak])| =


1 k = 1(
a2+···+ak+1

1

)
|A∅([a2, . . . , ak])| k > 1, a1 = 1

|A1([a2, . . . , ak], 2)| k > 1, a1 > 1
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|A1([a1, . . . , ak], j)| =



(
j−1+a1

a1

)
k = 1

j · |A1([a2, . . . , ak], j + 1)| a1 = 1∑j+1
l=2 (l − 1)

(
(j−1)−(l−2)+(a1−2)

a1−2

)
|A1([a2, . . . , ak], l)| a1 > 1

This recurrence is uniquely satisfied by

|A∅([a1, . . . , ak])| =
k∏

i=2

(ai + · · ·+ ak + 1)

This is a new proof of a result given by Heubach and Mansour [20]. More significantly

it can be easily generalized, as we will see in section 4.10.

4.7 Avoiding the pattern 121

To complete our characterization of words which avoid a pattern of length 3 with at

most 2 letters, it remains to compute |Aa(121)| (which will allow us to find |Aa(212)|).

We can do this easily by adding a new parameter. The algorithm remains the same.

Begin with an empty word, and insert all copies of the smallest letter. Then, consider

how many ways to insert the next smallest letter without inducing a forbidden pattern,

keeping track of the maximal bad pattern formed. Since 121 is not a monotone pattern,

however, it no longer suffices to keep track of the earliest 11 pattern in 1-critical words.

More specifically, when we consider all copies of a letter l in a 121-avoiding word, we

know that there can be no larger letters between the first l and the last l in the word.

Thus, this first l, last l, and all letters in between act as if they were only one letter.

Instead of parameterizing our scheme in terms of locations of letters, it suffices to keep

track of the number of such “blocks” of letters in the word. Notice that a word may

be either 0-critical or 1-critical from our previous notation and still have any number

of blocks. Thus, for 1-critical words, we define the following:

A1(a, i) :=

 1-critical words with upper alphabet vector a

and exactly i blocks of letters


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so A∅([a1, . . . , ak]) := {all 121-avoiding words} = A1([a2, . . . , ak], 1). i.e., a word

consisting of a1 1s consists of a single block.

Now, consider a word with i blocks. We may not insert new letters into the middle

of a block, but we may insert letters anywhere between blocks. Moreover, if the new

letters are not all adjacent, the first new letter and the last new letter form the beginning

and end of a new block.

For example, suppose the current {121}-avoiding word is 33211222 and we wish

to insert two 4s. The current word has 2 blocks: 33, and 211222. So we may put

the 4s together: 4433211222, 3344211222 or 3321122244, or we may separate them

4334211222, 4332112224, 3342112224.

In general, suppose we have a word w ∈ A([a1, . . . , al−1]) with i blocks, and we wish

to insert al copies of the letter l. The position of the first new l and the last new l

determine a new block. Suppose that between these two new letters there were b old

blocks. Then there are
((al−2)+(b)

b

)
ways to arrange the other new letters inside this

new block. Moreover this turned b blocks into 1 block for a net loss of b− 1 blocks. So

if j is the new number of blocks after letter insertions, there are j = i− (b− 1) blocks,

i.e. b = i+ 1− j. Now there are j ways to pick which consecutive b blocks will become

one single new block, so there are j ·
((al−2)+(i+1−j)

(i+1−j)

)
ways to get j blocks from i blocks

by inserting al letters.

This is represented graphically in Figure 4.5, and can be written as:

∅

A1(i)

(i:=1)

��

∑i+1
j=1 j·((a1−2)+(i+1−j)

(i+1−j) )·A1(j)

VV

Figure 4.5: The scheme for Aa(121)
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|A1([a1, . . . , ak], i)| =
i+1∑
j=1

j ·
(

(a1 − 2) + (i+ 1− j)
(i+ 1− j)

)
|A1([a2, . . . , ak], j)|

Together with the base cases of A∅([]) = 1 for the empty word, and A1([], i) = 1, we

have a recurrence completely counting all words avoiding the pattern 121 which yields

the unique solution:

|A∅([a1, . . . , ak])| =
k∏

i=2

(ai + · · ·+ ak + 1)

This result was also given by Heubach and Mansour [20], but was shown in a different

way.

4.8 Avoiding the pattern 213

We now move on to words avoiding patterns of length 3 with 3 letters, i.e. words

avoiding permutations. This case can be taken care of by prefix schemes, as noted in

Chapter 3, but for the sake of completeness, we describe an alternate enumeration using

the method of this chapter.

Again, by the symmetries of complement and reversal, an enumeration scheme for

Aa(213) allows us to count the elements of Aa(312), Aa(132), and Aa(231).

We return to our original notation of i-critical words, and add a few parameters.

Let:

A∅([a1, . . . , ak]) = {all {213}-avoiding words}

A1([a1, . . . , ak], p) =

 1-critical {213}-avoiding words with

p letters after the leftmost 1 pattern


A2([a1, . . . , ak], p) =

 2-critical {213}-avoiding words with

leftmost 21 pattern ending in position p


Trivially, by inserting a1 identical letters into the empty word, we have

|A∅([a1, . . . , ak])| = |A1([a2, . . . , ak], a1 − 1)| .

Now consider an arbitrary 1-critical word. Since this word contains a 1 pattern, but

not a 21 pattern, all letters must be in increasing order.
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Consider a generic member of A1([a1, . . . , ak], p), as in Figure 4.6(1). When we

insert a1 new letters into this word, either (a) we do not create a new 21 pattern (i.e.

all new letters are appended to the end of the word), as in Figure 4.6(2), or (b), we do

create a new 21 pattern, and keep track of where the leftmost such pattern ends, as in

Figure 4.6(3).

“1” p old letters

position 1

(1) Generic member of A1([a1, . . . , ak], p)

“1” p old letters a1 new letters
(old letter)

position 1

(2) Case a: no new 21 pattern

j old letters “2” l − 1 new letters “1” p− j old letters
(new letter) (old letter) +a1 − l new letters

position j + 1 j + l + 1

(3) Case b: new 21 pattern induced

Figure 4.6: Constructing elements of A1({213}, [a1, . . . , ak], p)

Thus, |A1([a1, . . . , ak], p)| =

|A1([a2, . . . , ak], p+ a1)|+
a1∑
l=1

p∑
j=0

(
(p− j) + (a1 − l)

a1 − l

)
· |A2([a2, . . . , ak], j + l + 1)|.

Finally, consider all 2-critical words, that is, words that contain a 21 pattern, but

not a 213 pattern.

Say that the leftmost 21 ends in position p. Then no new (larger) letters may be

inserted after position p without creating a forbidden 213 pattern. Again, either (a)

the letter that plays the role of 1 in the current leftmost 21 pattern stays the same,

as in Figure 4.7(1), or (b) the newly inserted letters create an earlier 21 pattern, as in

Figure 4.7(2).

Thus,

|A2([a1, . . . , ak], p)| = |A2([a2, . . . , ak], p+ a1)|+
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p− 1 old letters a1 new letters “1”

position p+ a1

(1) Case a: 2-critical word with same leftmost 21 pattern

j old letters “2” l − 1 new letters “1” (p− 1)− (j + 1) old letters old “1”
(new letter) (old letter) +a1 − l new letters

position j + 1 j + l + 1

(2) Case b: 2-critical word with new leftmost 21 pattern

Figure 4.7: Constructing elements of A2({213}, [a1, . . . , ak], p)

a1∑
l=1

p−2∑
j=0

(
(p− 1)− (j + 1) + (a1 − l)

a1 − l

)
|A2([a2, . . . , ak], j + l + 1)| .

We can represent this in the more compact graphical notation, as in Figure 4.8.

∅

A1(p)

A2(p)

(p:=a1−1)

��

∑a1
k=1

∑p
j=0 ((p−j)+(a1−k)

a1−k )·A2(j+k+1)

%%LLLLLLLLLL
p:=p+a1

88

i·A1(i+1)+
∑a1

k=1

∑p−2
j=0 ((p−1)−(j+1)+(a1−k)

a1−k )·A2(j+k+1)

VV

Figure 4.8: The scheme for Aa(213)

Although this recurrence does not readily yield a nice closed form formula as in

the previous examples, we have now deduced a system of recurrences that completely

enumerates all words avoiding 213. This is an alternative way to enumerate these words

which were first counted by Burstein [7], and later using the prefix schemes of Chapter

3.
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4.9 Avoiding the pattern 123

To complete our classification of words avoiding patterns of length 3, we examine words

avoiding the permutation 123. The analysis of Aa(123) turns out to be very similar to

the analysis of Aa(213).

Let:

A∅([a1, . . . , ak]) = {all {123}-avoiding words}

A1([a1, . . . , ak], p) =

 1-critical {123}-avoiding words with

p letters after the leftmost 1 pattern


A2([a1, . . . , ak], p) =

 2-critical words with leftmost 12 pattern

ending in position p


Trivially, by inserting a1 identical letters into the empty word, we have

A∅([a1, . . . , ak]) = A1([a2, . . . , ak], a1 − 1).

Now consider an arbitrary 1-critical word. Since this word contains a 1 pattern, but

not a 12 pattern, all letters must be in decreasing order, as in Figure 4.9(1). Notice,

that we keep the leftmost 1 pattern separate for further analysis.

When we insert a1 new letters into this word, either (a) we do not create a new 12

pattern (i.e. all new letters are appended to the beginning of the word), as in Figure

4.9(2), or, (b), we do create a new 12 pattern, and keep track of where leftmost such

pattern ends, as in Figure 4.9(3).

