
Enumeration Schemes for Words Avoiding Permutations

Lara Pudwell

November 27, 2007

Abstract

The enumeration of permutation classes has been accomplished with a variety of techniques. One wide-reaching method is
that of enumeration schemes, introduced by Zeilberger and extended by Vatter. In this paper we further extend the method of
enumeration schemes to words avoiding permutation patterns. The process of finding enumeration schemes is programmable
and allows for the automatic enumeration of many classes of pattern-avoiding words.

1 Background

The enumeration of permutation classes has been accomplished by many beautiful techniques. One natural extension of permu-
tation classes is pattern-avoiding words. Our concern in this paper is not attractive methods for counting individual classes, but
rather developing a systematic technique for enumerating many classes of words. Four main techniques with wide success exist
for the systematic enumeration of permutation classes. These are generating trees, insertion coding, substitution decomposi-
tion, and enumeration schemes. In this paper we adapt the method of enumeration schemes, first introduced for permutations
by Zeilberger [5] and extended by Vatter [4] to the case of enumerating pattern-restricted words.

Definition 1. Let [k]n denote the set of words of length n in the alphabet {1, . . . , k}, and let w ∈ [k]n, w = w1 · · ·wn. The
reduction of w, denoted by red(w), is the unique word of length n obtained by replacing the ith smallest entries of w with i,
for each i.

For example, the reduction of w = 2674423 is r = red(w) = 1453312. Notice that r uses every letter from min(r)=1 to
max(r), and furthermore ri ≤ rj iff wi ≤ wj . We also say that w1 and w2 are order-isomorphic if red(w1) = red(w2).

Definition 2. Let w ∈ [k]n, w = w1 · · ·wn as above, and let q ∈ [k]m, q = q1 · · · qm. We say that w contains q if there exist
1 ≤ i1 < i2 < · · · < im ≤ n so that wi1 · · ·wim is order-isomorphic to q. Otherwise w avoids q.

The study of pattern avoidance in permutations (where neither w nor q have repeated letters) has been well-studied, but less is
known for the more general case of words. The groundbreaking work in this area was done by A. Burstein in his thesis [3],
where he discusses words avoiding sets of permutations and uses generating function techniques to prove his results.

It is an easy exercise to fix a word w and to list all patterns of length m that w contains. However, it is a much more difficult
question to fix a pattern (or set of patterns) q and enumerate all words in [k]n that avoid q for symbolic n. Our main object of
study is:

Definition 3. A frequency vector is a vector a = [a1, . . . , ak] such that k ≥ 1 and ai ≥ 0 for 1 ≤ i ≤ k. Let ‖a‖ :=
∑k

i=1 ai.
Then, given a frequency vector a and a set of reduced words Q in [k]m for some m > 0, we define

Aa,Q := {w ∈ [k]‖a‖ | w avoids q for every q ∈ Q,w has ai i’s for 1 ≤ i ≤ k}.

Notice that if a1 = · · · = ak = 1, we reduce to the case of counting pattern-avoiding permutations. Also note that if ai = 0
for some i, then we have Aa,Q = Aa′,Q, where Aa′ = [a1, . . . , ai−1, ai+1, . . . , ak]. Thus, we may assume that ai > 0 for
1 ≤ i ≤ k. When the set of patterns Q is clear from context, we may simply write Aa.

Most of the techniques for studying pattern avoidance are dependent on what patterns are being avoided. However, one would
hope for a more universal approach that enumerates pattern-avoiding strings independent of the pattern. In 1998, Zeilberger [5]
introduced prefix enumeration schemes, giving a more universal framework for counting these permutation classes. Unfortu-
nately, this method did not yet have as strong a success rate as hoped for. In 2005, Vatter [4] extended these schemes, completely

1

automating the enumeration of many more permutation classes. Vatter’s work studies a symmetry of prefix schemes to ease no-
tation. In 2006, Zeilberger [6] reformulated Vatter’s schemes in his original notation of prefix schemes, allowing even quicker
enumeration of many permutation classes. In this paper, I extend the notion of Zeilberger and Vatter’s prefix schemes to enu-
merate words avoiding sets of permutations (i.e. pattern q has no repeated letters, but w may), and detail the success rate of this
method.

2 Refinement

Assume we want to enumerate a set A(n). If we cannot find a closed formula for |A(n)|, then ideally, we want to find a
recurrence only involving n. Unfortunately, this is not always possible.

If we cannot find a direct recurrence, following Zeilberger, we introduce the notion of refinement as follows. Decompose A(n)
as A(n) =

⋃
i∈I B(n, i), so that the B(n, i) are disjoint. Then, if we can find a recurrence for each B(n, i) in terms of the

other B(n, i) and A(n), we have a recursive formula for A(n) as well. If not, then refine each B(n, i) as the disjoint union
B(n, i) =

⋃
j∈J C(n, i, j), and repeat.

In the case of words, we will use reduced prefixes as our refinement parameter.

Definition 4. Let w ∈ [k]n, w = w1 · · ·wn. The i-prefix of w is the word obtained by reducing w1 · · ·wi, 1 ≤ i ≤ n.

For example, if w = 152243, the 1-prefix of w is 1, the 2-prefix of w is 12, the 3-prefix of w is 132, the 4-prefix of w is 1322,
the 5-prefix of w is 14223, and the 6-prefix of w is 152243. In particular, the n-prefix of w is red(w).

Now, to allow us to talk about sets, we introduce the following notation:

Definition 5. Aa
(
p1 · · · pl

)
:= {w ∈ [k]‖a‖ | w has l-prefix p1 · · · pl}

Aa

(
p1 · · · pl

i1 · · · il

)
:= {w ∈ [k]‖a‖ | w = i1 · · · ilwl+1 · · ·wn has l-prefix p1 · · · pl}

For example, A[1,2,1]

(
21

)
= {3122, 3212, 3221, 2123, 2132}.

A[2,1,2]

(
121
131

)
= {13123, 13132}.

A[2,1,1,1,1]

(
132
154

)
= {154123, 154132, 154312, 154321, 15432132, 154231}.

Thus, we have

Aa(∅) = Aa (1)
= Aa (12) ∪Aa (11) ∪Aa (21)
= (Aa (231) ∪Aa (121) ∪Aa (132) ∪Aa (122) ∪Aa (123))
∪ (Aa (221) ∪Aa (111) ∪Aa (112))
∪ (Aa (321) ∪Aa (211) ∪Aa (312) ∪Aa (212) ∪Aa (213))

= . . .

Finally, for ease of notation, we make the following definition:

Definition 6. Given a prefix p of length l, the set of refinements of p is the set of all prefixes of length l + 1 whose l-prefix is p.

For example, the set of refinements of 1 is {11, 12, 21}. The set of refinements of 11 is {221, 111, 112}. The set of refinements
of 12 is {231, 121, 132, 122, 123}. This simplifies our notation to the following:

Aa (p) =
⋃

r∈{refinements of p} Aa (r).

Now that we have developed a way to partition Aa into disjoint subsets, we investigate methods to find recurrences between
these subsets.

3 Reversibly Deletable

Following Zeilberger, we have the following:

Definition 7. Given a forbidden pattern q, p = p1 · · · pl an l-prefix, and 1 ≤ t ≤ l, we say that pt is reversibly deletable if
every instance of q in a word with prefix p involving pt implies the presence of an instance of q without pt.

For example, let q = 123 and p = 21. Then w = ij · · · with i > j. p1 is reversibly deletable since the only way for p1 = i
to be involved in a 123 pattern is if w = ij · · · a · · · b · · · with i < a < b. But since i > j, we have j < a < b as well so jab
forms a 123 pattern without using position p1.

Now, if pt is reversibly deletable, we have the following recurrence, where p̂t (resp. ît) indicates that the letter pt (resp. it) has
been deleted: ∣∣∣∣Aa

(
p1 · · · pl

i1 · · · il

)∣∣∣∣ =
∣∣∣∣A[a1,...,at−1,...,ak]

(
p1 · · · p̂t · · · pl

i1 · · · ît · · · il

)∣∣∣∣
That is, deleting and replacing pt provides a bijection between the two sets.

It should be noted that in Zeilberger’s original schemes for permutations, if positions t and s are both reversibly deletable, then∣∣∣∣Aa

(
p1 · · · pl

i1 · · · il

)∣∣∣∣ =
∣∣∣∣A[a1,...,at−1,...,as−1,...,ak]

(
p1 · · · p̂t · · · p̂s · · · pl

i1 · · · ît · · · îs · · · il

)∣∣∣∣
However, in the case of pattern-avoiding words, this is no longer true. Consider for example q = 123, p = 11. Both p1 and
p2 are reversibly deletable independently, but not together. In a later section, we will revisit the question of when reversibly
deletable letters in the same prefix can be deleted at the same time.