Thus, |A1([a1, . . . , ak], p)| =

|A1([a2, . . . , ak], p+ a1)|+
a1∑
l=1

p∑
j=0

(
(p− j) + (a1 − l)

a1 − l

)
· |A2([a2, . . . , ak], j + l + 1)| .

Finally, consider all 2-critical words, that is, words that contain a 12 pattern, but

not a 123 pattern. A generic 2-critical word is shown in Figure 4.10(1).

Say that the leftmost 12 ends in position p. Then no letters may be inserted after

position p without creating a forbidden 123 pattern. Again, either (a) the letter that

plays the role of 2 in the current leftmost 12 pattern stays the same, as in Figure 4.10(2),

or (b) the newly inserted letters create an earlier 12 pattern, as in Figure 4.10(3).
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“1” p old letters

position 1

(1) Generic member of A1([a1, . . . , ak], p)

“1” (a1 − 1) new letters old “1” p old letters
(new letter)

position 1 a1 + 1

(2) Case a: no new 12 pattern

l − 1 new letters “1” j old letters “2” p− j old letters
(old letter) new letter +a1 − l new letters

position l j + l + 1
(3) Case b: new 12 pattern is induced

Figure 4.9: Constructing elements of A1({123}, [a1, . . . , ak], p)

Thus,

|A2([a1, . . . , ak], p)| = |A2([a2, . . . , ak], p+ a1)|+
a1∑
l=1

p−2∑
j=0

(
(p− 1)− (j + 1) + (a1 − l)

a1 − l

)
· |A2([a2, . . . , ak], j + l + 1)| .

This can be represented using the more compact graphical notation as in Figure

4.11.

The fact that Aa(123) and Aa(132) are equinumerous, as noted by Burstein [7] and

by Chapter 3, can be illustrated in another new way via these identical schemes.

Now that we have used the new definition of enumeration scheme to count words

that avoid any pattern of length 3, we turn to the main theorem of this paper.

4.10 Avoiding Monotone Patterns

Up to this point, the results of this paper have previously been shown using other

methods. As the case by case analysis involved in finding schemes for pattern-avoiding

words seems to be quite tedious at times, one may wonder what the utility of the present

method is.

To date, there has been no infinite family of classes of pattern-avoiding words (or

permutations) which have been shown to each have a finite enumeration scheme. This
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p− 1 old letters “2” remaining old letters
including “1” (from leftmost 12 pattern)

position p

(1) generic 2-critical word

a1 new letters p− 1 old letters “2”
(old letter)

position p+ a1

(2) Case a: same leftmost 12 pattern

l − 1 new letters “1” j old letters “2” (p− 1)− (j + 1) old letters old “2”
(old letter) (new letter) +a1 − l new letters

position l j + l + 1

(c) Case b: earlier leftmost 12 pattern is induced

Figure 4.10: Constructing elements of A2({123}, [a1, . . . , ak], p)

∅

A1(p)

A2(p)

(p:=a1−1)

��

∑a1
k=1

∑p
j=0 ((p−j)+(a1−k)

a1−k )·A2(j+k+1)

%%LLLLLLLLLL
p:=p+a1

88

i·A1(i+1)+
∑a1

k=1

∑p−2
j=0 ((p−1)−(j+1)+(a1−k)

a1−k )·A2(j+k+1)

VV

Figure 4.11: The scheme for Aa(123)

new kind of scheme has the advantage that there provably exists a scheme for words

avoiding any monotone pattern.

For ease of notation, consider the monotone pattern p = 1b1 · · ·mbm . Let

A∅([a1, . . . , ak]) be the set of all words avoiding p with frequency vector [a1, . . . , ak].

As before, Ai([a, . . . , ak]) is the set of i-critical words with respect to p.

If a1 < b1, then we have |A∅([a1, . . . , ak])| =
(
a2+···+ak+1

a1

)
|A∅([a2, . . . , ak])|, and also

|Ai([])| = 1 for any i.

For Ai, we also keep track of the positions of the end of the leftmost 1b1 , 1b12b2 ,

1b12b23b3 , . . . , 1b12b2 · · · ibi patterns.
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Now, to find a recurrence equation for each Ai, one must only complete a case by

case counting exercise, as in the examples above. That is, consider the cases:

• the insertion of new (larger) letters does not affect any of the existing 1b1 , 1b12b2 ,

1b12b23b3 , . . . , 1b12b2 · · · ibi patterns

• the new letters create a new leftmost 1b1 pattern, but do not affect any of the

1b12b2 , . . . , 1b12b2 · · · ibi patterns

• the new letters create a new leftmost 1b12b2 pattern, but do not affect any of the

1b12b23b3 , . . . , 1b12b2 · · · ibi patterns

• the new letters create a new leftmost 1b12b23b3 pattern, but do not affect any of

the 1b12b23b34b4 ,. . . , 1b12b2 · · · ibi patterns

• . . .

• the new letters create new leftmost 1b12b2 , 1b12b23b3 , . . . , 1b12b2 · · · ibi patterns

• the new letters create a 1b12b2 · · · (i+1)bi+1 pattern, causing the word to be (i+1)-

critical.

Although the counting and notation may get quite hairy, there are no added sub-

tleties: to count words avoiding a monotone pattern, one must only take sums of

combinations of the sets as shown above.

Theorem 21. The set of words avoiding the monotone pattern 1b1 · · ·mbm has a scheme

consisting of at most m triples [Ai, Ci, Ri].

Proof. For each Ai above, Ai can clearly be written as a combination of Ais (either

adding new letters does not create an (i + 1)-critical pattern) and Ai+1s (adding new

letters creates at worst an (i+ 1)-critical pattern). Since Ai = 0 for i ≥ m, the scheme

ends with state Am−1, which has no new children (because words in Am contain pattern

p) thus giving a scheme of m triples.

It should be noted that this is the first method that guarantees a way to compute

the size of each member in a non-trivial family of classes of pattern-avoiding words of
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arbitrary length. It should also be noted that the case of enumerating permutations

which avoid a monotone pattern is a special case of this theorem, given by setting

a1 = · · · = ak = b1 = · · · = bm = 1.

4.11 Final Comments

The new version of enumeration schemes described in this chapter gives a way to count

words avoiding any pattern of length up to 3. Further, the simple structure of monotone

patterns makes it easy to track occurrences of subpatterns. Thus, words avoiding any

monotone pattern are guaranteed to be counted by this method.
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Chapter 5

Enumeration Schemes for Permutations Avoiding Barred

Patterns

5.1 Introduction

In this chapter, we give a comprehensive list of enumeration results for permutations

that avoid barred patterns. Then, we modify the notion of enumeration schemes to

count permutations avoiding barred patterns. We first recall several definitions from

Chapter 1.

Let q′ ∈ Sm, b ∈ {0, 1}m. The barred permutation q is the permutation obtained by

copying the entries of q′ and putting a bar over q′i if and only if bi = 1. Write Sm for

the set of all barred permutations of length m.

Let p ∈ Sn, q ∈ Sn. Given q, let q be the permutation formed by all numbers of q,

with or without bars, and let q be the permutation formed by deleting all barred letters

of q and then reducing all the remaining (unbarred) letters. We say p contains q as a

barred pattern if every instance of q in p is part of an instance of q in p. In this case,

we may say every instance of q extends to an instance of q.

We we have seen, this variation of pattern avoidance also appears in several inter-

esting applications.

• A permutation is 2-stack sortable if and only if it avoids 2341 and 35241 [37].

• A permutation is forest-like if and only if it avoids the patterns 1324 and 21354

[9]. These patterns also characterize locally factorial Schubert varieties [40].

Beyond the special cases of barred pattern avoidance relevant to these applications,

little is known beyond the work of Callan, where he completely enumerates permuta-

tions avoiding a single pattern of length 4 with one bar [10], and deals with the special



75

case of {35241}-avoiding permutations [11]. The goal of this chapter is to consider

the problem of barred pattern avoidance in a more general and comprehensive context.

We consider barred permutations of any length and with any number of bars. Several

preliminary results are given, and we completely characterize permutations avoiding

a barred pattern of length ≤ 5 before we modify the method of prefix enumeration

schemes to the case of barred pattern avoidance, and discuss its success rate.

5.2 Enumeration

Before we consider results for specific sets of barred patterns, we derive a series of useful

Lemmas.

Lemma 2. Let q ∈ Sm, such that every number of q is barred. Then Sn({q}) is the

set of permutations that contain q.

Proof. Notice that q = ∅. That is for p to avoid q every instance of the empty permu-

tation must be a part of a copy of q, i.e. p contains q.

More specifically, this lemma illustrates that, in some sense, barred pattern avoid-

ance bridges the gap from standard pattern avoidance (no bars) to standard pattern

containment (all possible bars), with a range of intermediate cases. However, as the fol-

lowing Lemmas illustrate, a number of these intermediate cases may also be equivalent

to standard pattern avoidance.

Lemma 3. Let q ∈ Sm such that qi is the only barred element and either (i) qi+1 = qi±1,

or (ii) qi−1 = qi ± 1. Then,

Sn({q1 · · · qi−1qiqi+1 · · · qm}) = Sn({red(q1 · · · qi−1qi+1 · · · qm)})

Proof. Clearly, if p avoids q1 · · · qi−1qi+1 . . . qm, then it avoids q1 · · · qi−1qiqi+1 · · · qm

since there are no instances of q1 · · · qi−1qi+1 . . . qm to extend to an instance of q. Thus,

Sn({red(q1 · · · qi−1qi+1 · · · qm)}) ⊆ Sn({q1 · · · qi−1qiqi+1 · · · qm})

On the other hand, without loss of generality assume that qi = qi+1 ± 1, p avoids

q1 · · · qi−1qiqi+1 · · · qm, and there is an instance of q = red(q1 · · · qi−1qi+1 · · · qm) that
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extends to an instance of q = q1 · · · qi−1qiqi+1 · · · qm. Choose the instance of q that uses

the leftmost possible element of p for qi. Then q1 · · · qi−1qiqi+2 · · · qm is another instance

of q that does not extend to q. So every element of Sn({q1 · · · qi−1qiqi+1 · · · qm}) already

avoids red(q1 · · · qi−1qi+1 · · · qm).