4 Gap Vectors

Thus far, knowing only a prefix and a forbidden pattern are enough to determine reversibly deletable positions. However, there
are instances when this is not the case. Consider for example q = 123 and p = 12. With our current definition neither position
of the prefix is reversibly deletable. However, observe that if w ∈ [k]n, w = ij · · · with i < j < k, then k eventually appears
in the word w. Thus, w = ij · · · k · · · and ijk is a 123 pattern. Since every word with prefix 12 where the letter playing the
role of 2 is less than k has a 123 pattern, we know that in any word with prefix 12, the second letter is necessarily k. This is the
largest letter in the alphabet, so it cannot be involved in a 123 pattern, so p2 = k is trivially reversibly deletable.

To help determine the reversibly deletable positions in these more sophisticated cases, we introduce the following:

Definition 8. Given a pattern q, a prefix p = p1 · · · pl, and letters i1 · · · il comprising the prefix p, let s1 ≤ · · · ≤ sl such that
{s1, . . . , sl} = {i1, . . . , il}. We say that g =< g1, . . . , gl+1 > is a gap vector for [q, p, [k]n] if there are no words w ∈ [k]n

avoiding q, with prefix p and with s1 − 1 ≥ g1, sj − sj−1 ≥ gj (2 ≤ j ≤ l), and k − sl ≥ gl+1.

For example, in the case of q = 123 and p = 12 above, g =< 0, 1, 1 > is a gap vector since the set of all words in [k]n where
w = i1i2 · · · , and i1 − 1 ≥ 0, i2 − i1 ≥ 1, and k − i2 ≥ 1, (i.e. all words that begin with an increasing pair where i2 < k) is
empty. (Otherwise, w = i1i2 · · · k · · · contains a 123 pattern, namely i1i2k.)

This definition may at first seem awkward in that the the entries at the beginning and end of a vector have a slightly different
meaning from the interior entries. An interior 0 denotes a repeated letter in the prefix, while an interior 1 denotes two necessarily
adjacent letters. In the convention of Zeilberger and Vatter, we would have used −1 and 0 respectively instead. This change
gives one advantage of notation. If prefix p = p1 · · · pl has gap vector < g1, . . . , gl+1 >, then prefix p1 · · · p̂t · · · pl has gap
vector < g1, . . . , gt + gt+1, . . . , gl+1 >. With the notation of 0s and −1s, further adjustment would need to be made.

Notice that as in Vatter’s schemes, if g and h are vectors of length l, gi < hi (1 ≤ i ≤ l), and g is a gap vector for some
[q, p, [k]n], then so is h. In other words, the set of gap vectors for a given pattern, alphabet, and prefix form an upper ideal in
the poset of vectors in Nl, so we can find a finite basis of gap vectors for [q, p, [k]n] by choosing the minimal elements of this
ideal.

5 Enumeration Schemes for Words

We define an abstract enumeration scheme S to be a set of triples [p, G,R] where p is a reduced prefix of length l, G is a
(possibly empty) set of vectors of length l + 1 and R is a subset of {1, . . . , l}. If d is the maximum length of a prefix p in S, we
say that S is a scheme of depth d.

Such an enumeration scheme is said to be a concrete enumeration scheme if for all triples in S, either R is non-empty or all
refinements of p are also in S. Once we have such an enumeration scheme, it can be considered as an encoding of a system of
recurrences. The simplest example of such a scheme is

S = { [∅, {}, {}], [1, {}, {1}] }

For prefix ∅, all refinements, i.e. {1}, belong to S. For prefix 1, R 6= ∅.

In fact, this is the scheme for counting all words in [k]n. First note that it is equivalent to count all words or to count all words
beginning with a 1 pattern. For words beginning with a 1 pattern, the 1 is trivially reversibly deletable (there is no forbidden
pattern to avoid). This gives the following recurrence:

|Aa(∅)| = |Aa(1)| =
k∑

i=1

∣∣∣∣Aa

(
1
i

)∣∣∣∣ =
k∑

i=1

∣∣A[a1,...,ai−1,...,ak](∅)
∣∣ ,

∣∣A[a1]

∣∣ = 1.

As expected, this gives the unique solution |Aa(∅)| =
(‖a‖
a1,...,ak

)
.

We have now developed all the necessary tools to completely automatically find concrete enumeration schemes to count classes
of pattern-avoiding words in the following way:

1. Initialize S := {[∅, {}, {}]}.

2. Let P = {refinements of all prefixes in S with no reversibly deletable elements}

3. For each prefix in P , find its set Gp of gap vectors.

4. For each pair [p,Gp], find the set Rp of all reversibly deletable elements, and let and S2 = ∪p∈P {[p, Gp, Rp]}.

5. If Rp 6= {} for all triples in S2, then return S ∪ S2. Otherwise let S = S ∪ S2, and return to step 2.

It is clear that steps 1, 2, and 5 can be done completely automatically. In the following sections, we will prove that steps 3 and
4 can be done completely rigorously and automatically as well.

It should be noted that as in the case of permutations, the operations of complement and reversal are involutions on the set
of words in [k]n with some useful properties. Namely, if p is a forbidden pattern, pc is its complement (formed by replacing
i → k + 1− i), and pr is its reversal, in the notation of section 1, we have:

A[a1,...,ak],{p} = A[ak,...,a1],{pc}

A[a1,...,ak],{p} = A[a1,...,ak],{pr}

Let Av(p) denote the set of all words avoiding p. If, we can find a scheme for Av(p), then we have a system of recurrences for
counting Av(p), Av(pc), Av(pr), and Av(prc). If we are unable to automatically find a scheme for Av(Q) directly, we may
use these natural symmetries, or Wilf equivalences, on patterns to find an equivalent scheme.

6 Finding Gap Vectors Automatically and Rigorously

Recall that for a fixed set of patterns Q and a prefix p of length l, g is a gap vector if there are no words avoiding Q with prefix
p and spacing given by g. Thus, to study gap vectors we consider the following sets:

A(Q, p, g) := {w ∈ [1 + ‖g‖]n | n ≥ l, w avoids Q, w has prefix p, {s1, . . . , sl} = {w1, . . . , wl} with s1 ≤ · · · ≤ sl, and
s1 = g1 + 1, sj = sj−1 + gj (j > 1)}

where ‖g‖ =
∑

i gi, the norm of g. Thus, A(Q, p, g) is the set of all Q-avoiding words with alphabet size k = 1 + ‖g‖
whose first l elements form a p pattern composed of the letters g1 + 1, g2 + g1 + 1, . . . , gl + · · ·+ g1 + 1.

Not all pairs (p, g) result in a non-empty set A(Q, p, g). If the set A(Q, p, g) is empty, then g is a gap vector.

Denote G(p) := {g ∈ Nl+1|A(Q, p, g) 6= ∅ for all n ≥ l}. The set Nl+1 \ G(p) is the same as the set of all gap vectors that
was introduced previously. We observed before that the set of gap vectors is an upper ideal in Nl+1. Since Nl+1 is partially

well-ordered, we may define the set of gap vectors in terms of a basis by specifying the minimal elements not in G(p). We are
guaranteed, by the poset structure of Nl+1 under product order, that this basis is finite.

Now that we are concerned with determining a finite set of vectors, two questions remain: (1) How can we determine all gap
vectors of a particular norm?, and (2) What is the maximum norm of a gap vector in the basis?

First, following Zeilberger, we may find all gap vectors of a specific norm k = ‖g‖ in the following way. Intuitively, a gap
vector g specifies the relative spacing of the initial entries of a word beginning with prefix p. Consider prefix p = p1 . . . pl,
sorted and reduced to be s = s1 · · · sl and potential gap vector g =< g1, . . . , gl+1 >. This means that there are g1 entries
smaller than s1, max{0, gi+1 − 1} entries between si and si+1 (for 2 ≤ i ≤ l − 1), and finally gl+1 entries larger than sl.

Let 1
g1+1 , 2

g1+1 , . . . , g1
g1+1 be the g1 elements smaller than s1.

Let si + 1
gi+1+1 , si + 2

gi+1+1 , . . . , si + max{0,gi+1}
gi+1+1 be the elements between si and si+1, (2 ≤ i ≤ l − 1).

Let sl + 1
gl+1+1 , . . . , sl + gl+1

gl+1+1 be the gl+1 elements larger than sl.

Extending the definition of reduction to fractional elements, we may consider all words of length l + ‖g‖ which begin with s
and end with some permutation of the set of fractional letters above. There are ≤ (g1 + · · ·+ gl+1)! such possibilities. If each
and every one of these words contains an element of Q, then we know that g is a gap vector for prefix p since the set of words
beginning with p, avoiding Q, and obeying the gap conditions imposed by g is the empty set.

Now, we have a rigorous way to find all gap vectors of a specific norm, but the question remains: what is the maximum norm
of elements in the (finite) basis of gap vectors guaranteed above?

First, it should help to remember how gap vectors are used. The notion of gap vector was introduced to help determine when a
particular letter of a word prefix is reversibly deletable. We revisit this concept more rigorously.

For any r ∈ [l], the set A(Q, p, g) embeds naturally (remove the entry (pr) and reduce) into A(Q, dr(p), dr(g)) where dr(p) is
obtained by deleting the rth entry of p and reducing. dr(g) is obtained by sorting p, and finding the index i corresponding to
pr, then letting dr(g) =< g1, . . . , gi−1, gi + gi+1, gi+2, . . . , gl+1 >.