Finally, we eliminate the case of having bars on all but one letter by the following

observation.

Lemma 4. Suppose that q ∈ Sm with only one unbarred letter. Then |Sn({q})| = 0 for

all n ≥ 1.

Proof. Notice that avoiding q means that every instance of a 1 pattern extends to an

instance of q. Without loss of generality, assume that q has barred entries after the

lone unbarred letter. Then the final entry of any permutation is a copy of 1 that does

not extend to q.

We now consider permutations avoiding barred patterns of length 1, 2, 3, 4, and 5

in turn, noting that many results follow almost directly from Lemmas 2 and 3. With

the exception of the work of Callan [10] for patterns of length 4 with 1 bar, this is the

first comprehensive list of such results.

5.2.1 Avoiding barred patterns of length 1 or 2

We begin with avoiding patterns of length 1.

It is well known that |Sn({1})| =


1 n = 0

0 n ≥ 1
.

We now see from Lemma 2 that
∣∣Sn({1})

∣∣ =


0 n = 0

n! n ≥ 1
.

For patterns of length 2, we observe that the Wilf equivalences

|Sn({q})| = |Sn({qr})| = |Sn({qc})| =
∣∣Sn({q−1})

∣∣
extend to barred patterns in the obvious way, where qr denotes q reverse, qc denotes q

complement, and q−1 denotes q inverse [31].



77

Thus, we already have |Sn({12})| = |Sn({21})| = 1, n ≥ 0.

Further, by Lemma 2, we have
∣∣Sn({12})

∣∣ =
∣∣Sn({21})

∣∣ = n!− 1.

Finally,
∣∣Sn({12})

∣∣ =
∣∣Sn({21})

∣∣ =
∣∣Sn({12})

∣∣ =
∣∣Sn({21})

∣∣ = |Sn({1})|, where the

first and third equalities are by reversal, the second equality is by complement, and the

final equality is by Lemma 3.

5.2.2 Avoiding barred patterns of length 3

It is well known that |Sn({q})| = (2n
n )

n+1 where q is any unbarred pattern of length 3.

Thus, |Sn({q})| = n!− (2n
n )

n+1 where q is any pattern of length 3 with all bars.

By Lemma 4 it only remains to consider the case of patterns with 1 bar. The trivial

Wilf equivalences and Lemma 3 give:

∣∣Sn({123})
∣∣ =

∣∣Sn({321})
∣∣ =

∣∣Sn({123})
∣∣ =

∣∣Sn(321)
∣∣ = |Sn(21)| , and

∣∣Sn({123})
∣∣ =

∣∣Sn(321)
∣∣ = |Sn(21)|

It is enough to consider the pattern 132 with bars on various elements to complete

the characterization. If there is a bar on 3 or 2, we may make use of Lemma 3, so the

remaining interesting case is that of Sn({132}).

Proposition 5.
∣∣Sn({132})

∣∣ = (n− 1)! for all n ≥ 1.

Proof. We claim that Sn({132}) is precisely the set of permutations that begin with

the letter 1, thus giving the above enumeration.

First, notice that if π begins with 1, then π1 cannot be involved in a 21 pattern since

it is both the first and the smallest element of π. Thus, every 21 pattern is preceded

by the smallest element, and so π ∈ Sn({132}).

Now, if π does not begin with 1, then π11 forms a 21 pattern that is not preceded

by a smaller entry so π /∈ Sn({132}).

We have now finished the enumeration of permutations avoiding barred patterns of

length ≤ 3.



78

5.2.3 Avoiding barred patterns of length 4

It is well known that for patterns with no bars, permutation patterns fall into the three

classes of |Sn({1234})|, |Sn({1342})|, and |Sn({1324})|. As we saw in Chapter 1, for the

first of these, we have a closed form enumeration, for the second a generating function,

and for the third a recurrence that allows enumeration up to n = 20.

As given by the Lemmas, we need only consider the case of 2 bars and 1 bar in turn.

For two bars, we have two cases: either within the pattern we have a symmetry of

a pair of consecutive numbers of the form (c− 1)c, or not.

If we have a symmetry of (c − 1)c in the pattern, it will be equivalent to avoiding

a simpler pattern, similar to the argument of Lemma 3. So we need only consider the

patterns where this does NOT happen. These are the patterns 1243, 1324 and their

symmetries.

Proposition 6.
∣∣Sn({1243})

∣∣ =
∣∣Sn({1324})

∣∣ = (n− 2)! for all n ≥ 2

Proof. It is enough to show that Sn({1243}) is precisely the set of permutations that

begin with the letters 12, and that Sn({1324}) is precisely the set of permutations that

begin with the letter 1 and end with the letter n.

For the first, if π begins with the letters 12, clearly neither of these letters is involved

in a 21 pattern, and every 21 pattern is preceded by the smaller 12, thus π ∈ Sn({1243}).

On the other hand, if π starts with the letters 21, it clearly contains the forbidden

pattern 21 not preceded by a smaller 12 pattern. Also, if one of the first two letters

of π is ≥ 3 then that letter is part of a forbidden 21 pattern that is not preceded by a

smaller 12 pattern, so we are done.

For the case of Sn({1324}), if π begins with the letter 1 and ends with the letter n,

then neither of these can be involved in a 21 pattern, so every 21 pattern is preceded

by a smaller number (the 1) and succeeded by a larger number (the n). Thus, π ∈

Sn({1324}). On the other hand, if π begins with something other than 1, then π11

forms a 21 pattern that is not preceded by a smaller number. Similarly if π ends with

something other than n, then nπn forms a 21 pattern that is not succeeded by a larger

number.
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Finally, we consider the case of barred patterns of length 4 with precisely one bar.

This was first comprehensively studied by Callan [10]. The following propositions are

proved in a similar way to Callan’s work, but with slightly modified notation, and are

included for completeness.

Callan showed that permutations avoiding a barred pattern of length 4 with ex-

actly one bar fall into 4 categories. By Lemma 3, 64 of these 96 (= 4! × 4) patterns

are equivalent to avoiding an unbarred pattern of length 3, thus yielding the Catalan

numbers. The remaining 3 cases are those for which the sequence {|Sn({q})|}n≥0 gives

the Bell numbers, OEIS Sequence A051295 [32], and a third case with a new sequence.

The data in Table 5.1, first computed by Callan [10], lists the 32 remaining patterns,

grouped by Wilf equivalence class.:

Representative Other Class Members Sequence
1423 1342, 2314, 2431, 3124, 3241, 4132, 4213 Bell
2413 2413, 2413, 2413, 3142, 3142, 3142, 3142 Bell
1423 1342, 2414, 2431, 3124, 3241, 4132, 4213 A051295
1324 1324, 4231, 4231 A051295
1432 2341, 3214, 4123 new

Table 5.1: The equivalence classes of patterns of length 4 with one bar

We consider one representative from each of these classes. Other patterns that yield

the same sequence can be studied using similar methods.

Proposition 7.
∣∣Sn({1423})

∣∣ satisfies the recurrence

∣∣Sn({1423})
∣∣ =

n∑
i=1

(
n− 1
i− 1

) ∣∣Sn−i({1423})
∣∣

Proof. Let i be the position of the letter n in a 1423-avoiding permutation. Then, the

i− 1 letters preceding n must be in decreasing order (otherwise j < k < n forms a 123

pattern without a larger element between the j and k). The n−k letters after n may be

in any order, so long as they avoid 1423. This gives a typical graph of a 1423-avoiding

permutation, considered as a function from [n] to [n] as in Figure 5.1.

There are
(
n−1
i−1

)
ways to choose the initial k elements of the permutation, and∣∣Sn−i({1423})

∣∣ ways to order the last n − i elements, so summing over all possible
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•
•
•
•

Sn−i

i

Figure 5.1: A generic {1423}-avoiding permutation

positions i for the entry n, we obtain the above recurrence.

This is the same recurrence satisfied by the Bell numbers.

Proposition 8.
∣∣Sn({1423})

∣∣ satisfies the recurrence

∣∣Sn({1423})
∣∣ =

n∑
i=1

(n− i)!
∣∣Si−1({1423})

∣∣
Proof. Let i be the position of the letter 1. Then the (n − i) entries following i may

appear in any order. However, the letters before the 1 must all be smaller than the

letters after the 1, otherwise j1k with j > k forms a 312 pattern without a smaller letter

in front of it. The i − 1 entries preceding i must merely avoid the forbidden pattern

1423, giving the graph of a typical 1423-avoiding permutation to be as in Figure 5.2.

(n− i)!
Si−1

•
i

Figure 5.2: A generic {1423}-avoiding permutation

There are
∣∣Si−1({1423})

∣∣ ways to order the first i − 1 elements, and (n − i)! ways

to order the last n− i elements, so summing over all possible positions i for the letter

n gives the above recurrence.

This recurrence gives sequence A051295 in the Online Encyclopedia of Integer Se-

quences.

Proposition 9.

∣∣Sn({1432})
∣∣ = (n− 1)! +

n∑
j=2

(n− 2)!
(j − 2)!

+
n∑

i=3

n−i+2∑
j=2

n∑
l=j+i−2

(n− i)!(l − j − 1)!
(l − i)!(i− 3)!
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Proof. We break the set Sn({1432}) into cases depending on the location of the letter

1.