Sometimes this embedding of A(Q, p, g) into A(Q, dr(p), dr(g)) is a bijection. If this is true for all gap vectors g that obey
G(p), that is, this embedding is a bijection whenever the set A(Q, p, g) is non-empty, then we say that pr is reversibly deletable
for p with respect to Q. Notice that this equivalent to the notion of reversibly deletable introduced previously.

Adapting notation from Vatter, we have the following proposition, which puts a bound on the number of gap conditions to check
before declaring an element to be reversibly deletable.

Proposition 1. The entry pr of the prefix p is reversibly deletable if and only if

|A(Q, p, g)| = |A(Q, dr(p), dr(g))|

for all g ∈ G(p) with ‖g‖ ≤ ‖Q‖∞ + l− 2, where ‖g‖ denotes the sum of the entries of g, ‖Q‖∞ denotes the maximum length
of a pattern in Q, and l is the length of p.

Proof. If pr is reversibly deletable then the claim follows by definition. To prove the converse, suppose that pr is not reversibly
deletable. We trivially have that |A(Q, dr(p), dr(g))| ≥ |A(Q, p, g)|, and since pr is not reversibly deletable, we now have
|A(Q, dr(p), dr(g))| > |A(Q, p, g)| for some g ∈ G(p). Pick g ∈ G(p) and p∗ ∈ A(Q, dr(p), dr(g)) so that p∗ cannot be
obtained from a word in A(Q, p, g) by removing pr and reducing.

Now, form the Q-containing word p′ by incrementing every entry of p∗ that is at least pr by 1 and inserting pr into position r.
p′ is the word that would have mapped to p∗, except that p′ contains a pattern ρ ∈ Q, and thus is in A(∅, p, g) \A(Q, p, g).

Now, pick a specific occurrence of ρ ∈ Q that is contained in p′. Since p∗ = red(p′ − p(r)) avoids Q, this occurence of ρ
must include the entry pr. Let p′′ be the reduction of the subsequence of p′ formed by all entries that are either in the chosen
occurence of ρ or in prefix p (or both). p′′ is now a word of length ≤ ‖Q‖∞ + l − 1. Since all gap vectors g have ‖g‖ = k − 1
where k is the size of the alphabet, we have that p′′ lies in A(∅, p, h) for some h with ‖h‖ ≤ ‖Q‖∞ + l− 2. On the other hand,
red(p′′ − p(r)) avoids Q, so that |A(Q, dr(p), h)| > |A(Q, dr(p), h)|, as desired.

Although not as sharp as the original bound of ‖g‖ ≤ ‖Q‖∞ − 1 given by Vatter for pattern-avoiding permutations, this still
gives a bound on the depth of gap vectors that only increases linearly with the depth of the enumeration scheme. Now we have
found a completely rigorous way to compute a basis for all gap vectors corresponding to a given prefix p. Finally, we turn our
attention to the notion of reversibly deletable elements.

7 Finding Reversibly Deletable Elements Rigorously

Intuitively, to show that pr is reversibly deletable, we must show that every conceivable forbidden pattern involving pr implies
the presence of another forbidden pattern not involving pr. For example, in the case of Q = {1234} and p = 123, for position
p3 we first compute that g =< 0, 1, 1, 1 > is a basis for G(p) with respect to p, thus p3 = k, the largest letter in the word. Since
the third (and largest) letter cannot be in a 1234-pattern, p3 is trivially reversibly deletable.

As a more instructive example, consider p = 4213 and Q = {43215} and check if p3 is reversibly deletable. To check, note
that the only ways that p3 = 1 can participate in a 43215 pattern is if we have (1) 4213abc, where c > 4 > 1 > a > b, (2)
4213abc where c > 2 > 1 > a > b, or (3) 4213ab where b > 4 > 2 > 1 > a.

Consider the first case. If this happens, then we have 2 letters smaller than “1", and one letter larger than “4", i.e. our word has
the gap condition < 2, 0, 0, 0, 1 >. In this case, form the word 4213abc and delete the 1, to obtain 423abc. In this case 43abc
forms a 43215 pattern, so p3 is ok.