If 1 is the first letter of a permutation p, then clearly p ∈ Sn({1432}) since 1 as

the first letter cannot be involved in a forbidden 321 pattern, and every 321 pattern is

preceded by the 1. Thus, there are (n− 1)! permutations avoiding 1432 and beginning

with 1.

If 1 is the second letter of a permutation p that begins with j, then we get the

following graph:

(n− 2− (j − 2))!
j

•
•

•
•
i

Figure 5.3: A {1432}-avoiding permutation with 1 as the second letter

That is, all letters smaller than j must appear in increasing order (otherwise j >

a > b forms a 321 pattern without a smaller letter in front of it), so we may choose the

positions of these letters but not their order. This can be done in
(
n−2
j−2

)
ways. Further,

the letters greater than j may appear in any order, but their positions are exactly the

positions left over after choosing the places of the letters smaller than j. These larger

letters can be ordered in (n− 2− (j − 2))! ways. Summing over all possible values for

j, we get the second term in the proposition.

Finally, we consider the case of 1 appearing in the third position or later. We obtain

a permutation graph as in Figure 5.4.

That is, all letters before 1 must appear in increasing order, otherwise a > b > 1 is

a 321 pattern not preceded by a smaller letter. If j is the smallest letter before 1 and l

is the largest letter before 1, we may also conclude that

• The n − l letters larger than l may appear in any order, so we may choose their

positions in
(
n−i
n−l

)
ways, and their order in (n− l)! ways.

• The letters smaller than j must appear in increasing order, otherwise j > a > b
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(
n−i
n−l

)
(n− l)!

l
•

•
•

(l − j − i− 2)!

j

•
•

•
•
i

Figure 5.4: A {1432}-avoiding permutation with 1 as the third letter or later

is a 321 pattern not preceded by a smaller letter.

• The letters smaller than j must appear strictly before the letters between j and

l that are after the 1. Otherwise, let a be a letter j < a < l that occurs before

letter b, with b < j. Then lab is a 321 pattern not preceded by a smaller letter.

• Now, the positions of the remaining (l − j − i − 2) letters are determined, and

they can be ordered in (l − j − i− 2)! ways.

Thus, summing over all possibilities for j, l, and i gives the third and final term in the

proposition.

5.2.4 Avoiding barred patterns of length 5

A comprehensive study of permutations avoiding patterns of length 5 is not yet com-

pleted, however, computational data shows that a number of new non-degenerate cases

remain to be studied. We give a survey of computational data for n ≤ 7 and patterns

with 1, 2, or 3 bars.

The symmetries of reverse, complement, and inverse give 89 distinct equivalence

classes for the sequence |Sn({q})| when q is a pattern of length 5 with one bar. Of these

classes, 52 are equivalent to avoiding a pattern of length 4 by Lemma 3.

For the 37 remaining classes, computation suggests that there are at least 17 different

possible sequences for |Sn({q})|. 15 of these are new to the literature. Table 5.2 below

sorts these non-degenerate results by their first 7 terms.
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Pattern Class Sequence OEIS Number
Representatives
25314, 35241, 45312, 51423 1, 2, 6, 23, 104, 530, 2958 A117106
35241 1, 2, 6, 23, 104, 530, 2959 new
14235, 42513 1, 2, 6, 23, 104, 531, 2977 new
42315, 42513, 53142(**) 1, 2, 6, 23, 104, 531, 2982 A110447
42153, 51423 1, 2, 6, 23, 104, 532, 3002 new
51342 1, 2, 6, 23, 104, 532, 3003 new
25134(*), 25143(*), 25314, 35241 1, 2, 6, 23, 104, 532, 3004 new
42513, 43512(*), 43521(*)
15324, 41523 1, 2, 6, 23, 104, 532, 3005 new
41253 1, 2, 6, 23, 104, 533, 3026 new
15234, 41253 1, 2, 6, 23, 104, 533, 3027 new
13425, 35241 1, 2, 6, 23, 104, 533, 3038 new
13245, 32415, 51432, 53412 1, 2, 6, 23, 104, 534, 3060 new
51342 1, 2, 6, 23, 104, 534, 3064 new
52143 1, 2, 6, 23, 104, 535, 3081 new
52341 1, 2, 6, 23, 104, 535, 3082 new
51243 1, 2, 6, 23, 104, 535, 3085 new
51234, 51324 1, 2, 6, 23, 104, 535, 3088 new
(*) This sequence will be proven by the method of prefix enumeration schemes.

(**) This sequence has been proven by Callan in [11].

Table 5.2: Number of permutations avoiding a pattern of length 5 with one bar
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Similarly, for patterns of length 5 with 2 bars, there are 172 equivalence classes

and 150 of these reduce to avoiding an unbarred pattern of length 3. Of the 22 non-

degenerate cases, we get at least 13 distinct sequences, 9 of these new to the literature.

These sequences are given in Table 5.3.

Pattern Class Representatives Sequence OEIS Number
25314, 35142 1, 2, 5, 14, 43, 143, 509 A006789
42513, 51324 1, 2, 5, 14, 43, 143, 510 A098569
51243(*) 1, 2, 5, 14, 43, 143, 511 new
31542(*), 41532 1, 2, 5, 14, 43, 144, 522 new
31542 1, 2, 5, 14, 43, 144, 523 A047970
24135, 42531, 42531 1, 2, 5, 14, 43, 144, 525 new
14352 1, 2, 5, 14, 43, 145, 538 A122993
15243 1, 2, 5, 14, 43, 146, 550 new
21453, 24315, 42315, 54231(*) 1, 2, 5, 14, 43, 146, 561 new
53241, 54132(*) 1, 2, 5, 14, 43, 147, 575 new
45123 1, 2, 5, 14, 43, 147, 578 new
14325 1, 2, 5, 14, 43, 148, 592 new
34521 1, 2, 5, 14, 43, 150, 617 new
(*) This sequence will be proven by the method of prefix enumeration schemes

later in this chapter.

Table 5.3: Number of permutations avoiding a pattern of length 5 with two bars

Finally, for patterns of length 5 with 3 bars, all cases are degenerate to either

Sn({q}) = 1 or Sn({q}) = (n− 3)!.

Now that we have exhausted comprehensive case by case analysis of permutations

avoiding a single barred permutation, we consider a method to compute recurrences for

Sn(Q) where Q is an arbitrary set of barred permutation patterns.

5.3 Enumeration Schemes

Our goal in this section is to introduce a single method that works to enumerate the

elements of many classes Sn(Q) where Q is a set of barred permutation patterns. As for

pattern-avoiding words, we derive an algorithm whose input is a set of permutation pat-

terns Q, and whose output can be read as a recurrence counting the elements of Sn(Q).

Notation from the Zeilberger’s and Vatter’s original work with unbarred permutation
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patterns will be adapted as necessary.

In the following sections, we discuss in turn the notions of refinement, reversibly

deletable elements, gap vectors, and stop points. These four concepts are combined to

form an enumeration scheme, or recurrence computing |Sn(Q)|.

5.3.1 Refinement

Since the set Sn(Q) may be complicated, we first partition Sn(Q) into disjoint subsets

and look for recurrences between these subsets.

As we have seen, one natural and useful way to partition the permutations of Sn(Q)

is by the patterns formed by the first i letters of a permutation. The following notation

will be useful to discuss this partitioning of Sn(Q):

Sn(Q; p1 · · · pi) = {π ∈ Sn | π avoids q for all q ∈ Q, π1 · · ·πi reduces to p1 . . . pi}

Sn

Q;
p1 · · · pl

l1 · · · li

 =

π ∈ Sn

∣∣∣∣∣
π avoids Q,

π1 · · ·πi reduces to p1 . . . pi, and

l1, . . . , li are the first i letters of π

 .

For example, S3({132}; 12) = {123, 231}, i.e. of the 5 permutations of length 3 that

avoid the pattern 132, only 123 and 231 begin with an increasing pair of letters.

Similarly, S3

{132};
12

23

 = {231}.

Given p = p1 · · · pi, a refinement of p is a permutation q = q1 · · · qi+1 such that

red(q1 · · · qi) = p. For example, the refinements of ∅ are {1}. The refinements of 1 are

{12, 21}. The refinements of 12 are {123, 132, 231}.

As before, we have the following useful observation:

Sn(Q; p) =
⋃

q∈{refinements of p}

Sn(Q; q),

and thus

|Sn(Q; p)| =
∑

q∈{refinements of p}

|Sn(Q; q)| .

Thus, for any set of patterns Q, we have Sn(Q) = Sn(Q; 1) = Sn(Q; 12)∪Sn(Q; 21),

etc.
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This partitioning of Sn(Q) into disjoint sets depending on the initial few letters is

drawn from the work of Zeilberger [42].

Graphically, we may represent refinement using a graph, where the vertices corre-

spond to the sets Sn(Q; p), and there is a directed edge from a prefix pattern to each

of its refinements. To count the elements of Sn(Q) it is enough to count the elements

of the subsets Sn(Q; p) represented by the leaves of the graph.

An example of such a graph of refinements is given in Figure 5.5.

∅

1

12 21

��

�����������

��?????????

Figure 5.5: The graph of refinements for an arbitrary pattern set

Now that we have a way to partition Sn(Q) into disjoint subsets, we consider ways

to find recurrences between these subsets.