Now, consider the case where 21abc is our 43215 pattern. Again, we have 2 letters smaller than “1", but our final letter is bigger
than “2", so we may have any of the following gap vectors: < 2, 0, 1, 0, 0 > (that is, 2 < c < 3), < 2, 0, 0, 1, 0 > (that is,
3 < c < 4), or < 2, 0, 0, 0, 1 > (that is, c > 4). Again, we must test all 3 cases, to check for implied instances of 43215. For
gap < 2, 0, 1, 0, 0 >, we have 4213abc with b < a < 1 < 2 < c < 3 < 4, so 423abc reduces to 635214. There is no implied
43215 pattern, so p3 is not reversibly deletable.

These two examples give the general idea for how to test if a position pr is reversibly deletable:

1. List all possible bad patterns involving pr.

2. For each possible bad pattern involving pr, list all gap spacings the pattern may have with respect to the prefix p.

3. If each gap spacing of the bad pattern implies a different instance of a bad pattern, then pr is reversibly deletable.
Otherwise, it is not.

Furthermore, if there are non-trivial gap vectors, we may rule out many of the above cases in our computation because the gap
vectors imply that the set of all such words with no bad pattern is empty.

Now that we have shown how to completely automatically determine the set of all gap vectors, and the set of reversibly deletable
entries of a given prefix, we revisit the notion of independence of reversibly deletable elements. We showed earlier that if both
pr and ps are reversibly deletable entries of prefix p, we cannot necessarily delete both pr and ps. We now show an important
case where elements may be deleted simultaneously.

Proposition 2. Let S be a concrete enumeration scheme, let p be a prefix in S and let pr, ps be reversibly deletable elements
of p. If neither dr(p) nor ds(p) is a member of S, and ps is reversibly deletable for some i-prefix of dr(p) in S, then pr and ps

may be deleted simultanously.

We will denote this embedding (deleting pr and ps simultanously) as dr,s.

Proof. Suppose that p, r, s, S are as above. Since dr(p) is not in S, there must be some i-prefix p∗ of dr(p) in S with a
reversibly deletable element p∗j . Since p∗j is reversibly deletable for p∗, it is also reversibly deletable for dr(p) (which begins
with p∗), therefore this position is also reversibly deletable.

In short, this proposition shows that while we may not always be able to delete more than one prefix entry at a time, when it is
necessary to obtain a prefix in scheme S, it can always be done.

We have now shown how to completely rigorously find all components of a concrete enumeration scheme for pattern-avoiding
words.

8 The Maple Package mVATTER

The above algorithm has been programmed in the Maple package mVATTER, available from the author’s website. The main
functions are SchemeF, MiklosA, MiklosTot, and SipurF.

SchemeF inputs a set of patterns and a maximum depth scheme to search for, and outputs a concrete enumeration scheme for
words avoiding q of the specified maximum depth. SchemeF also makes use of the natural symmetries of pattern avoiding

words: reversal and complement. If it cannot find a scheme for a set of patterns, it tries to find a scheme for a symmetry-
equivalent pattern set and returns that scheme instead.

MiklosA inputs a scheme, a prefix, and a frequency vector and returns the number of words obeying the scheme and
the vector, having that prefix. To count all words with a specific frequency vector avoiding a specific set of patterns, try
MiklosA(SchemeF(Patterns, SchemeDepth), [], [frequency vector]).

MiklosTot inputs a scheme, and positive integers k and n, and outputs the total number of words in [k]n obeying the scheme.

SipurF inputs a list [L], a maximum scheme depth, an integer r, and a list of length r. It outputs all information about
schemes for words avoiding one word of each length in L. For example, SipurF([3],2,4,[10,8,6,6]) outputs all
information about words avoiding permutation patterns of length 3. It will output the first 10 terms in the sequence of the
number of permutations (1 copy of each letter) avoiding a pattern, the first 8 terms in the sequence of the number of words with
exactly 2 copies of each letter, and the first 6 terms in the sequences with exactly 3 or 4 copies of each letter.

SipurF has been run on [L] for various lists of the form [3a, 4b], and the output is available from the author’s website.

9 A Collection of Failures

Although this notion of enumeration schemes for words is successful for many sets of patterns, there is more to be done.

There are many cases where enumeration schemes of Vatter and Zeilberger fail. Unfortunately, the new schemes for words
avoiding permutation patterns will necessarily fail whenever Zeilberger and Vatter’s schemes fail for the same patterns. Namely,
the chain of prefixes with no reversibly deletable elements from the permutation class enumeration scheme will still have no
reversibly deletable elements for words, since there are even more possibilities for a bad pattern to occur.

Further, this paradigm only succeeds for avoiding permutations (i.e., the patterns to be avoided have precisely one copy of each
letter). The key observation is that gap vectors keep track of spacing, but they do not keep track of frequency. More precisely:

Proposition 3. If Q = {ρ} where ρ has a repeated letter, then there is no finite enumeration scheme for words avoiding Q.