5.3.2 Reversibly Deletable Elements

The key tool for finding recurrences between Sn(Q; p) for various prefixes p is the

following:

Definition 13. Given Q, a set of barred permutation patterns, and p, a prefix of length

l, l > 0, we say that position r (1 ≤ r ≤ l) is reversibly deletable if and only if the

action of removing pr from a Q-avoiding permutation of length n and inserting pr into

a Q-avoiding permutation of length n−1 is a bijection between Sn

Q;
p1 · · · pl

i1 · · · il

 and

Sn−1

Q;
p1 · · · pr−1pr+1 · · · pl

i1 · · · ir−1ir+1 · · · il

.

In the case of unbarred pattern avoidance, it is enough to check that the insertion

of pr into a Q-avoiding permutation of length n− 1 gives a Q-avoiding permutation of

length n, since the deletion of a letter from a permutation cannot cause a bad pattern.

More specifically, for unbarred pattern avoidance, pr is reversibly deletable if and only
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if every forbidden pattern involving pr implies the existence of a forbidden pattern

without pr.

For example, if Q = {123}, and p = 21, we have that p1 =“2” is reversibly deletable,

since the only way for p1 to be involved in a 123 pattern is for there to be 21 · · · ps · · · pt

with “2”< ps < pt. But this means that “1”< ps < pt, and 1pspt forms a forbidden

123 pattern without p1 =“2”. That is, every 123 pattern involving p1 implies the exis-

tence of a 123 pattern without p1. Thus, it is impossible to create a {123}-containing

permutation by inserting p1 into a {123}-avoiding permutation. So inserting and delet-

ing p1 is indeed a bijection between {123}-avoiding permutations of length n − 1 and

{123}-avoiding permutations of length n.

For the case of barred patterns, the definition of reversibly deletable elements is

equivalent to the old definition with the added caveat that pr cannot be the only letter

to play the role of a barred letter in extending a forbidden q pattern to q. That is,

deleting pr from a Q-avoiding permutation can only fail to produce another Q-avoiding

permutation if pr plays the role of a barred letter and its removal makes an instance of

a forbidden pattern q no longer extendable to the larger barred pattern q.

In summary, to check algorithmically that pr is reversibly deletable, we must check

two things.

1. Check that inserting pr into a Q-avoiding permutation always produces a Q-

avoiding permutation.

2. Check that deleting pr from a Q-avoiding permutation always produces a Q-

avoiding permutation.

We discuss how to rigorously check each of these in turn.

1. Insertion

For insertion, as in the unbarred case, we check that every possible occurrence of

a forbidden pattern with pr implies the existence of a forbidden pattern without

pr. This is easily seen to happen in a finite number of scenarios. First, choose the

letters of the prefix p (including pr) that will be involved in the forbidden pattern.
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Then, choose all the ways that the remaining letters of the forbidden pattern can

be spaced between the letters of p.

For example, for Q = {1423}, a forbidden pattern is a 312 pattern without a

smaller letter before it. Consider p = 123, and reversibly deletable candidate

p2 =“2”. Recall that p is a prefix, denoting that the first three letters of our

permutation are increasing, not that they are specifically the letters 1, 2, and 3.

So the only way for p2 to be involved in a bad pattern is for p2 to be followed by

a smaller increasing pair. These letters may be (a) both less than p1, (b) one less

than p1 and one greater than p1, or (c) both greater than p1 and less than p2,

as in the permutation graphs in Figure 5.6 below. As before, we use > to mark

p2 to be deleted, � to denote the letters of 123ab that, together with p2, form a

forbidden pattern, and � to mark another letter that, together with the letters

marked �, forms a forbidden pattern without p2.

We quickly eliminate case (c) since 123ab where 2ab is a 312 pattern, and “1”<

a < b <“2”, actually extends to the 1423 pattern 12ab. Now, it is easy to check

that deleting p2 in each of cases (a) and (b) gives another {1423}-containing

permutation.

Additionally, to check that pr is reversibly deletable for prefix p and forbidden

pattern q where q has b bars, we must also check scenarios with b additional

letters.

These additional scenarios are indeed necessary. For example, let Q = {1342},

and p = 21, and consider p1. p1 being involved in a bad pattern with two letters

after the prefix may happen in one way, namely:

So, 21ab containing the forbidden pattern “2”< a < b does imply that “1”< a < b

is a forbidden pattern without p1. It seems from this that p1 is reversibly deletable.

However, 21abc containing the forbidden pattern 2ab does not imply that 1abc

is bad (if “1”< c <“2”), since c may act as a barred letter extending the 1ab

pattern, but not the 2ab pattern.

To show that this is always enough, note that if π contains a forbidden pattern q
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�
>

•
�

�

→

�
•

�
�

Case (a): both post-prefix letters less than p1

�
>

�
•

�

→

�
�

•
�

Case (b): one post-prefix letter less than p1 and one greater than p1

•
>

•
•

•

Case (c): both post-prefix letters greater than p1 and less than p2

Figure 5.6: An example of checking that insertion is bijective

�
�

>
�

→
�

�
�

Figure 5.7: A {1342}-avoiding permutation with prefix 21

where q has b bars, then only b letters need be inserted to form a copy of the q,

so adding even more letters is redundant.

2. Deletion

Now that we have rigorously shown that insertion of pr is a map from Q-avoiding

permutations to Q-avoiding permutations, we check that deletion also has this

property.

To do this, we check the scenarios for a forbidden pattern involving pr as above.

Namely, we want to show that if π∗ begins with prefix p∗ = p1 · · · pr−1pr+1 · · · pl
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�
�

>
•

•

→

�
�

•
•

Figure 5.8: A {1342}-containing permutation with prefix 21

and has a forbidden pattern, then π, beginning with p = p1 · · · pr · · · pl has a

forbidden pattern. Thus, if we compute all the scenarios beginning with p∗, insert

pr, and check that each one contains a forbidden pattern, then we are done.

For example, if Q = {1423} and p = 123, we again consider p2. There are a

number of ways for p1p3 to be involved in a forbidden pattern that does not

extend to 1423, namely:

(a)

•
�

�
�

(b)

�
•

�
�

(c)

�
�

•
�

Figure 5.9: {1423}-containing patterns with prefix 12.

Now, p2 can be inserted into each of these scenarios in possibly multiple ways as

in Figure 5.10.

We may inspect that each of these resulting permutations contains a 312 pattern

that does not extend to a 1423 pattern, and thus, p2 is reversibly deletable.

To show that pr is reversibly deletable graphically, we draw a dotted arrow from p

to p∗ labelled with dr, which denotes the deletion map of deleting the rth letter of π

and reducing. For example, if p = 21 had p1 reversibly deletable, we would encode this

as in Figure 5.11

5.3.3 Gap Vectors

Unfortunately, as for words, the reversibly deletable elements are usually not sufficient

to find recurrences counting the elements of Sn(Q), so following Vatter [36], we introduce
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•
�

�
�

→

•
>

�
�

�

Case (a): inserting p2 (p1 < p2 < p3) into a {1423}-avoiding permutation

�
•

�
�

→

�
>

•
�

�

Case (b): inserting p2 (p1 < p2 < p3) into a {1423}-avoiding permutation

�
�

•
�

→

�
>

�
•

�

Case (c1): inserting p2 (p1 < p2 < p3) into a {1423}-avoiding permutation

�
�

•
�

→

�
�

>
•

�

Case (c2): inserting p2 (p1 < p2 < p3) into a {1423}-avoiding permutation

Figure 5.10: An example of checking that deletion is bijective

the notion of gap vectors. Given a set of forbidden patterns Q and prefix p = p1 · · · pi,

a spacing vector v is a vector in Ni+1. We write ||v|| to denote the sum of the entries

of v. Spacing vectors help further narrow down the set Sn(Q; p) into smaller subsets in

the following way.

Definition 14. Given Q, a set of forbidden patterns, p a prefix of length i, and v,

a spacing vector of length l + 1, let s1 · · · sl be the permutation obtained by sorting p.

Sn(Q; p; v) denotes the set of permutations of length n, avoiding Q, beginning with prefix

p, and with exactly v1 letters smaller than s1, exactly vj letters that are greater than

sj−1 and smaller than sj, and exactly vi+1 letters that are greater then sl.

For example, Sn({123}; 12; 〈0, 1, 2〉) denotes the set of permutations avoiding 123,

beginning with an increasing pair of letters p1p2, with one letter a such that p1 < a < p2

and two letters bigger then p2.
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∅

1
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Figure 5.11: Representation of reversibly deletable elements

Definition 15. A spacing vector v is a gap vector for [Q, p] if there are no permutations

avoiding Q with prefix p and spacing vector ≥ v (componentwise).

For example, if Q = {123} and p = 12, then v = 〈0, 0, 1〉 is a gap vector since if we

have at least one letter a larger than p1 and p2, then p1p2a forms a 123 pattern.

We check this similarly to the unbarred case, with yet another constraint.

To check that v is a gap vector in the unbarred case, we consider permutations

starting with p, and name v1 letters smaller than s1 = 1 (say 1
v1+1 , . . . ,

v1
v1+1), v2 letters

between s1 = 1 and s2 = 2 (say 1 + 1
v2+1 , . . . 1 + v2

v2+1), . . . , and vl+1 letters bigger than

sl = l (say l + 1
vl+1+1 , . . . , l + vl+1

vl+1+1). Now, consider all permutations that begin with

p and end with any of the (v1 + · · ·+ vl+1)! permutations of these fractional letters. If

each of these permutations contains a forbidden pattern from Q, then v is a gap vector

for [Q, p].

In the barred case, while the algorithm in the previous paragraph is necessary to

show that v is a gap vector, it is no longer sufficient. For example, when avoiding

Q = {231}, with prefix p = 1, v = 〈0, 1〉 appears to be a gap vector when considering

permutations of length 2. However, there are permutations of length 3 with spacing

vector v∗ = 〈1, 1〉 that avoid Q. That is, we may have a vector such that |Sn(Q; p; v)| =

0, but there is some w > v (componentwise) such that |Sn(Q; p;w)| > 0. However, we

want to find a basis for the set of vectors v such that |Sn(Q; p;w)| = 0 for all n and for

all w ≥ v.

In light of this complication, to show that v is a gap vector for [Q, p], not only

do we need to confirm that there are no Q-avoiding permutations with prefix p and

spacing v, but also that there are no Q-avoiding permutations with spacing w, w > v
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componentwise. More precisely, if we are concerned with finding the basis of gap vectors

for [Q, p], most of the time we proceed as in the unbarred case, with one important

exception. More work needs to be done to check for gap vectors when avoiding a

pattern of the form q = q1 · · · qm−i−1qm−i · · · qm. We begin with the case when i = 0,

i.e. q ends with exactly one barred letter.

Theorem 22. Let q ∈ Sm such that q = q1 · · · qm−1. Then there are no basis gap

vectors for [{q}, p] for any prefix p.

Proof. Assume that q is as in the proposition, and that v is a basis gap vector for

[{q}, p]. Now, let π = π1 · · ·πl ∈ S|p|+‖v‖ that has prefix p. Since v is a basis gap vector,

π contains q, but if the last letter of π is deleted, then it avoids q. That is, by definition

of basis gap vector, the last letter of π is involved in a forbidden q pattern that does

not extend to a q pattern.

For each instance of q in π, choose a letter to append to π which will extend the

instance to q; write L for the set of such letters to be appended to π. Without loss of

generality, assume that qm−1 < qm. Then append the letters of L to π in increasing

order, and call the resulting permutations π∗. We claim that either π∗ is a {q}-avoiding

permutation or can be further extended to be {q}-avoiding, with prefix p and spacing

w, w > v, so v is not a gap vector, and by contradiction we are done.

To see that π∗ = π∗1 · · ·π∗l2 is {q}-avoiding, we consider several cases.

First, by Lemma 3, we may assume that q is not a monotone pattern and that there

exists qc with qm−1 < qc < qm.

Construct π∗ by appending each letter of L individually. Suppose that π1 · · ·πl+i

contains a forbidden q pattern that uses πl+i. Then either:

• The rest of the forbidden pattern consists of letters πj with j ≤ l. In this case,

the letter of L that was meant to extend the bad pattern formed by replacing

πl+i with πl has yet to be appended to π, and will extend this instance of q to an

instance of q as well.

• If the rest of the forbidden pattern consists of both letters from π1 · · ·πl and

letters from L, then we note that by Lemma 3, there exists πc in the instance of
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the forbidden pattern with πl+j < πc < πl+i, j < i, c < l, so we may append

another letter πl+i+1 to π∗ extending this to a copy of q. Again, there must be

πc2 with c2 < l so that πl+i < πc2 < πl+i+1. If this letter πl+i+1 is involved in

another instance of q, repeat. We know this process terminates because there are

a finite number of letters in π, so there is a maximum letter of {π1, . . . , πl} to

play the role of πci in this construction.

In both cases, we have shown that it is possible to append enough letters to π to

make it {q}-avoiding, and thus there are no gap vectors for [{q}, p].

As an example of this construction, consider permutations that avoid the pattern

q = 2413. For the prefix 123, there are no permutations avoiding q with spacing

〈1, 0, 0, 0〉, and there are no permutations avoiding q with a spacing vector of weight 2;

however, we can construct a permutation with prefix p = 123 and a spacing vector of

weight 3 that avoids q. Notice that in the language of the proposition, π = 2341, which

contains q = 231 in several places, namely, 231, 241, and 341. Thus, we require the

addition of a letter greater than “2” and less than “3”, a letter greater than “2” and less

than “4”, and a letter greater than “3” and less than “4”, to extend each of these copies

of q to a copy of q. Choosing two letters, a and b with “2” < a < “3” < b < “4” suffices.

We append a and b to the end of π to obtain 246135 ∈ Sn({2413}; 123; 〈1, 1, 1, 0〉). Note

that 246135 is {2413}-avoiding, with prefix 123 and a spacing vector which is greater

than 〈1, 0, 0, 0〉.

We note that Theorem 22 is necessary. In general, we can find p and q so that the

smallest weight of a spacing vector v where Sn({q}; p; v) 6= ∅ is arbitrarily large, and

checking all the appropriate scenarios would be time-consuming. With this Theorem,

we need not consider all of these scenarios, but rather return that the set of gap vectors

for [{q}, p] is empty. Since gap vectors were included in the scheme algorithm to help

find recurrences, eliminating gap vectors in this case may seem to limit the success of

our algorithm. However, we note that via the symmetries of the square, if we cannot

find an enumeration scheme for Sn({q}) where q ends in a barred letter, we may still

find an enumeration scheme for Sn({qr}) where qr does not end in a barred letter.
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Further, if q is part of a set of forbidden patterns Q, the other patterns not ending in

a barred letter may still help find gap vectors for the enumeration scheme for Sn(Q).

We also note that this construction does not necessarily generalize to patterns of

the form q = q1 · · · qm−i−1qm−i · · · qm where i > 0. For example, if q = 35142 and

p = 231, we note that v = 〈0, 0, 0, 0〉 is a gap vector because two letters a and b, with

p3 < b < p1 < a < p2 must be appended to p to extend p to an instance of 35142.

But now, p1ab is a new forbidden 351 pattern that requires two letters c and d to be

appended with b < d < p1 < c < a to extend p1ab to an instance of 35142. This process

continues indefinitely.

For the case of patterns which consist of a block of unbarred letters followed by a

block of more than one barred letter, we must check extra scenarios to determine if v

is a gap vector. Namely, if Sn(Q; p; v) = ∅, we must also check that Sn(Q; p;w) = ∅ for

all w > v with ‖w‖ = ‖v‖+ (total number of bars in all patterns in Q)· (total number

of occurrences of q1 · · · qm−i−1 in p}) before concluding that v is in fact a gap vector.

With this more specific definition of gap vector, we have an ideal in Nl+1 which

necessarily has a finite basis. We have also exhibited a method to find basis vectors

for a scheme. These serve to narrow down the cases we must consider to decide if an

element is reversibly deletable.

Graphically, we write a basis for the gap vectors corresponding to p below p. For

example, if 〈0, 0, 1〉 is a gap vector for the prefix 12, and this causes p2 to be reversibly

deletable, we would represent this situation as in Figure 5.12

∅

1

12 21
≥ 〈0, 0, 1〉

��

�����������

��????????? d1

ll
d2

22

Figure 5.12: Representation of gap vectors

A final remark for gap vectors concerns the vector v0 = 〈0, . . . , 0〉. Note that if v0

is a gap vector for [Q, p], then there are no permutations of any length avoiding Q and
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beginning with prefix p. Since the gap vector v0 already indicates that |Sn(Q; p)| = 0,

it is unnecessary to write Sn(Q; p) in terms of smaller sets. However, for completeness

of the definition of enumeration scheme (below), if v0 is a gap vector, we allow any one

of the pi to be “exceptionally” reversibly deletable. We will return to this remark later.

5.3.4 Stop Points

As we have observed with reversibly deletable elements and with gap vectors, barred

patterns require added considerations to find a rigorous enumeration schemes. While

we have introduced enough notation to find recurrences between the subsets Sn(Q; p),

we require one extra tool to find the base cases for these recurrences, i.e. stop points.

The key observation is that there may be no permutations of length n that avoid

Q and begin with prefix p, but there may be such permutations of length n + k for

some k > 0. For example, if Q = {231}, there are no permutations of length 2 avoiding

Q, but 231 is a permutation of length 3, beginning with a 12 pattern. Thus, in the

notation of the enumeration scheme, we require a mechanism to indicate at what length

we may begin to consider permutations beginning with that prefix.

Definition 16. Given a set of forbidden patterns Q, and a prefix p without reversibly

deletable elements, we say s ≥ |p| is a stop point for [Q, p] if there are no permutations

of length ≤ s that avoid Q and begin with prefix p

For example, the set of stop points for ({231}, 12) is {2}.

Proposition 10. Given Q and p, the set S of stop points is finite.

Proof. Notice that since S is a set of positive integers, it is enough to show that S has

a well defined maximum element.

It is enough to note that stop points are only defined for prefixes with no reversibly

deletable elements. If there were no permutations beginning with prefix p, we would

obtain the gap vector 〈0, . . . , 0〉, and by convention, position 1 is reversibly deletable,

so p by definition has an empty set of stop points.
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Since p has no reversibly deletable elements, then, we know that there is a permu-

tation π of minimal length that begins with p and avoids Q. The set of stop points has

maximum |π| − 1.

The simplest example of a scheme that requires stop points is the scheme for per-

mutations avoiding {123, 321, 231}. Graphically, we represent stop points as a set after

an asterisk, listed next to the permutation prefix p, as by p = 12 in the scheme for

Sn({123, 321, 231}) in Figure 5.13

Sn({123, 321, 231}) ∅

1

12∗{2} 21
≥ 〈1, 0, 0〉
≥ 〈0, 1, 0〉
≥ 〈0, 0, 1〉

123
≥ 〈0, 0, 0, 0〉

132
≥ 〈0, 0, 0, 0〉

231
≥ 〈1, 0, 0, 0〉
≥ 〈0, 1, 0, 0〉
≥ 〈0, 0, 1, 0〉
≥ 〈0, 0, 0, 1〉

��

zztttttt

$$JJJJJJJ

wwoooooooooooooooooooo

������������

��????????????

d1

UU

d1

55
d1

44

d1

22

Figure 5.13: A scheme involving stop points

From this scheme, we have

• |S0(Q)| = 1

• |S1(Q)| = 1

• |S2(Q)| = |S2(Q; 12)|+ |S2(Q; 21)| = 0 + |S1(Q; 1)| = 0 + 1 = 1

• |S3(Q)| = |S3(Q; 123)|+ |S3(Q; 132)|+ |S3(Q; 231)|+ |S3(Q; 21)|

= 0 + 0 + |S2(Q; 21)|+ 0

= 0 + 0 + |S1(Q; 1)|+ 0

= 0 + 0 + 1 + 0 = 1

• |Sn(Q)| = 0 for all n ≥ 4

Without stop points, we would have computed |S2(Q)| = 2.
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5.3.5 Enumeration Schemes

Finally, we have all the necessary tools to algorithmically find recurrences counting the

elements of Sn(Q) where Q contains barred permutation patterns. More specifically:

Definition 17. An enumeration scheme S is a set of 4-tuples t = [pj , Rj , Gj , Sj ] such

that for each t:

• pj is a reduced prefix of length i.