Proof. To show that there is no finite enumeration scheme, we must exhibit a chain of prefixes which have no reversibly
deletable elements with respect to Q. Consider the structure of ρ. We have ρ = q1lq2lq3, where l is the first repeated letter of
ρ. Thus, q1lq2 is a permutation.

First we consider a simple case. Suppose that q1 = ∅. Then, consider the chain of prefixes of the form pi = 1 . . . i. Consider
an occurence of ρ beginning with j, 1 ≤ j ≤ i. Since j is the first repeated letter in forbidden pattern ρ, there is no other letter
in pi which can take its place. Thus we have an infinite chain of prefixes with no reversibly deletable element.

Now, suppose that |q1| ≥ 1 and the final letter of q1 is > l. For 1 ≤ i ≤ |q1|, we let pi = (q1)1 · · · (q1)i. Now, for i > |q1|, let
d = i− |q1|, and make the following construction:

(q∗1)i =

{
(q1)i, if (q1)i < l;
(q1)i + d if (q1)i > l;

Then, pi = (pi)1 · · · (pi)i where

(pi)j =

{
(q∗1)i, if j ≤ |q∗1 |;
l + (j − (|q∗1 |+ 1)) if j > |q∗1 |;

In essence, for large i, pi = q∗1 l∗, where l has been replaced by increasing sequence l∗, and all entries of q1 greater than l are
incremented accordingly.

Viewing a prefix as a function from {1, . . . , i} to {1, . . . , i}, the prefixes pi of length |q1|+ 1 and |q1|+ 4 are displayed below
as an example.

Now, consider the occurence of forbidden pattern ρ that uses element j of the monotone run at the end of pi as l. Since this is
the first repeated letter in the pattern, no matter how ρ occurs in the word, the role of l must be played by j. Thus there are no
reversibly deletable entries of pi.

For the remaining case: |q1| ≥ 1 and the final letter of q1 is smaller than l, repeat the construction above, but with a decreasing
run instead of an increasing run at the end of pi for large i. Again, for each letter in pi, we can pick an occurence of ρ that
demonstrates that letter is not reversibly deletable.

This seeming shortcoming raises the question whether there is yet another way to extend schemes. Recall that in this paper,
we have modified Zeilberger’s original schemes which use prefixes for refinement. On the other hand, Vatter took symmetries
and refined by the patterns formed by the smallest entries of a permutation. In the study of restricted permutations, these two
notions are equivalent, but for words, this is no longer true. Indeed, in Vatter’s notation, if we refine by adding one letter at a
time, the repeated letters in words cause 1 → 11 → 111 → · · · to often be an infinite chain in schemes for pattern-avoiding
words. Ideally we would like to find schemes that do not depend on the alphabet size or on specifying frequency of letters. One
way to circumvent this difficulty is to refine words by adding multiple letters at a time. These results will be given in a future
paper.

10 Examples and Successes

Despite the holes for future progress discussed in section 9, prefix enumeration schemes for words have a reasonable success
rate, especially when avoiding sets of permutation patterns. This method is 100% successful when avoiding sets of patterns of
length 3, and enjoys fairly high success when avoiding sets of 3 or more patterns simultanously. Some of the nicer results are
displayed below.

We draw an enumeration scheme as a directed graph, where the vertices are prefixes. A solid arrow goes from a prefix to any of
its refinements. A dotted arrow, denoting reversibly deletable letters, goes from a prefix to one of its i-prefixes, and is labelled
by the corresponding deletion map. If there are any gap vectors for a given prefix, the basis for those gap vectors is written
below that prefix.

Many of the enumeration schemes for permutations carry over to enumerating words almost directly. Some simple examples
include the scheme for counting all words, and the scheme for counting words avoiding the pattern 12.

Av(∅)
∅

1

Av(12)
∅

1
≥ (0, 1)

��
d1

BB

��
d1

BB

The first non-trivial examples are schemes for avoiding one pattern of length 3. These schemes are nearly identical to the
permutation schemes, only with the 11 prefix now included. The symmetry of these schemes gives an alternate explanation that
Av(123) and Av(132) are Wilf-equivalent for words as well as for permutations.

Av(123)
∅

1

12
≥ (0, 1, 1)

11 21

Av(132)
∅

1

12
≥ (0, 2, 0)

11 21

��

����
��

��
��

�

�� ��?
??

??
??

??d2

22

d1

II d1

ll
��

����
��

��
��

�

�� ��?
??

??
??