• Rj a (possibly empty) subset of {1, . . . , i}.

• Gj is a (possibly empty) set of vectors of length i+ 1.

• Sj is a (possibly empty) finite set of positive integers whose minimum element is

≥ |pj |

and

• either Rj is non-empty, or all refinements of pj are also in the scheme.

We have detailed how to find each of the elements of such a 4-tuple, namely if pj is a

prefix, denoting the set Sn(Q; pj), then Rj , Gj , and Sj are the corresponding reversibly

deletable elements, set of gap vectors, and set of stop points.

The last condition ensures that the enumeration scheme can be read as a recurrence

counting the elements of Sn(Q). Recall that if Rj is non-empty, then we have a bijection

between Sn(Q; p) and Sn−1(Q; p∗) for some p∗. If Rj is empty, then we require all

refinements of pj to be in the scheme for completeness.

Given an enumeration scheme S corresponding to pattern set Q, we can compute

|Sn(Q)| in the following way:

1. Let P be the set of pj such that either (i) pj is a prefix of length ≤ n with

reversibly deletable elements or (ii) pj is a prefix of length n without reversibly

deletable elements. We have |Sn(Q)| =
∑

pj∈P |Sn(Q; pj)|.

2. For each pj ∈ P , if n ∈ Sj , then we have |Sn(Q; pj)| = 0.
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3. For each remaining pj ∈ P , associate the set of spacing vectors v∗j of all vectors

of length |pj | + 1 and weight n − |pj | minus the set of gap vectors Gj . We have

|Sn(Q; pj)| =
∑

v∈v∗j
|Sn(Q; pj ; v)|.

4. For each pj ∈ P , and v ∈ v∗j , if Rj is non-empty, we have |Sn(Q; pj ; v)| =∣∣∣Sn−1(Q; p∗j , v
∗)
∣∣∣ for prefix p∗j (pj with letter r deleted) and vector v∗ = 〈v1, . . . ,

vr−1 + vr+1, . . . , vn+1〉. If Rj is empty, then
∣∣∣Sn(Q; p∗j )

∣∣∣ = 1.

5.4 The Maple Package bVATTER

The algorithms both (i) to find a scheme and (ii) to read a scheme into a sequence have

been programmed in the Maple package bVATTER, available from the author’s web-

site: http://www.math.rutgers.edu/~lpudwell/maple.html. The main functions

are SchemeImage, SeqS, Sipur.

SchemeImage inputs a set of patterns Q, a maximum depth scheme to search for,

and a maximum weight of gap vectors to search for, and outputs a concrete enumeration

scheme for words avoiding Q of the specified maximum depth. If it cannot find a scheme

for Q, it searches for a scheme for a symmetry-equivalent pattern set and returns that

scheme instead.

SeqS inputs a scheme and an integer K, and uses the scheme to compute |Si(Q)|

for 1 ≤ i ≤ K.

Sipur inputs a list [L] of pairs of integers, a maximum scheme depth, a maximum

weight of gap vectors, and an integer K. It outputs all information about schemes for

permutations avoiding one pattern of each length in L where each pair is of the form

[length,number of bars]. For example, Sipur([[4,1]],4,2,30) outputs all information

about permutations avoiding one pattern of length 4 with 1 bar. It will search for

schemes of depth 4 with maximum gap vector weight 2 and will output the first 30

terms of the sequence |Si(Q)| given by each scheme it finds.

Sipur has been run on [L] for various lists of the form [[3, xi]a, [4, yi]b, [5, zi]c], and

the output is available from the author’s website.

http://www.math.rutgers.edu/~lpudwell/maple.html
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5.5 Success Rate

In this section, we consider the success rate of prefix enumeration schemes for Sn(Q)

where Q is a set of barred permutation patterns.

Recall that sets of permutation patterns can be put into equivalence classes based on

the permutation involutions of reverse, complement and inverse. We measure success

in terms of the number of such equivalence classes for which there is an enumeration

scheme. In the Table 5.4, pattern lengths denotes the lengths of patterns, as well as the

number of bars. For example pattern lengths [4,0],[4,1] denotes two patterns of length

4, one without bars, and one with precisely one bar. Specific schemes for the data in

the table can be found at the author’s website. As for words, it should be noted that

pattern sets that are counted as unsuccessful do not necessarily lack an enumeration

scheme; they may have enumerations schemes of greater depth than the computer has

searched.

Pattern Lengths Success Rate Pattern Lengths Success Rate
[2,0] 1/1 (100%) [3,0],[3,0],[3,0] 5/5 (100%)
[2,1] 1/1 (100%) [3,0],[3,0],[3,1] 43/45 (95.6%)

[2,0],[2,0] 1/1 (100%) [3,0],[3,0],[3,2] 45/45 (100%)
[2,1],[2,0] 2/2 (100%) [3,0],[3,1],[3,1] 135/138 (97.8%)
[2,1],[2,1] 2/2 (100%) [3,0],[3,1],[3,2] 280/280 (100%)

[3,0] 2/2 (100%) [3,0],[3,2],[3,2] 138/138 (100%)
[3,1] 4/4 (100%) [3,1],[3,1],[3,1] 115/118 (97.5%)
[3,2] 4/4 (100%) [3,1],[3,1],[3,2] 378/378 (100%)

[3,0],[3,0] 5/5 (100%) [3,1],[3,2],[3,2] 378/378 (100%)
[3,0],[3,1] 18/20 (90%) [3,2],[3,2],[3,2] 118/118 (100%)
[3,0],[3,2] 20/20 (100%) [4,0] 2/7 (28.6%)
[3,1],[3,1] 27/28 (96.4%) [4,1] 12/16 (75%)
[3,1],[3,2] 50/50 (100%) [4,2] 25/26 (96.2%)
[3,2],[3,2] 28/28 (100%) [4,3] 16/16 (100%)
[3,1],[4,0] 59/71 (83.1%) [5,1] 15/89 (16.9%)
[3,1],[4,1] 229/240 (95.4%) [5,2] (in progress)
[3,1],[4,2] 355/364 (97.5%)
[3,0],[4,1] 84/88 (95.5%)
[3,0],[4,2] 133/136 (97.8%)
[4,0],[5,1] (in progress)

Table 5.4: Success rate of schemes for various sets of barred patterns
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5.5.1 Examples

We now examine the enumeration schemes for permutations avoiding some specific

barred patterns of length 5, thus exhibiting recurrence relations for five of the new

sequences given in the tables of Section 5.2.

First, we consider the four classes of patterns of length 5 with one bar that give the

sequence 1, 2, 6, 23, 104, 532, 3004. These are the classes with representatives 25143,

25134, 43521, and 43512.

For the class represented by 25143 we have the scheme in Figure 5.14:

Sn({25143}) ∅

1

12 21

123 132
≥ 〈0, 1, 0, 0〉

231

��

zzttttttt

$$JJJJJJJ

��zzuuuuuuuuuu

$$IIIIIIIIII

d1pp

d2

55

d3

BB
d1

55

Figure 5.14: The scheme for Sn({25143})

This scheme gives the sequence 1, 2, 6, 23, 104, 532, 3004, 18426, 121393, 851810,

6325151, 49448313, 405298482, 3470885747, 30965656442 for Sn({25143}) with 1 ≤ n ≤

15.

Next, the equivalence class represented by the pattern 25134 has the scheme in

Figure 5.15.

Sn({25134}) ∅

1

12 21

123 132
≥ 〈0, 0, 1, 0〉

231

��

zzttttttt

$$JJJJJJJ

��zzuuuuuuuuuu

$$IIIIIIIIII

d1pp

d2

55

d3

BB
d1

55

Figure 5.15: The scheme for Sn({25134})
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This differs from the scheme for Sn({25143}) only by the gap vector associated to

132, and yields the same sequence.

The equivalence class with representative 43521 has the scheme in Figure 5.16.

Sn({43521}) ∅

1

12 21

213 321
≥ 〈1, 0, 0, 0〉

312

��

zzttttttt

$$JJJJJJJ

��zzuuuuuuuuuu

$$IIIIIIIIII

d1

..

d1

cc

d3

\\
d2

mm

Figure 5.16: The scheme for Sn({43521})

This is also symmetric to the previous schemes and yields the same sequence.

Finally, the equivalence class with representative 43512 has the scheme in Figure

5.17.

Sn({43512}) ∅

1

12 21

213 321
≥ 〈0, 1, 0, 0〉

312

��

zzttttttt

$$JJJJJJJ

��zzuuuuuuuuuu

$$IIIIIIIIII

d1

..

d1

cc

d2

\\
d2

mm

Figure 5.17: The scheme for Sn({43512})

Again, since the only difference from the scheme for Sn({43521}) is the gap vector

associated with prefix 321, so we get the same sequence yet again.

Now, we consider schemes for the 4 patterns of length 5 with two bars that yield

new sequences.

The pattern 51243 has the scheme in Figure 5.18. This yields the new sequence 1,

2, 5, 14, 43, 143, 511, 1950, 7903, 33848, 152529, 720466, 3555715, 18285538, 97752779

for Sn({51243}), 1 ≤ n ≤ 15.
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Sn({51243}) ∅

1

12 21

213
≥ 〈1, 0, 0, 0〉

312
≥ 〈1, 0, 0, 0〉
≥ 〈0, 1, 0, 0〉

321
≥ 〈0, 0, 0, 0〉
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cc
d1

oo

d1

mm

Figure 5.18: The scheme for Sn({51243})

The equivalence class with representative 31542 has the scheme in Figure 5.19, which

yields the new sequence 1, 1, 2, 5, 14, 43, 144, 522, 2030, 8398, 36714, 168793, 813112,

4091735, 21451972, 116891160 for Sn({31542}), 1 ≤ n ≤ 15.

Sn({31542}) ∅

1

12 21

312
≥ 〈0, 0, 0, 0〉

213 321

3142
≥ 〈0, 0, 0, 0, 0〉

2134 2143 3241
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ee

Figure 5.19: The scheme for Sn({31542})

The equivalence class with representative 54231 has the scheme in Figure 5.20, which

gives the new sequence 1, 2, 5, 14, 43, 146, 561, 2518, 13563, 88354, 686137, 6191526,

63330147, 720314930, 8985750097 for Sn({54231}), 1 ≤ n ≤ 15.

Finally, the pattern 54132 has the scheme in Figure 5.21, which gives the new

sequence 1, 1, 2, 5, 14, 43, 147, 575, 2648, 14617, 96696, 754585, 6794015, 69116493,

781266266, 9688636317 for Sn({54132}), 1 ≤ n ≤ 15.

In light of the preceding discussion, each of these schemes can be considered as

a rigorously proven recurrence counting pattern-avoiding permutations, each sequence
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Sn({54231}) ∅

1

12
≥ 〈1, 0, 0〉

21

213
≥ 〈1, 0, 0, 0〉
≥ 〈0, 1, 0, 0〉

312
≥ 〈1, 0, 0, 0〉

321

��

zzttttttt

$$JJJJJJJ

zzuuuuuuuuuu

�� $$IIIIIIIIII

d1

..

d1
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Figure 5.20: The scheme for Sn({54231})

Sn({54132}) ∅

1

12
≥ 〈0, 1, 0〉

21

321 312
≥ 〈0, 1, 0, 0〉

213
≥ 〈0, 1, 0, 0〉
≥ 〈0, 0, 1, 0〉

4321 4312 4213
≥ 〈0, 0, 1, 0, 0〉
≥ 〈0, 0, 0, 1, 0〉

3214
≥ 〈0, 1, 0, 0, 0〉
≥ 〈0, 0, 1, 0, 0〉
≥ 〈0, 0, 0, 1, 0〉
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d4
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d2

33
d1

55

Figure 5.21: The scheme for Sn({54132})

completely new to the literature.
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Chapter 6

Conclusions and Future Work

We have now demonstrated rigorous methods to find recurrences counting both pattern-

avoiding words and permutations avoiding barred patterns. These methods have been

completely automated in Maple allowing the discovery of many new sequences which

enumerate these pattern-avoiding objects. The results of these computer algorithms

can be found on the author’s webpage http://www.math.rutgers.edu/~lpudwell/

maple.html. However, there is more to do.

6.1 Schemes for Words

The modification of Zeilberger and Vatter’s enumeration schemes detailed in Chapter

3 provides the beginning of a universal method for counting pattern-avoiding words.

The success rate is quite good for avoiding sets of patterns, and has reasonable success

for avoiding single patterns. The schemes of Chapter 4 begin to set the stage for the

enumeration of words avoiding other words, and present a method for counting words

avoiding monotone patterns. The following questions remain open:

• Find other general techniques for enumerating classes of permutation-avoiding

words not counted by prefix schemes.

• Find ways to simplify schemes to compute even more values in the sequence of

the number of pattern-avoiding words for fixed k and Q.

• Find ways to convert concrete enumeration schemes to closed form formulas or

generating functions when possible.

• Modify the method of schemes for monotone patterns given in Chapter 4 to count

words avoiding non-monotone patterns.

http://www.math.rutgers.edu/~lpudwell/maple.html
http://www.math.rutgers.edu/~lpudwell/maple.html
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At present, the method of enumeration schemes gives a recurrence that makes it easy

to compute
∣∣A[a1,...ak](Q)

∣∣ for a variety of pattern sets Q, and various alphabet vectors.

However, these values only allow for conjecture at an appropriate generating function

or closed form formula. Finding a way to automate generating function solutions to

count pattern-avoiding words would be the next ideal improvement in this area.

6.2 Schemes for Barred Patterns

For the case of permutations avoiding barred patterns, one should note that this method

of enumeration schemes, already very successful for counting pattern-avoiding permu-

tations and pattern-avoiding words in the standard sense extends nicely to enumerate

permutations avoiding barred patterns as well. Moreover, this is the first such method

for computing the size of many classes of permutations avoiding barred patterns, and

ushers in the study of barred pattern avoidance in its own right

As for words, it would be interesting to automate generating function solutions to

count permutations avoiding barred patterns as well.

6.3 Future Directions

The method of enumeration schemes, already shown to be widely successful for pattern-

avoiding permutations, pattern-avoiding words, and permutations avoiding barred pat-

terns, can be extended even further still. One clear generalization of both of these areas

would be to compute schemes for words that avoid barred patterns. Also, motivated

by other applications, it is our hope to extend it to distanced pattern avoidance, in the

sense of Firro [17], and to pattern avoidance in other Coxeter groups than Sn, in both

cases counting even more general objects than at present.
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146 (1995), 247–262.

[39] J. West, Generating trees and forbidden sequences, Discrete Math 157 (1996),
363–374.

[40] A. Woo and A. Yong, “When is a Schubert variety Gorenstein?”, Adv. Math. 207
(1), (2006), 205–220.

[41] D. Zeilberger, A proof of Julian West’s conjecture that the number of 2-stack-
sortable permutations of length n is 2(3n)!/((2n + 1)!(n + 1)!) , Discrete Math.
102 (1992), 85–93.

[42] D. Zeilberger, Enumeration schemes, and more importantly, their automatic gen-
eration, Annals of Combinatorics 2 (1998), 185–195.

[43] D. Zeilberger, On Vince Vatter’s brilliant extension of Doron Zeilberger’s enumera-
tion schemes for Herb Wilf’s classes, The Personal Journal of Ekhad and Zeilberger,
2006. http://www.math.rutgers.edu/~zeilberg/pj.html.

http://www.math.rutgers.edu/~zeilberg/pj.html


110

Vita

Lara Kristin Pudwell

2003-2008 Ph.D. in Mathematics, Rutgers University

1999-2003 B.S. in Mathematics, Valparaiso University

1999-2003 B.A. in Computer Science, Valparaiso University

1999 Graduated from White Station High School

2007-2008 Rutgers Carnegie Academy for the Scholarship of Teaching and Learning
Fellow

2007-2008 TA Project Assistant, Graduate School - New Brunswick, Rutgers Univer-
sity

2006-2007 PEO Graduate Fellow

2005-2008 Teaching Assistant, Department of Mathematics, Rutgers University

2005-2007 REU Graduate Coordinator, DIMACS, Rutgers University


	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	A Survey of Related Literature
	Pattern Avoidance in Permutations
	Asymptotic Results
	Sorting
	Schubert varieties
	Symmetries
	Enumeration Results

	Pattern Avoidance in Words
	Definitions
	Symmetries
	Asymptotic and Enumeration Results

	Barred Pattern Avoidance in Permutations
	Definitions
	Symmetries
	Applications
	Enumeration Results

	Universal Enumeration Techniques for Pattern-Avoiding Permutations
	Finitely Labeled Generating Trees
	Insertion Encoding
	Substitution Decomposition
	Enumeration Schemes


	Generating Functions for Pattern-Avoiding Words
	Definitions
	Automated Generating Functions
	Results
	A Bijective Proof
	Concluding Remarks

	Enumeration Schemes for Words Avoiding Permutations
	Background
	Refinement
	Reversibly Deletable Elements
	Gap Vectors
	Enumeration Schemes for Words
	Finding Gap Vectors Automatically and Rigorously
	Finding Reversibly Deletable Elements Rigorously
	The Maple Package mVATTER
	A Collection of Failures
	Examples and Successes

	Enumeration Schemes for Patterns with Repeated Letters
	Old Schemes for Permutations
	Old Schemes for Permutations: a Symmetry
	New Schemes
	Finding Schemes
	Avoiding the pattern 111
	Avoiding the pattern 112
	Avoiding the pattern 121
	Avoiding the pattern 213
	Avoiding the pattern 123
	Avoiding Monotone Patterns
	Final Comments

	Enumeration Schemes for Permutations Avoiding Barred Patterns
	Introduction
	Enumeration
	Avoiding barred patterns of length 1 or 2
	Avoiding barred patterns of length 3
	Avoiding barred patterns of length 4
	Avoiding barred patterns of length 5

	Enumeration Schemes
	Refinement
	Reversibly Deletable Elements
	Gap Vectors
	Stop Points
	Enumeration Schemes

	The Maple Package bVATTER
	Success Rate
	Examples


	Conclusions and Future Work
	Schemes for Words
	Schemes for Barred Patterns
	Future Directions

	References
	Vita