??d2

22

d1

II d1

ll

A more interesting example is:

Av(1234)
∅

1

12 11 21

132123
≥ (0, 1, 1, 1)

231 121 122

2312 2413 3412 3421 2311 2313 2314
≥ (0, 1, 1, 1, 1)

��

����
��

��
��

�

�� ��?
??

??
??

??

����
��

��
��

�

wwooooooooooooooo

�� ��?
??

??
??

??

''OOOOOOOOOOOOOOO

vvmmmmmmmmmmmmmmmmmmmmmmm

zztttttttttttttttt

����
��

��
��

��
��

�� ��7
77

77
77

77
77

7

$$JJJJJJJJJJJJJJJJ

((QQQQQQQQQQQQQQQQQQQQQQQ

d1

II d1

ll

d2

33
d3

33
d3

ff d2
nn

d1,2

22

d1,2

99

d1,2

HH

d3

TT
d3

gg
d4

kk d4
qq

We conclude this section with statistics comparing the success rate of Vatter and Zeilberger’s schemes for permutations versus
the success rate of schemes for words. As discussed above, the current success of word schemes is bounded above by the
success of permutation schemes. We consider success rate to be the percentage of trivial Wilf classes of patterns which can
be enumerated via schemes. Notice that there are fewer Wilf classes when enumerating permutations, since the operations of
reverse, complement, and inverse all give trivial equivalences, while in the case of words, inverses no longer exist. Finally, we
use the notation of the program SipurF, described above. For example, avoiding the list [3, 4] means to avoid one pattern of
length 3 and one pattern of length 4.

Pattern Lengths to Avoid Permutation Scheme Success Word Scheme Success
[2] 1/1 (100%) 1/1 (100%)

[2,3] 1/1 (100%) 1/1 (100%)
[2,4] 1/1 (100%) 1/1 (100%)

[3] 2/2 (100%) 2/2 (100%)
[3,3] 5/5 (100%) 6/6 (100%)

[3,3,3] 5/5 (100%) 6/6 (100%)
[3,3,3,3] 5/5 (100%) 6/6 (100%)

[3,3,3,3,3] 2/2 (100%) 2/2 (100%)
[4] 2/7 (28.6%) 2/8 (25%)

[3,4] 17/18 (94.4%) 9/24 (37.5%)
[3,3,4] 23/23 (100%) 27/31 (87.1%)

[3,3,3,4] 16/16 (100%) 20/20 (100%)
[3,3,3,3,4] 6/6 (100%) 6/6 (100%)

[3,3,3,3,3,4] 1/1 (100%) 1/1 (100%)
[4,4] 29/56 (51.8%) ?/84 (in process)

[3,4,4] 92/92 (100%) 38/146 (26%)
[3,3,4,4] 68/68 (100%) 89/103 (86.4%)

[3,3,3,4,4] 23/23 (100%) 29/29 (100%)
[3,3,3,3,4,4] 3/3 (100%) 3/3 (100%)

11 Future Work

This modification of Zeilberger and Vatter’s enumeration schemes provides the beginning of a universal method for counting
pattern-avoiding words. The success rate is quite good for avoiding sets of patterns, and has reasonable success for avoiding
single patterns. The following questions remain open:

• Find other general techniques for enumerating classes of permutation-avoiding words not counted by prefix schemes.

• Find a method for counting words avoiding other words. This will be explored in a subsequent paper of the author.

• Find ways to simplify schemes to compute even more values in the sequence of the number of pattern-avoiding words
for fixed k and q.

• Find ways to convert concrete enumeration schemes to closed forms or generating functions when possible.

References

[1] M. Albert, R. Aldred, M.D. Atkinson, C. Handley, D. Holton, Permutations of a multiset avoiding permutations of length
3, Europ. J. Combin. 22, 1021-1031 (2001).

[2] P. Brändén, T. Mansour, Finite automata and pattern avoidance in words, Joural Combinatorial Theory Series A 110:1,
127-145 (2005).

[3] A. Burstein, Enumeration of Words with Forbidden Patterns, Ph.D. Thesis, University of Pennsylvania, 1998.

[4] V. Vatter, Enumeration Schemes for Restricted Permutations, Combinatorics, Probability, and Computing, to appear.

[5] D. Zeilberger, Enumeration Schemes, and More Importantly, Their Automatic Generation, Annals of Combinatorics 2,
185-195 (1998).

[6] D. Zeilberger, On Vince Vatter’s Brilliant Extension of Doron Zeilberger’s Enumeration Schemes for Herb
Wilf’s Classes, The Personal Journal of Ekhad and Zeilberger, 2006. http://www.math.rutgers.edu/∼
zeilberg/pj.html.

